| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "inliner.h" |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "builder.h" |
| #include "class_linker.h" |
| #include "constant_folding.h" |
| #include "dead_code_elimination.h" |
| #include "dex/verified_method.h" |
| #include "dex/verification_results.h" |
| #include "driver/compiler_driver-inl.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "instruction_simplifier.h" |
| #include "intrinsics.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "nodes.h" |
| #include "optimizing_compiler.h" |
| #include "reference_type_propagation.h" |
| #include "register_allocator_linear_scan.h" |
| #include "quick/inline_method_analyser.h" |
| #include "sharpening.h" |
| #include "ssa_builder.h" |
| #include "ssa_phi_elimination.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread.h" |
| |
| namespace art { |
| |
| static constexpr size_t kMaximumNumberOfHInstructions = 32; |
| |
| // Limit the number of dex registers that we accumulate while inlining |
| // to avoid creating large amount of nested environments. |
| static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 64; |
| |
| // Avoid inlining within a huge method due to memory pressure. |
| static constexpr size_t kMaximumCodeUnitSize = 4096; |
| |
| void HInliner::Run() { |
| const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions(); |
| if ((compiler_options.GetInlineDepthLimit() == 0) |
| || (compiler_options.GetInlineMaxCodeUnits() == 0)) { |
| return; |
| } |
| if (caller_compilation_unit_.GetCodeItem()->insns_size_in_code_units_ > kMaximumCodeUnitSize) { |
| return; |
| } |
| if (graph_->IsDebuggable()) { |
| // For simplicity, we currently never inline when the graph is debuggable. This avoids |
| // doing some logic in the runtime to discover if a method could have been inlined. |
| return; |
| } |
| const ArenaVector<HBasicBlock*>& blocks = graph_->GetReversePostOrder(); |
| DCHECK(!blocks.empty()); |
| HBasicBlock* next_block = blocks[0]; |
| for (size_t i = 0; i < blocks.size(); ++i) { |
| // Because we are changing the graph when inlining, we need to remember the next block. |
| // This avoids doing the inlining work again on the inlined blocks. |
| if (blocks[i] != next_block) { |
| continue; |
| } |
| HBasicBlock* block = next_block; |
| next_block = (i == blocks.size() - 1) ? nullptr : blocks[i + 1]; |
| for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { |
| HInstruction* next = instruction->GetNext(); |
| HInvoke* call = instruction->AsInvoke(); |
| // As long as the call is not intrinsified, it is worth trying to inline. |
| if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { |
| // We use the original invoke type to ensure the resolution of the called method |
| // works properly. |
| if (!TryInline(call)) { |
| if (kIsDebugBuild && IsCompilingWithCoreImage()) { |
| std::string callee_name = |
| outer_compilation_unit_.GetDexFile()->PrettyMethod(call->GetDexMethodIndex()); |
| bool should_inline = callee_name.find("$inline$") != std::string::npos; |
| CHECK(!should_inline) << "Could not inline " << callee_name; |
| } |
| } else { |
| if (kIsDebugBuild && IsCompilingWithCoreImage()) { |
| std::string callee_name = |
| outer_compilation_unit_.GetDexFile()->PrettyMethod(call->GetDexMethodIndex()); |
| bool must_not_inline = callee_name.find("$noinline$") != std::string::npos; |
| CHECK(!must_not_inline) << "Should not have inlined " << callee_name; |
| } |
| } |
| } |
| instruction = next; |
| } |
| } |
| } |
| |
| static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); |
| } |
| |
| /** |
| * Given the `resolved_method` looked up in the dex cache, try to find |
| * the actual runtime target of an interface or virtual call. |
| * Return nullptr if the runtime target cannot be proven. |
| */ |
| static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // No need to lookup further, the resolved method will be the target. |
| return resolved_method; |
| } |
| |
| HInstruction* receiver = invoke->InputAt(0); |
| if (receiver->IsNullCheck()) { |
| // Due to multiple levels of inlining within the same pass, it might be that |
| // null check does not have the reference type of the actual receiver. |
| receiver = receiver->InputAt(0); |
| } |
| ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); |
| DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); |
| if (!info.IsExact()) { |
| // We currently only support inlining with known receivers. |
| // TODO: Remove this check, we should be able to inline final methods |
| // on unknown receivers. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsInterface()) { |
| // Statically knowing that the receiver has an interface type cannot |
| // help us find what is the target method. |
| return nullptr; |
| } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { |
| // The method that we're trying to call is not in the receiver's class or super classes. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsErroneous()) { |
| // If the type is erroneous, do not go further, as we are going to query the vtable or |
| // imt table, that we can only safely do on non-erroneous classes. |
| return nullptr; |
| } |
| |
| ClassLinker* cl = Runtime::Current()->GetClassLinker(); |
| PointerSize pointer_size = cl->GetImagePointerSize(); |
| if (invoke->IsInvokeInterface()) { |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( |
| resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke->IsInvokeVirtual()); |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( |
| resolved_method, pointer_size); |
| } |
| |
| if (resolved_method == nullptr) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (!resolved_method->IsInvokable()) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // A final method has to be the target method. |
| return resolved_method; |
| } else if (info.IsExact()) { |
| // If we found a method and the receiver's concrete type is statically |
| // known, we know for sure the target. |
| return resolved_method; |
| } else { |
| // Even if we did find a method, the receiver type was not enough to |
| // statically find the runtime target. |
| return nullptr; |
| } |
| } |
| |
| static uint32_t FindMethodIndexIn(ArtMethod* method, |
