blob: f3ecda0d54e7ef097c712f51810b7bb6d9dfd1fe [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "image_writer.h"
#include <sys/mman.h>
#include <vector>
#include "UniquePtr.h"
#include "class_linker.h"
#include "class_loader.h"
#include "dex_cache.h"
#include "file.h"
#include "globals.h"
#include "heap.h"
#include "image.h"
#include "intern_table.h"
#include "logging.h"
#include "object.h"
#include "runtime.h"
#include "space.h"
#include "utils.h"
namespace art {
bool ImageWriter::Write(const char* image_filename, uintptr_t image_base,
const std::string& oat_filename, const std::string& strip_location_prefix) {
CHECK(image_filename != NULL);
CHECK_NE(image_base, 0U);
image_base_ = reinterpret_cast<byte*>(image_base);
const std::vector<Space*>& spaces = Heap::GetSpaces();
// currently just write the last space, assuming it is the space that was being used for allocation
CHECK_GE(spaces.size(), 1U);
source_space_ = spaces[spaces.size()-1];
CHECK(!source_space_->IsImageSpace());
oat_file_.reset(OatFile::Open(oat_filename, strip_location_prefix, NULL));
if (oat_file_.get() == NULL) {
LOG(ERROR) << "Failed to open oat file " << oat_filename;
return false;
}
if (!Init()) {
return false;
}
Heap::CollectGarbage();
CalculateNewObjectOffsets();
CopyAndFixupObjects();
UniquePtr<File> file(OS::OpenFile(image_filename, true));
if (file.get() == NULL) {
LOG(ERROR) << "Failed to open image file " << image_filename;
return false;
}
bool success = file->WriteFully(image_->GetAddress(), image_top_);
if (!success) {
PLOG(ERROR) << "Failed to write image file " << image_filename;
return false;
}
return true;
}
bool ImageWriter::Init() {
size_t size = source_space_->Size();
int prot = PROT_READ | PROT_WRITE;
size_t length = RoundUp(size, kPageSize);
image_.reset(MemMap::Map(length, prot));
if (image_.get() == NULL) {
LOG(ERROR) << "Failed to allocate memory for image file generation";
return false;
}
return true;
}
void ImageWriter::CalculateNewObjectOffsetsCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
if (!image_writer->InSourceSpace(obj)) {
return;
}
// if it is a string, we want to intern it if its not interned.
if (obj->IsString()) {
// we must be an interned string that was forward referenced and already assigned
if (IsImageOffsetAssigned(obj)) {
DCHECK_EQ(obj, obj->AsString()->Intern());
return;
}
String* interned = obj->AsString()->Intern();
if (obj != interned) {
if (!IsImageOffsetAssigned(interned)) {
// interned obj is after us, allocate its location early
image_writer->AssignImageOffset(interned);
}
// point those looking for this object to the interned version.
SetImageOffset(obj, GetImageOffset(interned));
return;
}
// else (obj == interned), nothing to do but fall through to the normal case
}
image_writer->AssignImageOffset(obj);
// sniff out the DexCaches on this pass for use on the next pass
if (obj->IsClass()) {
Class* klass = obj->AsClass();
DexCache* dex_cache = klass->GetDexCache();
if (dex_cache != NULL) {
image_writer->dex_caches_.insert(dex_cache);
} else {
DCHECK(klass->IsArrayClass() || klass->IsPrimitive()) << PrettyClass(klass);
}
}
}
ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
Class* object_array_class = class_linker->FindSystemClass("[Ljava/lang/Object;");
// build an Object[] of all the DexCaches used in the source_space_
const std::vector<DexCache*>& all_dex_caches = class_linker->GetDexCaches();
std::vector<DexCache*> source_space_dex_caches;
for (size_t i = 0; i < all_dex_caches.size(); i++) {
DexCache* dex_cache = all_dex_caches[i];
if (InSourceSpace(dex_cache)) {
source_space_dex_caches.push_back(dex_cache);
}
}
ObjectArray<Object>* dex_caches = ObjectArray<Object>::Alloc(object_array_class,
source_space_dex_caches.size());
for (size_t i = 0; i < source_space_dex_caches.size(); i++) {
dex_caches->Set(i, source_space_dex_caches[i]);
}
// build an Object[] of the roots needed to restore the runtime
ObjectArray<Object>* image_roots = ObjectArray<Object>::Alloc(object_array_class,
ImageHeader::kImageRootsMax);
image_roots->Set(ImageHeader::kJniStubArray, runtime->GetJniStubArray());
image_roots->Set(ImageHeader::kAbstractMethodErrorStubArray,
