blob: 813d90d0bd1da149be0d48ca2a0781e6e586f6d7 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mem_map.h"
#include <sys/mman.h>
#include <memory>
#include <random>
#include "common_art_test.h"
#include "common_runtime_test.h" // For TEST_DISABLED_FOR_MIPS
#include "logging.h"
#include "memory_tool.h"
#include "unix_file/fd_file.h"
namespace art {
class MemMapTest : public CommonArtTest {
public:
static bool IsAddressMapped(void* addr) {
bool res = msync(addr, 1, MS_SYNC) == 0;
if (!res && errno != ENOMEM) {
PLOG(FATAL) << "Unexpected error occurred on msync";
}
return res;
}
static std::vector<uint8_t> RandomData(size_t size) {
std::random_device rd;
std::uniform_int_distribution<uint8_t> dist;
std::vector<uint8_t> res;
res.resize(size);
for (size_t i = 0; i < size; i++) {
res[i] = dist(rd);
}
return res;
}
static uint8_t* GetValidMapAddress(size_t size, bool low_4gb) {
// Find a valid map address and unmap it before returning.
std::string error_msg;
MemMap map = MemMap::MapAnonymous("temp",
/* addr= */ nullptr,
size,
PROT_READ,
low_4gb,
&error_msg);
CHECK(map.IsValid());
return map.Begin();
}
static void RemapAtEndTest(bool low_4gb) {
std::string error_msg;
// Cast the page size to size_t.
const size_t page_size = static_cast<size_t>(kPageSize);
// Map a two-page memory region.
MemMap m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0",
/* addr= */ nullptr,
2 * page_size,
PROT_READ | PROT_WRITE,
low_4gb,
&error_msg);
// Check its state and write to it.
ASSERT_TRUE(m0.IsValid());
uint8_t* base0 = m0.Begin();
ASSERT_TRUE(base0 != nullptr) << error_msg;
size_t size0 = m0.Size();
EXPECT_EQ(m0.Size(), 2 * page_size);
EXPECT_EQ(m0.BaseBegin(), base0);
EXPECT_EQ(m0.BaseSize(), size0);
memset(base0, 42, 2 * page_size);
// Remap the latter half into a second MemMap.
MemMap m1 = m0.RemapAtEnd(base0 + page_size,
"MemMapTest_RemapAtEndTest_map1",
PROT_READ | PROT_WRITE,
&error_msg);
// Check the states of the two maps.
EXPECT_EQ(m0.Begin(), base0) << error_msg;
EXPECT_EQ(m0.Size(), page_size);
EXPECT_EQ(m0.BaseBegin(), base0);
EXPECT_EQ(m0.BaseSize(), page_size);
uint8_t* base1 = m1.Begin();
size_t size1 = m1.Size();
EXPECT_EQ(base1, base0 + page_size);
EXPECT_EQ(size1, page_size);
EXPECT_EQ(m1.BaseBegin(), base1);
EXPECT_EQ(m1.BaseSize(), size1);
// Write to the second region.
memset(base1, 43, page_size);
// Check the contents of the two regions.
for (size_t i = 0; i < page_size; ++i) {
EXPECT_EQ(base0[i], 42);
}
for (size_t i = 0; i < page_size; ++i) {
EXPECT_EQ(base1[i], 43);
}
// Unmap the first region.
m0.Reset();
// Make sure the second region is still accessible after the first
// region is unmapped.
for (size_t i = 0; i < page_size; ++i) {
EXPECT_EQ(base1[i], 43);
}
MemMap m2 = m1.RemapAtEnd(m1.Begin(),
"MemMapTest_RemapAtEndTest_map1",
PROT_READ | PROT_WRITE,
&error_msg);
ASSERT_TRUE(m2.IsValid()) << error_msg;
ASSERT_FALSE(m1.IsValid());
}
void CommonInit() {
MemMap::Init();
}
#if defined(__LP64__) && !defined(__x86_64__)
static uintptr_t GetLinearScanPos() {
return MemMap::next_mem_pos_;
}
#endif
};
#if defined(__LP64__) && !defined(__x86_64__)
#ifdef __BIONIC__
extern uintptr_t CreateStartPos(uint64_t input);
#endif
TEST_F(MemMapTest, Start) {
CommonInit();
uintptr_t start = GetLinearScanPos();
EXPECT_LE(64 * KB, start);
EXPECT_LT(start, static_cast<uintptr_t>(ART_BASE_ADDRESS));
#ifdef __BIONIC__
// Test a couple of values. Make sure they are different.
uintptr_t last = 0;
for (size_t i = 0; i < 100; ++i) {
uintptr_t random_start = CreateStartPos(i * kPageSize);
EXPECT_NE(last, random_start);
last = random_start;
}
// Even on max, should be below ART_BASE_ADDRESS.
