| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "scheduler.h" |
| |
| #include "base/arena_allocator.h" |
| #include "builder.h" |
| #include "codegen_test_utils.h" |
| #include "common_compiler_test.h" |
| #include "load_store_analysis.h" |
| #include "nodes.h" |
| #include "optimizing_unit_test.h" |
| #include "pc_relative_fixups_x86.h" |
| #include "register_allocator.h" |
| |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| #include "scheduler_arm64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_arm |
| #include "scheduler_arm.h" |
| #endif |
| |
| namespace art { |
| |
| // Return all combinations of ISA and code generator that are executable on |
| // hardware, or on simulator, and that we'd like to test. |
| static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { |
| ::std::vector<CodegenTargetConfig> v; |
| ::std::vector<CodegenTargetConfig> test_config_candidates = { |
| #ifdef ART_ENABLE_CODEGEN_arm |
| // TODO: Should't this be `kThumb2` instead of `kArm` here? |
| CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips |
| CodegenTargetConfig(InstructionSet::kMips, create_codegen_mips), |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| CodegenTargetConfig(InstructionSet::kMips64, create_codegen_mips64) |
| #endif |
| }; |
| |
| for (const CodegenTargetConfig& test_config : test_config_candidates) { |
| if (CanExecute(test_config.GetInstructionSet())) { |
| v.push_back(test_config); |
| } |
| } |
| |
| return v; |
| } |
| |
| class SchedulerTest : public OptimizingUnitTest { |
| public: |
| SchedulerTest() : graph_(CreateGraph()) { } |
| |
| // Build scheduling graph, and run target specific scheduling on it. |
| void TestBuildDependencyGraphAndSchedule(HScheduler* scheduler) { |
| HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_); |
| HBasicBlock* block1 = new (GetAllocator()) HBasicBlock(graph_); |
| graph_->AddBlock(entry); |
| graph_->AddBlock(block1); |
| graph_->SetEntryBlock(entry); |
| |
| // entry: |
| // array ParameterValue |
| // c1 IntConstant |
| // c2 IntConstant |
| // block1: |
| // add1 Add [c1, c2] |
| // add2 Add [add1, c2] |
| // mul Mul [add1, add2] |
| // div_check DivZeroCheck [add2] (env: add2, mul) |
| // div Div [add1, div_check] |
| // array_get1 ArrayGet [array, add1] |
| // array_set1 ArraySet [array, add1, add2] |
| // array_get2 ArrayGet [array, add1] |
| // array_set2 ArraySet [array, add1, add2] |
| |
| HInstruction* array = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), |
| dex::TypeIndex(0), |
| 0, |
| DataType::Type::kReference); |
| HInstruction* c1 = graph_->GetIntConstant(1); |
| HInstruction* c2 = graph_->GetIntConstant(10); |
| HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, c1, c2); |
| HInstruction* add2 = new (GetAllocator()) HAdd(DataType::Type::kInt32, add1, c2); |
| HInstruction* mul = new (GetAllocator()) HMul(DataType::Type::kInt32, add1, add2); |
| HInstruction* div_check = new (GetAllocator()) HDivZeroCheck(add2, 0); |
| HInstruction* div = new (GetAllocator()) HDiv(DataType::Type::kInt32, add1, div_check, 0); |
| HInstruction* array_get1 = |
| new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0); |
| HInstruction* array_set1 = |
| new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0); |
| HInstruction* array_get2 = |
| new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0); |
| HInstruction* array_set2 = |
| new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0); |
| |
| DCHECK(div_check->CanThrow()); |
| |
| entry->AddInstruction(array); |
| |
| HInstruction* block_instructions[] = {add1, |
| add2, |
| mul, |
| div_check, |
| div, |
| array_get1, |
| array_set1, |
| array_get2, |
| array_set2}; |
| for (HInstruction* instr : block_instructions) { |
| block1->AddInstruction(instr); |
| } |
| |
| HEnvironment* environment = new (GetAllocator()) HEnvironment(GetAllocator(), |
| 2, |
| graph_->GetArtMethod(), |
| 0, |
| div_check); |
| div_check->SetRawEnvironment(environment); |
| environment->SetRawEnvAt(0, add2); |
| add2->AddEnvUseAt(div_check->GetEnvironment(), 0); |
| environment->SetRawEnvAt(1, mul); |
| mul->AddEnvUseAt(div_check->GetEnvironment(), 1); |
| |
| TestSchedulingGraph scheduling_graph(GetScopedAllocator()); |
| // Instructions must be inserted in reverse order into the scheduling graph. |
| for (HInstruction* instr : ReverseRange(block_instructions)) { |
| scheduling_graph.AddNode(instr); |
| } |
| |