runtime->GetAbstractMethodErrorStubArray());
image_roots->Set(ImageHeader::kInstanceResolutionStubArray,
runtime->GetResolutionStubArray(Runtime::kInstanceMethod));
image_roots->Set(ImageHeader::kStaticResolutionStubArray,
runtime->GetResolutionStubArray(Runtime::kStaticMethod));
image_roots->Set(ImageHeader::kUnknownMethodResolutionStubArray,
runtime->GetResolutionStubArray(Runtime::kUnknownMethod));
image_roots->Set(ImageHeader::kCalleeSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kSaveAll));
image_roots->Set(ImageHeader::kRefsOnlySaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsOnly));
image_roots->Set(ImageHeader::kRefsAndArgsSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
image_roots->Set(ImageHeader::kOatLocation,
String::AllocFromModifiedUtf8(oat_file_->GetLocation().c_str()));
image_roots->Set(ImageHeader::kDexCaches,
dex_caches);
image_roots->Set(ImageHeader::kClassRoots,
class_linker->GetClassRoots());
for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
CHECK(image_roots->Get(i) != NULL);
}
return image_roots;
}
void ImageWriter::CalculateNewObjectOffsets() {
ObjectArray<Object>* image_roots = CreateImageRoots();
HeapBitmap* heap_bitmap = Heap::GetLiveBits();
DCHECK(heap_bitmap != NULL);
DCHECK_EQ(0U, image_top_);
// leave space for the header, but do not write it yet, we need to
// know where image_roots is going to end up
image_top_ += RoundUp(sizeof(ImageHeader), 8); // 64-bit-alignment
heap_bitmap->Walk(CalculateNewObjectOffsetsCallback, this); // TODO: add Space-limited Walk
DCHECK_LT(image_top_, image_->GetLength());
// Note that image_top_ is left at end of used space
oat_base_ = image_base_ + RoundUp(image_top_, kPageSize);
const byte* oat_limit = oat_base_ + oat_file_->GetSize();
// return to write header at start of image with future location of image_roots
ImageHeader image_header(reinterpret_cast<uint32_t>(image_base_),
reinterpret_cast<uint32_t>(GetImageAddress(image_roots)),
oat_file_->GetOatHeader().GetChecksum(),
reinterpret_cast<uint32_t>(oat_base_),
reinterpret_cast<uint32_t>(oat_limit));
memcpy(image_->GetAddress(), &image_header, sizeof(image_header));
}
void ImageWriter::CopyAndFixupObjects() {
HeapBitmap* heap_bitmap = Heap::GetLiveBits();
DCHECK(heap_bitmap != NULL);
// TODO: heap validation can't handle this fix up pass
Heap::DisableObjectValidation();
heap_bitmap->Walk(CopyAndFixupObjectsCallback, this); // TODO: add Space-limited Walk
FixupDexCaches();
}
void ImageWriter::CopyAndFixupObjectsCallback(Object* object, void* arg) {
DCHECK(object != NULL);
DCHECK(arg != NULL);
const Object* obj = object;
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
if (!image_writer->InSourceSpace(object)) {
return;
}
// see GetLocalAddress for similar computation
size_t offset = image_writer->GetImageOffset(obj);
byte* dst = image_writer->image_->GetAddress() + offset;
const byte* src = reinterpret_cast<const byte*>(obj);
size_t n = obj->SizeOf();
DCHECK_LT(offset + n, image_writer->image_->GetLength());
memcpy(dst, src, n);
Object* copy = reinterpret_cast<Object*>(dst);
ResetImageOffset(copy);
image_writer->FixupObject(obj, copy);
}
void ImageWriter::FixupObject(const Object* orig, Object* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
copy->SetClass(down_cast<Class*>(GetImageAddress(orig->GetClass())));
// TODO: special case init of pointers to malloc data (or removal of these pointers)
if (orig->IsClass()) {
FixupClass(orig->AsClass(), down_cast<Class*>(copy));
} else if (orig->IsObjectArray()) {
FixupObjectArray(orig->AsObjectArray<Object>(), down_cast<ObjectArray<Object>*>(copy));
} else if (orig->IsMethod()) {
FixupMethod(orig->AsMethod(), down_cast<Method*>(copy));
} else {
FixupInstanceFields(orig, copy);
}
}
void ImageWriter::FixupClass(const Class* orig, Class* copy) {
FixupInstanceFields(orig, copy);
FixupStaticFields(orig, copy);
}
const void* FixupCode(const ByteArray* copy_code_array, const void* orig_code) {
// TODO: change to DCHECK when all code compiling
if (copy_code_array == NULL) {
return NULL;
}
const void* copy_code = copy_code_array->GetData();
// TODO: remember InstructionSet with each code array so we know if we need to do thumb fixup?