| const DexFile& dex_file, |
| uint32_t name_and_signature_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsSameDexFile(*method->GetDexFile(), dex_file)) { |
| return method->GetDexMethodIndex(); |
| } else { |
| return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); |
| } |
| } |
| |
| static uint32_t FindClassIndexIn(mirror::Class* cls, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| uint32_t index = DexFile::kDexNoIndex; |
| if (cls->GetDexCache() == nullptr) { |
| DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| } else if (cls->GetDexTypeIndex() == DexFile::kDexNoIndex16) { |
| DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); |
| // TODO: deal with proxy classes. |
| } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { |
| DCHECK_EQ(cls->GetDexCache(), dex_cache.Get()); |
| index = cls->GetDexTypeIndex(); |
| // Update the dex cache to ensure the class is in. The generated code will |
| // consider it is. We make it safe by updating the dex cache, as other |
| // dex files might also load the class, and there is no guarantee the dex |
| // cache of the dex file of the class will be updated. |
| if (dex_cache->GetResolvedType(index) == nullptr) { |
| dex_cache->SetResolvedType(index, cls); |
| } |
| } else { |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| // We cannot guarantee the entry in the dex cache will resolve to the same class, |
| // as there may be different class loaders. So only return the index if it's |
| // the right class in the dex cache already. |
| if (index != DexFile::kDexNoIndex && dex_cache->GetResolvedType(index) != cls) { |
| index = DexFile::kDexNoIndex; |
| } |
| } |
| |
| return index; |
| } |
| |
| class ScopedProfilingInfoInlineUse { |
| public: |
| explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self) |
| : method_(method), |
| self_(self), |
| // Fetch the profiling info ahead of using it. If it's null when fetching, |
| // we should not call JitCodeCache::DoneInlining. |
| profiling_info_( |
| Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) { |
| } |
| |
| ~ScopedProfilingInfoInlineUse() { |
| if (profiling_info_ != nullptr) { |
| PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size)); |
| Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_); |
| } |
| } |
| |
| ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } |
| |
| private: |
| ArtMethod* const method_; |
| Thread* const self_; |
| ProfilingInfo* const profiling_info_; |
| }; |
| |
| bool HInliner::TryInline(HInvoke* invoke_instruction) { |
| if (invoke_instruction->IsInvokeUnresolved()) { |
| return false; // Don't bother to move further if we know the method is unresolved. |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| uint32_t method_index = invoke_instruction->GetDexMethodIndex(); |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| VLOG(compiler) << "Try inlining " << caller_dex_file.PrettyMethod(method_index); |
| |
| // We can query the dex cache directly. The verifier has populated it already. |
| ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); |
| ArtMethod* actual_method = nullptr; |
| if (resolved_method == nullptr) { |
| DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); |
| DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); |
| VLOG(compiler) << "Not inlining a String.<init> method"; |
| return false; |
| } else if (invoke_instruction->IsInvokeStaticOrDirect()) { |
| actual_method = resolved_method; |
| } else { |
| // Check if we can statically find the method. |
| actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method); |
| } |
| |
| if (actual_method != nullptr) { |
| bool result = TryInlineAndReplace(invoke_instruction, actual_method, /* do_rtp */ true); |
| if (result && !invoke_instruction->IsInvokeStaticOrDirect()) { |
| MaybeRecordStat(kInlinedInvokeVirtualOrInterface); |
| } |
| return result; |
| } |
| |
| DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); |
| |
| // Check if we can use an inline cache. |
| ArtMethod* caller = graph_->GetArtMethod(); |
| if (Runtime::Current()->UseJitCompilation()) { |
| // Under JIT, we should always know the caller. |
| DCHECK(caller != nullptr); |
| ScopedProfilingInfoInlineUse spiis(caller, soa.Self()); |
| ProfilingInfo* profiling_info = spiis.GetProfilingInfo(); |
| if (profiling_info != nullptr) { |
| const InlineCache& ic = *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()); |
| if (ic.IsUninitialized()) { |
| VLOG(compiler) << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(method_index) |
| << " is not hit and not inlined"; |
| return false; |
| } else if (ic.IsMonomorphic()) { |
| MaybeRecordStat(kMonomorphicCall); |
| if (outermost_graph_->IsCompilingOsr()) { |
| // If we are compiling OSR, we pretend this call is polymorphic, as we may come from the |
| // interpreter and it may have seen different receiver types. |
| return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic); |
| } else { |
| return TryInlineMonomorphicCall(invoke_instruction, resolved_method, ic); |
| } |
| } else if (ic.IsPolymorphic()) { |
| MaybeRecordStat(kPolymorphicCall); |
| return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic); |
| } else { |
| DCHECK(ic.IsMegamorphic()); |
| VLOG(compiler) << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(method_index) |
| << " is megamorphic and not inlined"; |
| MaybeRecordStat(kMegamorphicCall); |
| return false; |
| } |
| } |
| } |
| |
| VLOG(compiler) << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(method_index) |
| << " could not be statically determined"; |
| return false; |
| } |
| |
| HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, |
| HInstruction* receiver, |
| uint32_t dex_pc) const { |
| ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0); |
| DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); |
| HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet( |
| receiver, |
| Primitive::kPrimNot, |
| field->GetOffset(), |
| field->IsVolatile(), |
| field->GetDexFieldIndex(), |
| field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *field->GetDexFile(), |
| handles_->NewHandle(field->GetDexCache()), |
| dex_pc); |
| // The class of a field is effectively final, and does not have any memory dependencies. |
