| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_writer.h" |
| |
| #include <sys/stat.h> |
| #include <lz4.h> |
| #include <lz4hc.h> |
| |
| #include <memory> |
| #include <numeric> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/logging.h" |
| #include "base/unix_file/fd_file.h" |
| #include "class_linker-inl.h" |
| #include "compiled_method.h" |
| #include "dex_file-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "elf_file.h" |
| #include "elf_utils.h" |
| #include "elf_writer.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/space-inl.h" |
| #include "globals.h" |
| #include "image.h" |
| #include "intern_table.h" |
| #include "linear_alloc.h" |
| #include "lock_word.h" |
| #include "mirror/abstract_method.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/method.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string-inl.h" |
| #include "oat.h" |
| #include "oat_file.h" |
| #include "oat_file_manager.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change.h" |
| #include "handle_scope-inl.h" |
| #include "utils/dex_cache_arrays_layout-inl.h" |
| |
| using ::art::mirror::Class; |
| using ::art::mirror::DexCache; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| using ::art::mirror::String; |
| |
| namespace art { |
| |
| // Separate objects into multiple bins to optimize dirty memory use. |
| static constexpr bool kBinObjects = true; |
| |
| // Return true if an object is already in an image space. |
| bool ImageWriter::IsInBootImage(const void* obj) const { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| if (!compile_app_image_) { |
| DCHECK(heap->GetBootImageSpaces().empty()); |
| return false; |
| } |
| for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { |
| const uint8_t* image_begin = boot_image_space->Begin(); |
| // Real image end including ArtMethods and ArtField sections. |
| const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize(); |
| if (image_begin <= obj && obj < image_end) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool ImageWriter::IsInBootOatFile(const void* ptr) const { |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| if (!compile_app_image_) { |
| DCHECK(heap->GetBootImageSpaces().empty()); |
| return false; |
| } |
| for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { |
| const ImageHeader& image_header = boot_image_space->GetImageHeader(); |
| if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| Class* klass = obj->GetClass(); |
| CHECK_NE(PrettyClass(klass), "com.android.dex.Dex"); |
| } |
| |
| static void CheckNoDexObjects() { |
| ScopedObjectAccess soa(Thread::Current()); |
| Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr); |
| } |
| |
| bool ImageWriter::PrepareImageAddressSpace() { |
| target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| PruneNonImageClasses(); // Remove junk |
| if (!compile_app_image_) { |
| // Avoid for app image since this may increase RAM and image size. |
| ComputeLazyFieldsForImageClasses(); // Add useful information |
| } |
| } |
| heap->CollectGarbage(false); // Remove garbage. |
| |
| // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped |
| // dex files. |
| // |
| // We may open them in the unstarted-runtime code for class metadata. Their fields should all be |
| // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually |
| // true. |
| if (kIsDebugBuild) { |
| CheckNoDexObjects(); |
| } |
| |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| CheckNonImageClassesRemoved(); |
| } |
| |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| CalculateNewObjectOffsets(); |
| } |
| |
| // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and |
| // bin size sums being calculated. |
| if (!AllocMemory()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ImageWriter::Write(int image_fd, |
| const std::vector<const char*>& image_filenames, |
| int oat_fd, |
| const std::vector<const char*>& oat_filenames, |
| const std::string& oat_location) { |
| // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or |
| // oat_filenames. |
| CHECK(!image_filenames.empty()); |
| if (image_fd != kInvalidFd) { |
| CHECK_EQ(image_filenames.size(), 1u); |
| } |
| CHECK(!oat_filenames.empty()); |
| if (oat_fd != kInvalidFd) { |
| CHECK_EQ(oat_filenames.size(), 1u); |
| } |
| CHECK_EQ(image_filenames.size(), oat_filenames.size()); |
| |
| size_t oat_file_offset = 0; |
| |
| for (size_t i = 0; i < oat_filenames.size(); ++i) { |
| const char* oat_filename = oat_filenames[i]; |
| std::unique_ptr<File> oat_file; |
| |
| if (oat_fd != -1) { |
| if (strlen(oat_filename) == 0u) { |
| oat_file.reset(new File(oat_fd, false)); |
| } else { |
| oat_file.reset(new File(oat_fd, oat_filename, false)); |
| } |
| int length = oat_file->GetLength(); |
| if (length < 0) { |
| PLOG(ERROR) << "Oat file has negative length " << length; |
| return false; |
| } else { |
| // Leave the fd open since dex2oat still needs to write out the oat file with the fd. |
| oat_file->DisableAutoClose(); |
| } |
| } else { |
| oat_file.reset(OS::OpenFileReadWrite(oat_filename)); |
| } |
| if (oat_file == nullptr) { |
| PLOG(ERROR) << "Failed to open oat file " << oat_filename; |
| return false; |
| } |
| std::string error_msg; |
| oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_filename, nullptr, &error_msg); |
| if (oat_file_ == nullptr) { |
| PLOG(ERROR) << "Failed to open writable oat file " << oat_filename; |
| oat_file->Erase(); |
| return false; |
| } |
| Runtime::Current()->GetOatFileManager().RegisterOatFile( |
| std::unique_ptr<const OatFile>(oat_file_)); |
| |
| const OatHeader& oat_header = oat_file_->GetOatHeader(); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| |
| size_t oat_loaded_size = 0; |
| size_t oat_data_offset = 0; |
| ElfWriter::GetOatElfInformation(oat_file.get(), &oat_loaded_size, &oat_data_offset); |
| |
| DCHECK_EQ(image_info.oat_offset_, oat_file_offset); |
| oat_file_offset += oat_loaded_size; |
| |
| if (i == 0) { |
| // Primary oat file, read the trampolines. |
| image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] = |
| oat_header.GetInterpreterToInterpreterBridgeOffset(); |
| image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] = |
| oat_header.GetInterpreterToCompiledCodeBridgeOffset(); |
| image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] = |
| oat_header.GetJniDlsymLookupOffset(); |
| image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] = |
| oat_header.GetQuickGenericJniTrampolineOffset(); |
| image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] = |
| oat_header.GetQuickImtConflictTrampolineOffset(); |
| image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] = |
| oat_header.GetQuickResolutionTrampolineOffset(); |
| image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] = |
| oat_header.GetQuickToInterpreterBridgeOffset(); |
| } |
| |
| |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| CreateHeader(oat_loaded_size, oat_data_offset); |
| CopyAndFixupNativeData(); |
| } |
| |
| SetOatChecksumFromElfFile(oat_file.get()); |
| |
| if (oat_fd != -1) { |
| // Leave fd open for caller. |
| if (oat_file->Flush() != 0) { |
| LOG(ERROR) << "Failed to flush oat file " << oat_filename << " for " << oat_location; |
| return false; |
| } |
| } else if (oat_file->FlushCloseOrErase() != 0) { |
| LOG(ERROR) << "Failed to flush and close oat file " << oat_filename |
| << " for " << oat_location; |
| return false; |
| } |
| } |
| |
| { |
| // TODO: heap validation can't handle these fix up passes. |
| ScopedObjectAccess soa(Thread::Current()); |
| Runtime::Current()->GetHeap()->DisableObjectValidation(); |
| CopyAndFixupObjects(); |
| } |
| |
| for (size_t i = 0; i < image_filenames.size(); ++i) { |
| const char* image_filename = image_filenames[i]; |
| const char* oat_filename = oat_filenames[i]; |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| std::unique_ptr<File> image_file; |
| if (image_fd != kInvalidFd) { |
| if (strlen(image_filename) == 0u) { |
| image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); |
| // Empty the file in case it already exists. |
| if (image_file != nullptr) { |
| TEMP_FAILURE_RETRY(image_file->SetLength(0)); |
| TEMP_FAILURE_RETRY(image_file->Flush()); |
| } |
| } else { |
| LOG(ERROR) << "image fd " << image_fd << " name " << image_filename; |
| } |
| } else { |
| image_file.reset(OS::CreateEmptyFile(image_filename)); |
| } |
| |
| if (image_file == nullptr) { |
| LOG(ERROR) << "Failed to open image file " << image_filename; |
| return false; |
| } |
| |
| if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; |
| image_file->Erase(); |
| return EXIT_FAILURE; |
| } |
| |
| std::unique_ptr<char[]> compressed_data; |
| // Image data size excludes the bitmap and the header. |
| ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); |
| const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader); |
| char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader); |
| size_t data_size; |
| const char* image_data_to_write; |
| const uint64_t compress_start_time = NanoTime(); |
| |
| CHECK_EQ(image_header->storage_mode_, image_storage_mode_); |
| switch (image_storage_mode_) { |
| case ImageHeader::kStorageModeLZ4: { |
| const size_t compressed_max_size = LZ4_compressBound(image_data_size); |
| compressed_data.reset(new char[compressed_max_size]); |
| data_size = LZ4_compress( |
| reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), |
| &compressed_data[0], |
| image_data_size); |
| |
| break; |
| } |
| case ImageHeader::kStorageModeLZ4HC: { |
| // Bound is same as non HC. |
| const size_t compressed_max_size = LZ4_compressBound(image_data_size); |
| compressed_data.reset(new char[compressed_max_size]); |
| data_size = LZ4_compressHC( |
| reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), |
| &compressed_data[0], |
| image_data_size); |
| break; |
| } |
| case ImageHeader::kStorageModeUncompressed: { |
| data_size = image_data_size; |
| image_data_to_write = image_data; |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Unsupported"; |
| UNREACHABLE(); |
| } |
| } |
| |
| if (compressed_data != nullptr) { |
| image_data_to_write = &compressed_data[0]; |
| VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in " |
| << PrettyDuration(NanoTime() - compress_start_time); |
| } |
| |
| // Write header first, as uncompressed. |
| image_header->data_size_ = data_size; |
| if (!image_file->WriteFully(image_info.image_->Begin(), sizeof(ImageHeader))) { |
| PLOG(ERROR) << "Failed to write image file header " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| |
| // Write out the image + fields + methods. |
| const bool is_compressed = compressed_data != nullptr; |
| if (!image_file->WriteFully(image_data_to_write, data_size)) { |
| PLOG(ERROR) << "Failed to write image file data " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| |
| // Write out the image bitmap at the page aligned start of the image end, also uncompressed for |