| // Should not have dependencies cross basic blocks. |
| ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, c1)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add2, c2)); |
| |
| // Define-use dependency. |
| ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(add2, add1)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, add2)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div_check, add2)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(div_check, add1)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div, div_check)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add1)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add2)); |
| |
| // Read and write dependencies |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, array_get1)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_get2)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_get2, array_set1)); |
| // Unnecessary dependency is not stored, we rely on transitive dependencies. |
| // The array_set2 -> array_get2 -> array_set1 dependencies are tested above. |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_set1)); |
| |
| // Env dependency. |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(div_check, mul)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(mul, div_check)); |
| |
| // CanThrow. |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, div_check)); |
| |
| // Exercise the code path of target specific scheduler and SchedulingLatencyVisitor. |
| scheduler->Schedule(graph_); |
| } |
| |
| void CompileWithRandomSchedulerAndRun(const std::vector<uint16_t>& data, |
| bool has_result, |
| int expected) { |
| for (CodegenTargetConfig target_config : GetTargetConfigs()) { |
| HGraph* graph = CreateCFG(data); |
| |
| // Schedule the graph randomly. |
| HInstructionScheduling scheduling(graph, target_config.GetInstructionSet()); |
| scheduling.Run(/*only_optimize_loop_blocks*/ false, /*schedule_randomly*/ true); |
| |
| OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default"); |
| RunCode(target_config, |
| *compiler_options_, |
| graph, |
| [](HGraph* graph_arg) { RemoveSuspendChecks(graph_arg); }, |
| has_result, expected); |
| } |
| } |
| |
| void TestDependencyGraphOnAliasingArrayAccesses(HScheduler* scheduler) { |
| HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_); |
| graph_->AddBlock(entry); |
| graph_->SetEntryBlock(entry); |
| graph_->BuildDominatorTree(); |
| |
| HInstruction* arr = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), |
| dex::TypeIndex(0), |
| 0, |
| DataType::Type::kReference); |
| HInstruction* i = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), |
| dex::TypeIndex(1), |
| 1, |
| DataType::Type::kInt32); |
| HInstruction* j = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), |
| dex::TypeIndex(1), |
| 1, |
| DataType::Type::kInt32); |
| HInstruction* object = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), |
| dex::TypeIndex(0), |
| 0, |
| DataType::Type::kReference); |
| HInstruction* c0 = graph_->GetIntConstant(0); |
| HInstruction* c1 = graph_->GetIntConstant(1); |
| HInstruction* add0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c0); |
| HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c1); |
| HInstruction* sub0 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c0); |
| HInstruction* sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c1); |
| HInstruction* arr_set_0 = |
| new (GetAllocator()) HArraySet(arr, c0, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_1 = |
| new (GetAllocator()) HArraySet(arr, c1, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_i = new (GetAllocator()) HArraySet(arr, i, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_add0 = |
| new (GetAllocator()) HArraySet(arr, add0, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_add1 = |
| new (GetAllocator()) HArraySet(arr, add1, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_sub0 = |
| new (GetAllocator()) HArraySet(arr, sub0, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_sub1 = |
| new (GetAllocator()) HArraySet(arr, sub1, c0, DataType::Type::kInt32, 0); |
| HInstruction* arr_set_j = new (GetAllocator()) HArraySet(arr, j, c0, DataType::Type::kInt32, 0); |
| HInstanceFieldSet* set_field10 = new (GetAllocator()) HInstanceFieldSet(object, |
| c1, |
| nullptr, |
| DataType::Type::kInt32, |
| MemberOffset(10), |
| false, |
| kUnknownFieldIndex, |
| kUnknownClassDefIndex, |
| graph_->GetDexFile(), |
| 0); |
| |