EXPECT_LT(CreateStartPos(~0), static_cast<uintptr_t>(ART_BASE_ADDRESS));
#endif
// End of test.
}
#endif
// We need mremap to be able to test ReplaceMapping at all
#if HAVE_MREMAP_SYSCALL
TEST_F(MemMapTest, ReplaceMapping_SameSize) {
std::string error_msg;
MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest",
/* addr= */ nullptr,
kPageSize,
PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(dest.IsValid());
MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source",
/* addr= */ nullptr,
kPageSize,
PROT_WRITE | PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(source.IsValid());
void* source_addr = source.Begin();
void* dest_addr = dest.Begin();
ASSERT_TRUE(IsAddressMapped(source_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr));
std::vector<uint8_t> data = RandomData(kPageSize);
memcpy(source.Begin(), data.data(), data.size());
ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg;
ASSERT_FALSE(IsAddressMapped(source_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_FALSE(source.IsValid());
ASSERT_EQ(dest.Size(), static_cast<size_t>(kPageSize));
ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0);
}
TEST_F(MemMapTest, ReplaceMapping_MakeLarger) {
std::string error_msg;
MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest",
/* addr= */ nullptr,
5 * kPageSize, // Need to make it larger
// initially so we know
// there won't be mappings
// in the way we we move
// source.
PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(dest.IsValid());
MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source",
/* addr= */ nullptr,
3 * kPageSize,
PROT_WRITE | PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(source.IsValid());
uint8_t* source_addr = source.Begin();
uint8_t* dest_addr = dest.Begin();
ASSERT_TRUE(IsAddressMapped(source_addr));
// Fill the source with random data.
std::vector<uint8_t> data = RandomData(3 * kPageSize);
memcpy(source.Begin(), data.data(), data.size());
// Make the dest smaller so that we know we'll have space.
dest.SetSize(kPageSize);
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize));
ASSERT_EQ(dest.Size(), static_cast<size_t>(kPageSize));
ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg;
ASSERT_FALSE(IsAddressMapped(source_addr));
ASSERT_EQ(dest.Size(), static_cast<size_t>(3 * kPageSize));
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize));
ASSERT_FALSE(source.IsValid());
ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0);
}
TEST_F(MemMapTest, ReplaceMapping_MakeSmaller) {
std::string error_msg;
MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest",
/* addr= */ nullptr,
3 * kPageSize,
PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(dest.IsValid());
MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source",
/* addr= */ nullptr,
kPageSize,
PROT_WRITE | PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(source.IsValid());
uint8_t* source_addr = source.Begin();
uint8_t* dest_addr = dest.Begin();
ASSERT_TRUE(IsAddressMapped(source_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize));
ASSERT_EQ(dest.Size(), static_cast<size_t>(3 * kPageSize));
std::vector<uint8_t> data = RandomData(kPageSize);
memcpy(source.Begin(), data.data(), kPageSize);
ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg;
ASSERT_FALSE(IsAddressMapped(source_addr));
ASSERT_EQ(dest.Size(), static_cast<size_t>(kPageSize));
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize));
ASSERT_FALSE(source.IsValid());
ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0);
}
TEST_F(MemMapTest, ReplaceMapping_FailureOverlap) {
std::string error_msg;
MemMap dest =
MemMap::MapAnonymous(
"MapAnonymousEmpty-atomic-replace-dest",
/* addr= */ nullptr,
3 * kPageSize, // Need to make it larger initially so we know there won't be mappings in
// the way we we move source.
