blob: c41c090215e5752ab17469c5505d186bac0ebdd8 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "callee_save_frame.h"
#include "common_throws.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils.h"
#include "gc/accounting/card_table-inl.h"
#include "instruction_set.h"
#include "interpreter/interpreter.h"
#include "mirror/art_method-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "object_utils.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
namespace art {
// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
class QuickArgumentVisitor {
// Number of bytes for each out register in the caller method's frame.
static constexpr size_t kBytesStackArgLocation = 4;
#if defined(__arm__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | ... | callee saves
// | R3 | arg3
// | R2 | arg2
// | R1 | arg1
// | R0 | padding
// | Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44; // Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__aarch64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | X28 |
// | : |
// | X19 |
// | X7 |
// | : |
// | X1 |
// | D15 |
// | : |
// | D0 |
// | | padding
// | Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296; // Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__mips__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | RA |
// | ... | callee saves
// | A3 | arg3
// | A2 | arg2
// | A1 | arg1
// | A0/Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__i386__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | Return |
// | EBP,ESI,EDI | callee saves
// | EBX | arg3
// | EDX | arg2
// | ECX | arg1
// | EAX/Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__x86_64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | reg. arg spills | | Caller's frame
// | Method* | ---
// | Return |
// | R15 | callee save
// | R14 | callee save
// | R13 | callee save
// | R12 | callee save
// | R9 | arg5
// | R8 | arg4
// | RSI/R6 | arg1
// | RBP/R5 | callee save
// | RBX/R3 | callee save
// | RDX/R2 | arg2
// | RCX/R1 | arg3
// | XMM7 | float arg 8
// | XMM6 | float arg 7
// | XMM5 | float arg 6
// | XMM4 | float arg 5
// | XMM3 | float arg 4
// | XMM2 | float arg 3
// | XMM1 | float arg 2
// | XMM0 | float arg 1
// | Padding |
// | RDI/Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumQuickGprArgs = 5; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 0 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168; // Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
switch (gpr_index) {
case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
default:
LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
return 0;
}
}
#else
#error "Unsupported architecture"
#endif
public:
static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
}
// For the given quick ref and args quick frame, return the caller's PC.
static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
return *reinterpret_cast<uintptr_t*>(lr);
}
QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
const char* shorty, uint32_t shorty_len)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
+ StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
is_split_long_or_double_(false) {
DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
}
virtual ~QuickArgumentVisitor() {}
virtual void Visit() = 0;
Primitive::Type GetParamPrimitiveType() const {
return cur_type_;
}
byte* GetParamAddress() const {
if (!kQuickSoftFloatAbi) {
Primitive::Type type = GetParamPrimitiveType();
if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
}
if (gpr_index_ < kNumQuickGprArgs) {
return gpr_args_ + GprIndexToGprOffset(gpr_index_);
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
bool IsSplitLongOrDouble() const {
if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
return is_split_long_or_double_;
} else {
return false; // An optimization for when GPR and FPRs are 64bit.
}
}
bool IsParamAReference() const {
return GetParamPrimitiveType() == Primitive::kPrimNot;
}
bool IsParamALongOrDouble() const {
Primitive::Type type = GetParamPrimitiveType();
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
}
uint64_t ReadSplitLongParam() const {
DCHECK(IsSplitLongOrDouble());
uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
return (low_half & 0xffffffffULL) | (high_half << 32);
}
void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// This implementation doesn't support reg-spill area for hard float
// ABI targets such as x86_64 and aarch64. So, for those targets whose
// 'kQuickSoftFloatAbi' is 'false':
// (a) 'stack_args_' should point to the first method's argument
// (b) whatever the argument type it is, the 'stack_index_' should
// be moved forward along with every visiting.
gpr_index_ = 0;
fpr_index_ = 0;
stack_index_ = 0;
if (!is_static_) { // Handle this.