| HInstruction* block_instructions[] = {arr, |
| i, |
| j, |
| object, |
| add0, |
| add1, |
| sub0, |
| sub1, |
| arr_set_0, |
| arr_set_1, |
| arr_set_i, |
| arr_set_add0, |
| arr_set_add1, |
| arr_set_sub0, |
| arr_set_sub1, |
| arr_set_j, |
| set_field10}; |
| |
| for (HInstruction* instr : block_instructions) { |
| entry->AddInstruction(instr); |
| } |
| |
| HeapLocationCollector heap_location_collector(graph_); |
| heap_location_collector.VisitBasicBlock(entry); |
| heap_location_collector.BuildAliasingMatrix(); |
| TestSchedulingGraph scheduling_graph(GetScopedAllocator(), &heap_location_collector); |
| |
| for (HInstruction* instr : ReverseRange(block_instructions)) { |
| // Build scheduling graph with memory access aliasing information |
| // from LSA/heap_location_collector. |
| scheduling_graph.AddNode(instr); |
| } |
| |
| // LSA/HeapLocationCollector should see those ArraySet instructions. |
| ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 9U); |
| ASSERT_TRUE(heap_location_collector.HasHeapStores()); |
| |
| // Test queries on HeapLocationCollector's aliasing matrix after load store analysis. |
| // HeapLocationCollector and SchedulingGraph should report consistent relationships. |
| size_t loc1 = HeapLocationCollector::kHeapLocationNotFound; |
| size_t loc2 = HeapLocationCollector::kHeapLocationNotFound; |
| |
| // Test side effect dependency: array[0] and array[1] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_1); |
| ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_1, arr_set_0)); |
| |
| // Test side effect dependency based on LSA analysis: array[i] and array[j] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_j); |
| ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); |
| // Unnecessary dependency is not stored, we rely on transitive dependencies. |
| // The arr_set_j -> arr_set_sub0 -> arr_set_add0 -> arr_set_i dependencies are tested below. |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i)); |
| |
| // Test side effect dependency based on LSA analysis: array[i] and array[i+0] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add0); |
| ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_add0, arr_set_i)); |
| |
| // Test side effect dependency based on LSA analysis: array[i] and array[i-0] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub0); |
| ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); |
| // Unnecessary dependency is not stored, we rely on transitive dependencies. |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_i)); |
| // Instead, we rely on arr_set_sub0 -> arr_set_add0 -> arr_set_i, the latter is tested above. |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_add0)); |
| |
| // Test side effect dependency based on LSA analysis: array[i] and array[i+1] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add1); |
| ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_add1, arr_set_i)); |
| |
| // Test side effect dependency based on LSA analysis: array[i+1] and array[i-1] |
| loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_add1); |
| loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub1); |
| ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub1, arr_set_add1)); |
| |
| // Test side effect dependency based on LSA analysis: array[j] and all others array accesses |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub0)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add1)); |
| ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub1)); |
| // Unnecessary dependencies are not stored, we rely on transitive dependencies. |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add0)); |
| |
| // Test that ArraySet and FieldSet should not have side effect dependency |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_i, set_field10)); |
| ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, set_field10)); |
| |
| // Exercise target specific scheduler and SchedulingLatencyVisitor. |
| scheduler->Schedule(graph_); |
| } |
| |
| class TestSchedulingGraph : public SchedulingGraph { |
| public: |
| explicit TestSchedulingGraph(ScopedArenaAllocator* allocator, |
| const HeapLocationCollector *heap_location_collector = nullptr) |
| : SchedulingGraph(allocator, heap_location_collector) {} |
| |
| bool HasImmediateDataDependency(const HInstruction* instruction, |
| const HInstruction* other_instruction) const { |
| const SchedulingNode* node = GetNode(instruction); |