| result->SetSideEffects(SideEffects::None()); |
| return result; |
| } |
| |
| bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| const InlineCache& ic) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| uint32_t class_index = FindClassIndexIn( |
| ic.GetMonomorphicType(), caller_dex_file, caller_compilation_unit_.GetDexCache()); |
| if (class_index == DexFile::kDexNoIndex) { |
| VLOG(compiler) << "Call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " from inline cache is not inlined because its class is not" |
| << " accessible to the caller"; |
| return false; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| if (invoke_instruction->IsInvokeInterface()) { |
| resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForInterface( |
| resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForVirtual( |
| resolved_method, pointer_size); |
| } |
| DCHECK(resolved_method != nullptr); |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| if (!TryInlineAndReplace(invoke_instruction, resolved_method, /* do_rtp */ false)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| bool is_referrer = |
| (ic.GetMonomorphicType() == outermost_graph_->GetArtMethod()->GetDeclaringClass()); |
| AddTypeGuard(receiver, |
| cursor, |
| bb_cursor, |
| class_index, |
| is_referrer, |
| invoke_instruction, |
| /* with_deoptimization */ true); |
| |
| // Run type propagation to get the guard typed, and eventually propagate the |
| // type of the receiver. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(kInlinedMonomorphicCall); |
| return true; |
| } |
| |
| HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, |
| HInstruction* cursor, |
| HBasicBlock* bb_cursor, |
| uint32_t class_index, |
| bool is_referrer, |
| HInstruction* invoke_instruction, |
| bool with_deoptimization) { |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| // Note that we will just compare the classes, so we don't need Java semantics access checks. |
| // Also, the caller of `AddTypeGuard` must have guaranteed that the class is in the dex cache. |
| HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(), |
| class_index, |
| caller_dex_file, |
| is_referrer, |
| invoke_instruction->GetDexPc(), |
| /* needs_access_check */ false, |
| /* is_in_dex_cache */ true, |
| /* is_in_boot_image */ false); |
| |
| HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class); |
| // TODO: Extend reference type propagation to understand the guard. |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(load_class, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, load_class); |
| if (with_deoptimization) { |
| HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( |
| compare, invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| } |
| return compare; |
| } |
| |
| bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| const InlineCache& ic) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, ic)) { |
| return true; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| |
| bool all_targets_inlined = true; |
| bool one_target_inlined = false; |
| for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { |
| if (ic.GetTypeAt(i) == nullptr) { |
| break; |
| } |
| ArtMethod* method = nullptr; |
| if (invoke_instruction->IsInvokeInterface()) { |
| method = ic.GetTypeAt(i)->FindVirtualMethodForInterface( |
| resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| method = ic.GetTypeAt(i)->FindVirtualMethodForVirtual( |
| resolved_method, pointer_size); |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| uint32_t class_index = FindClassIndexIn( |
| ic.GetTypeAt(i), caller_dex_file, caller_compilation_unit_.GetDexCache()); |
| HInstruction* return_replacement = nullptr; |
| if (class_index == DexFile::kDexNoIndex || |
| !TryBuildAndInline(invoke_instruction, method, &return_replacement)) { |
| all_targets_inlined = false; |
| } else { |
| one_target_inlined = true; |
| bool is_referrer = (ic.GetTypeAt(i) == outermost_graph_->GetArtMethod()->GetDeclaringClass()); |
| |
| // If we have inlined all targets before, and this receiver is the last seen, |
| // we deoptimize instead of keeping the original invoke instruction. |
| bool deoptimize = all_targets_inlined && |
| (i != InlineCache::kIndividualCacheSize - 1) && |
| (ic.GetTypeAt(i + 1) == nullptr); |
| |
| if (outermost_graph_->IsCompilingOsr()) { |
| // We do not support HDeoptimize in OSR methods. |
| deoptimize = false; |
| } |
| HInstruction* compare = AddTypeGuard( |
| receiver, cursor, bb_cursor, class_index, is_referrer, invoke_instruction, deoptimize); |
| if (deoptimize) { |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| // Because the inline cache data can be populated concurrently, we force the end of the |
| // iteration. Otherhwise, we could see a new receiver type. |
| break; |
| } else { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } |
| } |
| } |
| |
| if (!one_target_inlined) { |
| VLOG(compiler) << "Call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " from inline cache is not inlined because none" |
| << " of its targets could be inlined"; |
| return false; |
| } |
| MaybeRecordStat(kInlinedPolymorphicCall); |
| |
| // Run type propagation to get the guards typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run */ false); |
| rtp_fixup.Run(); |
| return true; |
| } |
| |
| void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, |
| HInstruction* return_replacement, |
| HInstruction* invoke_instruction) { |
| uint32_t dex_pc = invoke_instruction->GetDexPc(); |
| HBasicBlock* cursor_block = compare->GetBlock(); |
| HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); |
| ArenaAllocator* allocator = graph_->GetArena(); |
| |
| // Spit the block after the compare: `cursor_block` will now be the start of the diamond, |
| // and the returned block is the start of the then branch (that could contain multiple blocks). |
| HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); |
| |
| // Split the block containing the invoke before and after the invoke. The returned block |
| // of the split before will contain the invoke and will be the otherwise branch of |
| // the diamond. The returned block of the split after will be the merge block |