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(dest.IsValid());
// Resize down to 1 page so we can remap the rest.
dest.SetSize(kPageSize);
// Create source from the last 2 pages
MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source",
dest.Begin() + kPageSize,
2 * kPageSize,
PROT_WRITE | PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(source.IsValid());
ASSERT_EQ(dest.Begin() + kPageSize, source.Begin());
uint8_t* source_addr = source.Begin();
uint8_t* dest_addr = dest.Begin();
ASSERT_TRUE(IsAddressMapped(source_addr));
// Fill the source and dest with random data.
std::vector<uint8_t> data = RandomData(2 * kPageSize);
memcpy(source.Begin(), data.data(), data.size());
std::vector<uint8_t> dest_data = RandomData(kPageSize);
memcpy(dest.Begin(), dest_data.data(), dest_data.size());
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_EQ(dest.Size(), static_cast<size_t>(kPageSize));
ASSERT_FALSE(dest.ReplaceWith(&source, &error_msg)) << error_msg;
ASSERT_TRUE(IsAddressMapped(source_addr));
ASSERT_TRUE(IsAddressMapped(dest_addr));
ASSERT_EQ(source.Size(), data.size());
ASSERT_EQ(dest.Size(), dest_data.size());
ASSERT_EQ(memcmp(source.Begin(), data.data(), data.size()), 0);
ASSERT_EQ(memcmp(dest.Begin(), dest_data.data(), dest_data.size()), 0);
}
#endif // HAVE_MREMAP_SYSCALL
TEST_F(MemMapTest, MapAnonymousEmpty) {
CommonInit();
std::string error_msg;
MemMap map = MemMap::MapAnonymous("MapAnonymousEmpty",
/* addr= */ nullptr,
0,
PROT_READ,
/* low_4gb= */ false,
&error_msg);
ASSERT_FALSE(map.IsValid()) << error_msg;
ASSERT_FALSE(error_msg.empty());
error_msg.clear();
map = MemMap::MapAnonymous("MapAnonymousNonEmpty",
/* addr= */ nullptr,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
}
TEST_F(MemMapTest, MapAnonymousFailNullError) {
CommonInit();
// Test that we don't crash with a null error_str when mapping at an invalid location.
MemMap map = MemMap::MapAnonymous("MapAnonymousInvalid",
reinterpret_cast<uint8_t*>(kPageSize),
0x20000,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
nullptr);
ASSERT_FALSE(map.IsValid());
}
#ifdef __LP64__
TEST_F(MemMapTest, MapAnonymousEmpty32bit) {
CommonInit();
std::string error_msg;
MemMap map = MemMap::MapAnonymous("MapAnonymousEmpty",
/* addr= */ nullptr,
0,
PROT_READ,
/* low_4gb= */ true,
&error_msg);
ASSERT_FALSE(map.IsValid()) << error_msg;
ASSERT_FALSE(error_msg.empty());
error_msg.clear();
map = MemMap::MapAnonymous("MapAnonymousNonEmpty",
/* addr= */ nullptr,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ true,
&error_msg);
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_LT(reinterpret_cast<uintptr_t>(map.BaseBegin()), 1ULL << 32);
}
TEST_F(MemMapTest, MapFile32Bit) {
CommonInit();
std::string error_msg;
ScratchFile scratch_file;
constexpr size_t kMapSize = kPageSize;
std::unique_ptr<uint8_t[]> data(new uint8_t[kMapSize]());
ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize));
MemMap map = MemMap::MapFile(/*byte_count=*/kMapSize,
PROT_READ,
MAP_PRIVATE,
scratch_file.GetFd(),
/*start=*/0,
/*low_4gb=*/true,
scratch_file.GetFilename().c_str(),
&error_msg);
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map.Size(), kMapSize);
ASSERT_LT(reinterpret_cast<uintptr_t>(map.BaseBegin()), 1ULL << 32);
}
#endif
TEST_F(MemMapTest, MapAnonymousExactAddr) {
CommonInit();
std::string error_msg;
// Find a valid address.
uint8_t* valid_address = GetValidMapAddress(kPageSize, /*low_4gb=*/false);
// Map at an address that should work, which should succeed.
MemMap map0 = MemMap::MapAnonymous("MapAnonymous0",
valid_address,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map0.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_TRUE(map0.BaseBegin() == valid_address);
// Map at an unspecified address, which should succeed.
MemMap map1 = MemMap::MapAnonymous("MapAnonymous1",
/* addr= */ nullptr,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map1.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_TRUE(map1.BaseBegin() != nullptr);
// Attempt to map at the same address, which should fail.
