blob: 5787f0cc4ed9b74fa83e4c4a22cffca450bff0b3 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#include "nodes.h"
#include <iostream>
namespace art {
class CodeGenerator;
static constexpr int kNoRegister = -1;
class BlockInfo : public ArenaObject<kArenaAllocMisc> {
public:
BlockInfo(ArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
: block_(block),
live_in_(allocator, number_of_ssa_values, false),
live_out_(allocator, number_of_ssa_values, false),
kill_(allocator, number_of_ssa_values, false) {
UNUSED(block_);
live_in_.ClearAllBits();
live_out_.ClearAllBits();
kill_.ClearAllBits();
}
private:
const HBasicBlock& block_;
ArenaBitVector live_in_;
ArenaBitVector live_out_;
ArenaBitVector kill_;
friend class SsaLivenessAnalysis;
DISALLOW_COPY_AND_ASSIGN(BlockInfo);
};
/**
* A live range contains the start and end of a range where an instruction or a temporary
* is live.
*/
class LiveRange FINAL : public ArenaObject<kArenaAllocMisc> {
public:
LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) {
DCHECK_LT(start, end);
DCHECK(next_ == nullptr || next_->GetStart() > GetEnd());
}
size_t GetStart() const { return start_; }
size_t GetEnd() const { return end_; }
LiveRange* GetNext() const { return next_; }
bool IntersectsWith(const LiveRange& other) const {
return (start_ >= other.start_ && start_ < other.end_)
|| (other.start_ >= start_ && other.start_ < end_);
}
bool IsBefore(const LiveRange& other) const {
return end_ <= other.start_;
}
void Dump(std::ostream& stream) const {
stream << "[" << start_ << ", " << end_ << ")";
}
LiveRange* Dup(ArenaAllocator* allocator) const {
return new (allocator) LiveRange(
start_, end_, next_ == nullptr ? nullptr : next_->Dup(allocator));
}
LiveRange* GetLastRange() {
return next_ == nullptr ? this : next_->GetLastRange();
}
private:
size_t start_;
size_t end_;
LiveRange* next_;
friend class LiveInterval;
DISALLOW_COPY_AND_ASSIGN(LiveRange);
};
/**
* A use position represents a live interval use at a given position.
*/
class UsePosition : public ArenaObject<kArenaAllocMisc> {
public:
UsePosition(HInstruction* user,
size_t input_index,
bool is_environment,
size_t position,
UsePosition* next)
: user_(user),
input_index_(input_index),
is_environment_(is_environment),
position_(position),
next_(next) {
DCHECK(user->IsPhi()
|| (GetPosition() == user->GetLifetimePosition() + 1)
|| (GetPosition() == user->GetLifetimePosition()));
DCHECK(next_ == nullptr || next->GetPosition() >= GetPosition());
}
size_t GetPosition() const { return position_; }
UsePosition* GetNext() const { return next_; }
void SetNext(UsePosition* next) { next_ = next; }
HInstruction* GetUser() const { return user_; }
bool GetIsEnvironment() const { return is_environment_; }
size_t GetInputIndex() const { return input_index_; }
void Dump(std::ostream& stream) const {
stream << position_;
}
UsePosition* Dup(ArenaAllocator* allocator) const {
return new (allocator) UsePosition(
user_, input_index_, is_environment_, position_,
next_ == nullptr ? nullptr : next_->Dup(allocator));
}
private:
HInstruction* const user_;
const size_t input_index_;
const bool is_environment_;
const size_t position_;
UsePosition* next_;
DISALLOW_COPY_AND_ASSIGN(UsePosition);
};
/**
* An interval is a list of disjoint live ranges where an instruction is live.
* Each instruction that has uses gets an interval.