cur_type_ = Primitive::kPrimNot;
is_split_long_or_double_ = false;
Visit();
if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
stack_index_++;
}
if (kNumQuickGprArgs > 0) {
gpr_index_++;
}
}
for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
cur_type_ = Primitive::GetType(shorty_[shorty_index]);
switch (cur_type_) {
case Primitive::kPrimNot:
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
is_split_long_or_double_ = false;
Visit();
if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
stack_index_++;
}
if (gpr_index_ < kNumQuickGprArgs) {
gpr_index_++;
}
break;
case Primitive::kPrimFloat:
is_split_long_or_double_ = false;
Visit();
if (kQuickSoftFloatAbi) {
if (gpr_index_ < kNumQuickGprArgs) {
gpr_index_++;
} else {
stack_index_++;
}
} else {
if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
fpr_index_++;
}
stack_index_++;
}
break;
case Primitive::kPrimDouble:
case Primitive::kPrimLong:
if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
((gpr_index_ + 1) == kNumQuickGprArgs);
Visit();
if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
}
if (gpr_index_ < kNumQuickGprArgs) {
gpr_index_++;
if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
if (gpr_index_ < kNumQuickGprArgs) {
gpr_index_++;
} else if (kQuickSoftFloatAbi) {
stack_index_++;
}
}
}
} else {
is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
((fpr_index_ + 1) == kNumQuickFprArgs);
Visit();
if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
fpr_index_++;
if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
fpr_index_++;
}
}
}
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
}
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
}
}
}
private:
static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
uint32_t shorty_len) {
if (kQuickSoftFloatAbi) {
CHECK_EQ(kNumQuickFprArgs, 0U);
return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
+ sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
} else {
// For now, there is no reg-spill area for the targets with
// hard float ABI. So, the offset pointing to the first method's
// parameter ('this' for non-static methods) should be returned.
return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>.
}
}
const bool is_static_;
const char* const shorty_;
const uint32_t shorty_len_;
byte* const gpr_args_; // Address of GPR arguments in callee save frame.
byte* const fpr_args_; // Address of FPR arguments in callee save frame.
byte* const stack_args_; // Address of stack arguments in caller's frame.
uint32_t gpr_index_; // Index into spilled GPRs.
uint32_t fpr_index_; // Index into spilled FPRs.
uint32_t stack_index_; // Index into arguments on the stack.
// The current type of argument during VisitArguments.
Primitive::Type cur_type_;
// Does a 64bit parameter straddle the register and stack arguments?
bool is_split_long_or_double_;
};
// Visits arguments on the stack placing them into the shadow frame.
class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
public:
BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
size_t first_arg_reg) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
private:
ShadowFrame* const sf_;
uint32_t cur_reg_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
};
void BuildQuickShadowFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
} else {
sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
}
++cur_reg_;
break;
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
break;
}
++cur_reg_;
}
extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Ensure we don't get thread suspension until the object arguments are safely in the shadow
// frame.
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
if (method->IsAbstract()) {
ThrowAbstractMethodError(method);
return 0;
} else {
DCHECK(!method->IsNative()) << PrettyMethod(method);
const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame");
MethodHelper mh(method);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
DCHECK(code_item != nullptr) << PrettyMethod(method);
uint16_t num_regs = code_item->registers_size_;
void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL, // No last shadow coming from quick.
method, 0, memory));
size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(),
mh.GetShortyLength(),
shadow_frame, first_arg_reg);
shadow_frame_builder.VisitArguments();
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
self->PushShadowFrame(shadow_frame);
self->EndAssertNoThreadSuspension(old_cause);
if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) {
// Ensure static method's class is initialized.
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
self->PopManagedStackFragment(fragment);
return 0;
}
}
JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
// Pop transition.
self->PopManagedStackFragment(fragment);
// No need to restore the args since the method has already been run by the interpreter.
return result.GetJ();
}
}
// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
// to jobjects.
class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
public:
BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
const char* shorty, uint32_t shorty_len,
ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
private:
ScopedObjectAccessUnchecked* const soa_;
std::vector<jvalue>* const args_;
// References which we must update when exiting in case the GC moved the objects.
std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
};
void BuildQuickArgumentVisitor::Visit() {
jvalue val;
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
references_.push_back(std::make_pair(val.l, stack_ref));
break;
}
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
val.j = ReadSplitLongParam();
} else {
val.j = *reinterpret_cast<jlong*>(GetParamAddress());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
val.i = *reinterpret_cast<jint*>(GetParamAddress());
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
val.j = 0;
break;
}
args_->push_back(val);
}
void BuildQuickArgumentVisitor::FixupReferences() {
// Fixup any references which may have changed.
for (const auto& pair : references_) {
pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
soa_->Env()->DeleteLocalRef(pair.first);
}
}
// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
// which is responsible for recording callee save registers. We explicitly place into jobjects the
// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
// field within the proxy object, which will box the primitive arguments and deal with error cases.
extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
mirror::Object* receiver,
Thread* self, StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
// Ensure we don't get thread suspension until the object arguments are safely in jobjects.
const char* old_cause =
self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
// Register the top of the managed stack, making stack crawlable.
DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
self->SetTopOfStack(sp, 0);
DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
<< PrettyMethod(proxy_method);
self->VerifyStack();
// Start new JNI local reference state.
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
// Create local ref. copies of proxy method and the receiver.
jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
// Placing arguments into args vector and remove the receiver.
MethodHelper proxy_mh(proxy_method);
DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method);
std::vector<jvalue> args;
BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(),
proxy_mh.GetShortyLength(), &soa, &args);
local_ref_visitor.VisitArguments();
DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
args.erase(args.begin());
// Convert proxy method into expected interface method.
mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
// All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
// that performs allocations.
self->EndAssertNoThreadSuspension(old_cause);
JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(),
rcvr_jobj, interface_method_jobj, args);
// Restore references which might have moved.
local_ref_visitor.FixupReferences();
return result.GetJ();
}
// Read object references held in arguments from quick frames and place in a JNI local references,
// so they don't get garbage collected.
class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
public:
RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
const char* shorty, uint32_t shorty_len,
ScopedObjectAccessUnchecked* soa) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
private:
ScopedObjectAccessUnchecked* const soa_;
// References which we must update when exiting in case the GC moved the objects.
std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
};
void RememberForGcArgumentVisitor::Visit() {
if (IsParamAReference()) {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
jobject reference =
soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
references_.push_back(std::make_pair(reference, stack_ref));
}
}
void RememberForGcArgumentVisitor::FixupReferences() {
// Fixup any references which may have changed.
for (const auto& pair : references_) {
pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
soa_->Env()->DeleteLocalRef(pair.first);
}
}
// Lazily resolve a method for quick. Called by stub code.
extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
mirror::Object* receiver,
Thread* self,
StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
// Compute details about the called method (avoid GCs)
ClassLinker* linker = Runtime::Current()->GetClassLinker();
mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
InvokeType invoke_type;
const DexFile* dex_file;
uint32_t dex_method_idx;
if (called->IsRuntimeMethod()) {
uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
const DexFile::CodeItem* code;
{
MethodHelper mh(caller);
dex_file = &mh.GetDexFile();
code = mh.GetCodeItem();
}
CHECK_LT(dex_pc, code->insns_size_in_code_units_);
const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
Instruction::Code instr_code = instr->Opcode();
bool is_range;
switch (instr_code) {
case Instruction::INVOKE_DIRECT:
invoke_type = kDirect;
is_range = false;
break;
case Instruction::INVOKE_DIRECT_RANGE:
invoke_type = kDirect;
is_range = true;
break;
case Instruction::INVOKE_STATIC:
invoke_type = kStatic;
is_range = false;
break;
case Instruction::INVOKE_STATIC_RANGE:
invoke_type = kStatic;
is_range = true;
break;
case Instruction::INVOKE_SUPER:
invoke_type = kSuper;
is_range = false;
break;
case Instruction::INVOKE_SUPER_RANGE:
invoke_type = kSuper;
is_range = true;
break;
case Instruction::INVOKE_VIRTUAL:
invoke_type = kVirtual;
is_range = false;
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
invoke_type = kVirtual;
is_range = true;
break;
case Instruction::INVOKE_INTERFACE:
invoke_type = kInterface;
is_range = false;
break;
case Instruction::INVOKE_INTERFACE_RANGE:
invoke_type = kInterface;
is_range = true;
break;
default:
LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
// Avoid used uninitialized warnings.
invoke_type = kDirect;
is_range = false;
}
dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
} else {
invoke_type = kStatic;
dex_file = &MethodHelper(called).GetDexFile();
dex_method_idx = called->GetDexMethodIndex();
}
uint32_t shorty_len;
const char* shorty =
dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
self->EndAssertNoThreadSuspension(old_cause);
bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
// Resolve method filling in dex cache.
if (UNLIKELY(called->IsRuntimeMethod())) {
StackHandleScope<1> hs(self);
mirror::Object* dummy = nullptr;
HandleWrapper<mirror::Object> h_receiver(
hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
}
const void* code = NULL;
if (LIKELY(!self->IsExceptionPending())) {
// Incompatible class change should have been handled in resolve method.
CHECK(!called->CheckIncompatibleClassChange(invoke_type))
<< PrettyMethod(called) << " " << invoke_type;
if (virtual_or_interface) {
// Refine called method based on receiver.