| // of the diamond. |
| HBasicBlock* end_then = invoke_instruction->GetBlock(); |
| HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); |
| HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); |
| |
| // If the methods we are inlining return a value, we create a phi in the merge block |
| // that will have the `invoke_instruction and the `return_replacement` as inputs. |
| if (return_replacement != nullptr) { |
| HPhi* phi = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); |
| merge->AddPhi(phi); |
| invoke_instruction->ReplaceWith(phi); |
| phi->AddInput(return_replacement); |
| phi->AddInput(invoke_instruction); |
| } |
| |
| // Add the control flow instructions. |
| otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); |
| end_then->AddInstruction(new (allocator) HGoto(dex_pc)); |
| cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); |
| |
| // Add the newly created blocks to the graph. |
| graph_->AddBlock(then); |
| graph_->AddBlock(otherwise); |
| graph_->AddBlock(merge); |
| |
| // Set up successor (and implictly predecessor) relations. |
| cursor_block->AddSuccessor(otherwise); |
| cursor_block->AddSuccessor(then); |
| end_then->AddSuccessor(merge); |
| otherwise->AddSuccessor(merge); |
| |
| // Set up dominance information. |
| then->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(then); |
| otherwise->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(otherwise); |
| merge->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(merge); |
| |
| // Update the revert post order. |
| size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); |
| MakeRoomFor(&graph_->reverse_post_order_, 1, index); |
| graph_->reverse_post_order_[++index] = then; |
| index = IndexOfElement(graph_->reverse_post_order_, end_then); |
| MakeRoomFor(&graph_->reverse_post_order_, 2, index); |
| graph_->reverse_post_order_[++index] = otherwise; |
| graph_->reverse_post_order_[++index] = merge; |
| |
| |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| then, original_invoke_block, /* replace_if_back_edge */ false); |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| otherwise, original_invoke_block, /* replace_if_back_edge */ false); |
| |
| // In case the original invoke location was a back edge, we need to update |
| // the loop to now have the merge block as a back edge. |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| merge, original_invoke_block, /* replace_if_back_edge */ true); |
| } |
| |
| bool HInliner::TryInlinePolymorphicCallToSameTarget(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| const InlineCache& ic) { |
| // This optimization only works under JIT for now. |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| if (graph_->GetInstructionSet() == kMips64) { |
| // TODO: Support HClassTableGet for mips64. |
| return false; |
| } |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| DCHECK(resolved_method != nullptr); |
| ArtMethod* actual_method = nullptr; |
| size_t method_index = invoke_instruction->IsInvokeVirtual() |
| ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() |
| : invoke_instruction->AsInvokeInterface()->GetImtIndex(); |
| |
| // Check whether we are actually calling the same method among |
| // the different types seen. |
| for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { |
| if (ic.GetTypeAt(i) == nullptr) { |
| break; |
| } |
| ArtMethod* new_method = nullptr; |
| if (invoke_instruction->IsInvokeInterface()) { |
| new_method = ic.GetTypeAt(i)->GetImt(pointer_size)->Get( |
| method_index, pointer_size); |
| if (new_method->IsRuntimeMethod()) { |
| // Bail out as soon as we see a conflict trampoline in one of the target's |
| // interface table. |
| return false; |
| } |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| new_method = ic.GetTypeAt(i)->GetEmbeddedVTableEntry(method_index, pointer_size); |
| } |
| DCHECK(new_method != nullptr); |
| if (actual_method == nullptr) { |
| actual_method = new_method; |
| } else if (actual_method != new_method) { |
| // Different methods, bailout. |
| VLOG(compiler) << "Call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " from inline cache is not inlined because it resolves" |
| << " to different methods"; |
| return false; |
| } |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| HInstruction* return_replacement = nullptr; |
| if (!TryBuildAndInline(invoke_instruction, actual_method, &return_replacement)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| |
| Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) |
| ? Primitive::kPrimLong |
| : Primitive::kPrimInt; |
| HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet( |
| receiver_class, |
| type, |
| invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable |
| : HClassTableGet::TableKind::kIMTable, |
| method_index, |
| invoke_instruction->GetDexPc()); |
| |
| HConstant* constant; |
| if (type == Primitive::kPrimLong) { |
| constant = graph_->GetLongConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } else { |
| constant = graph_->GetIntConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } |
| |
| HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant); |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, class_table_get); |
| |
| if (outermost_graph_->IsCompilingOsr()) { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } else { |
| // TODO: Extend reference type propagation to understand the guard. |
| HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( |
| compare, invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| } |
| |
| // Run type propagation to get the guard typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(kInlinedPolymorphicCall); |
| |
| return true; |
| } |
| |
| bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, bool do_rtp) { |
| HInstruction* return_replacement = nullptr; |
| if (!TryBuildAndInline(invoke_instruction, method, &return_replacement)) { |
| if (invoke_instruction->IsInvokeInterface()) { |
| // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always |
| // better than an invoke-interface because: |
| // 1) In the best case, the interface call has one more indirection (to fetch the IMT). |
| // 2) We will not go to the conflict trampoline with an invoke-virtual. |
