| // Copyright 2010 Google |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ART_SRC_SCOPED_PTR_H_ |
| #define ART_SRC_SCOPED_PTR_H_ |
| |
| // This is an implementation designed to match the anticipated future TR2 |
| // implementation of the scoped_ptr class, and its closely-related brethren, |
| // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. |
| |
| #include "logging.h" |
| #include "macros.h" |
| |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <cstddef> |
| |
| template <class C> class scoped_ptr; |
| template <class C, class Free> class scoped_ptr_malloc; |
| template <class C> class scoped_array; |
| |
| template <class C> |
| scoped_ptr<C> make_scoped_ptr(C * param); |
| |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| // automatically deletes the pointer it holds (if any). |
| // That is, scoped_ptr<T> owns the T object that it points to. |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
| // |
| // The size of a scoped_ptr is small: |
| // sizeof(scoped_ptr<C>) == sizeof(C*) |
| template <class C> |
| class scoped_ptr { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with new. |
| explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_ptr() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != ptr_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| ptr_ = p; |
| } |
| } |
| |
| // Accessors to get the owned object. |
| // operator* and operator-> will DCHECK() if there is no current object. |
| C& operator*() const { |
| DCHECK(ptr_ != NULL); |
| return *ptr_; |
| } |
| C* operator->() const { |
| DCHECK(ptr_ != NULL); |
| return ptr_; |
| } |
| C* get() const { return ptr_; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return ptr_ == p; } |
| bool operator!=(C* p) const { return ptr_ != p; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { |
| C* tmp = ptr_; |
| ptr_ = p2.ptr_; |
| p2.ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| C* retVal = ptr_; |
| ptr_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // friend class that can access copy ctor (although if it actually |
| // calls a copy ctor, there will be a problem) see below |
| friend scoped_ptr<C> make_scoped_ptr<C>(C *p); |
| |
| // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
| // make sense, and if C2 == C, it still doesn't make sense because you should |
| // never have the same object owned by two different scoped_ptrs. |
| template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
| |
| DISALLOW_COPY_AND_ASSIGN(scoped_ptr); |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_ptr<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| template <class C> |
| scoped_ptr<C> make_scoped_ptr(C *p) { |
| // This does nothing but to return a scoped_ptr of the type that the passed |
| // pointer is of. (This eliminates the need to specify the name of T when |
| // making a scoped_ptr that is used anonymously/temporarily.) From an |
| // access control point of view, we construct an unnamed scoped_ptr here |
| // which we return and thus copy-construct. Hence, we need to have access |
| // to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed |
| // that we never actually call the copy constructor, which is a good thing |
| // as we would call the temporary's object destructor (and thus delete p) |
| // if we actually did copy some object, here. |
| return scoped_ptr<C>(p); |
| } |
| |
| // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
| // with new [] and the destructor deletes objects with delete []. |
| // |
| // As with scoped_ptr<C>, a scoped_array<C> either points to an object |
| // or is NULL. A scoped_array<C> owns the object that it points to. |
| // |
| // Size: sizeof(scoped_array<C>) == sizeof(C*) |
| template <class C> |
| class scoped_array { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_array. |
| // The input parameter must be allocated with new []. |
| explicit scoped_array(C* p = NULL) : array_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_array() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != array_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| array_ = p; |
| } |
| } |
| |
| // Get one element of the current object. |
| // Will DCHECK() if there is no current object, or index i is negative. |
| C& operator[](std::ptrdiff_t i) const { |
| DCHECK_GE(i, 0); |
| DCHECK(array_ != NULL); |
| return array_[i]; |
| } |
| |
| // Get a pointer to the zeroth element of the current object. |
| // If there is no current object, return NULL. |
| C* get() const { |
| return array_; |
| } |
| |
| // Comparison operators. |
| // These return whether two scoped_array refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return array_ == p; } |
| bool operator!=(C* p) const { return array_ != p; } |
| |
| // Swap two scoped arrays. |
| void swap(scoped_array& p2) { |
| C* tmp = array_; |
| array_ = p2.array_; |
| p2.array_ = tmp; |
| } |
| |
| // Release an array. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| C* retVal = array_; |
| array_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* array_; |
| |
| // Forbid comparison of different scoped_array types. |
| template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
| |
| DISALLOW_COPY_AND_ASSIGN(scoped_array); |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_array<C>& p1, scoped_array<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_array<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_array<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // This class wraps the c library function free() in a class that can be |
| // passed as a template argument to scoped_ptr_malloc below. |
| class ScopedPtrMallocFree { |
| public: |
| inline void operator()(void* x) const { |
| free(x); |
| } |
| }; |
| |
| // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
| // second template argument, the functor used to free the object. |
| |
| template<class C, class FreeProc = ScopedPtrMallocFree> |
| class scoped_ptr_malloc { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with an allocator that matches the |
| // Free functor. For the default Free functor, this is malloc, calloc, or |
| // realloc. |
| explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} |
| |
| // Destructor. If there is a C object, call the Free functor. |
| ~scoped_ptr_malloc() { |
| free_(ptr_); |
| } |
| |
| // Reset. Calls the Free functor on the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (ptr_ != p) { |
| free_(ptr_); |
| ptr_ = p; |
| } |
| } |
| |
| // Get the current object. |
| // operator* and operator-> will cause an DCHECK() failure if there is |
| // no current object. |
| C& operator*() const { |
| DCHECK(ptr_ != NULL); |
| return *ptr_; |
| } |
| |
| C* operator->() const { |
| DCHECK(ptr_ != NULL); |
| return ptr_; |
| } |
| |
| C* get() const { |
| return ptr_; |
| } |
| |
| // Comparison operators. |
| // These return whether a scoped_ptr_malloc and a plain pointer refer |
| // to the same object, not just to two different but equal objects. |
| // For compatibility wwith the boost-derived implementation, these |
| // take non-const arguments. |
| bool operator==(C* p) const { |
| return ptr_ == p; |
| } |
| |
| bool operator!=(C* p) const { |
| return ptr_ != p; |
| } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr_malloc & b) { |
| C* tmp = b.ptr_; |
| b.ptr_ = ptr_; |
| ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| C* tmp = ptr_; |
| ptr_ = NULL; |
| return tmp; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // no reason to use these: each scoped_ptr_malloc should have its own object |
| template <class C2, class GP> |
| bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; |
| template <class C2, class GP> |
| bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; |
| |
| static FreeProc const free_; |
| |
| DISALLOW_COPY_AND_ASSIGN(scoped_ptr_malloc); |
| }; |
| |
| template<class C, class FP> |
| FP const scoped_ptr_malloc<C, FP>::free_ = FP(); |
| |
| template<class C, class FP> inline |
| void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { |
| a.swap(b); |
| } |
| |
| template<class C, class FP> inline |
| bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p == b.get(); |
| } |
| |
| template<class C, class FP> inline |
| bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p != b.get(); |
| } |
| |
| #endif // ART_SRC_SCOPED_PTR_H_ |