| // convenience. |
| const ImageSection& bitmap_section = image_header->GetImageSection( |
| ImageHeader::kSectionImageBitmap); |
| // Align up since data size may be unaligned if the image is compressed. |
| size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize); |
| if (!is_compressed) { |
| CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset()); |
| } |
| if (!image_file->Write(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()), |
| bitmap_section.Size(), |
| bitmap_position_in_file)) { |
| PLOG(ERROR) << "Failed to write image file " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(), |
| static_cast<size_t>(image_file->GetLength())); |
| if (image_file->FlushCloseOrErase() != 0) { |
| PLOG(ERROR) << "Failed to flush and close image file " << image_filename; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(offset, 0U); |
| |
| // The object is already deflated from when we set the bin slot. Just overwrite the lock word. |
| object->SetLockWord(LockWord::FromForwardingAddress(offset), false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageOffsetAssigned(object)); |
| } |
| |
| void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) { |
| DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset; |
| obj->SetLockWord(LockWord::FromForwardingAddress(offset), false); |
| DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u); |
| } |
| |
| void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(image_objects_offset_begin_, 0u); |
| |
| const char* oat_filename = GetOatFilename(object); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()]; |
| size_t new_offset = bin_slot_offset + bin_slot.GetIndex(); |
| DCHECK_ALIGNED(new_offset, kObjectAlignment); |
| |
| SetImageOffset(object, new_offset); |
| DCHECK_LT(new_offset, image_info.image_end_); |
| } |
| |
| bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { |
| // Will also return true if the bin slot was assigned since we are reusing the lock word. |
| DCHECK(object != nullptr); |
| return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; |
| } |
| |
| size_t ImageWriter::GetImageOffset(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageOffsetAssigned(object)); |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| const char* oat_filename = GetOatFilename(object); |
| const ImageInfo& image_info = GetConstImageInfo(oat_filename); |
| DCHECK_LT(offset, image_info.image_end_); |
| return offset; |
| } |
| |
| void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK(!IsImageOffsetAssigned(object)); |
| DCHECK(!IsImageBinSlotAssigned(object)); |
| |
| // Before we stomp over the lock word, save the hash code for later. |
| Monitor::Deflate(Thread::Current(), object);; |
| LockWord lw(object->GetLockWord(false)); |
| switch (lw.GetState()) { |
| case LockWord::kFatLocked: { |
| LOG(FATAL) << "Fat locked object " << object << " found during object copy"; |
| break; |
| } |
| case LockWord::kThinLocked: { |
| LOG(FATAL) << "Thin locked object " << object << " found during object copy"; |
| break; |
| } |
| case LockWord::kUnlocked: |
| // No hash, don't need to save it. |
| break; |
| case LockWord::kHashCode: |
| DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); |
| saved_hashcode_map_.emplace(object, lw.GetHashCode()); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable."; |
| UNREACHABLE(); |
| } |
| object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| } |
| |
| void ImageWriter::PrepareDexCacheArraySlots() { |
| // Prepare dex cache array starts based on the ordering specified in the CompilerDriver. |
| // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() |
| // when AssignImageBinSlot() assigns their indexes out or order. |
| for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) { |
| auto it = dex_file_oat_filename_map_.find(dex_file); |
| DCHECK(it != dex_file_oat_filename_map_.end()) << dex_file->GetLocation(); |
| ImageInfo& image_info = GetImageInfo(it->second); |
| image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]); |
| DexCacheArraysLayout layout(target_ptr_size_, dex_file); |
| image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size(); |
| } |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Thread* const self = Thread::Current(); |
| ReaderMutexLock mu(self, *class_linker->DexLock()); |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| mirror::DexCache* dex_cache = |
| down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr || IsInBootImage(dex_cache)) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| DexCacheArraysLayout layout(target_ptr_size_, dex_file); |
| DCHECK(layout.Valid()); |
| const char* oat_filename = GetOatFilenameForDexCache(dex_cache); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file); |
| DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(), |
| start + layout.TypesOffset(), |
| dex_cache); |
| DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(), |
| start + layout.MethodsOffset(), |
| dex_cache); |
| DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(), |
| start + layout.FieldsOffset(), |
| dex_cache); |
| DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr); |
| AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache); |
| } |
| } |
| |
| void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) { |
| if (array != nullptr) { |
| DCHECK(!IsInBootImage(array)); |
| const char* oat_filename = GetOatFilenameForDexCache(dex_cache); |
| native_object_relocations_.emplace(array, |
| NativeObjectRelocation { oat_filename, offset, kNativeObjectRelocationTypeDexCacheArray }); |
| } |
| } |
| |
| void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) { |
| DCHECK(arr != nullptr); |
| if (kIsDebugBuild) { |
| for (size_t i = 0, len = arr->GetLength(); i < len; i++) { |
| ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_); |
| if (method != nullptr && !method->IsRuntimeMethod()) { |
| mirror::Class* klass = method->GetDeclaringClass(); |
| CHECK(klass == nullptr || KeepClass(klass)) |
| << PrettyClass(klass) << " should be a kept class"; |
| } |
| } |
| } |
| // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and |
| // ArtMethods. |
| pointer_arrays_.emplace(arr, kBinArtMethodClean); |
| } |
| |
| void ImageWriter::AssignImageBinSlot(mirror::Object* object) { |
| DCHECK(object != nullptr); |
| size_t object_size = object->SizeOf(); |
| |
| // The magic happens here. We segregate objects into different bins based |
| // on how likely they are to get dirty at runtime. |
| // |
| // Likely-to-dirty objects get packed together into the same bin so that |
| // at runtime their page dirtiness ratio (how many dirty objects a page has) is |
| // maximized. |
| // |
| // This means more pages will stay either clean or shared dirty (with zygote) and |
| // the app will use less of its own (private) memory. |
| Bin bin = kBinRegular; |
| size_t current_offset = 0u; |
| |
| if (kBinObjects) { |
| // |
| // Changing the bin of an object is purely a memory-use tuning. |
| // It has no change on runtime correctness. |
| // |
| // Memory analysis has determined that the following types of objects get dirtied |
| // the most: |
| // |
| // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have |
| // a fixed layout which helps improve generated code (using PC-relative addressing), |
| // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). |
| // Since these arrays are huge, most pages do not overlap other objects and it's not |
| // really important where they are for the clean/dirty separation. Due to their |
| // special PC-relative addressing, we arbitrarily keep them at the end. |
| // * Class'es which are verified [their clinit runs only at runtime] |
| // - classes in general [because their static fields get overwritten] |
| // - initialized classes with all-final statics are unlikely to be ever dirty, |
| // so bin them separately |
| // * Art Methods that are: |
| // - native [their native entry point is not looked up until runtime] |
| // - have declaring classes that aren't initialized |
| // [their interpreter/quick entry points are trampolines until the class |
| // becomes initialized] |
| // |
| // We also assume the following objects get dirtied either never or extremely rarely: |
| // * Strings (they are immutable) |
| // * Art methods that aren't native and have initialized declared classes |
| // |
| // We assume that "regular" bin objects are highly unlikely to become dirtied, |
| // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. |
| // |
| if (object->IsClass()) { |
| bin = kBinClassVerified; |
| mirror::Class* klass = object->AsClass(); |
| |
| // Add non-embedded vtable to the pointer array table if there is one. |
| auto* vtable = klass->GetVTable(); |
| if (vtable != nullptr) { |
| AddMethodPointerArray(vtable); |
| } |
| auto* iftable = klass->GetIfTable(); |
| if (iftable != nullptr) { |
| for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { |
| if (iftable->GetMethodArrayCount(i) > 0) { |
| AddMethodPointerArray(iftable->GetMethodArray(i)); |
| } |
| } |
| } |
| |
| if (klass->GetStatus() == Class::kStatusInitialized) { |
| bin = kBinClassInitialized; |
| |
| // If the class's static fields are all final, put it into a separate bin |
| // since it's very likely it will stay clean. |
| uint32_t num_static_fields = klass->NumStaticFields(); |
| if (num_static_fields == 0) { |
| bin = kBinClassInitializedFinalStatics; |
| } else { |
| // Maybe all the statics are final? |
| bool all_final = true; |
| for (uint32_t i = 0; i < num_static_fields; ++i) { |
| ArtField* field = klass->GetStaticField(i); |
| if (!field->IsFinal()) { |
| all_final = false; |
| break; |
| } |
| } |
| |
| if (all_final) { |
| bin = kBinClassInitializedFinalStatics; |
| } |
| } |
| } |
| } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { |
| bin = kBinString; // Strings are almost always immutable (except for object header). |
| } // else bin = kBinRegular |
| } |
| |
| const char* oat_filename = GetOatFilename(object); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| |
| size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment |
| current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). |
| // Move the current bin size up to accommodate the object we just assigned a bin slot. |
| image_info.bin_slot_sizes_[bin] += offset_delta; |
| |
| BinSlot new_bin_slot(bin, current_offset); |
| SetImageBinSlot(object, new_bin_slot); |
| |
| ++image_info.bin_slot_count_[bin]; |
| |
| // Grow the image closer to the end by the object we just assigned. |
| image_info.image_end_ += offset_delta; |
| } |
| |
| bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { |
| if (m->IsNative()) { |
| return true; |
| } |
| mirror::Class* declaring_class = m->GetDeclaringClass(); |
| // Initialized is highly unlikely to dirty since there's no entry points to mutate. |
| return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized; |