| // TODO: Consider sharpening once it is not dependent on the compiler driver. |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| uint32_t dex_method_index = FindMethodIndexIn( |
| method, caller_dex_file, invoke_instruction->GetDexMethodIndex()); |
| if (dex_method_index == DexFile::kDexNoIndex) { |
| return false; |
| } |
| HInvokeVirtual* new_invoke = new (graph_->GetArena()) HInvokeVirtual( |
| graph_->GetArena(), |
| invoke_instruction->GetNumberOfArguments(), |
| invoke_instruction->GetType(), |
| invoke_instruction->GetDexPc(), |
| dex_method_index, |
| method, |
| method->GetMethodIndex()); |
| HInputsRef inputs = invoke_instruction->GetInputs(); |
| for (size_t index = 0; index != inputs.size(); ++index) { |
| new_invoke->SetArgumentAt(index, inputs[index]); |
| } |
| invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); |
| new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (invoke_instruction->GetType() == Primitive::kPrimNot) { |
| new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); |
| } |
| return_replacement = new_invoke; |
| } else { |
| // TODO: Consider sharpening an invoke virtual once it is not dependent on the |
| // compiler driver. |
| return false; |
| } |
| } |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| FixUpReturnReferenceType(method, return_replacement); |
| if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) { |
| // Actual return value has a more specific type than the method's declared |
| // return type. Run RTP again on the outer graph to propagate it. |
| ReferenceTypePropagation(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run */ false).Run(); |
| } |
| return true; |
| } |
| |
| bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| HInstruction** return_replacement) { |
| if (method->IsProxyMethod()) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " is not inlined because of unimplemented inline support for proxy methods."; |
| return false; |
| } |
| |
| // Check whether we're allowed to inline. The outermost compilation unit is the relevant |
| // dex file here (though the transitivity of an inline chain would allow checking the calller). |
| if (!compiler_driver_->MayInline(method->GetDexFile(), |
| outer_compilation_unit_.GetDexFile())) { |
| if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { |
| VLOG(compiler) << "Successfully replaced pattern of invoke " |
| << method->PrettyMethod(); |
| MaybeRecordStat(kReplacedInvokeWithSimplePattern); |
| return true; |
| } |
| VLOG(compiler) << "Won't inline " << method->PrettyMethod() << " in " |
| << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" |
| << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " |
| << method->GetDexFile()->GetLocation(); |
| return false; |
| } |
| |
| bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile()); |
| |
| const DexFile::CodeItem* code_item = method->GetCodeItem(); |
| |
| if (code_item == nullptr) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " is not inlined because it is native"; |
| return false; |
| } |
| |
| size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits(); |
| if (code_item->insns_size_in_code_units_ > inline_max_code_units) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " is too big to inline: " |
| << code_item->insns_size_in_code_units_ |
| << " > " |
| << inline_max_code_units; |
| return false; |
| } |
| |
| if (code_item->tries_size_ != 0) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " is not inlined because of try block"; |
| return false; |
| } |
| |
| if (!method->IsCompilable()) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " has soft failures un-handled by the compiler, so it cannot be inlined"; |
| } |
| |
| if (!method->GetDeclaringClass()->IsVerified()) { |
| uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex(); |
| if (Runtime::Current()->UseJitCompilation() || |
| !compiler_driver_->IsMethodVerifiedWithoutFailures( |
| method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) { |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " couldn't be verified, so it cannot be inlined"; |
| return false; |
| } |
| } |
| |
| if (invoke_instruction->IsInvokeStaticOrDirect() && |
| invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { |
| // Case of a static method that cannot be inlined because it implicitly |
| // requires an initialization check of its declaring class. |
| VLOG(compiler) << "Method " << method->PrettyMethod() |
| << " is not inlined because it is static and requires a clinit" |
| << " check that cannot be emitted due to Dex cache limitations"; |
| return false; |
| } |
| |
| if (!TryBuildAndInlineHelper(invoke_instruction, method, same_dex_file, return_replacement)) { |
| return false; |
| } |
| |
| VLOG(compiler) << "Successfully inlined " << method->PrettyMethod(); |
| MaybeRecordStat(kInlinedInvoke); |
| return true; |
| } |
| |
| static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, |
| size_t arg_vreg_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| size_t input_index = 0; |
| for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { |
| ++i; |
| DCHECK_NE(i, arg_vreg_index); |
| } |
| } |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| return invoke_instruction->InputAt(input_index); |
| } |
| |
| // Try to recognize known simple patterns and replace invoke call with appropriate instructions. |
| bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| HInstruction** return_replacement) { |
| InlineMethod inline_method; |
| if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) { |
| return false; |
| } |
| |
| switch (inline_method.opcode) { |
| case kInlineOpNop: |
| DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid); |
| *return_replacement = nullptr; |
| break; |
| case kInlineOpReturnArg: |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, |
| inline_method.d.return_data.arg); |
| break; |
| case kInlineOpNonWideConst: |
| if (resolved_method->GetShorty()[0] == 'L') { |
| DCHECK_EQ(inline_method.d.data, 0u); |
| *return_replacement = graph_->GetNullConstant(); |
| } else { |
| *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); |
| } |
| break; |