if ((reinterpret_cast<uintptr_t>(orig_code) % 2) == 1) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(copy_code) + 1);
}
return copy_code;
}
void ImageWriter::FixupMethod(const Method* orig, Method* copy) {
FixupInstanceFields(orig, copy);
// OatWriter replaces the code_ and invoke_stub_ with offset values.
// Here we readjust to a pointer relative to oat_base_
// Every type of method can have an invoke stub
uint32_t invoke_stub_offset = orig->GetOatInvokeStubOffset();
const byte* invoke_stub = (invoke_stub_offset != 0) ? (oat_base_ + invoke_stub_offset) : 0;
copy->invoke_stub_ = reinterpret_cast<const Method::InvokeStub*>(invoke_stub);
if (orig->IsAbstract()) {
// Abstract methods are pointed to a stub that will throw AbstractMethodError if they are called
ByteArray* orig_ame_stub_array_ = Runtime::Current()->GetAbstractMethodErrorStubArray();
ByteArray* copy_ame_stub_array_ = down_cast<ByteArray*>(GetImageAddress(orig_ame_stub_array_));
copy->code_ = copy_ame_stub_array_->GetData();
return;
}
// Non-abstract methods typically have code
uint32_t code_offset = orig->GetOatCodeOffset();
const byte* code = (code_offset != 0) ? (oat_base_ + code_offset) : 0;
copy->code_ = code;
if (orig->IsNative()) {
// The native method's pointer is directed to a stub to lookup via dlsym.
// Note this is not the code_ pointer, that is handled above.
ByteArray* orig_jni_stub_array_ = Runtime::Current()->GetJniStubArray();
ByteArray* copy_jni_stub_array_ = down_cast<ByteArray*>(GetImageAddress(orig_jni_stub_array_));
copy->native_method_ = copy_jni_stub_array_->GetData();
} else {
// normal (non-abstract non-native) methods have mapping tables to relocate
uint32_t mapping_table_off = orig->GetOatMappingTableOffset();
const byte* mapping_table = (mapping_table_off != 0) ? (oat_base_ + mapping_table_off) : 0;
copy->mapping_table_ = reinterpret_cast<const uint32_t*>(mapping_table);
uint32_t vmap_table_offset = orig->GetOatVmapTableOffset();
const byte* vmap_table = (vmap_table_offset != 0) ? (oat_base_ + vmap_table_offset) : 0;
copy->vmap_table_ = reinterpret_cast<const uint16_t*>(vmap_table);
}
}
void ImageWriter::FixupObjectArray(const ObjectArray<Object>* orig, ObjectArray<Object>* copy) {
for (int32_t i = 0; i < orig->GetLength(); ++i) {
const Object* element = orig->Get(i);
copy->SetWithoutChecks(i, GetImageAddress(element));
}
}
void ImageWriter::FixupInstanceFields(const Object* orig, Object* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
Class* klass = orig->GetClass();
DCHECK(klass != NULL);
FixupFields(orig,
copy,
klass->GetReferenceInstanceOffsets(),
false);
}
void ImageWriter::FixupStaticFields(const Class* orig, Class* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
FixupFields(orig,
copy,
orig->GetReferenceStaticOffsets(),
true);
}
void ImageWriter::FixupFields(const Object* orig,
Object* copy,
uint32_t ref_offsets,
bool is_static) {
if (ref_offsets != CLASS_WALK_SUPER) {
// Found a reference offset bitmap. Fixup the specified offsets.