MemMap map2 = MemMap::MapAnonymous("MapAnonymous2",
reinterpret_cast<uint8_t*>(map1.BaseBegin()),
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_FALSE(map2.IsValid()) << error_msg;
ASSERT_TRUE(!error_msg.empty());
}
TEST_F(MemMapTest, RemapAtEnd) {
RemapAtEndTest(false);
}
#ifdef __LP64__
TEST_F(MemMapTest, RemapAtEnd32bit) {
RemapAtEndTest(true);
}
#endif
TEST_F(MemMapTest, RemapFileViewAtEnd) {
CommonInit();
std::string error_msg;
ScratchFile scratch_file;
// Create a scratch file 3 pages large.
constexpr size_t kMapSize = 3 * kPageSize;
std::unique_ptr<uint8_t[]> data(new uint8_t[kMapSize]());
memset(data.get(), 1, kPageSize);
memset(&data[0], 0x55, kPageSize);
memset(&data[kPageSize], 0x5a, kPageSize);
memset(&data[2 * kPageSize], 0xaa, kPageSize);
ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize));
MemMap map = MemMap::MapFile(/*byte_count=*/kMapSize,
PROT_READ,
MAP_PRIVATE,
scratch_file.GetFd(),
/*start=*/0,
/*low_4gb=*/true,
scratch_file.GetFilename().c_str(),
&error_msg);
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map.Size(), kMapSize);
ASSERT_LT(reinterpret_cast<uintptr_t>(map.BaseBegin()), 1ULL << 32);
ASSERT_EQ(data[0], *map.Begin());
ASSERT_EQ(data[kPageSize], *(map.Begin() + kPageSize));
ASSERT_EQ(data[2 * kPageSize], *(map.Begin() + 2 * kPageSize));
for (size_t offset = 2 * kPageSize; offset > 0; offset -= kPageSize) {
MemMap tail = map.RemapAtEnd(map.Begin() + offset,
"bad_offset_map",
PROT_READ,
MAP_PRIVATE | MAP_FIXED,
scratch_file.GetFd(),
offset,
&error_msg);
ASSERT_TRUE(tail.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(offset, map.Size());
ASSERT_EQ(static_cast<size_t>(kPageSize), tail.Size());
ASSERT_EQ(tail.Begin(), map.Begin() + map.Size());
ASSERT_EQ(data[offset], *tail.Begin());
}
}
TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) {
// Some MIPS32 hardware (namely the Creator Ci20 development board)
// cannot allocate in the 2GB-4GB region.
TEST_DISABLED_FOR_MIPS();
// This test does not work under AddressSanitizer.
// Historical note: This test did not work under Valgrind either.
TEST_DISABLED_FOR_MEMORY_TOOL();
CommonInit();
constexpr size_t size = 0x100000;
// Try all addresses starting from 2GB to 4GB.
size_t start_addr = 2 * GB;
std::string error_msg;
MemMap map;
for (; start_addr <= std::numeric_limits<uint32_t>::max() - size; start_addr += size) {
map = MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr",
reinterpret_cast<uint8_t*>(start_addr),
size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
&error_msg);
if (map.IsValid()) {
break;
}
}
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_GE(reinterpret_cast<uintptr_t>(map.End()), 2u * GB);
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map.BaseBegin(), reinterpret_cast<void*>(start_addr));
}
TEST_F(MemMapTest, MapAnonymousOverflow) {
CommonInit();
std::string error_msg;
uintptr_t ptr = 0;
ptr -= kPageSize; // Now it's close to the top.
MemMap map = MemMap::MapAnonymous("MapAnonymousOverflow",
reinterpret_cast<uint8_t*>(ptr),
2 * kPageSize, // brings it over the top.