CHECK(receiver != nullptr) << invoke_type;
mirror::ArtMethod* orig_called = called;
if (invoke_type == kVirtual) {
called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
} else {
called = receiver->GetClass()->FindVirtualMethodForInterface(called);
}
CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
<< PrettyTypeOf(receiver) << " "
<< invoke_type << " " << orig_called->GetVtableIndex();
// We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
// of the sharpened method.
if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) {
caller->GetDexCacheResolvedMethods()->Set<false>(called->GetDexMethodIndex(), called);
} else {
// Calling from one dex file to another, need to compute the method index appropriate to
// the caller's dex file. Since we get here only if the original called was a runtime
// method, we've got the correct dex_file and a dex_method_idx from above.
DCHECK(&MethodHelper(caller).GetDexFile() == dex_file);
uint32_t method_index =
MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
if (method_index != DexFile::kDexNoIndex) {
caller->GetDexCacheResolvedMethods()->Set<false>(method_index, called);
}
}
}
// Ensure that the called method's class is initialized.
StackHandleScope<1> hs(soa.Self());
Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
linker->EnsureInitialized(called_class, true, true);
if (LIKELY(called_class->IsInitialized())) {
code = called->GetEntryPointFromQuickCompiledCode();
} else if (called_class->IsInitializing()) {
if (invoke_type == kStatic) {
// Class is still initializing, go to oat and grab code (trampoline must be left in place
// until class is initialized to stop races between threads).
code = linker->GetQuickOatCodeFor(called);
} else {
// No trampoline for non-static methods.
code = called->GetEntryPointFromQuickCompiledCode();
}
} else {
DCHECK(called_class->IsErroneous());
}
}
CHECK_EQ(code == NULL, self->IsExceptionPending());
// Fixup any locally saved objects may have moved during a GC.
visitor.FixupReferences();
// Place called method in callee-save frame to be placed as first argument to quick method.
sp->Assign(called);
return code;
}
/*
* This class uses a couple of observations to unite the different calling conventions through
* a few constants.
*
* 1) Number of registers used for passing is normally even, so counting down has no penalty for
* possible alignment.
* 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
* types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
* when we have to split things
* 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
* and we can use Int handling directly.
* 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
* necessary when widening. Also, widening of Ints will take place implicitly, and the
* extension should be compatible with Aarch64, which mandates copying the available bits
* into LSB and leaving the rest unspecified.
* 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
* the stack.
* 6) There is only little endian.
*
*
* Actual work is supposed to be done in a delegate of the template type. The interface is as
* follows:
*
* void PushGpr(uintptr_t): Add a value for the next GPR
*
* void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
* padding, that is, think the architecture is 32b and aligns 64b.
*
* void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
* split this if necessary. The current state will have aligned, if
* necessary.
*
* void PushStack(uintptr_t): Push a value to the stack.
*
* uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
* as this might be important for null initialization.
* Must return the jobject, that is, the reference to the
* entry in the HandleScope (nullptr if necessary).
*
*/
template <class T> class BuildGenericJniFrameStateMachine {
public:
#if defined(__arm__)
// TODO: These are all dummy values!
static constexpr bool kNativeSoftFloatAbi = true;
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = true;
static constexpr bool kMultiRegistersWidened = false;
static constexpr bool kAlignLongOnStack = true;
static constexpr bool kAlignDoubleOnStack = true;
#elif defined(__aarch64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__mips__)
// TODO: These are all dummy values!
static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = true;
static constexpr bool kMultiRegistersWidened = true;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__i386__)
// TODO: Check these!
static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
static constexpr bool kMultiRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__x86_64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#else
#error "Unsupported architecture"
#endif
public:
explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs),
fpr_index_(kNumNativeFprArgs),
stack_entries_(0),
delegate_(delegate) {
// For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
// the next register is even; counting down is just to make the compiler happy...