| case kInlineOpIGet: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstanceFieldGet* iget = CreateInstanceFieldGet(dex_cache, data.field_idx, obj); |
| DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); |
| *return_replacement = iget; |
| break; |
| } |
| case kInlineOpIPut: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); |
| HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, data.field_idx, obj, value); |
| DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| if (data.return_arg_plus1 != 0u) { |
| size_t return_arg = data.return_arg_plus1 - 1u; |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); |
| } |
| break; |
| } |
| case kInlineOpConstructor: { |
| const InlineConstructorData& data = inline_method.d.constructor_data; |
| // Get the indexes to arrays for easier processing. |
| uint16_t iput_field_indexes[] = { |
| data.iput0_field_index, data.iput1_field_index, data.iput2_field_index |
| }; |
| uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; |
| static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); |
| // Count valid field indexes. |
| size_t number_of_iputs = 0u; |
| while (number_of_iputs != arraysize(iput_field_indexes) && |
| iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { |
| // Check that there are no duplicate valid field indexes. |
| DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| iput_field_indexes[number_of_iputs])); |
| ++number_of_iputs; |
| } |
| // Check that there are no valid field indexes in the rest of the array. |
| DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); |
| |
| // Create HInstanceFieldSet for each IPUT that stores non-zero data. |
| Handle<mirror::DexCache> dex_cache; |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u); |
| bool needs_constructor_barrier = false; |
| for (size_t i = 0; i != number_of_iputs; ++i) { |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); |
| if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { |
| if (dex_cache.GetReference() == nullptr) { |
| dex_cache = handles_->NewHandle(resolved_method->GetDexCache()); |
| } |
| uint16_t field_index = iput_field_indexes[i]; |
| HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, field_index, obj, value); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| |
| // Check whether the field is final. If it is, we need to add a barrier. |
| PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); |
| ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); |
| DCHECK(resolved_field != nullptr); |
| if (resolved_field->IsFinal()) { |
| needs_constructor_barrier = true; |
| } |
| } |
| } |
| if (needs_constructor_barrier) { |
| HMemoryBarrier* barrier = new (graph_->GetArena()) HMemoryBarrier(kStoreStore, kNoDexPc); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(barrier, invoke_instruction); |
| } |
| *return_replacement = nullptr; |
| break; |
| } |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| return true; |
| } |
| |
| HInstanceFieldGet* HInliner::CreateInstanceFieldGet(Handle<mirror::DexCache> dex_cache, |
| uint32_t field_index, |
| HInstruction* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); |
| ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); |
| DCHECK(resolved_field != nullptr); |
| HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet( |
| obj, |
| resolved_field->GetTypeAsPrimitiveType(), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *dex_cache->GetDexFile(), |
| dex_cache, |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc */ 0); |
| if (iget->GetType() == Primitive::kPrimNot) { |
| // Use the same dex_cache that we used for field lookup as the hint_dex_cache. |
| ReferenceTypePropagation rtp(graph_, dex_cache, handles_, /* is_first_run */ false); |
| rtp.Visit(iget); |
| } |
| return iget; |
| } |
| |
| HInstanceFieldSet* HInliner::CreateInstanceFieldSet(Handle<mirror::DexCache> dex_cache, |
| uint32_t field_index, |
| HInstruction* obj, |
| HInstruction* value) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); |
| ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); |
| DCHECK(resolved_field != nullptr); |
| HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet( |
| obj, |
| value, |
| resolved_field->GetTypeAsPrimitiveType(), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *dex_cache->GetDexFile(), |
| dex_cache, |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc */ 0); |
| return iput; |
| } |
| |
| bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| bool same_dex_file, |
| HInstruction** return_replacement) { |
| ScopedObjectAccess soa(Thread::Current()); |
| const DexFile::CodeItem* code_item = resolved_method->GetCodeItem(); |
| const DexFile& callee_dex_file = *resolved_method->GetDexFile(); |
| uint32_t method_index = resolved_method->GetDexMethodIndex(); |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); |
| Handle<mirror::ClassLoader> class_loader(handles_->NewHandle( |
| resolved_method->GetDeclaringClass()->GetClassLoader())); |
| |
| DexCompilationUnit dex_compilation_unit( |
| class_loader.ToJObject(), |
| class_linker, |
| callee_dex_file, |
| code_item, |
| resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), |
| method_index, |
| resolved_method->GetAccessFlags(), |
| /* verified_method */ nullptr, |
| dex_cache); |
| |
| bool requires_ctor_barrier = false; |
| |
| if (dex_compilation_unit.IsConstructor()) { |
| // If it's a super invocation and we already generate a barrier there's no need |
| // to generate another one. |
| // We identify super calls by looking at the "this" pointer. If its value is the |
| // same as the local "this" pointer then we must have a super invocation. |
| bool is_super_invocation = invoke_instruction->InputAt(0)->IsParameterValue() |
| && invoke_instruction->InputAt(0)->AsParameterValue()->IsThis(); |
| if (is_super_invocation && graph_->ShouldGenerateConstructorBarrier()) { |
| requires_ctor_barrier = false; |
| } else { |
| Thread* self = Thread::Current(); |
| requires_ctor_barrier = compiler_driver_->RequiresConstructorBarrier(self, |
| dex_compilation_unit.GetDexFile(), |
| dex_compilation_unit.GetClassDefIndex()); |
| } |
| } |
| |
| InvokeType invoke_type = invoke_instruction->GetInvokeType(); |
| if (invoke_type == kInterface) { |