| } |
| |
| bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| |
| // We always stash the bin slot into a lockword, in the 'forwarding address' state. |
| // If it's in some other state, then we haven't yet assigned an image bin slot. |
| if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { |
| return false; |
| } else if (kIsDebugBuild) { |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| BinSlot bin_slot(offset); |
| const char* oat_filename = GetOatFilename(object); |
| const ImageInfo& image_info = GetConstImageInfo(oat_filename); |
| DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]) |
| << "bin slot offset should not exceed the size of that bin"; |
| } |
| return true; |
| } |
| |
| ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t |
| DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); |
| |
| BinSlot bin_slot(static_cast<uint32_t>(offset)); |
| const char* oat_filename = GetOatFilename(object); |
| const ImageInfo& image_info = GetConstImageInfo(oat_filename); |
| DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]); |
| |
| return bin_slot; |
| } |
| |
| bool ImageWriter::AllocMemory() { |
| for (const char* oat_filename : oat_filenames_) { |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| ImageSection unused_sections[ImageHeader::kSectionCount]; |
| const size_t length = RoundUp( |
| image_info.CreateImageSections(target_ptr_size_, unused_sections), |
| kPageSize); |
| |
| std::string error_msg; |
| image_info.image_.reset(MemMap::MapAnonymous("image writer image", |
| nullptr, |
| length, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| if (UNLIKELY(image_info.image_.get() == nullptr)) { |
| LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; |
| return false; |
| } |
| |
| // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. |
| CHECK_LE(image_info.image_end_, length); |
| image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create( |
| "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize))); |
| if (image_info.image_bitmap_.get() == nullptr) { |
| LOG(ERROR) << "Failed to allocate memory for image bitmap"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| class ComputeLazyFieldsForClassesVisitor : public ClassVisitor { |
| public: |
| bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| StackHandleScope<1> hs(Thread::Current()); |
| mirror::Class::ComputeName(hs.NewHandle(c)); |
| return true; |
| } |
| }; |
| |
| void ImageWriter::ComputeLazyFieldsForImageClasses() { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ComputeLazyFieldsForClassesVisitor visitor; |
| class_linker->VisitClassesWithoutClassesLock(&visitor); |
| } |
| |
| static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { |
| return klass->GetClassLoader() == nullptr; |
| } |
| |
| bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) { |
| return IsBootClassLoaderClass(klass) && !IsInBootImage(klass); |
| } |
| |
| bool ImageWriter::PruneAppImageClass(mirror::Class* klass) { |
| bool early_exit = false; |
| std::unordered_set<mirror::Class*> visited; |
| return PruneAppImageClassInternal(klass, &early_exit, &visited); |
| } |
| |
| bool ImageWriter::PruneAppImageClassInternal( |
| mirror::Class* klass, |
| bool* early_exit, |
| std::unordered_set<mirror::Class*>* visited) { |
| DCHECK(early_exit != nullptr); |
| DCHECK(visited != nullptr); |
| DCHECK(compile_app_image_); |
| if (klass == nullptr || IsInBootImage(klass)) { |
| return false; |
| } |
| auto found = prune_class_memo_.find(klass); |
| if (found != prune_class_memo_.end()) { |
| // Already computed, return the found value. |
| return found->second; |
| } |
| // Circular dependencies, return false but do not store the result in the memoization table. |
| if (visited->find(klass) != visited->end()) { |
| *early_exit = true; |
| return false; |
| } |
| visited->emplace(klass); |
| bool result = IsBootClassLoaderClass(klass); |
| std::string temp; |
| // Prune if not an image class, this handles any broken sets of image classes such as having a |
| // class in the set but not it's superclass. |
| result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); |
| bool my_early_exit = false; // Only for ourselves, ignore caller. |
| // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the |
| // app image. |
| if (klass->GetStatus() == mirror::Class::kStatusError) { |
| result = true; |
| } else { |
| CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass); |
| } |
| if (!result) { |
| // Check interfaces since these wont be visited through VisitReferences.) |
| mirror::IfTable* if_table = klass->GetIfTable(); |
| for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { |
| result = result || PruneAppImageClassInternal(if_table->GetInterface(i), |
| &my_early_exit, |
| visited); |
| } |
| } |
| if (klass->IsObjectArrayClass()) { |
| result = result || PruneAppImageClassInternal(klass->GetComponentType(), |
| &my_early_exit, |
| visited); |
| } |
| // Check static fields and their classes. |
| size_t num_static_fields = klass->NumReferenceStaticFields(); |
| if (num_static_fields != 0 && klass->IsResolved()) { |
| // Presumably GC can happen when we are cross compiling, it should not cause performance |
| // problems to do pointer size logic. |
| MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( |
| Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| for (size_t i = 0u; i < num_static_fields; ++i) { |
| mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); |
| if (ref != nullptr) { |
| if (ref->IsClass()) { |
| result = result || PruneAppImageClassInternal(ref->AsClass(), |
| &my_early_exit, |
| visited); |
| } else { |
| result = result || PruneAppImageClassInternal(ref->GetClass(), |
| &my_early_exit, |
| visited); |
| } |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| } |
| result = result || PruneAppImageClassInternal(klass->GetSuperClass(), |
| &my_early_exit, |
| visited); |
| // Erase the element we stored earlier since we are exiting the function. |
| auto it = visited->find(klass); |
| DCHECK(it != visited->end()); |
| visited->erase(it); |
| // Only store result if it is true or none of the calls early exited due to circular |
| // dependencies. If visited is empty then we are the root caller, in this case the cycle was in |
| // a child call and we can remember the result. |
| if (result == true || !my_early_exit || visited->empty()) { |
| prune_class_memo_[klass] = result; |
| } |
| *early_exit |= my_early_exit; |
| return result; |
| } |
| |
| bool ImageWriter::KeepClass(Class* klass) { |
| if (klass == nullptr) { |
| return false; |
| } |
| if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { |
| // Already in boot image, return true. |
| return true; |
| } |
| std::string temp; |
| if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) { |
| return false; |
| } |
| if (compile_app_image_) { |
| // For app images, we need to prune boot loader classes that are not in the boot image since |
| // these may have already been loaded when the app image is loaded. |
| // Keep classes in the boot image space since we don't want to re-resolve these. |
| return !PruneAppImageClass(klass); |
| } |
| return true; |
| } |
| |
| class NonImageClassesVisitor : public ClassVisitor { |
| public: |
| explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} |
| |
| bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!image_writer_->KeepClass(klass)) { |
| classes_to_prune_.insert(klass); |
| } |
| return true; |
| } |
| |
| std::unordered_set<mirror::Class*> classes_to_prune_; |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::PruneNonImageClasses() { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| |
| // Make a list of classes we would like to prune. |
| NonImageClassesVisitor visitor(this); |
| class_linker->VisitClasses(&visitor); |
| |
| // Remove the undesired classes from the class roots. |
| VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes"; |
| for (mirror::Class* klass : visitor.classes_to_prune_) { |
| std::string temp; |
| const char* name = klass->GetDescriptor(&temp); |
| VLOG(compiler) << "Pruning class " << name; |
| if (!compile_app_image_) { |
| DCHECK(IsBootClassLoaderClass(klass)); |
| } |
| bool result = class_linker->RemoveClass(name, klass->GetClassLoader()); |
| DCHECK(result); |
| } |
| |
| // Clear references to removed classes from the DexCaches. |
| ArtMethod* resolution_method = runtime->GetResolutionMethod(); |
| |
| ScopedAssertNoThreadSuspension sa(self, __FUNCTION__); |
| ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // For ClassInClassTable |
| ReaderMutexLock mu2(self, *class_linker->DexLock()); |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| if (self->IsJWeakCleared(data.weak_root)) { |
| continue; |
| } |
| mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache(); |
| for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { |
| Class* klass = dex_cache->GetResolvedType(i); |
| if (klass != nullptr && !KeepClass(klass)) { |
| dex_cache->SetResolvedType(i, nullptr); |
| } |
| } |
| ArtMethod** resolved_methods = dex_cache->GetResolvedMethods(); |
| for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) { |
| ArtMethod* method = |
| mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_); |
| DCHECK(method != nullptr) << "Expected resolution method instead of null method"; |
| mirror::Class* declaring_class = method->GetDeclaringClass(); |
| // Copied methods may be held live by a class which was not an image class but have a |
| // declaring class which is an image class. Set it to the resolution method to be safe and |
| // prevent dangling pointers. |
| if (method->IsCopied() || !KeepClass(declaring_class)) { |
| mirror::DexCache::SetElementPtrSize(resolved_methods, |
| i, |
| resolution_method, |
| target_ptr_size_); |
| } else { |
| // Check that the class is still in the classes table. |
| DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class " |
| << PrettyClass(declaring_class) << " not in class linker table"; |
| } |
| } |
| ArtField** resolved_fields = dex_cache->GetResolvedFields(); |
| for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { |
| ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_); |
| if (field != nullptr && !KeepClass(field->GetDeclaringClass())) { |
| dex_cache->SetResolvedField(i, nullptr, target_ptr_size_); |
| } |
| } |
| // Clean the dex field. It might have been populated during the initialization phase, but |
| // contains data only valid during a real run. |
| dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr); |
| } |
| |
| // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. |
| class_linker->DropFindArrayClassCache(); |
| |
| // Clear to save RAM. |
| prune_class_memo_.clear(); |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemoved() { |
| if (compiler_driver_.GetImageClasses() != nullptr) { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); |