CHECK_EQ(kNumNativeGprArgs % 2, 0U);
CHECK_EQ(kNumNativeFprArgs % 2, 0U);
}
virtual ~BuildGenericJniFrameStateMachine() {}
bool HavePointerGpr() {
return gpr_index_ > 0;
}
void AdvancePointer(void* val) {
if (HavePointerGpr()) {
gpr_index_--;
PushGpr(reinterpret_cast<uintptr_t>(val));
} else {
stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
PushStack(reinterpret_cast<uintptr_t>(val));
gpr_index_ = 0;
}
}
bool HaveHandleScopeGpr() {
return gpr_index_ > 0;
}
void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uintptr_t handle = PushHandle(ptr);
if (HaveHandleScopeGpr()) {
gpr_index_--;
PushGpr(handle);
} else {
stack_entries_++;
PushStack(handle);
gpr_index_ = 0;
}
}
bool HaveIntGpr() {
return gpr_index_ > 0;
}
void AdvanceInt(uint32_t val) {
if (HaveIntGpr()) {
gpr_index_--;
PushGpr(val);
} else {
stack_entries_++;
PushStack(val);
gpr_index_ = 0;
}
}
bool HaveLongGpr() {
return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
}
bool LongGprNeedsPadding() {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs alignment
(gpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool LongStackNeedsPadding() {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceLong(uint64_t val) {
if (HaveLongGpr()) {
if (LongGprNeedsPadding()) {
PushGpr(0);
gpr_index_--;
}
if (kRegistersNeededForLong == 1) {
PushGpr(static_cast<uintptr_t>(val));
} else {
PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
}
gpr_index_ -= kRegistersNeededForLong;
} else {
if (LongStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForLong == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
gpr_index_ = 0;
}
}
bool HaveFloatFpr() {
return fpr_index_ > 0;
}
template <typename U, typename V> V convert(U in) {
CHECK_LE(sizeof(U), sizeof(V));
union { U u; V v; } tmp;
tmp.u = in;
return tmp.v;
}
void AdvanceFloat(float val) {
if (kNativeSoftFloatAbi) {
AdvanceInt(convert<float, uint32_t>(val));
} else {
if (HaveFloatFpr()) {
fpr_index_--;
if (kRegistersNeededForDouble == 1) {
if (kMultiRegistersWidened) {
PushFpr8(convert<double, uint64_t>(val));
} else {
// No widening, just use the bits.
PushFpr8(convert<float, uint64_t>(val));
}
} else {
PushFpr4(val);
}
} else {
stack_entries_++;
if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
// Need to widen before storing: Note the "double" in the template instantiation.
PushStack(convert<double, uintptr_t>(val));
} else {
PushStack(convert<float, uintptr_t>(val));
}
fpr_index_ = 0;
}
}
}
bool HaveDoubleFpr() {
return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
}
bool DoubleFprNeedsPadding() {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs alignment
(fpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool DoubleStackNeedsPadding() {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceDouble(uint64_t val) {
if (kNativeSoftFloatAbi) {
AdvanceLong(val);
} else {
if (HaveDoubleFpr()) {
if (DoubleFprNeedsPadding()) {
PushFpr4(0);
fpr_index_--;
}
PushFpr8(val);
fpr_index_ -= kRegistersNeededForDouble;
} else {
if (DoubleStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForDouble == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
fpr_index_ = 0;
}
}
}
uint32_t getStackEntries() {
return stack_entries_;
}
uint32_t getNumberOfUsedGprs() {
return kNumNativeGprArgs - gpr_index_;
}
uint32_t getNumberOfUsedFprs() {
return kNumNativeFprArgs - fpr_index_;
}
private:
void PushGpr(uintptr_t val) {
delegate_->PushGpr(val);
}
void PushFpr4(float val) {
delegate_->PushFpr4(val);
}
void PushFpr8(uint64_t val) {
delegate_->PushFpr8(val);
}
void PushStack(uintptr_t val) {
delegate_->PushStack(val);
}
uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return delegate_->PushHandle(ref);
}
uint32_t gpr_index_; // Number of free GPRs
uint32_t fpr_index_; // Number of free FPRs
uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
// extended
T* delegate_; // What Push implementation gets called
};
class ComputeGenericJniFrameSize FINAL {
public:
ComputeGenericJniFrameSize() : num_handle_scope_references_(0), num_stack_entries_(0) {}
uint32_t GetStackSize() {
return num_stack_entries_ * sizeof(uintptr_t);
}
// WARNING: After this, *sp won't be pointing to the method anymore!
void ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty,
uint32_t shorty_len, void* sp, HandleScope** table,
uint32_t* handle_scope_entries, uintptr_t** start_stack, uintptr_t** start_gpr,
uint32_t** start_fpr, void** code_return, size_t* overall_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ComputeAll(is_static, shorty, shorty_len);
mirror::ArtMethod* method = (*m)->AsMirrorPtr();
uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
// First, fix up the layout of the callee-save frame.
// We have to squeeze in the HandleScope, and relocate the method pointer.
// "Free" the slot for the method.
sp8 += kPointerSize; // In the callee-save frame we use a full pointer.
// Under the callee saves put handle scope and new method stack reference.