*/
class LiveInterval : public ArenaObject<kArenaAllocMisc> {
public:
static LiveInterval* MakeInterval(ArenaAllocator* allocator,
Primitive::Type type,
HInstruction* instruction = nullptr) {
return new (allocator) LiveInterval(allocator, type, instruction);
}
static LiveInterval* MakeSlowPathInterval(ArenaAllocator* allocator, HInstruction* instruction) {
return new (allocator) LiveInterval(
allocator, Primitive::kPrimVoid, instruction, false, kNoRegister, false, true);
}
static LiveInterval* MakeFixedInterval(ArenaAllocator* allocator, int reg, Primitive::Type type) {
return new (allocator) LiveInterval(allocator, type, nullptr, true, reg, false);
}
static LiveInterval* MakeTempInterval(ArenaAllocator* allocator, Primitive::Type type) {
return new (allocator) LiveInterval(allocator, type, nullptr, false, kNoRegister, true);
}
bool IsFixed() const { return is_fixed_; }
bool IsTemp() const { return is_temp_; }
bool IsSlowPathSafepoint() const { return is_slow_path_safepoint_; }
// This interval is the result of a split.
bool IsSplit() const { return parent_ != this; }
void AddUse(HInstruction* instruction, size_t input_index, bool is_environment) {
// Set the use within the instruction.
size_t position = instruction->GetLifetimePosition() + 1;
LocationSummary* locations = instruction->GetLocations();
if (!is_environment) {
if (locations->IsFixedInput(input_index) || locations->OutputUsesSameAs(input_index)) {
// For fixed inputs and output same as input, the register allocator
// requires to have inputs die at the instruction, so that input moves use the
// location of the input just before that instruction (and not potential moves due
// to splitting).
position = instruction->GetLifetimePosition();
}
}
DCHECK(position == instruction->GetLifetimePosition()
|| position == instruction->GetLifetimePosition() + 1);
if ((first_use_ != nullptr)
&& (first_use_->GetUser() == instruction)
&& (first_use_->GetPosition() < position)) {
// The user uses the instruction multiple times, and one use dies before the other.
// We update the use list so that the latter is first.
UsePosition* cursor = first_use_;
while ((cursor->GetNext() != nullptr) && (cursor->GetNext()->GetPosition() < position)) {
cursor = cursor->GetNext();
}
DCHECK(first_use_->GetPosition() + 1 == position);
UsePosition* new_use = new (allocator_) UsePosition(
instruction, input_index, is_environment, position, cursor->GetNext());
cursor->SetNext(new_use);
if (first_range_->GetEnd() == first_use_->GetPosition()) {
first_range_->end_ = position;
}
return;
}
size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
if (first_range_ == nullptr) {
// First time we see a use of that interval.
first_range_ = last_range_ = new (allocator_) LiveRange(
start_block_position, position, nullptr);
} else if (first_range_->GetStart() == start_block_position) {
// There is a use later in the same block or in a following block.
// Note that in such a case, `AddRange` for the whole blocks has been called
// before arriving in this method, and this is the reason the start of
// `first_range_` is before the given `position`.
DCHECK_LE(position, first_range_->GetEnd());
} else {
DCHECK(first_range_->GetStart() > position);
// There is a hole in the interval. Create a new range.
// Note that the start of `first_range_` can be equal to `end`: two blocks
// having adjacent lifetime positions are not necessarily
// predecessor/successor. When two blocks are predecessor/successor, the
// liveness algorithm has called `AddRange` before arriving in this method,
// and the check line 205 would succeed.
first_range_ = new (allocator_) LiveRange(start_block_position, position, first_range_);
}
first_use_ = new (allocator_) UsePosition(
instruction, input_index, is_environment, position, first_use_);
}
void AddPhiUse(HInstruction* instruction, size_t input_index, HBasicBlock* block) {
DCHECK(instruction->IsPhi());
first_use_ = new (allocator_) UsePosition(
instruction, input_index, false, block->GetLifetimeEnd(), first_use_);
}
void AddRange(size_t start, size_t end) {
if (first_range_ == nullptr) {
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, first_range_);
} else if (first_range_->GetStart() == end) {
// There is a use in the following block.
first_range_->start_ = start;
} else if (first_range_->GetStart() == start && first_range_->GetEnd() == end) {
DCHECK(is_fixed_);
} else {
DCHECK_GT(first_range_->GetStart(), end);
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start, end, first_range_);
}
}
void AddLoopRange(size_t start, size_t end) {
DCHECK(first_range_ != nullptr);
DCHECK_LE(start, first_range_->GetStart());
// Find the range that covers the positions after the loop.