while (ref_offsets != 0) {
size_t right_shift = CLZ(ref_offsets);
MemberOffset byte_offset = CLASS_OFFSET_FROM_CLZ(right_shift);
const Object* ref = orig->GetFieldObject<const Object*>(byte_offset, false);
copy->SetFieldObject(byte_offset, GetImageAddress(ref), false);
ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift);
}
} else {
// There is no reference offset bitmap. In the non-static case,
// walk up the class inheritance hierarchy and find reference
// offsets the hard way. In the static case, just consider this
// class.
for (const Class *klass = is_static ? orig->AsClass() : orig->GetClass();
klass != NULL;
klass = is_static ? NULL : klass->GetSuperClass()) {
size_t num_reference_fields = (is_static
? klass->NumReferenceStaticFields()
: klass->NumReferenceInstanceFields());
for (size_t i = 0; i < num_reference_fields; ++i) {
Field* field = (is_static
? klass->GetStaticField(i)
: klass->GetInstanceField(i));
MemberOffset field_offset = field->GetOffset();
const Object* ref = orig->GetFieldObject<const Object*>(field_offset, false);
copy->SetFieldObject(field_offset, GetImageAddress(ref), false);
}
}
}
}
void ImageWriter::FixupDexCaches() {
typedef Set::const_iterator It; // TODO: C++0x auto
for (It it = dex_caches_.begin(), end = dex_caches_.end(); it != end; ++it) {
DexCache* orig = *it;
DexCache* copy = down_cast<DexCache*>(GetLocalAddress(orig));
FixupDexCache(orig, copy);
}
}
void ImageWriter::FixupDexCache(const DexCache* orig, DexCache* copy) {
CHECK(orig != NULL);
CHECK(copy != NULL);
// The original array value
CodeAndDirectMethods* orig_cadms = orig->GetCodeAndDirectMethods();
// The compacted object in local memory but not at the correct image address
CodeAndDirectMethods* copy_cadms = down_cast<CodeAndDirectMethods*>(GetLocalAddress(orig_cadms));
Runtime* runtime = Runtime::Current();
for (size_t i = 0; i < orig->NumResolvedMethods(); i++) {
Method* orig_method = orig->GetResolvedMethod(i);
if (orig_method != NULL && !InSourceSpace(orig_method)) {
continue;
}
// if it was resolved in the original, resolve it in the copy
if (orig_method == NULL || (orig_method->IsStatic() &&
!orig_method->GetDeclaringClass()->IsInitialized())) {
uint32_t orig_res_stub_code = orig_cadms->Get(CodeAndDirectMethods::CodeIndex(i));
if (orig_res_stub_code == 0) {
continue; // NULL maps the same in the image and the original
}
Runtime::TrampolineType type = Runtime::GetTrampolineType(orig_method); // Type of trampoline
ByteArray* orig_res_stub_array = runtime->GetResolutionStubArray(type);
// Do we need to relocate this for this space?
if (!InSourceSpace(orig_res_stub_array)) {
continue;
}
// Compute the delta from the start of the resolution stub to its starting code.
// For ARM and X86 this is 0, for Thumb2 it is 1.
static size_t res_stub_delta = 0xFFFF;
if (res_stub_delta == 0xFFFF) {
uint32_t orig_res_stub_array_data =
reinterpret_cast<uint32_t>(orig_res_stub_array->GetData());
res_stub_delta = orig_res_stub_code - orig_res_stub_array_data;
DCHECK(res_stub_delta == 0 || res_stub_delta == 1);
}
// Compute address in image of resolution stub and the code address
ByteArray* image_res_stub_array = down_cast<ByteArray*>(GetImageAddress(orig_res_stub_array));
int32_t image_res_stub_code =
reinterpret_cast<int32_t>(image_res_stub_array->GetData()) + res_stub_delta;
// Put the image code address in the array
copy_cadms->Set(CodeAndDirectMethods::CodeIndex(i), image_res_stub_code);
} else if (orig_method->IsDirect()) {
Method* copy_method = down_cast<Method*>(GetLocalAddress(orig_method));
copy_cadms->Set(CodeAndDirectMethods::CodeIndex(i),
reinterpret_cast<int32_t>(copy_method->code_));
copy_cadms->Set(CodeAndDirectMethods::MethodIndex(i),
reinterpret_cast<int32_t>(GetImageAddress(orig_method)));
}
}
}
} // namespace art