*handle_scope_entries = num_handle_scope_references_;
size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
sp8 -= scope_and_method;
// Align by kStackAlignment
uintptr_t sp_to_align = reinterpret_cast<uintptr_t>(sp8);
sp_to_align = RoundDown(sp_to_align, kStackAlignment);
sp8 = reinterpret_cast<uint8_t*>(sp_to_align);
uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
*table = reinterpret_cast<HandleScope*>(sp8_table);
(*table)->SetNumberOfReferences(num_handle_scope_references_);
// Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
uint8_t* method_pointer = sp8;
StackReference<mirror::ArtMethod>* new_method_ref =
reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
new_method_ref->Assign(method);
*m = new_method_ref;
// Reference cookie and padding
sp8 -= 8;
// Store HandleScope size
*reinterpret_cast<uint32_t*>(sp8) = static_cast<uint32_t>(handle_scope_size & 0xFFFFFFFF);
// Next comes the native call stack.
sp8 -= GetStackSize();
// Now align the call stack below. This aligns by 16, as AArch64 seems to require.
uintptr_t mask = ~0x0F;
sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask);
*start_stack = reinterpret_cast<uintptr_t*>(sp8);
// put fprs and gprs below
// Assumption is OK right now, as we have soft-float arm
size_t fregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeFprArgs;
sp8 -= fregs * sizeof(uintptr_t);
*start_fpr = reinterpret_cast<uint32_t*>(sp8);
size_t iregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeGprArgs;
sp8 -= iregs * sizeof(uintptr_t);
*start_gpr = reinterpret_cast<uintptr_t*>(sp8);
// reserve space for the code pointer
sp8 -= kPointerSize;
*code_return = reinterpret_cast<void*>(sp8);
*overall_size = reinterpret_cast<uint8_t*>(sp) - sp8;
// The new SP is stored at the end of the alloca, so it can be immediately popped
sp8 = reinterpret_cast<uint8_t*>(sp) - 5 * KB;
*(reinterpret_cast<uint8_t**>(sp8)) = method_pointer;
}
void ComputeHandleScopeOffset() { } // nothing to do, static right now
void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize> sm(this);
// JNIEnv
sm.AdvancePointer(nullptr);
// Class object or this as first argument
sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
for (uint32_t i = 1; i < shorty_len; ++i) {
Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
switch (cur_type_) {
case Primitive::kPrimNot:
sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
break;
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
sm.AdvanceInt(0);
break;
case Primitive::kPrimFloat:
sm.AdvanceFloat(0);
break;
case Primitive::kPrimDouble:
sm.AdvanceDouble(0);
break;
case Primitive::kPrimLong:
sm.AdvanceLong(0);
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
}
}
num_stack_entries_ = sm.getStackEntries();
}
void PushGpr(uintptr_t /* val */) {
// not optimizing registers, yet
}
void PushFpr4(float /* val */) {
// not optimizing registers, yet
}
void PushFpr8(uint64_t /* val */) {
// not optimizing registers, yet
}
void PushStack(uintptr_t /* val */) {
// counting is already done in the superclass
}
uintptr_t PushHandle(mirror::Object* /* ptr */) {
num_handle_scope_references_++;
return reinterpret_cast<uintptr_t>(nullptr);
}
private:
uint32_t num_handle_scope_references_;
uint32_t num_stack_entries_;
};
// Visits arguments on the stack placing them into a region lower down the stack for the benefit
// of transitioning into native code.
class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
public:
BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static,
const char* shorty, uint32_t shorty_len, Thread* self) :
QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) {
ComputeGenericJniFrameSize fsc;
fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &handle_scope_, &handle_scope_expected_refs_,
&cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_,
&alloca_used_size_);
handle_scope_number_of_references_ = 0;
cur_hs_entry_ = GetFirstHandleScopeEntry();
// jni environment is always first argument
sm_.AdvancePointer(self->GetJniEnv());
if (is_static) {
sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
}
}
void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
StackReference<mirror::Object>* GetFirstHandleScopeEntry()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return handle_scope_->GetHandle(0).GetReference();
}
jobject GetFirstHandleScopeJObject()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return handle_scope_->GetHandle(0).ToJObject();
}
void PushGpr(uintptr_t val) {
*cur_gpr_reg_ = val;
cur_gpr_reg_++;
}
void PushFpr4(float val) {
*cur_fpr_reg_ = val;
cur_fpr_reg_++;
}
void PushFpr8(uint64_t val) {
uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
*tmp = val;
cur_fpr_reg_ += 2;
}
void PushStack(uintptr_t val) {
*cur_stack_arg_ = val;
cur_stack_arg_++;
}
uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uintptr_t tmp;
if (ref == nullptr) {
*cur_hs_entry_ = StackReference<mirror::Object>();
tmp = reinterpret_cast<uintptr_t>(nullptr);
} else {
*cur_hs_entry_ = StackReference<mirror::Object>::FromMirrorPtr(ref);
tmp = reinterpret_cast<uintptr_t>(cur_hs_entry_);
}
cur_hs_entry_++;
handle_scope_number_of_references_++;
return tmp;
}
// Size of the part of the alloca that we actually need.