| // We have statically resolved the dispatch. To please the class linker |
| // at runtime, we change this call as if it was a virtual call. |
| invoke_type = kVirtual; |
| } |
| |
| const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); |
| HGraph* callee_graph = new (graph_->GetArena()) HGraph( |
| graph_->GetArena(), |
| callee_dex_file, |
| method_index, |
| requires_ctor_barrier, |
| compiler_driver_->GetInstructionSet(), |
| invoke_type, |
| graph_->IsDebuggable(), |
| /* osr */ false, |
| caller_instruction_counter); |
| callee_graph->SetArtMethod(resolved_method); |
| |
| // When they are needed, allocate `inline_stats` on the heap instead |
| // of on the stack, as Clang might produce a stack frame too large |
| // for this function, that would not fit the requirements of the |
| // `-Wframe-larger-than` option. |
| std::unique_ptr<OptimizingCompilerStats> inline_stats = |
| (stats_ == nullptr) ? nullptr : MakeUnique<OptimizingCompilerStats>(); |
| HGraphBuilder builder(callee_graph, |
| &dex_compilation_unit, |
| &outer_compilation_unit_, |
| resolved_method->GetDexFile(), |
| *code_item, |
| compiler_driver_, |
| inline_stats.get(), |
| resolved_method->GetQuickenedInfo(class_linker->GetImagePointerSize()), |
| dex_cache, |
| handles_); |
| |
| if (builder.BuildGraph() != kAnalysisSuccess) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be built, so cannot be inlined"; |
| return false; |
| } |
| |
| if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph, |
| compiler_driver_->GetInstructionSet())) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " cannot be inlined because of the register allocator"; |
| return false; |
| } |
| |
| size_t parameter_index = 0; |
| for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); |
| !instructions.Done(); |
| instructions.Advance()) { |
| HInstruction* current = instructions.Current(); |
| if (current->IsParameterValue()) { |
| HInstruction* argument = invoke_instruction->InputAt(parameter_index++); |
| if (argument->IsNullConstant()) { |
| current->ReplaceWith(callee_graph->GetNullConstant()); |
| } else if (argument->IsIntConstant()) { |
| current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); |
| } else if (argument->IsLongConstant()) { |
| current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); |
| } else if (argument->IsFloatConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); |
| } else if (argument->IsDoubleConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); |
| } else if (argument->GetType() == Primitive::kPrimNot) { |
| current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); |
| current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); |
| } |
| } |
| } |
| |
| // We have replaced formal arguments with actual arguments. If actual types |
| // are more specific than the declared ones, run RTP again on the inner graph. |
| if (ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { |
| ReferenceTypePropagation(callee_graph, |
| dex_compilation_unit.GetDexCache(), |
| handles_, |
| /* is_first_run */ false).Run(); |
| } |
| |
| size_t number_of_instructions_budget = kMaximumNumberOfHInstructions; |
| size_t number_of_inlined_instructions = |
| RunOptimizations(callee_graph, code_item, dex_compilation_unit); |
| number_of_instructions_budget += number_of_inlined_instructions; |
| |
| // TODO: We should abort only if all predecessors throw. However, |
| // HGraph::InlineInto currently does not handle an exit block with |
| // a throw predecessor. |
| HBasicBlock* exit_block = callee_graph->GetExitBlock(); |
| if (exit_block == nullptr) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it has an infinite loop"; |
| return false; |
| } |
| |
| bool has_throw_predecessor = false; |
| for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { |
| if (predecessor->GetLastInstruction()->IsThrow()) { |
| has_throw_predecessor = true; |
| break; |
| } |
| } |
| if (has_throw_predecessor) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because one branch always throws"; |
| return false; |
| } |
| |
| size_t number_of_instructions = 0; |
| |
| bool can_inline_environment = |
| total_number_of_dex_registers_ < kMaximumNumberOfCumulatedDexRegisters; |
| |
| // Skip the entry block, it does not contain instructions that prevent inlining. |
| for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { |
| if (block->IsLoopHeader()) { |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| // Don't inline methods with irreducible loops, they could prevent some |
| // optimizations to run. |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it contains an irreducible loop"; |
| return false; |
| } |
| if (!block->GetLoopInformation()->HasExitEdge()) { |
| // Don't inline methods with loops without exit, since they cause the |
| // loop information to be computed incorrectly when updating after |
| // inlining. |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it contains a loop with no exit"; |
| return false; |
| } |
| } |
| |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| if (number_of_instructions++ == number_of_instructions_budget) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " is not inlined because its caller has reached" |
| << " its instruction budget limit."; |
| return false; |
| } |
| HInstruction* current = instr_it.Current(); |
| if (!can_inline_environment && current->NeedsEnvironment()) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " is not inlined because its caller has reached" |
| << " its environment budget limit."; |
| return false; |
| } |
| |
| if (!same_dex_file && current->NeedsEnvironment()) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because " << current->DebugName() |
| << " needs an environment and is in a different dex file"; |
| return false; |
| } |
| |
| if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because " << current->DebugName() |
| << " it is in a different dex file and requires access to the dex cache"; |
| return false; |
| } |
| |
| if (current->IsNewInstance() && |
| (current->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectWithAccessCheck)) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it is using an entrypoint" |
| << " with access checks"; |