| const SchedulingNode* other = GetNode(other_instruction); |
| if (node == nullptr || other == nullptr) { |
| // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their |
| // corresponding SchedulingNode in the graph, and tell whether there is a dependency. |
| // Otherwise there is no dependency from SchedulingGraph's perspective, for example, |
| // instruction and other_instruction are in different basic blocks. |
| return false; |
| } |
| return node->HasDataDependency(other); |
| } |
| |
| bool HasImmediateOtherDependency(const HInstruction* instruction, |
| const HInstruction* other_instruction) const { |
| const SchedulingNode* node = GetNode(instruction); |
| const SchedulingNode* other = GetNode(other_instruction); |
| if (node == nullptr || other == nullptr) { |
| // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their |
| // corresponding SchedulingNode in the graph, and tell whether there is a dependency. |
| // Otherwise there is no dependency from SchedulingGraph's perspective, for example, |
| // instruction and other_instruction are in different basic blocks. |
| return false; |
| } |
| return node->HasOtherDependency(other); |
| } |
| }; |
| |
| HGraph* graph_; |
| }; |
| |
| #if defined(ART_ENABLE_CODEGEN_arm64) |
| TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM64) { |
| CriticalPathSchedulingNodeSelector critical_path_selector; |
| arm64::HSchedulerARM64 scheduler(&critical_path_selector); |
| TestBuildDependencyGraphAndSchedule(&scheduler); |
| } |
| |
| TEST_F(SchedulerTest, ArrayAccessAliasingARM64) { |
| CriticalPathSchedulingNodeSelector critical_path_selector; |
| arm64::HSchedulerARM64 scheduler(&critical_path_selector); |
| TestDependencyGraphOnAliasingArrayAccesses(&scheduler); |
| } |
| #endif |
| |
| #if defined(ART_ENABLE_CODEGEN_arm) |
| TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM) { |
| CriticalPathSchedulingNodeSelector critical_path_selector; |
| arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr); |
| arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor); |
| TestBuildDependencyGraphAndSchedule(&scheduler); |
| } |
| |
| TEST_F(SchedulerTest, ArrayAccessAliasingARM) { |
| CriticalPathSchedulingNodeSelector critical_path_selector; |
| arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr); |
| arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor); |
| TestDependencyGraphOnAliasingArrayAccesses(&scheduler); |
| } |
| #endif |
| |
| TEST_F(SchedulerTest, RandomScheduling) { |
| // |
| // Java source: crafted code to make sure (random) scheduling should get correct result. |
| // |
| // int result = 0; |
| // float fr = 10.0f; |
| // for (int i = 1; i < 10; i++) { |
| // fr ++; |
| // int t1 = result >> i; |
| // int t2 = result * i; |
| // result = result + t1 - t2; |
| // fr = fr / i; |
| // result += (int)fr; |
| // } |
| // return result; |
| // |
| const std::vector<uint16_t> data = SIX_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 << 12 | 2 << 8, // const/4 v2, #int 0 |
| Instruction::CONST_HIGH16 | 0 << 8, 0x4120, // const/high16 v0, #float 10.0 // #41200000 |
| Instruction::CONST_4 | 1 << 12 | 1 << 8, // const/4 v1, #int 1 |
| Instruction::CONST_16 | 5 << 8, 0x000a, // const/16 v5, #int 10 |
| Instruction::IF_GE | 5 << 12 | 1 << 8, 0x0014, // if-ge v1, v5, 001a // +0014 |
| Instruction::CONST_HIGH16 | 5 << 8, 0x3f80, // const/high16 v5, #float 1.0 // #3f800000 |
| Instruction::ADD_FLOAT_2ADDR | 5 << 12 | 0 << 8, // add-float/2addr v0, v5 |
| Instruction::SHR_INT | 3 << 8, 1 << 8 | 2 , // shr-int v3, v2, v1 |
| Instruction::MUL_INT | 4 << 8, 1 << 8 | 2, // mul-int v4, v2, v1 |
| Instruction::ADD_INT | 5 << 8, 3 << 8 | 2, // add-int v5, v2, v3 |
| Instruction::SUB_INT | 2 << 8, 4 << 8 | 5, // sub-int v2, v5, v4 |
| Instruction::INT_TO_FLOAT | 1 << 12 | 5 << 8, // int-to-float v5, v1 |
| Instruction::DIV_FLOAT_2ADDR | 5 << 12 | 0 << 8, // div-float/2addr v0, v5 |
| Instruction::FLOAT_TO_INT | 0 << 12 | 5 << 8, // float-to-int v5, v0 |
| Instruction::ADD_INT_2ADDR | 5 << 12 | 2 << 8, // add-int/2addr v2, v5 |
| Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8 | 1, // add-int/lit8 v1, v1, #int 1 // #01 |
| Instruction::GOTO | 0xeb << 8, // goto 0004 // -0015 |
| Instruction::RETURN | 2 << 8); // return v2 |
| |
| constexpr int kNumberOfRuns = 10; |
| for (int i = 0; i < kNumberOfRuns; ++i) { |
| CompileWithRandomSchedulerAndRun(data, true, 138774); |
| } |
| } |
| |
| } // namespace art |