size_t GetAllocaUsedSize() {
return alloca_used_size_;
}
void* GetCodeReturn() {
return code_return_;
}
private:
uint32_t handle_scope_number_of_references_;
StackReference<mirror::Object>* cur_hs_entry_;
HandleScope* handle_scope_;
uint32_t handle_scope_expected_refs_;
uintptr_t* cur_gpr_reg_;
uint32_t* cur_fpr_reg_;
uintptr_t* cur_stack_arg_;
// StackReference<mirror::Object>* top_of_handle_scope_;
void* code_return_;
size_t alloca_used_size_;
BuildGenericJniFrameStateMachine<BuildGenericJniFrameVisitor> sm_;
DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
};
void BuildGenericJniFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: {
jlong long_arg;
if (IsSplitLongOrDouble()) {
long_arg = ReadSplitLongParam();
} else {
long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
}
sm_.AdvanceLong(long_arg);
break;
}
case Primitive::kPrimDouble: {
uint64_t double_arg;
if (IsSplitLongOrDouble()) {
// Read into union so that we don't case to a double.
double_arg = ReadSplitLongParam();
} else {
double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
}
sm_.AdvanceDouble(double_arg);
break;
}
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
break;
}
case Primitive::kPrimFloat:
sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
break;
}
}
void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
// Initialize padding entries.
while (handle_scope_number_of_references_ < handle_scope_expected_refs_) {
*cur_hs_entry_ = StackReference<mirror::Object>();
cur_hs_entry_++;
handle_scope_number_of_references_++;
}
handle_scope_->SetNumberOfReferences(handle_scope_expected_refs_);
DCHECK_NE(handle_scope_expected_refs_, 0U);
// Install HandleScope.
self->PushHandleScope(handle_scope_);
}
extern "C" void* artFindNativeMethod();
uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
if (lock != nullptr) {
return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
} else {
return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
}
}
void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
if (lock != nullptr) {
JniMethodEndSynchronized(cookie, lock, self);
} else {
JniMethodEnd(cookie, self);
}
}
/*
* Initializes an alloca region assumed to be directly below sp for a native call:
* Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
* The final element on the stack is a pointer to the native code.
*
* On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
* We need to fix this, as the handle scope needs to go into the callee-save frame.
*
* The return of this function denotes:
* 1) How many bytes of the alloca can be released, if the value is non-negative.
* 2) An error, if the value is negative.
*/
extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* called = sp->AsMirrorPtr();
DCHECK(called->IsNative()) << PrettyMethod(called, true);
// run the visitor
MethodHelper mh(called);
BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(),
self);
visitor.VisitArguments();
visitor.FinalizeHandleScope(self);
// fix up managed-stack things in Thread
self->SetTopOfStack(sp, 0);
self->VerifyStack();
// Start JNI, save the cookie.
uint32_t cookie;
if (called->IsSynchronized()) {
cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
if (self->IsExceptionPending()) {
self->PopHandleScope();
// A negative value denotes an error.
return -1;
}
} else {
cookie = JniMethodStart(self);
}
uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
*(sp32 - 1) = cookie;
// Retrieve the stored native code.
const void* nativeCode = called->GetNativeMethod();
// There are two cases for the content of nativeCode:
// 1) Pointer to the native function.
// 2) Pointer to the trampoline for native code binding.
// In the second case, we need to execute the binding and continue with the actual native function
// pointer.
DCHECK(nativeCode != nullptr);
if (nativeCode == GetJniDlsymLookupStub()) {
nativeCode = artFindNativeMethod();
if (nativeCode == nullptr) {
DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
// End JNI, as the assembly will move to deliver the exception.
jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
if (mh.GetShorty()[0] == 'L') {
artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
} else {
artQuickGenericJniEndJNINonRef(self, cookie, lock);
}
return -1;
}
// Note that the native code pointer will be automatically set by artFindNativeMethod().
}
// Store the native code pointer in the stack at the right location.
uintptr_t* code_pointer = reinterpret_cast<uintptr_t*>(visitor.GetCodeReturn());
*code_pointer = reinterpret_cast<uintptr_t>(nativeCode);
// 5K reserved, window_size + frame pointer used.
size_t window_size = visitor.GetAllocaUsedSize();
return (5 * KB) - window_size - kPointerSize;
}
/*
* Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
* unlocking.