LiveRange* after_loop = first_range_;
LiveRange* last_in_loop = nullptr;
while (after_loop != nullptr && after_loop->GetEnd() < end) {
DCHECK_LE(start, after_loop->GetStart());
last_in_loop = after_loop;
after_loop = after_loop->GetNext();
}
if (after_loop == nullptr) {
// Uses are only in the loop.
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, nullptr);
} else if (after_loop->GetStart() <= end) {
first_range_ = after_loop;
// There are uses after the loop.
first_range_->start_ = start;
} else {
// The use after the loop is after a lifetime hole.
DCHECK(last_in_loop != nullptr);
first_range_ = last_in_loop;
first_range_->start_ = start;
first_range_->end_ = end;
}
}
bool HasSpillSlot() const { return spill_slot_ != kNoSpillSlot; }
void SetSpillSlot(int slot) {
DCHECK(!is_fixed_);
DCHECK(!is_temp_);
spill_slot_ = slot;
}
int GetSpillSlot() const { return spill_slot_; }
void SetFrom(size_t from) {
if (first_range_ != nullptr) {
first_range_->start_ = from;
} else {
// Instruction without uses.
DCHECK(!defined_by_->HasUses());
DCHECK(from == defined_by_->GetLifetimePosition());
first_range_ = last_range_ = new (allocator_) LiveRange(from, from + 2, nullptr);
}
}
LiveInterval* GetParent() const { return parent_; }
LiveRange* GetFirstRange() const { return first_range_; }
LiveRange* GetLastRange() const { return last_range_; }
int GetRegister() const { return register_; }
void SetRegister(int reg) { register_ = reg; }
void ClearRegister() { register_ = kNoRegister; }
bool HasRegister() const { return register_ != kNoRegister; }
bool IsDeadAt(size_t position) const {
return last_range_->GetEnd() <= position;
}
bool Covers(size_t position) {
return !IsDeadAt(position) && FindRangeAt(position) != nullptr;
}
/**
* Returns the first intersection of this interval with `other`.
*/
size_t FirstIntersectionWith(LiveInterval* other) const {
// Advance both intervals and find the first matching range start in
// this interval.
LiveRange* my_range = first_range_;
LiveRange* other_range = other->first_range_;
do {
if (my_range->IsBefore(*other_range)) {
my_range = my_range->GetNext();
if (my_range == nullptr) {
return kNoLifetime;
}
} else if (other_range->IsBefore(*my_range)) {
other_range = other_range->GetNext();
if (other_range == nullptr) {
return kNoLifetime;
}
} else {
DCHECK(my_range->IntersectsWith(*other_range));
return std::max(my_range->GetStart(), other_range->GetStart());
}
} while (true);
}
size_t GetStart() const {
return first_range_->GetStart();
}
size_t GetEnd() const {
return last_range_->GetEnd();
}
size_t FirstRegisterUseAfter(size_t position) const {
if (is_temp_) {
return position == GetStart() ? position : kNoLifetime;
}
if (position == GetStart() && defined_by_ != nullptr) {
LocationSummary* locations = defined_by_->GetLocations();
Location location = locations->Out();
// This interval is the first interval of the instruction. If the output
// of the instruction requires a register, we return the position of that instruction
// as the first register use.