| // Allocation entrypoint does not handle inlined frames. |
| return false; |
| } |
| |
| if (current->IsNewArray() && |
| (current->AsNewArray()->GetEntrypoint() == kQuickAllocArrayWithAccessCheck)) { |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it is using an entrypoint" |
| << " with access checks"; |
| // Allocation entrypoint does not handle inlined frames. |
| return false; |
| } |
| |
| if (current->IsUnresolvedStaticFieldGet() || |
| current->IsUnresolvedInstanceFieldGet() || |
| current->IsUnresolvedStaticFieldSet() || |
| current->IsUnresolvedInstanceFieldSet()) { |
| // Entrypoint for unresolved fields does not handle inlined frames. |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it is using an unresolved" |
| << " entrypoint"; |
| return false; |
| } |
| } |
| } |
| number_of_inlined_instructions_ += number_of_instructions; |
| |
| DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) |
| << "No instructions can be added to the outer graph while inner graph is being built"; |
| |
| const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); |
| graph_->SetCurrentInstructionId(callee_instruction_counter); |
| *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); |
| |
| DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) |
| << "No instructions can be added to the inner graph during inlining into the outer graph"; |
| |
| return true; |
| } |
| |
| size_t HInliner::RunOptimizations(HGraph* callee_graph, |
| const DexFile::CodeItem* code_item, |
| const DexCompilationUnit& dex_compilation_unit) { |
| // Note: if the outermost_graph_ is being compiled OSR, we should not run any |
| // optimization that could lead to a HDeoptimize. The following optimizations do not. |
| HDeadCodeElimination dce(callee_graph, stats_, "dead_code_elimination$inliner"); |
| HConstantFolding fold(callee_graph, "constant_folding$inliner"); |
| HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_); |
| InstructionSimplifier simplify(callee_graph, stats_); |
| IntrinsicsRecognizer intrinsics(callee_graph, stats_); |
| |
| HOptimization* optimizations[] = { |
| &intrinsics, |
| &sharpening, |
| &simplify, |
| &fold, |
| &dce, |
| }; |
| |
| for (size_t i = 0; i < arraysize(optimizations); ++i) { |
| HOptimization* optimization = optimizations[i]; |
| optimization->Run(); |
| } |
| |
| size_t number_of_inlined_instructions = 0u; |
| if (depth_ + 1 < compiler_driver_->GetCompilerOptions().GetInlineDepthLimit()) { |
| HInliner inliner(callee_graph, |
| outermost_graph_, |
| codegen_, |
| outer_compilation_unit_, |
| dex_compilation_unit, |
| compiler_driver_, |
| handles_, |
| stats_, |
| total_number_of_dex_registers_ + code_item->registers_size_, |
| depth_ + 1); |
| inliner.Run(); |
| number_of_inlined_instructions += inliner.number_of_inlined_instructions_; |
| } |
| |
| return number_of_inlined_instructions; |
| } |
| |
| static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti, |
| bool declared_can_be_null, |
| HInstruction* actual_obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (declared_can_be_null && !actual_obj->CanBeNull()) { |
| return true; |
| } |
| |
| ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); |
| return (actual_rti.IsExact() && !declared_rti.IsExact()) || |
| declared_rti.IsStrictSupertypeOf(actual_rti); |
| } |
| |
| ReferenceTypeInfo HInliner::GetClassRTI(mirror::Class* klass) { |
| return ReferenceTypePropagation::IsAdmissible(klass) |
| ? ReferenceTypeInfo::Create(handles_->NewHandle(klass)) |
| : graph_->GetInexactObjectRti(); |
| } |
| |
| bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { |
| // If this is an instance call, test whether the type of the `this` argument |
| // is more specific than the class which declares the method. |
| if (!resolved_method->IsStatic()) { |
| if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()), |
| /* declared_can_be_null */ false, |
| invoke_instruction->InputAt(0u))) { |
| return true; |
| } |
| } |
| |
| PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| |
| // Iterate over the list of parameter types and test whether any of the |
| // actual inputs has a more specific reference type than the type declared in |
| // the signature. |
| const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList(); |
| for (size_t param_idx = 0, |
| input_idx = resolved_method->IsStatic() ? 0 : 1, |
| e = (param_list == nullptr ? 0 : param_list->Size()); |
| param_idx < e; |
| ++param_idx, ++input_idx) { |
| HInstruction* input = invoke_instruction->InputAt(input_idx); |
| if (input->GetType() == Primitive::kPrimNot) { |
| mirror::Class* param_cls = resolved_method->GetDexCacheResolvedType( |
| param_list->GetTypeItem(param_idx).type_idx_, |
| pointer_size); |
| if (IsReferenceTypeRefinement(GetClassRTI(param_cls), |
| /* declared_can_be_null */ true, |
| input)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction, |
| HInstruction* return_replacement) { |
| // Check the integrity of reference types and run another type propagation if needed. |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == Primitive::kPrimNot) { |
| // Test if the return type is a refinement of the declared return type. |
| if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(), |
| /* declared_can_be_null */ true, |
| return_replacement)) { |
| return true; |
| } |
| } else if (return_replacement->IsInstanceOf()) { |
| // Inlining InstanceOf into an If may put a tighter bound on reference types. |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, |
| HInstruction* return_replacement) { |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == Primitive::kPrimNot) { |
| if (!return_replacement->GetReferenceTypeInfo().IsValid()) { |
| // Make sure that we have a valid type for the return. We may get an invalid one when |
| // we inline invokes with multiple branches and create a Phi for the result. |
| // TODO: we could be more precise by merging the phi inputs but that requires |
| // some functionality from the reference type propagation. |
| DCHECK(return_replacement->IsPhi()); |
| PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */, pointer_size); |
| return_replacement->SetReferenceTypeInfo(GetClassRTI(cls)); |
| } |
| } |
| } |
| } |
| |
| } // namespace art |