| } |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { |
| ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); |
| if (obj->IsClass() && !image_writer->IsInBootImage(obj)) { |
| Class* klass = obj->AsClass(); |
| if (!image_writer->KeepClass(klass)) { |
| image_writer->DumpImageClasses(); |
| std::string temp; |
| CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp) |
| << " " << PrettyDescriptor(klass); |
| } |
| } |
| } |
| |
| void ImageWriter::DumpImageClasses() { |
| auto image_classes = compiler_driver_.GetImageClasses(); |
| CHECK(image_classes != nullptr); |
| for (const std::string& image_class : *image_classes) { |
| LOG(INFO) << " " << image_class; |
| } |
| } |
| |
| mirror::String* ImageWriter::FindInternedString(mirror::String* string) { |
| Thread* const self = Thread::Current(); |
| for (auto& pair : image_info_map_) { |
| const ImageInfo& image_info = pair.second; |
| mirror::String* const found = image_info.intern_table_->LookupStrong(self, string); |
| DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr) |
| << string->ToModifiedUtf8(); |
| if (found != nullptr) { |
| return found; |
| } |
| } |
| if (compile_app_image_) { |
| Runtime* const runtime = Runtime::Current(); |
| mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string); |
| // If we found it in the runtime intern table it could either be in the boot image or interned |
| // during app image compilation. If it was in the boot image return that, otherwise return null |
| // since it belongs to another image space. |
| if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) { |
| return found; |
| } |
| DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr) |
| << string->ToModifiedUtf8(); |
| } |
| return nullptr; |
| } |
| |
| void ImageWriter::CalculateObjectBinSlots(Object* obj) { |
| DCHECK(obj != nullptr); |
| // if it is a string, we want to intern it if its not interned. |
| if (obj->GetClass()->IsStringClass()) { |
| const char* oat_filename = GetOatFilename(obj); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| |
| // we must be an interned string that was forward referenced and already assigned |
| if (IsImageBinSlotAssigned(obj)) { |
| DCHECK_EQ(obj, FindInternedString(obj->AsString())); |
| return; |
| } |
| // Need to check if the string is already interned in another image info so that we don't have |
| // the intern tables of two different images contain the same string. |
| mirror::String* interned = FindInternedString(obj->AsString()); |
| if (interned == nullptr) { |
| // Not in another image space, insert to our table. |
| interned = image_info.intern_table_->InternStrongImageString(obj->AsString()); |
| } |
| if (obj != interned) { |
| if (!IsImageBinSlotAssigned(interned)) { |
| // interned obj is after us, allocate its location early |
| AssignImageBinSlot(interned); |
| } |
| // point those looking for this object to the interned version. |
| SetImageBinSlot(obj, GetImageBinSlot(interned)); |
| return; |
| } |
| // else (obj == interned), nothing to do but fall through to the normal case |
| } |
| |
| AssignImageBinSlot(obj); |
| } |
| |
| ObjectArray<Object>* ImageWriter::CreateImageRoots(const char* oat_filename) const { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| StackHandleScope<3> hs(self); |
| Handle<Class> object_array_class(hs.NewHandle( |
| class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); |
| |
| std::unordered_set<const DexFile*> image_dex_files; |
| for (auto& pair : dex_file_oat_filename_map_) { |
| const DexFile* image_dex_file = pair.first; |
| const char* image_oat_filename = pair.second; |
| if (strcmp(oat_filename, image_oat_filename) == 0) { |
| image_dex_files.insert(image_dex_file); |
| } |
| } |
| |
| // build an Object[] of all the DexCaches used in the source_space_. |
| // Since we can't hold the dex lock when allocating the dex_caches |
| // ObjectArray, we lock the dex lock twice, first to get the number |
| // of dex caches first and then lock it again to copy the dex |
| // caches. We check that the number of dex caches does not change. |
| size_t dex_cache_count = 0; |
| { |
| ReaderMutexLock mu(self, *class_linker->DexLock()); |
| // Count number of dex caches not in the boot image. |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| mirror::DexCache* dex_cache = |
| down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (!IsInBootImage(dex_cache)) { |
| dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; |
| } |
| } |
| } |
| Handle<ObjectArray<Object>> dex_caches( |
| hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count))); |
| CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; |
| { |
| ReaderMutexLock mu(self, *class_linker->DexLock()); |
| size_t non_image_dex_caches = 0; |
| // Re-count number of non image dex caches. |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| mirror::DexCache* dex_cache = |
| down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (!IsInBootImage(dex_cache)) { |
| non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; |
| } |
| } |
| CHECK_EQ(dex_cache_count, non_image_dex_caches) |
| << "The number of non-image dex caches changed."; |
| size_t i = 0; |
| for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { |
| mirror::DexCache* dex_cache = |
| down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) { |
| dex_caches->Set<false>(i, dex_cache); |
| ++i; |
| } |
| } |
| } |
| |
| // build an Object[] of the roots needed to restore the runtime |
| auto image_roots(hs.NewHandle( |
| ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); |
| image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); |
| image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); |
| for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { |
| CHECK(image_roots->Get(i) != nullptr); |
| } |
| return image_roots.Get(); |
| } |
| |
| // Walk instance fields of the given Class. Separate function to allow recursion on the super |
| // class. |
| void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { |
| // Visit fields of parent classes first. |
| StackHandleScope<1> hs(Thread::Current()); |
| Handle<mirror::Class> h_class(hs.NewHandle(klass)); |
| mirror::Class* super = h_class->GetSuperClass(); |
| if (super != nullptr) { |
| WalkInstanceFields(obj, super); |
| } |
| // |
| size_t num_reference_fields = h_class->NumReferenceInstanceFields(); |
| MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset(); |
| for (size_t i = 0; i < num_reference_fields; ++i) { |
| mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| } |
| |
| // For an unvisited object, visit it then all its children found via fields. |
| void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { |
| if (IsInBootImage(obj)) { |
| // Object is in the image, don't need to fix it up. |
| return; |
| } |
| // Use our own visitor routine (instead of GC visitor) to get better locality between |
| // an object and its fields |
| if (!IsImageBinSlotAssigned(obj)) { |
| // Walk instance fields of all objects |
| StackHandleScope<2> hs(Thread::Current()); |
| Handle<mirror::Object> h_obj(hs.NewHandle(obj)); |
| Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass())); |
| // visit the object itself. |
| CalculateObjectBinSlots(h_obj.Get()); |
| WalkInstanceFields(h_obj.Get(), klass.Get()); |
| // Walk static fields of a Class. |
| if (h_obj->IsClass()) { |
| size_t num_reference_static_fields = klass->NumReferenceStaticFields(); |
| MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_); |
| for (size_t i = 0; i < num_reference_static_fields; ++i) { |
| mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| // Visit and assign offsets for fields and field arrays. |
| auto* as_klass = h_obj->AsClass(); |
| mirror::DexCache* dex_cache = as_klass->GetDexCache(); |
| DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); |
| if (compile_app_image_) { |
| // Extra sanity, no boot loader classes should be left! |
| CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass); |
| } |
| LengthPrefixedArray<ArtField>* fields[] = { |
| as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(), |
| }; |
| const char* oat_file = GetOatFilenameForDexCache(dex_cache); |
| ImageInfo& image_info = GetImageInfo(oat_file); |
| { |
| // Note: This table is only accessed from the image writer, so the lock is technically |
| // unnecessary. |
| WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); |
| // Insert in the class table for this iamge. |
| image_info.class_table_->Insert(as_klass); |
| } |
| for (LengthPrefixedArray<ArtField>* cur_fields : fields) { |
| // Total array length including header. |
| if (cur_fields != nullptr) { |
| const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0); |
| // Forward the entire array at once. |
| auto it = native_object_relocations_.find(cur_fields); |
| CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields |
| << " already forwarded"; |
| size_t& offset = image_info.bin_slot_sizes_[kBinArtField]; |
| DCHECK(!IsInBootImage(cur_fields)); |
| native_object_relocations_.emplace(cur_fields, |
| NativeObjectRelocation {oat_file, offset, kNativeObjectRelocationTypeArtFieldArray }); |
| offset += header_size; |
| // Forward individual fields so that we can quickly find where they belong. |
| for (size_t i = 0, count = cur_fields->size(); i < count; ++i) { |
| // Need to forward arrays separate of fields. |
| ArtField* field = &cur_fields->At(i); |
| auto it2 = native_object_relocations_.find(field); |
| CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i |
| << " already assigned " << PrettyField(field) << " static=" << field->IsStatic(); |
| DCHECK(!IsInBootImage(field)); |
| native_object_relocations_.emplace(field, |
| NativeObjectRelocation {oat_file, offset, kNativeObjectRelocationTypeArtField }); |
| offset += sizeof(ArtField); |
| } |
| } |
| } |
| // Visit and assign offsets for methods. |
| size_t num_methods = as_klass->NumMethods(); |
| if (num_methods != 0) { |
| bool any_dirty = false; |
| for (auto& m : as_klass->GetMethods(target_ptr_size_)) { |
| if (WillMethodBeDirty(&m)) { |
| any_dirty = true; |
| break; |
| } |
| } |
| NativeObjectRelocationType type = any_dirty |
| ? kNativeObjectRelocationTypeArtMethodDirty |
| : kNativeObjectRelocationTypeArtMethodClean; |
| Bin bin_type = BinTypeForNativeRelocationType(type); |
| // Forward the entire array at once, but header first. |
| const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); |
| const size_t method_size = ArtMethod::Size(target_ptr_size_); |
| const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, |
| method_size, |
| method_alignment); |
| LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr(); |
| auto it = native_object_relocations_.find(array); |
| CHECK(it == native_object_relocations_.end()) |
| << "Method array " << array << " already forwarded"; |
| size_t& offset = image_info.bin_slot_sizes_[bin_type]; |
| DCHECK(!IsInBootImage(array)); |