if (location.IsUnallocated()) {
if ((location.GetPolicy() == Location::kRequiresRegister)
|| (location.GetPolicy() == Location::kSameAsFirstInput
&& (locations->InAt(0).IsRegister()
|| locations->InAt(0).IsRegisterPair()
|| locations->InAt(0).GetPolicy() == Location::kRequiresRegister))) {
return position;
} else if ((location.GetPolicy() == Location::kRequiresFpuRegister)
|| (location.GetPolicy() == Location::kSameAsFirstInput
&& locations->InAt(0).GetPolicy() == Location::kRequiresFpuRegister)) {
return position;
}
} else if (location.IsRegister() || location.IsRegisterPair()) {
return position;
}
}
UsePosition* use = first_use_;
size_t end = GetEnd();
while (use != nullptr && use->GetPosition() <= end) {
size_t use_position = use->GetPosition();
if (use_position > position && !use->GetIsEnvironment()) {
Location location = use->GetUser()->GetLocations()->InAt(use->GetInputIndex());
if (location.IsUnallocated()
&& (location.GetPolicy() == Location::kRequiresRegister
|| location.GetPolicy() == Location::kRequiresFpuRegister)) {
return use_position;
}
}
use = use->GetNext();
}
return kNoLifetime;
}
size_t FirstRegisterUse() const {
return FirstRegisterUseAfter(GetStart());
}
size_t FirstUseAfter(size_t position) const {
if (is_temp_) {
return position == GetStart() ? position : kNoLifetime;
}
UsePosition* use = first_use_;
size_t end = GetEnd();
while (use != nullptr && use->GetPosition() <= end) {
size_t use_position = use->GetPosition();
if (use_position > position) {
return use_position;
}
use = use->GetNext();
}
return kNoLifetime;
}
UsePosition* GetFirstUse() const {
return first_use_;
}
Primitive::Type GetType() const {
return type_;
}
HInstruction* GetDefinedBy() const {
return defined_by_;
}
/**
* Split this interval at `position`. This interval is changed to:
* [start ... position).
*
* The new interval covers:
* [position ... end)
*/
LiveInterval* SplitAt(size_t position) {
DCHECK(!is_temp_);
DCHECK(!is_fixed_);
DCHECK_GT(position, GetStart());
if (last_range_->GetEnd() <= position) {
// This range dies before `position`, no need to split.
return nullptr;
}
LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
new_interval->next_sibling_ = next_sibling_;
next_sibling_ = new_interval;
new_interval->parent_ = parent_;
new_interval->first_use_ = first_use_;
last_visited_range_ = nullptr;
LiveRange* current = first_range_;
LiveRange* previous = nullptr;
// Iterate over the ranges, and either find a range that covers this position, or
// two ranges in between this position (that is, the position is in a lifetime hole).
do {
if (position >= current->GetEnd()) {
// Move to next range.
previous = current;
current = current->next_;
} else if (position <= current->GetStart()) {
// If the previous range did not cover this position, we know position is in
// a lifetime hole. We can just break the first_range_ and last_range_ links
// and return the new interval.
DCHECK(previous != nullptr);
DCHECK(current != first_range_);
new_interval->last_range_ = last_range_;
last_range_ = previous;
previous->next_ = nullptr;
new_interval->first_range_ = current;
return new_interval;
} else {
// This range covers position. We create a new last_range_ for this interval
// that covers last_range_->Start() and position. We also shorten the current
// range and make it the first range of the new interval.
DCHECK(position < current->GetEnd() && position > current->GetStart());
new_interval->last_range_ = last_range_;
last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr);
if (previous != nullptr) {
previous->next_ = last_range_;
} else {
first_range_ = last_range_;
}
new_interval->first_range_ = current;
current->start_ = position;
return new_interval;
}
} while (current != nullptr);
LOG(FATAL) << "Unreachable";
return nullptr;
}
bool StartsBeforeOrAt(LiveInterval* other) const {
return GetStart() <= other->GetStart();
}
bool StartsAfter(LiveInterval* other) const {
return GetStart() > other->GetStart();
}
void Dump(std::ostream& stream) const {
stream << "ranges: { ";
LiveRange* current = first_range_;
while (current != nullptr) {
current->Dump(stream);
stream << " ";
current = current->GetNext();
}
stream << "}, uses: { ";
UsePosition* use = first_use_;
if (use != nullptr) {
do {
use->Dump(stream);
stream << " ";
} while ((use = use->GetNext()) != nullptr);
}
stream << "}";
stream << " is_fixed: " << is_fixed_ << ", is_split: " << IsSplit();
stream << " is_high: " << IsHighInterval();
stream << " is_low: " << IsLowInterval();
}
LiveInterval* GetNextSibling() const { return next_sibling_; }
LiveInterval* GetLastSibling() {
LiveInterval* result = this;
while (result->next_sibling_ != nullptr) {
result = result->next_sibling_;
}
return result;
}
// Returns the first register hint that is at least free before
// the value contained in `free_until`. If none is found, returns
// `kNoRegister`.
int FindFirstRegisterHint(size_t* free_until) const;
// If there is enough at the definition site to find a register (for example
// it uses the same input as the first input), returns the register as a hint.
