blob: 054a2bbec0ef3546777a5e99d17b3685e3b23a9a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
#include "object_array.h"
#include <string>
#include "android-base/stringprintf.h"
#include "array-inl.h"
#include "class.h"
#include "obj_ptr-inl.h"
#include "object-inl.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include "write_barrier-inl.h"
namespace art {
namespace mirror {
template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T* ObjectArray<T>::Get(int32_t i) {
if (!CheckIsValidIndex<kVerifyFlags>(i)) {
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr;
}
return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i));
}
template<class T> template<VerifyObjectFlags kVerifyFlags>
inline bool ObjectArray<T>::CheckAssignable(ObjPtr<T> object) {
if (object != nullptr) {
ObjPtr<Class> element_class = GetClass<kVerifyFlags>()->GetComponentType();
if (UNLIKELY(!object->InstanceOf(element_class))) {
ThrowArrayStoreException(object);
return false;
}
}
return true;
}
template<class T>
inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) {
if (Runtime::Current()->IsActiveTransaction()) {
Set<true>(i, object);
} else {
Set<false>(i, object);
}
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) {
if (CheckIsValidIndex(i) && CheckAssignable<kVerifyFlags>(object)) {
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
} else {
DCHECK(Thread::Current()->IsExceptionPending());
}
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::SetWithoutChecks(int32_t i, ObjPtr<T> object) {
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
DCHECK(CheckAssignable<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(object));
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::SetWithoutChecksAndWriteBarrier(int32_t i, ObjPtr<T> object) {
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
// TODO: enable this check. It fails when writing the image in ImageWriter::FixupObjectArray.
// DCHECK(CheckAssignable(object));
SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags>(
OffsetOfElement(i), object);
}
template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T* ObjectArray<T>::GetWithoutChecks(int32_t i) {
DCHECK(CheckIsValidIndex(i));
return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i));
}
template<class T>
inline void ObjectArray<T>::AssignableMemmove(int32_t dst_pos,
ObjPtr<ObjectArray<T>> src,
int32_t src_pos,
int32_t count) {
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
src->GetWithoutChecks(src_pos + i);
}
}
// Perform the memmove using int memmove then perform the write barrier.
static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t),
"art::mirror::HeapReference<T> and uint32_t have different sizes.");
// TODO: Optimize this later?
// We can't use memmove since it does not handle read barriers and may do by per byte copying.
// See b/32012820.
const bool copy_forward = (src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count);
if (copy_forward) {
// Forward copy.
bool baker_non_gray_case = false;
if (kUseReadBarrier && kUseBakerReadBarrier) {
uintptr_t fake_address_dependency;
if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
baker_non_gray_case = true;
DCHECK_EQ(fake_address_dependency, 0U);
src.Assign(reinterpret_cast<ObjectArray<T>*>(
reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
for (int i = 0; i < count; ++i) {
// We can skip the RB here because 'src' isn't gray.
T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
}
if (!baker_non_gray_case) {
for (int i = 0; i < count; ++i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
T* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
} else {
// Backward copy.
bool baker_non_gray_case = false;
if (kUseReadBarrier && kUseBakerReadBarrier) {
uintptr_t fake_address_dependency;
if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
baker_non_gray_case = true;
DCHECK_EQ(fake_address_dependency, 0U);
src.Assign(reinterpret_cast<ObjectArray<T>*>(
reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
for (int i = count - 1; i >= 0; --i) {
// We can skip the RB here because 'src' isn't gray.
T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
}
if (!baker_non_gray_case) {
for (int i = count - 1; i >= 0; --i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
T* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
}
WriteBarrier::ForArrayWrite(this, dst_pos, count);
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
GetWithoutChecks(dst_pos + i);
}
}
}
template<class T>
inline void ObjectArray<T>::AssignableMemcpy(int32_t dst_pos,
ObjPtr<ObjectArray<T>> src,
int32_t src_pos,
int32_t count) {
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
src->GetWithoutChecks(src_pos + i);
}
}
// Perform the memmove using int memcpy then perform the write barrier.
static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t),
"art::mirror::HeapReference<T> and uint32_t have different sizes.");
// TODO: Optimize this later?
// We can't use memmove since it does not handle read barriers and may do by per byte copying.