| native_object_relocations_.emplace(array, |
| NativeObjectRelocation { |
| oat_file, |
| offset, |
| any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty |
| : kNativeObjectRelocationTypeArtMethodArrayClean }); |
| offset += header_size; |
| for (auto& m : as_klass->GetMethods(target_ptr_size_)) { |
| AssignMethodOffset(&m, type, oat_file); |
| } |
| (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; |
| } |
| } else if (h_obj->IsObjectArray()) { |
| // Walk elements of an object array. |
| int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength(); |
| for (int32_t i = 0; i < length; i++) { |
| mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>(); |
| mirror::Object* value = obj_array->Get(i); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| } |
| } else if (h_obj->IsClassLoader()) { |
| // Register the class loader if it has a class table. |
| // The fake boot class loader should not get registered and we should end up with only one |
| // class loader. |
| mirror::ClassLoader* class_loader = h_obj->AsClassLoader(); |
| if (class_loader->GetClassTable() != nullptr) { |
| class_loaders_.insert(class_loader); |
| } |
| } |
| } |
| } |
| |
| void ImageWriter::AssignMethodOffset(ArtMethod* method, |
| NativeObjectRelocationType type, |
| const char* oat_filename) { |
| DCHECK(!IsInBootImage(method)); |
| auto it = native_object_relocations_.find(method); |
| CHECK(it == native_object_relocations_.end()) << "Method " << method << " already assigned " |
| << PrettyMethod(method); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)]; |
| native_object_relocations_.emplace(method, NativeObjectRelocation { oat_filename, offset, type }); |
| offset += ArtMethod::Size(target_ptr_size_); |
| } |
| |
| void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { |
| ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); |
| DCHECK(writer != nullptr); |
| writer->WalkFieldsInOrder(obj); |
| } |
| |
| void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { |
| ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); |
| DCHECK(writer != nullptr); |
| if (!writer->IsInBootImage(obj)) { |
| writer->UnbinObjectsIntoOffset(obj); |
| } |
| } |
| |
| void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { |
| DCHECK(!IsInBootImage(obj)); |
| CHECK(obj != nullptr); |
| |
| // We know the bin slot, and the total bin sizes for all objects by now, |
| // so calculate the object's final image offset. |
| |
| DCHECK(IsImageBinSlotAssigned(obj)); |
| BinSlot bin_slot = GetImageBinSlot(obj); |
| // Change the lockword from a bin slot into an offset |
| AssignImageOffset(obj, bin_slot); |
| } |
| |
| void ImageWriter::CalculateNewObjectOffsets() { |
| Thread* const self = Thread::Current(); |
| StackHandleScopeCollection handles(self); |
| std::vector<Handle<ObjectArray<Object>>> image_roots; |
| for (const char* oat_filename : oat_filenames_) { |
| std::string image_filename = oat_filename; |
| image_roots.push_back(handles.NewHandle(CreateImageRoots(image_filename.c_str()))); |
| } |
| |
| auto* runtime = Runtime::Current(); |
| auto* heap = runtime->GetHeap(); |
| |
| // Leave space for the header, but do not write it yet, we need to |
| // know where image_roots is going to end up |
| image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment |
| |
| // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots. |
| heap->VisitObjects(WalkFieldsCallback, this); |
| // Write the image runtime methods. |
| image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); |
| image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); |
| image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); |
| image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll); |
| image_methods_[ImageHeader::kRefsOnlySaveMethod] = |
| runtime->GetCalleeSaveMethod(Runtime::kRefsOnly); |
| image_methods_[ImageHeader::kRefsAndArgsSaveMethod] = |
| runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs); |
| |
| // Add room for fake length prefixed array for holding the image methods. |
| const auto image_method_type = kNativeObjectRelocationTypeArtMethodArrayClean; |
| auto it = native_object_relocations_.find(&image_method_array_); |
| CHECK(it == native_object_relocations_.end()); |
| ImageInfo& default_image_info = GetImageInfo(default_oat_filename_); |
| size_t& offset = |
| default_image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(image_method_type)]; |
| if (!compile_app_image_) { |
| native_object_relocations_.emplace(&image_method_array_, |
| NativeObjectRelocation { default_oat_filename_, offset, image_method_type }); |
| } |
| size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); |
| const size_t array_size = LengthPrefixedArray<ArtMethod>::ComputeSize( |
| 0, ArtMethod::Size(target_ptr_size_), method_alignment); |
| CHECK_ALIGNED_PARAM(array_size, method_alignment); |
| offset += array_size; |
| for (auto* m : image_methods_) { |
| CHECK(m != nullptr); |
| CHECK(m->IsRuntimeMethod()); |
| DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image"; |
| if (!IsInBootImage(m)) { |
| AssignMethodOffset(m, kNativeObjectRelocationTypeArtMethodClean, default_oat_filename_); |
| } |
| } |
| // Calculate size of the dex cache arrays slot and prepare offsets. |
| PrepareDexCacheArraySlots(); |
| |
| // Calculate the sizes of the intern tables and class tables. |
| for (const char* oat_filename : oat_filenames_) { |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| // Calculate how big the intern table will be after being serialized. |
| InternTable* const intern_table = image_info.intern_table_.get(); |
| CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings"; |
| image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr); |
| // Calculate the size of the class table. |
| ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); |
| image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr); |
| } |
| |
| // Calculate bin slot offsets. |
| for (const char* oat_filename : oat_filenames_) { |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| size_t bin_offset = image_objects_offset_begin_; |
| for (size_t i = 0; i != kBinSize; ++i) { |
| image_info.bin_slot_offsets_[i] = bin_offset; |
| bin_offset += image_info.bin_slot_sizes_[i]; |
| if (i == kBinArtField) { |
| static_assert(kBinArtField + 1 == kBinArtMethodClean, "Methods follow fields."); |
| static_assert(alignof(ArtField) == 4u, "ArtField alignment is 4."); |
| DCHECK_ALIGNED(bin_offset, 4u); |
| DCHECK(method_alignment == 4u || method_alignment == 8u); |
| bin_offset = RoundUp(bin_offset, method_alignment); |
| } |
| } |
| // NOTE: There may be additional padding between the bin slots and the intern table. |
| DCHECK_EQ(image_info.image_end_, |
| GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_); |
| } |
| |
| // Calculate image offsets. |
| size_t image_offset = 0; |
| for (const char* oat_filename : oat_filenames_) { |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| image_info.image_begin_ = global_image_begin_ + image_offset; |
| image_info.image_offset_ = image_offset; |
| ImageSection unused_sections[ImageHeader::kSectionCount]; |
| image_info.image_size_ = RoundUp( |
| image_info.CreateImageSections(target_ptr_size_, unused_sections), |
| kPageSize); |
| // There should be no gaps until the next image. |
| image_offset += image_info.image_size_; |
| } |
| |
| // Transform each object's bin slot into an offset which will be used to do the final copy. |
| heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); |
| |
| // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); |
| |
| size_t i = 0; |
| for (const char* oat_filename : oat_filenames_) { |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get())); |
| i++; |
| } |
| |
| // Update the native relocations by adding their bin sums. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| Bin bin_type = BinTypeForNativeRelocationType(relocation.type); |
| ImageInfo& image_info = GetImageInfo(relocation.oat_filename); |
| relocation.offset += image_info.bin_slot_offsets_[bin_type]; |
| } |
| |
| // Note that image_info.image_end_ is left at end of used mirror object section. |
| } |
| |
| size_t ImageWriter::ImageInfo::CreateImageSections(size_t target_ptr_size, |
| ImageSection* out_sections) const { |
| DCHECK(out_sections != nullptr); |
| // Objects section |
| auto* objects_section = &out_sections[ImageHeader::kSectionObjects]; |
| *objects_section = ImageSection(0u, image_end_); |
| size_t cur_pos = objects_section->End(); |
| // Add field section. |
| auto* field_section = &out_sections[ImageHeader::kSectionArtFields]; |
| *field_section = ImageSection(cur_pos, bin_slot_sizes_[kBinArtField]); |
| CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset()); |
| cur_pos = field_section->End(); |
| // Round up to the alignment the required by the method section. |
| cur_pos = RoundUp(cur_pos, ArtMethod::Alignment(target_ptr_size)); |
| // Add method section. |
| auto* methods_section = &out_sections[ImageHeader::kSectionArtMethods]; |
| *methods_section = ImageSection(cur_pos, |
| bin_slot_sizes_[kBinArtMethodClean] + |
| bin_slot_sizes_[kBinArtMethodDirty]); |
| CHECK_EQ(bin_slot_offsets_[kBinArtMethodClean], methods_section->Offset()); |
| cur_pos = methods_section->End(); |
| // Add dex cache arrays section. |
| auto* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays]; |
| *dex_cache_arrays_section = ImageSection(cur_pos, bin_slot_sizes_[kBinDexCacheArray]); |
| CHECK_EQ(bin_slot_offsets_[kBinDexCacheArray], dex_cache_arrays_section->Offset()); |
| cur_pos = dex_cache_arrays_section->End(); |
| // Round up to the alignment the string table expects. See HashSet::WriteToMemory. |
| cur_pos = RoundUp(cur_pos, sizeof(uint64_t)); |
| // Calculate the size of the interned strings. |
| auto* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings]; |
| *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_); |
| cur_pos = interned_strings_section->End(); |
| // Round up to the alignment the class table expects. See HashSet::WriteToMemory. |
| cur_pos = RoundUp(cur_pos, sizeof(uint64_t)); |
| // Calculate the size of the class table section. |
| auto* class_table_section = &out_sections[ImageHeader::kSectionClassTable]; |
| *class_table_section = ImageSection(cur_pos, class_table_bytes_); |
| cur_pos = class_table_section->End(); |
| // Image end goes right before the start of the image bitmap. |
| return cur_pos; |
| } |
| |
| void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) { |
| CHECK_NE(0U, oat_loaded_size); |
| const char* oat_filename = oat_file_->GetLocation().c_str(); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| const uint8_t* oat_file_begin = GetOatFileBegin(oat_filename); |
| const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size; |
| image_info.oat_data_begin_ = const_cast<uint8_t*>(oat_file_begin) + oat_data_offset; |
| const uint8_t* oat_data_end = image_info.oat_data_begin_ + oat_file_->Size(); |