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_FALSE(map.IsValid());
ASSERT_FALSE(error_msg.empty());
}
#ifdef __LP64__
TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) {
CommonInit();
std::string error_msg;
MemMap map =
MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh",
reinterpret_cast<uint8_t*>(UINT64_C(0x100000000)),
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ true,
&error_msg);
ASSERT_FALSE(map.IsValid());
ASSERT_FALSE(error_msg.empty());
}
TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) {
CommonInit();
std::string error_msg;
MemMap map = MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh",
reinterpret_cast<uint8_t*>(0xF0000000),
0x20000000,
PROT_READ | PROT_WRITE,
/* low_4gb= */ true,
&error_msg);
ASSERT_FALSE(map.IsValid());
ASSERT_FALSE(error_msg.empty());
}
#endif
TEST_F(MemMapTest, MapAnonymousReuse) {
CommonInit();
std::string error_msg;
MemMap map = MemMap::MapAnonymous("MapAnonymousReserve",
nullptr,
0x20000,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
/* reuse= */ false,
/* reservation= */ nullptr,
&error_msg);
ASSERT_TRUE(map.IsValid());
ASSERT_TRUE(error_msg.empty());
MemMap map2 = MemMap::MapAnonymous("MapAnonymousReused",
reinterpret_cast<uint8_t*>(map.BaseBegin()),
0x10000,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
/* reuse= */ true,
/* reservation= */ nullptr,
&error_msg);
ASSERT_TRUE(map2.IsValid());
ASSERT_TRUE(error_msg.empty());
}
TEST_F(MemMapTest, CheckNoGaps) {
CommonInit();
std::string error_msg;
constexpr size_t kNumPages = 3;
// Map a 3-page mem map.
MemMap map = MemMap::MapAnonymous("MapAnonymous0",
/* addr= */ nullptr,
kPageSize * kNumPages,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
// Record the base address.
uint8_t* map_base = reinterpret_cast<uint8_t*>(map.BaseBegin());
// Unmap it.
map.Reset();
// Map at the same address, but in page-sized separate mem maps,
// assuming the space at the address is still available.
MemMap map0 = MemMap::MapAnonymous("MapAnonymous0",
map_base,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map0.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
MemMap map1 = MemMap::MapAnonymous("MapAnonymous1",
map_base + kPageSize,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map1.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
MemMap map2 = MemMap::MapAnonymous("MapAnonymous2",
map_base + kPageSize * 2,
kPageSize,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(map2.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
// One-map cases.
ASSERT_TRUE(MemMap::CheckNoGaps(map0, map0));
ASSERT_TRUE(MemMap::CheckNoGaps(map1, map1));
ASSERT_TRUE(MemMap::CheckNoGaps(map2, map2));
// Two or three-map cases.
ASSERT_TRUE(MemMap::CheckNoGaps(map0, map1));
ASSERT_TRUE(MemMap::CheckNoGaps(map1, map2));
ASSERT_TRUE(MemMap::CheckNoGaps(map0, map2));
// Unmap the middle one.
map1.Reset();
// Should return false now that there's a gap in the middle.
ASSERT_FALSE(MemMap::CheckNoGaps(map0, map2));
}
TEST_F(MemMapTest, AlignBy) {
CommonInit();
std::string error_msg;
// Cast the page size to size_t.
const size_t page_size = static_cast<size_t>(kPageSize);
// Map a region.
MemMap m0 = MemMap::MapAnonymous("MemMapTest_AlignByTest_map0",
/* addr= */ nullptr,
14 * page_size,
PROT_READ | PROT_WRITE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(m0.IsValid());
uint8_t* base0 = m0.Begin();
ASSERT_TRUE(base0 != nullptr) << error_msg;
ASSERT_EQ(m0.Size(), 14 * page_size);
ASSERT_EQ(m0.BaseBegin(), base0);
ASSERT_EQ(m0.BaseSize(), m0.Size());
// Break it into several regions by using RemapAtEnd.