// See b/32012820.
bool baker_non_gray_case = false;
if (kUseReadBarrier && kUseBakerReadBarrier) {
uintptr_t fake_address_dependency;
if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
baker_non_gray_case = true;
DCHECK_EQ(fake_address_dependency, 0U);
src.Assign(reinterpret_cast<ObjectArray<T>*>(
reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
for (int i = 0; i < count; ++i) {
// We can skip the RB here because 'src' isn't gray.
Object* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
}
if (!baker_non_gray_case) {
for (int i = 0; i < count; ++i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
T* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj);
}
}
WriteBarrier::ForArrayWrite(this, dst_pos, count);
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
GetWithoutChecks(dst_pos + i);
}
}
}
template<class T>
template<bool kTransactionActive>
inline void ObjectArray<T>::AssignableCheckingMemcpy(int32_t dst_pos,
ObjPtr<ObjectArray<T>> src,
int32_t src_pos,
int32_t count,
bool throw_exception) {
DCHECK_NE(this, src)
<< "This case should be handled with memmove that handles overlaps correctly";
// We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
// we know is assignable to the destination array's component type.
ObjPtr<Class> dst_class = GetClass()->GetComponentType();
ObjPtr<Class> lastAssignableElementClass = dst_class;
ObjPtr<T> o = nullptr;
int i = 0;
bool baker_non_gray_case = false;
if (kUseReadBarrier && kUseBakerReadBarrier) {
uintptr_t fake_address_dependency;
if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) {
baker_non_gray_case = true;
DCHECK_EQ(fake_address_dependency, 0U);
src.Assign(reinterpret_cast<ObjectArray<T>*>(
reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency));
for (; i < count; ++i) {
// The follow get operations force the objects to be verified.
// We can skip the RB here because 'src' isn't gray.
o = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>(
src_pos + i);
if (o == nullptr) {
// Null is always assignable.
SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr);
} else {
// TODO: use the underlying class reference to avoid uncompression when not necessary.
ObjPtr<Class> o_class = o->GetClass();
if (LIKELY(lastAssignableElementClass == o_class)) {
SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
} else if (LIKELY(dst_class->IsAssignableFrom(o_class))) {
lastAssignableElementClass = o_class;
SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
} else {
// Can't put this element into the array, break to perform write-barrier and throw
// exception.
break;
}
}
}
}
}
if (!baker_non_gray_case) {
for (; i < count; ++i) {
// The follow get operations force the objects to be verified.
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
o = src->GetWithoutChecks(src_pos + i);
if (o == nullptr) {
// Null is always assignable.
SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr);
} else {
// TODO: use the underlying class reference to avoid uncompression when not necessary.
Class* o_class = o->GetClass();
if (LIKELY(lastAssignableElementClass == o_class)) {
SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
} else if (LIKELY(dst_class->IsAssignableFrom(o_class))) {
lastAssignableElementClass = o_class;
SetWithoutChecks<kTransactionActive>(dst_pos + i, o);
} else {
// Can't put this element into the array, break to perform write-barrier and throw
// exception.
break;
}
}
}
}
WriteBarrier::ForArrayWrite(this, dst_pos, count);
if (UNLIKELY(i != count)) {
std::string actualSrcType(mirror::Object::PrettyTypeOf(o));
std::string dstType(PrettyTypeOf());
Thread* self = Thread::Current();
std::string msg = android::base::StringPrintf(
"source[%d] of type %s cannot be stored in destination array of type %s",
src_pos + i,
actualSrcType.c_str(),
dstType.c_str());
if (throw_exception) {
self->ThrowNewException("Ljava/lang/ArrayStoreException;", msg.c_str());
} else {
LOG(FATAL) << msg;
}
}
}
template<class T>
inline MemberOffset ObjectArray<T>::OffsetOfElement(int32_t i) {
return MemberOffset(DataOffset(kHeapReferenceSize).Int32Value() + (i * kHeapReferenceSize));
}
template<class T> template<typename Visitor>
inline void ObjectArray<T>::VisitReferences(const Visitor& visitor) {
const size_t length = static_cast<size_t>(GetLength());
for (size_t i = 0; i < length; ++i) {
visitor(this, OffsetOfElement(i), false);
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_