| image_info.oat_size_ = oat_file_->Size(); |
| |
| // Create the image sections. |
| ImageSection sections[ImageHeader::kSectionCount]; |
| const size_t image_end = image_info.CreateImageSections(target_ptr_size_, sections); |
| |
| // Finally bitmap section. |
| const size_t bitmap_bytes = image_info.image_bitmap_->Size(); |
| auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; |
| *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize)); |
| if (VLOG_IS_ON(compiler)) { |
| LOG(INFO) << "Creating header for " << oat_filename; |
| size_t idx = 0; |
| for (const ImageSection& section : sections) { |
| LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; |
| ++idx; |
| } |
| LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; |
| LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; |
| LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) |
| << " Image offset=" << image_info.image_offset_ << std::dec; |
| LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) |
| << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) |
| << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) |
| << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); |
| } |
| // Store boot image info for app image so that we can relocate. |
| uint32_t boot_image_begin = 0; |
| uint32_t boot_image_end = 0; |
| uint32_t boot_oat_begin = 0; |
| uint32_t boot_oat_end = 0; |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); |
| |
| // Create the header, leave 0 for data size since we will fill this in as we are writing the |
| // image. |
| new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_), |
| image_end, |
| sections, |
| image_info.image_roots_address_, |
| oat_file_->GetOatHeader().GetChecksum(), |
| PointerToLowMemUInt32(oat_file_begin), |
| PointerToLowMemUInt32(image_info.oat_data_begin_), |
| PointerToLowMemUInt32(oat_data_end), |
| PointerToLowMemUInt32(oat_file_end), |
| boot_image_begin, |
| boot_image_end - boot_image_begin, |
| boot_oat_begin, |
| boot_oat_end - boot_oat_begin, |
| target_ptr_size_, |
| compile_pic_, |
| /*is_pic*/compile_app_image_, |
| image_storage_mode_, |
| /*data_size*/0u); |
| } |
| |
| ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { |
| auto it = native_object_relocations_.find(method); |
| CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method; |
| const char* oat_filename = GetOatFilename(method->GetDexCache()); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects"; |
| return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset); |
| } |
| |
| class FixupRootVisitor : public RootVisitor { |
| public: |
| explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { |
| } |
| |
| void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) |
| OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| *roots[i] = image_writer_->GetImageAddress(*roots[i]); |
| } |
| } |
| |
| void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, |
| const RootInfo& info ATTRIBUTE_UNUSED) |
| OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr())); |
| } |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::CopyAndFixupNativeData() { |
| const char* oat_filename = oat_file_->GetLocation().c_str(); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| // Copy ArtFields and methods to their locations and update the array for convenience. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| // Only work with fields and methods that are in the current oat file. |
| if (strcmp(relocation.oat_filename, oat_filename) != 0) { |
| continue; |
| } |
| auto* dest = image_info.image_->Begin() + relocation.offset; |
| DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_); |
| DCHECK(!IsInBootImage(pair.first)); |
| switch (relocation.type) { |
| case kNativeObjectRelocationTypeArtField: { |
| memcpy(dest, pair.first, sizeof(ArtField)); |
| reinterpret_cast<ArtField*>(dest)->SetDeclaringClass( |
| GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass())); |
| break; |
| } |
| case kNativeObjectRelocationTypeArtMethodClean: |
| case kNativeObjectRelocationTypeArtMethodDirty: { |
| CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), |
| reinterpret_cast<ArtMethod*>(dest), |
| image_info); |
| break; |
| } |
| // For arrays, copy just the header since the elements will get copied by their corresponding |
| // relocations. |
| case kNativeObjectRelocationTypeArtFieldArray: { |
| memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0)); |
| break; |
| } |
| case kNativeObjectRelocationTypeArtMethodArrayClean: |
| case kNativeObjectRelocationTypeArtMethodArrayDirty: { |
| memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize( |
| 0, |
| ArtMethod::Size(target_ptr_size_), |
| ArtMethod::Alignment(target_ptr_size_))); |
| break; |
| case kNativeObjectRelocationTypeDexCacheArray: |
| // Nothing to copy here, everything is done in FixupDexCache(). |
| break; |
| } |
| } |
| } |
| // Fixup the image method roots. |
| auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); |
| const ImageSection& methods_section = image_header->GetMethodsSection(); |
| for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { |
| ArtMethod* method = image_methods_[i]; |
| CHECK(method != nullptr); |
| // Only place runtime methods in the image of the default oat file. |
| if (method->IsRuntimeMethod() && strcmp(default_oat_filename_, oat_filename) != 0) { |
| continue; |
| } |
| if (!IsInBootImage(method)) { |
| auto it = native_object_relocations_.find(method); |
| CHECK(it != native_object_relocations_.end()) << "No forwarding for " << PrettyMethod(method); |
| NativeObjectRelocation& relocation = it->second; |
| CHECK(methods_section.Contains(relocation.offset)) << relocation.offset << " not in " |
| << methods_section; |
| CHECK(relocation.IsArtMethodRelocation()) << relocation.type; |
| method = reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset); |
| } |
| image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method); |
| } |
| FixupRootVisitor root_visitor(this); |
| |
| // Write the intern table into the image. |
| if (image_info.intern_table_bytes_ > 0) { |
| const ImageSection& intern_table_section = image_header->GetImageSection( |
| ImageHeader::kSectionInternedStrings); |
| InternTable* const intern_table = image_info.intern_table_.get(); |
| uint8_t* const intern_table_memory_ptr = |
| image_info.image_->Begin() + intern_table_section.Offset(); |
| const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr); |
| CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); |
| // Fixup the pointers in the newly written intern table to contain image addresses. |
| InternTable temp_intern_table; |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements so that |
| // the VisitRoots() will update the memory directly rather than the copies. |
| // This also relies on visit roots not doing any verification which could fail after we update |
| // the roots to be the image addresses. |
| temp_intern_table.AddTableFromMemory(intern_table_memory_ptr); |
| CHECK_EQ(temp_intern_table.Size(), intern_table->Size()); |
| temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); |
| } |
| // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple |
| // class loaders. Writing multiple class tables into the image is currently unsupported. |
| if (image_info.class_table_bytes_ > 0u) { |
| const ImageSection& class_table_section = image_header->GetImageSection( |
| ImageHeader::kSectionClassTable); |
| uint8_t* const class_table_memory_ptr = |
| image_info.image_->Begin() + class_table_section.Offset(); |
| ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); |
| |
| ClassTable* table = image_info.class_table_.get(); |
| CHECK(table != nullptr); |
| const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr); |
| CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); |
| // Fixup the pointers in the newly written class table to contain image addresses. See |
| // above comment for intern tables. |
| ClassTable temp_class_table; |
| temp_class_table.ReadFromMemory(class_table_memory_ptr); |
| CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() + |
| table->NumZygoteClasses()); |
| BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor, |
| RootInfo(kRootUnknown)); |
| temp_class_table.VisitRoots(buffered_visitor); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupObjects() { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(CopyAndFixupObjectsCallback, this); |
| // Fix up the object previously had hash codes. |
| for (const auto& hash_pair : saved_hashcode_map_) { |
| Object* obj = hash_pair.first; |
| DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U); |
| obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false); |
| } |
| saved_hashcode_map_.clear(); |
| } |
| |
| void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { |
| DCHECK(obj != nullptr); |
| DCHECK(arg != nullptr); |
| reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj); |
| } |
| |
| void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr, |
| mirror::Class* klass, Bin array_type) { |
| CHECK(klass->IsArrayClass()); |
| CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr; |
| // Fixup int and long pointers for the ArtMethod or ArtField arrays. |
| const size_t num_elements = arr->GetLength(); |
| dst->SetClass(GetImageAddress(arr->GetClass())); |
| auto* dest_array = down_cast<mirror::PointerArray*>(dst); |
| for (size_t i = 0, count = num_elements; i < count; ++i) { |
| void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); |
| if (elem != nullptr && !IsInBootImage(elem)) { |
| auto it = native_object_relocations_.find(elem); |
| if (UNLIKELY(it == native_object_relocations_.end())) { |
| if (it->second.IsArtMethodRelocation()) { |
| auto* method = reinterpret_cast<ArtMethod*>(elem); |
| LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ " |
| << method << " idx=" << i << "/" << num_elements << " with declaring class " |
| << PrettyClass(method->GetDeclaringClass()); |
| } else { |
| CHECK_EQ(array_type, kBinArtField); |
| auto* field = reinterpret_cast<ArtField*>(elem); |
| LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ " |
| << field << " idx=" << i << "/" << num_elements << " with declaring class " |
| << PrettyClass(field->GetDeclaringClass()); |
| } |
| UNREACHABLE(); |
| } else { |
| ImageInfo& image_info = GetImageInfo(it->second.oat_filename); |
| elem = image_info.image_begin_ + it->second.offset; |
| } |
| } |
| dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupObject(Object* obj) { |
| if (IsInBootImage(obj)) { |
| return; |
| } |
| size_t offset = GetImageOffset(obj); |
| const char* oat_filename = GetOatFilename(obj); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset); |
| DCHECK_LT(offset, image_info.image_end_); |
| const auto* src = reinterpret_cast<const uint8_t*>(obj); |
| |
| image_info.image_bitmap_->Set(dst); // Mark the obj as live. |
| |