MemMap m1 = m0.RemapAtEnd(base0 + 3 * page_size,
"MemMapTest_AlignByTest_map1",
PROT_READ | PROT_WRITE,
&error_msg);
uint8_t* base1 = m1.Begin();
ASSERT_TRUE(base1 != nullptr) << error_msg;
ASSERT_EQ(base1, base0 + 3 * page_size);
ASSERT_EQ(m0.Size(), 3 * page_size);
MemMap m2 = m1.RemapAtEnd(base1 + 4 * page_size,
"MemMapTest_AlignByTest_map2",
PROT_READ | PROT_WRITE,
&error_msg);
uint8_t* base2 = m2.Begin();
ASSERT_TRUE(base2 != nullptr) << error_msg;
ASSERT_EQ(base2, base1 + 4 * page_size);
ASSERT_EQ(m1.Size(), 4 * page_size);
MemMap m3 = m2.RemapAtEnd(base2 + 3 * page_size,
"MemMapTest_AlignByTest_map1",
PROT_READ | PROT_WRITE,
&error_msg);
uint8_t* base3 = m3.Begin();
ASSERT_TRUE(base3 != nullptr) << error_msg;
ASSERT_EQ(base3, base2 + 3 * page_size);
ASSERT_EQ(m2.Size(), 3 * page_size);
ASSERT_EQ(m3.Size(), 4 * page_size);
uint8_t* end0 = base0 + m0.Size();
uint8_t* end1 = base1 + m1.Size();
uint8_t* end2 = base2 + m2.Size();
uint8_t* end3 = base3 + m3.Size();
ASSERT_EQ(static_cast<size_t>(end3 - base0), 14 * page_size);
if (IsAlignedParam(base0, 2 * page_size)) {
ASSERT_FALSE(IsAlignedParam(base1, 2 * page_size));
ASSERT_FALSE(IsAlignedParam(base2, 2 * page_size));
ASSERT_TRUE(IsAlignedParam(base3, 2 * page_size));
ASSERT_TRUE(IsAlignedParam(end3, 2 * page_size));
} else {
ASSERT_TRUE(IsAlignedParam(base1, 2 * page_size));
ASSERT_TRUE(IsAlignedParam(base2, 2 * page_size));
ASSERT_FALSE(IsAlignedParam(base3, 2 * page_size));
ASSERT_FALSE(IsAlignedParam(end3, 2 * page_size));
}
// Align by 2 * page_size;
m0.AlignBy(2 * page_size);
m1.AlignBy(2 * page_size);
m2.AlignBy(2 * page_size);
m3.AlignBy(2 * page_size);
EXPECT_TRUE(IsAlignedParam(m0.Begin(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m1.Begin(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m2.Begin(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m3.Begin(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m0.Begin() + m0.Size(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m1.Begin() + m1.Size(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m2.Begin() + m2.Size(), 2 * page_size));
EXPECT_TRUE(IsAlignedParam(m3.Begin() + m3.Size(), 2 * page_size));
if (IsAlignedParam(base0, 2 * page_size)) {
EXPECT_EQ(m0.Begin(), base0);
EXPECT_EQ(m0.Begin() + m0.Size(), end0 - page_size);
EXPECT_EQ(m1.Begin(), base1 + page_size);
EXPECT_EQ(m1.Begin() + m1.Size(), end1 - page_size);
EXPECT_EQ(m2.Begin(), base2 + page_size);
EXPECT_EQ(m2.Begin() + m2.Size(), end2);
EXPECT_EQ(m3.Begin(), base3);
EXPECT_EQ(m3.Begin() + m3.Size(), end3);
} else {
EXPECT_EQ(m0.Begin(), base0 + page_size);
EXPECT_EQ(m0.Begin() + m0.Size(), end0);
EXPECT_EQ(m1.Begin(), base1);
EXPECT_EQ(m1.Begin() + m1.Size(), end1);
EXPECT_EQ(m2.Begin(), base2);
EXPECT_EQ(m2.Begin() + m2.Size(), end2 - page_size);
EXPECT_EQ(m3.Begin(), base3 + page_size);
EXPECT_EQ(m3.Begin() + m3.Size(), end3 - page_size);
}
}
TEST_F(MemMapTest, Reservation) {
CommonInit();
std::string error_msg;
ScratchFile scratch_file;
constexpr size_t kMapSize = 5 * kPageSize;
std::unique_ptr<uint8_t[]> data(new uint8_t[kMapSize]());
ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize));
MemMap reservation = MemMap::MapAnonymous("Test reservation",
/* addr= */ nullptr,
kMapSize,
PROT_NONE,
/* low_4gb= */ false,
&error_msg);
ASSERT_TRUE(reservation.IsValid());
ASSERT_TRUE(error_msg.empty());
// Map first part of the reservation.
constexpr size_t kChunk1Size = kPageSize - 1u;
static_assert(kChunk1Size < kMapSize, "We want to split the reservation.");
uint8_t* addr1 = reservation.Begin();
MemMap map1 = MemMap::MapFileAtAddress(addr1,
/* byte_count= */ kChunk1Size,
PROT_READ,
MAP_PRIVATE,
scratch_file.GetFd(),
/* start= */ 0,
/* low_4gb= */ false,
scratch_file.GetFilename().c_str(),
/* reuse= */ false,
&reservation,
&error_msg);
ASSERT_TRUE(map1.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map1.Size(), kChunk1Size);
ASSERT_EQ(addr1, map1.Begin());
ASSERT_TRUE(reservation.IsValid());
// Entire pages are taken from the `reservation`.