*/
extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
StackReference<mirror::ArtMethod>* sp,
jvalue result, uint64_t result_f)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
mirror::ArtMethod* called = sp->AsMirrorPtr();
uint32_t cookie = *(sp32 - 1);
jobject lock = nullptr;
if (called->IsSynchronized()) {
HandleScope* table = reinterpret_cast<HandleScope*>(
reinterpret_cast<uint8_t*>(sp) + sizeof(StackReference<mirror::ArtMethod>));
lock = table->GetHandle(0).ToJObject();
}
MethodHelper mh(called);
char return_shorty_char = mh.GetShorty()[0];
if (return_shorty_char == 'L') {
return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
} else {
artQuickGenericJniEndJNINonRef(self, cookie, lock);
switch (return_shorty_char) {
case 'F': // Fall-through.
case 'D':
return result_f;
case 'Z':
return result.z;
case 'B':
return result.b;
case 'C':
return result.c;
case 'S':
return result.s;
case 'I':
return result.i;
case 'J':
return result.j;
case 'V':
return 0;
default:
LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
return 0;
}
}
}
// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
// for the method pointer.
//
// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
template<InvokeType type, bool access_check>
static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self, StackReference<mirror::ArtMethod>* sp);
template<InvokeType type, bool access_check>
static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self, StackReference<mirror::ArtMethod>* sp) {
mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
type);
if (UNLIKELY(method == nullptr)) {
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
uint32_t shorty_len;
const char* shorty =
dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
{
// Remember the args in case a GC happens in FindMethodFromCode.
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
self);
visitor.FixupReferences();
}
if (UNLIKELY(method == NULL)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
}
DCHECK(!self->IsExceptionPending());
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
<< MethodHelper(method).GetDexFile().GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
// Explicit artInvokeCommon template function declarations to please analysis tool.
#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \
mirror::Object* this_object, \
mirror::ArtMethod* caller_method, \
Thread* self, \
StackReference<mirror::ArtMethod>* sp) \
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
// See comments in runtime_support_asm.S
extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return artInvokeCommon<kInterface, true>(method_idx, this_object, caller_method, self, sp);
}
extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, self, sp);
}
extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, self, sp);
}
extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, self, sp);
}
extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, self, sp);
}
// Determine target of interface dispatch. This object is known non-null.
extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
mirror::Object* this_object,
mirror::ArtMethod* caller_method,
Thread* self,
StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* method;
if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
if (UNLIKELY(method == NULL)) {
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
caller_method);
return GetTwoWordFailureValue(); // Failure.
}
} else {
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
// Determine method index from calling dex instruction.
#if defined(__arm__)
// On entry the stack pointed by sp is:
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | ... | callee saves
// | R3 | arg3
// | R2 | arg2
// | R1 | arg1
// | R0 |
// | Method* | <- sp
DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize);
uintptr_t caller_pc = regs[10];
#elif defined(__i386__)
// On entry the stack pointed by sp is:
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | Return |
// | EBP,ESI,EDI | callee saves
// | EBX | arg3
// | EDX | arg2
// | ECX | arg1
// | EAX/Method* | <- sp
DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
uintptr_t caller_pc = regs[7];
#elif defined(__mips__)
// On entry the stack pointed by sp is:
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | RA |
// | ... | callee saves
// | A3 | arg3
// | A2 | arg2
// | A1 | arg1
// | A0/Method* | <- sp
DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
uintptr_t caller_pc = regs[15];
#else
UNIMPLEMENTED(FATAL);
uintptr_t caller_pc = 0;
#endif
uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem();
CHECK_LT(dex_pc, code->insns_size_in_code_units_);
const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
Instruction::Code instr_code = instr->Opcode();
CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
instr_code == Instruction::INVOKE_INTERFACE_RANGE)
<< "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
uint32_t dex_method_idx;
if (instr_code == Instruction::INVOKE_INTERFACE) {
dex_method_idx = instr->VRegB_35c();
} else {
DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
dex_method_idx = instr->VRegB_3rc();
}
const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
uint32_t shorty_len;
const char* shorty =
dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
{
// Remember the args in case a GC happens in FindMethodFromCode.
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
visitor.VisitArguments();
method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
self);
visitor.FixupReferences();
}
if (UNLIKELY(method == nullptr)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
}
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
<< MethodHelper(method).GetDexFile().GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
} // namespace art