| const size_t n = obj->SizeOf(); |
| DCHECK_LE(offset + n, image_info.image_->Size()); |
| memcpy(dst, src, n); |
| |
| // Write in a hash code of objects which have inflated monitors or a hash code in their monitor |
| // word. |
| const auto it = saved_hashcode_map_.find(obj); |
| dst->SetLockWord(it != saved_hashcode_map_.end() ? |
| LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); |
| FixupObject(obj, dst); |
| } |
| |
| // Rewrite all the references in the copied object to point to their image address equivalent |
| class FixupVisitor { |
| public: |
| FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { |
| } |
| |
| // Ignore class roots since we don't have a way to map them to the destination. These are handled |
| // with other logic. |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| |
| void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset); |
| // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the |
| // image. |
| copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| offset, |
| image_writer_->GetImageAddress(ref)); |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| mirror::Reference::ReferentOffset(), |
| image_writer_->GetImageAddress(ref->GetReferent())); |
| } |
| |
| protected: |
| ImageWriter* const image_writer_; |
| mirror::Object* const copy_; |
| }; |
| |
| class FixupClassVisitor FINAL : public FixupVisitor { |
| public: |
| FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { |
| } |
| |
| void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| DCHECK(obj->IsClass()); |
| FixupVisitor::operator()(obj, offset, /*is_static*/false); |
| } |
| |
| void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, |
| mirror::Reference* ref ATTRIBUTE_UNUSED) const |
| SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| LOG(FATAL) << "Reference not expected here."; |
| } |
| }; |
| |
| uintptr_t ImageWriter::NativeOffsetInImage(void* obj) { |
| DCHECK(obj != nullptr); |
| DCHECK(!IsInBootImage(obj)); |
| auto it = native_object_relocations_.find(obj); |
| CHECK(it != native_object_relocations_.end()) << obj << " spaces " |
| << Runtime::Current()->GetHeap()->DumpSpaces(); |
| const NativeObjectRelocation& relocation = it->second; |
| return relocation.offset; |
| } |
| |
| template <typename T> |
| T* ImageWriter::NativeLocationInImage(T* obj) { |
| if (obj == nullptr || IsInBootImage(obj)) { |
| return obj; |
| } else { |
| auto it = native_object_relocations_.find(obj); |
| CHECK(it != native_object_relocations_.end()) << obj << " spaces " |
| << Runtime::Current()->GetHeap()->DumpSpaces(); |
| const NativeObjectRelocation& relocation = it->second; |
| ImageInfo& image_info = GetImageInfo(relocation.oat_filename); |
| return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); |
| } |
| } |
| |
| template <typename T> |
| T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) { |
| if (obj == nullptr || IsInBootImage(obj)) { |
| return obj; |
| } else { |
| const char* oat_filename = GetOatFilenameForDexCache(dex_cache); |
| ImageInfo& image_info = GetImageInfo(oat_filename); |
| return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj)); |
| } |
| } |
| |
| class NativeLocationVisitor { |
| public: |
| explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} |
| |
| template <typename T> |
| T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return image_writer_->NativeLocationInImage(ptr); |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { |
| orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); |
| FixupClassVisitor visitor(this, copy); |
| static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor); |
| |
| // Remove the clinitThreadId. This is required for image determinism. |
| copy->SetClinitThreadId(static_cast<pid_t>(0)); |
| } |
| |
| void ImageWriter::FixupObject(Object* orig, Object* copy) { |
| DCHECK(orig != nullptr); |
| DCHECK(copy != nullptr); |
| if (kUseBakerOrBrooksReadBarrier) { |
| orig->AssertReadBarrierPointer(); |
| if (kUseBrooksReadBarrier) { |
| // Note the address 'copy' isn't the same as the image address of 'orig'. |
| copy->SetReadBarrierPointer(GetImageAddress(orig)); |
| DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); |
| } |
| } |
| auto* klass = orig->GetClass(); |
| if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) { |
| // Is this a native pointer array? |
| auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig)); |
| if (it != pointer_arrays_.end()) { |
| // Should only need to fixup every pointer array exactly once. |
| FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second); |
| pointer_arrays_.erase(it); |
| return; |
| } |
| } |
| if (orig->IsClass()) { |
| FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); |
| } else { |
| if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) { |
| // Need to go update the ArtMethod. |
| auto* dest = down_cast<mirror::AbstractMethod*>(copy); |
| auto* src = down_cast<mirror::AbstractMethod*>(orig); |
| ArtMethod* src_method = src->GetArtMethod(); |
| auto it = native_object_relocations_.find(src_method); |
| CHECK(it != native_object_relocations_.end()) |
| << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method); |
| dest->SetArtMethod( |
| reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset)); |
| } else if (!klass->IsArrayClass()) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) { |
| FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy)); |
| } else if (klass->IsClassLoaderClass()) { |
| mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); |
| // If src is a ClassLoader, set the class table to null so that it gets recreated by the |
| // ClassLoader. |
| copy_loader->SetClassTable(nullptr); |
| // Also set allocator to null to be safe. The allocator is created when we create the class |
| // table. We also never expect to unload things in the image since they are held live as |
| // roots. |
| copy_loader->SetAllocator(nullptr); |
| } |
| } |
| FixupVisitor visitor(this, copy); |
| orig->VisitReferences(visitor, visitor); |
| } |
| } |
| |
| |
| class ImageAddressVisitor { |
| public: |
| explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} |
| |
| template <typename T> |
| T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return image_writer_->GetImageAddress(ptr); |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| |
| void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache, |
| mirror::DexCache* copy_dex_cache) { |
| // Though the DexCache array fields are usually treated as native pointers, we set the full |
| // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is |
| // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e. |
| // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))). |
| GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings(); |
| if (orig_strings != nullptr) { |
| copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(), |
| NativeLocationInImage(orig_strings), |
| /*pointer size*/8u); |
| orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), |
| ImageAddressVisitor(this)); |
| } |
| GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes(); |
| if (orig_types != nullptr) { |
| copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(), |
| NativeLocationInImage(orig_types), |
| /*pointer size*/8u); |
| orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache), |
| ImageAddressVisitor(this)); |
| } |
| ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods(); |
| if (orig_methods != nullptr) { |
| copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(), |
| NativeLocationInImage(orig_methods), |
| /*pointer size*/8u); |
| ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache); |
| for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) { |
| ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_); |
| // NativeLocationInImage also handles runtime methods since these have relocation info. |
| ArtMethod* copy = NativeLocationInImage(orig); |
| mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_); |
| } |
| } |
| ArtField** orig_fields = orig_dex_cache->GetResolvedFields(); |
| if (orig_fields != nullptr) { |
| copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(), |
| NativeLocationInImage(orig_fields), |
| /*pointer size*/8u); |
| ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache); |
| for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) { |
| ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_); |
| ArtField* copy = NativeLocationInImage(orig); |
| mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_); |
| } |
| } |
| |
| // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving |
| // compiler pointers in here will make the output non-deterministic. |
| copy_dex_cache->SetDexFile(nullptr); |
| } |
| |
| const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const { |
| DCHECK_LT(type, kOatAddressCount); |
| // If we are compiling an app image, we need to use the stubs of the boot image. |
| if (compile_app_image_) { |
| // Use the current image pointers. |
| const std::vector<gc::space::ImageSpace*>& image_spaces = |
| Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| DCHECK(!image_spaces.empty()); |
| const OatFile* oat_file = image_spaces[0]->GetOatFile(); |
| CHECK(oat_file != nullptr); |
| const OatHeader& header = oat_file->GetOatHeader(); |
| switch (type) { |
| // TODO: We could maybe clean this up if we stored them in an array in the oat header. |
| case kOatAddressQuickGenericJNITrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline()); |
| case kOatAddressInterpreterToInterpreterBridge: |
| return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge()); |
| case kOatAddressInterpreterToCompiledCodeBridge: |
| return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge()); |
| case kOatAddressJNIDlsymLookup: |
| return static_cast<const uint8_t*>(header.GetJniDlsymLookup()); |
| case kOatAddressQuickIMTConflictTrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline()); |
| case kOatAddressQuickResolutionTrampoline: |
| return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline()); |
| case kOatAddressQuickToInterpreterBridge: |
| return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge()); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| const ImageInfo& primary_image_info = GetImageInfo(0); |
| return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info); |
| } |
| |
| const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, |
| const ImageInfo& image_info, |
| bool* quick_is_interpreted) { |
| DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method); |
| DCHECK(!method->IsImtConflictMethod()) << PrettyMethod(method); |
| DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method); |
| DCHECK(method->IsInvokable()) << PrettyMethod(method); |
| DCHECK(!IsInBootImage(method)) << PrettyMethod(method); |
| |
| // Use original code if it exists. Otherwise, set the code pointer to the resolution |