ASSERT_LT(map1.End(), map1.BaseEnd());
ASSERT_EQ(map1.BaseEnd(), reservation.Begin());
// Map second part as an anonymous mapping.
constexpr size_t kChunk2Size = 2 * kPageSize;
DCHECK_LT(kChunk2Size, reservation.Size()); // We want to split the reservation.
uint8_t* addr2 = reservation.Begin();
MemMap map2 = MemMap::MapAnonymous("MiddleReservation",
addr2,
/* byte_count= */ kChunk2Size,
PROT_READ,
/* low_4gb= */ false,
/* reuse= */ false,
&reservation,
&error_msg);
ASSERT_TRUE(map2.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map2.Size(), kChunk2Size);
ASSERT_EQ(addr2, map2.Begin());
ASSERT_EQ(map2.End(), map2.BaseEnd()); // kChunk2Size is page aligned.
ASSERT_EQ(map2.BaseEnd(), reservation.Begin());
// Map the rest of the reservation except the last byte.
const size_t kChunk3Size = reservation.Size() - 1u;
uint8_t* addr3 = reservation.Begin();
MemMap map3 = MemMap::MapFileAtAddress(addr3,
/* byte_count= */ kChunk3Size,
PROT_READ,
MAP_PRIVATE,
scratch_file.GetFd(),
/* start= */ dchecked_integral_cast<size_t>(addr3 - addr1),
/* low_4gb= */ false,
scratch_file.GetFilename().c_str(),
/* reuse= */ false,
&reservation,
&error_msg);
ASSERT_TRUE(map3.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map3.Size(), kChunk3Size);
ASSERT_EQ(addr3, map3.Begin());
// Entire pages are taken from the `reservation`, so it's now exhausted.
ASSERT_FALSE(reservation.IsValid());
// Now split the MiddleReservation.
constexpr size_t kChunk2ASize = kPageSize - 1u;
DCHECK_LT(kChunk2ASize, map2.Size()); // We want to split the reservation.
MemMap map2a = map2.TakeReservedMemory(kChunk2ASize);
ASSERT_TRUE(map2a.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map2a.Size(), kChunk2ASize);
ASSERT_EQ(addr2, map2a.Begin());
ASSERT_TRUE(map2.IsValid());
ASSERT_LT(map2a.End(), map2a.BaseEnd());
ASSERT_EQ(map2a.BaseEnd(), map2.Begin());
// And take the rest of the middle reservation.
const size_t kChunk2BSize = map2.Size() - 1u;
uint8_t* addr2b = map2.Begin();
MemMap map2b = map2.TakeReservedMemory(kChunk2BSize);
ASSERT_TRUE(map2b.IsValid()) << error_msg;
ASSERT_TRUE(error_msg.empty());
ASSERT_EQ(map2b.Size(), kChunk2ASize);
ASSERT_EQ(addr2b, map2b.Begin());
ASSERT_FALSE(map2.IsValid());
}
} // namespace art
namespace {
class DumpMapsOnFailListener : public testing::EmptyTestEventListener {
void OnTestPartResult(const testing::TestPartResult& result) override {
switch (result.type()) {
case testing::TestPartResult::kFatalFailure:
art::PrintFileToLog("/proc/self/maps", android::base::LogSeverity::ERROR);
break;
// TODO: Could consider logging on EXPECT failures.
case testing::TestPartResult::kNonFatalFailure:
case testing::TestPartResult::kSuccess:
break;
}
}
};
} // namespace
// Inject our listener into the test runner.
extern "C"
__attribute__((visibility("default"))) __attribute__((used))
void ArtTestGlobalInit() {
LOG(ERROR) << "Installing listener";
testing::UnitTest::GetInstance()->listeners().Append(new DumpMapsOnFailListener());
}