| // trampoline. |
| |
| // Quick entrypoint: |
| const void* quick_oat_entry_point = |
| method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); |
| const uint8_t* quick_code; |
| |
| if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) { |
| DCHECK(method->IsCopied()); |
| // If the code is not in the oat file corresponding to this image (e.g. default methods) |
| quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); |
| } else { |
| uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); |
| quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); |
| } |
| |
| *quick_is_interpreted = false; |
| if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || |
| method->GetDeclaringClass()->IsInitialized())) { |
| // We have code for a non-static or initialized method, just use the code. |
| } else if (quick_code == nullptr && method->IsNative() && |
| (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { |
| // Non-static or initialized native method missing compiled code, use generic JNI version. |
| quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline); |
| } else if (quick_code == nullptr && !method->IsNative()) { |
| // We don't have code at all for a non-native method, use the interpreter. |
| quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge); |
| *quick_is_interpreted = true; |
| } else { |
| CHECK(!method->GetDeclaringClass()->IsInitialized()); |
| // We have code for a static method, but need to go through the resolution stub for class |
| // initialization. |
| quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline); |
| } |
| if (!IsInBootOatFile(quick_code)) { |
| // DCHECK_GE(quick_code, oat_data_begin_); |
| } |
| return quick_code; |
| } |
| |
| void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, |
| ArtMethod* copy, |
| const ImageInfo& image_info) { |
| memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); |
| |
| copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked())); |
| |
| ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_); |
| copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_); |
| GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_); |
| copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_); |
| |
| // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to |
| // oat_begin_ |
| |
| // The resolution method has a special trampoline to call. |
| Runtime* runtime = Runtime::Current(); |
| if (UNLIKELY(orig == runtime->GetResolutionMethod())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize( |
| GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_); |
| } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() || |
| orig == runtime->GetImtUnimplementedMethod())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize( |
| GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_); |
| } else if (UNLIKELY(orig->IsRuntimeMethod())) { |
| bool found_one = false; |
| for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) { |
| auto idx = static_cast<Runtime::CalleeSaveType>(i); |
| if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { |
| found_one = true; |
| break; |
| } |
| } |
| CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig); |
| CHECK(copy->IsRuntimeMethod()); |
| } else { |
| // We assume all methods have code. If they don't currently then we set them to the use the |
| // resolution trampoline. Abstract methods never have code and so we need to make sure their |
| // use results in an AbstractMethodError. We use the interpreter to achieve this. |
| if (UNLIKELY(!orig->IsInvokable())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize( |
| GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_); |
| } else { |
| bool quick_is_interpreted; |
| const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted); |
| copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); |
| |
| // JNI entrypoint: |
| if (orig->IsNative()) { |
| // The native method's pointer is set to a stub to lookup via dlsym. |
| // Note this is not the code_ pointer, that is handled above. |
| copy->SetEntryPointFromJniPtrSize( |
| GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_); |
| } |
| } |
| } |
| } |
| |
| static OatHeader* GetOatHeaderFromElf(ElfFile* elf) { |
| uint64_t data_sec_offset; |
| bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr); |
| if (!has_data_sec) { |
| return nullptr; |
| } |
| return reinterpret_cast<OatHeader*>(elf->Begin() + data_sec_offset); |
| } |
| |
| void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) { |
| std::string error_msg; |
| std::unique_ptr<ElfFile> elf(ElfFile::Open(elf_file, |
| PROT_READ | PROT_WRITE, |
| MAP_SHARED, |
| &error_msg)); |
| if (elf.get() == nullptr) { |
| LOG(FATAL) << "Unable open oat file: " << error_msg; |
| return; |
| } |
| OatHeader* oat_header = GetOatHeaderFromElf(elf.get()); |
| CHECK(oat_header != nullptr); |
| CHECK(oat_header->IsValid()); |
| |
| ImageInfo& image_info = GetImageInfo(oat_file_->GetLocation().c_str()); |
| ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); |
| image_header->SetOatChecksum(oat_header->GetChecksum()); |
| } |
| |
| size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const { |
| DCHECK_LE(up_to, kBinSize); |
| return std::accumulate(&image_info.bin_slot_sizes_[0], |
| &image_info.bin_slot_sizes_[up_to], |
| /*init*/0); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { |
| // These values may need to get updated if more bins are added to the enum Bin |
| static_assert(kBinBits == 3, "wrong number of bin bits"); |
| static_assert(kBinShift == 27, "wrong number of shift"); |
| static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); |
| |
| DCHECK_LT(GetBin(), kBinSize); |
| DCHECK_ALIGNED(GetIndex(), kObjectAlignment); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) |
| : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { |
| DCHECK_EQ(index, GetIndex()); |
| } |
| |
| ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { |
| return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); |
| } |
| |
| uint32_t ImageWriter::BinSlot::GetIndex() const { |
| return lockword_ & ~kBinMask; |
| } |
| |
| uint8_t* ImageWriter::GetOatFileBegin(const char* oat_filename) const { |
| uintptr_t last_image_end = 0; |
| for (const char* oat_fn : oat_filenames_) { |
| const ImageInfo& image_info = GetConstImageInfo(oat_fn); |
| DCHECK(image_info.image_begin_ != nullptr); |
| uintptr_t this_end = reinterpret_cast<uintptr_t>(image_info.image_begin_) + |
| image_info.image_size_; |
| last_image_end = std::max(this_end, last_image_end); |
| } |
| const ImageInfo& image_info = GetConstImageInfo(oat_filename); |
| return reinterpret_cast<uint8_t*>(last_image_end) + image_info.oat_offset_; |
| } |
| |
| ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { |
| switch (type) { |
| case kNativeObjectRelocationTypeArtField: |
| case kNativeObjectRelocationTypeArtFieldArray: |
| return kBinArtField; |
| case kNativeObjectRelocationTypeArtMethodClean: |
| case kNativeObjectRelocationTypeArtMethodArrayClean: |
| return kBinArtMethodClean; |
| case kNativeObjectRelocationTypeArtMethodDirty: |
| case kNativeObjectRelocationTypeArtMethodArrayDirty: |
| return kBinArtMethodDirty; |
| case kNativeObjectRelocationTypeDexCacheArray: |
| return kBinDexCacheArray; |
| } |
| UNREACHABLE(); |
| } |
| |
| const char* ImageWriter::GetOatFilename(mirror::Object* obj) const { |
| if (compile_app_image_) { |
| return default_oat_filename_; |
| } else { |
| return GetOatFilenameForDexCache(obj->IsDexCache() ? obj->AsDexCache() : |
| obj->IsClass() ? obj->AsClass()->GetDexCache() : obj->GetClass()->GetDexCache()); |
| } |
| } |
| |
| const char* ImageWriter::GetOatFilenameForDexCache(mirror::DexCache* dex_cache) const { |
| if (compile_app_image_ || dex_cache == nullptr) { |
| return default_oat_filename_; |
| } else { |
| auto it = dex_file_oat_filename_map_.find(dex_cache->GetDexFile()); |
| DCHECK(it != dex_file_oat_filename_map_.end()) << dex_cache->GetDexFile()->GetLocation(); |
| return it->second; |
| } |
| } |
| |
| ImageWriter::ImageInfo& ImageWriter::GetImageInfo(const char* oat_filename) { |
| auto it = image_info_map_.find(oat_filename); |
| DCHECK(it != image_info_map_.end()); |
| return it->second; |
| } |
| |
| const ImageWriter::ImageInfo& ImageWriter::GetConstImageInfo(const char* oat_filename) const { |
| auto it = image_info_map_.find(oat_filename); |
| DCHECK(it != image_info_map_.end()); |
| return it->second; |
| } |
| |
| const ImageWriter::ImageInfo& ImageWriter::GetImageInfo(size_t index) const { |
| DCHECK_LT(index, oat_filenames_.size()); |
| return GetConstImageInfo(oat_filenames_[index]); |
| } |
| |
| void ImageWriter::UpdateOatFile(File* oat_file, const char* oat_filename) { |
| DCHECK(oat_file != nullptr); |
| if (compile_app_image_) { |
| CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; |
| return; |
| } |
| ImageInfo& cur_image_info = GetImageInfo(oat_filename); |
| |
| // Update the oat_offset of the next image info. |
| auto it = std::find(oat_filenames_.begin(), oat_filenames_.end(), oat_filename); |
| DCHECK(it != oat_filenames_.end()); |
| |
| it++; |
| if (it != oat_filenames_.end()) { |
| size_t oat_loaded_size = 0; |
| size_t oat_data_offset = 0; |
| ElfWriter::GetOatElfInformation(oat_file, &oat_loaded_size, &oat_data_offset); |
| // There is a following one. |
| ImageInfo& next_image_info = GetImageInfo(*it); |
| next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; |
| } |
| } |
| |
| ImageWriter::ImageWriter( |
| const CompilerDriver& compiler_driver, |
| uintptr_t image_begin, |
| bool compile_pic, |
| bool compile_app_image, |
| ImageHeader::StorageMode image_storage_mode, |
| const std::vector<const char*> oat_filenames, |
| const std::unordered_map<const DexFile*, const char*>& dex_file_oat_filename_map) |
| : compiler_driver_(compiler_driver), |
| global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), |
| image_objects_offset_begin_(0), |
| oat_file_(nullptr), |
| compile_pic_(compile_pic), |
| compile_app_image_(compile_app_image), |
| target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())), |
| image_method_array_(ImageHeader::kImageMethodsCount), |
| dirty_methods_(0u), |
| clean_methods_(0u), |
| image_storage_mode_(image_storage_mode), |
| dex_file_oat_filename_map_(dex_file_oat_filename_map), |
| oat_filenames_(oat_filenames), |
| default_oat_filename_(oat_filenames[0]) { |
| CHECK_NE(image_begin, 0U); |
| for (const char* oat_filename : oat_filenames) { |
| image_info_map_.emplace(oat_filename, ImageInfo()); |
| } |
| std::fill_n(image_methods_, arraysize(image_methods_), nullptr); |
| CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) |
| << "Compiling a boot image should occur iff there are no boot image spaces loaded"; |
| } |
| |
| ImageWriter::ImageInfo::ImageInfo() |
| : intern_table_(new InternTable), |
| class_table_(new ClassTable) {} |
| |
| } // namespace art |