// Returns kNoRegister otherwise.
int FindHintAtDefinition() const;
// Returns whether the interval needs two (Dex virtual register size `kVRegSize`)
// slots for spilling.
bool NeedsTwoSpillSlots() const;
bool IsFloatingPoint() const {
return type_ == Primitive::kPrimFloat || type_ == Primitive::kPrimDouble;
}
// Converts the location of the interval to a `Location` object.
Location ToLocation() const;
// Returns the location of the interval following its siblings at `position`.
Location GetLocationAt(size_t position);
// Finds the interval that covers `position`.
const LiveInterval& GetIntervalAt(size_t position);
// Returns whether `other` and `this` share the same kind of register.
bool SameRegisterKind(Location other) const;
bool SameRegisterKind(const LiveInterval& other) const {
return IsFloatingPoint() == other.IsFloatingPoint();
}
bool HasHighInterval() const {
return IsLowInterval();
}
bool HasLowInterval() const {
return IsHighInterval();
}
LiveInterval* GetLowInterval() const {
DCHECK(HasLowInterval());
return high_or_low_interval_;
}
LiveInterval* GetHighInterval() const {
DCHECK(HasHighInterval());
return high_or_low_interval_;
}
bool IsHighInterval() const {
return GetParent()->is_high_interval_;
}
bool IsLowInterval() const {
return !IsHighInterval() && (GetParent()->high_or_low_interval_ != nullptr);
}
void SetLowInterval(LiveInterval* low) {
DCHECK(IsHighInterval());
high_or_low_interval_ = low;
}
void SetHighInterval(LiveInterval* high) {
DCHECK(IsLowInterval());
high_or_low_interval_ = high;
}
void AddHighInterval(bool is_temp = false) {
DCHECK_EQ(GetParent(), this);
DCHECK(!HasHighInterval());
DCHECK(!HasLowInterval());
high_or_low_interval_ = new (allocator_) LiveInterval(
allocator_, type_, defined_by_, false, kNoRegister, is_temp, false, true);
high_or_low_interval_->high_or_low_interval_ = this;
if (first_range_ != nullptr) {
high_or_low_interval_->first_range_ = first_range_->Dup(allocator_);
high_or_low_interval_->last_range_ = first_range_->GetLastRange();
}
if (first_use_ != nullptr) {
high_or_low_interval_->first_use_ = first_use_->Dup(allocator_);
}
}
// Returns whether an interval, when it is non-split, is using
// the same register of one of its input.
bool IsUsingInputRegister() const {
if (defined_by_ != nullptr && !IsSplit()) {
for (HInputIterator it(defined_by_); !it.Done(); it.Advance()) {
LiveInterval* interval = it.Current()->GetLiveInterval();
// Find the interval that covers `defined_by`_.
while (interval != nullptr && !interval->Covers(defined_by_->GetLifetimePosition())) {
interval = interval->GetNextSibling();
}
// Check if both intervals have the same register of the same kind.
if (interval != nullptr
&& interval->SameRegisterKind(*this)
&& interval->GetRegister() == GetRegister()) {
return true;
}
}
}
return false;
}
// Returns whether an interval, when it is non-split, can safely use
// the same register of one of its input. Note that this method requires
// IsUsingInputRegister() to be true.
bool CanUseInputRegister() const {
DCHECK(IsUsingInputRegister());
if (defined_by_ != nullptr && !IsSplit()) {
LocationSummary* locations = defined_by_->GetLocations();
if (locations->OutputCanOverlapWithInputs()) {
return false;
}
for (HInputIterator it(defined_by_); !it.Done(); it.Advance()) {
LiveInterval* interval = it.Current()->GetLiveInterval();
// Find the interval that covers `defined_by`_.
while (interval != nullptr && !interval->Covers(defined_by_->GetLifetimePosition())) {
interval = interval->GetNextSibling();
}
if (interval != nullptr
&& interval->SameRegisterKind(*this)
&& interval->GetRegister() == GetRegister()) {
// We found the input that has the same register. Check if it is live after
// `defined_by`_.
return !interval->Covers(defined_by_->GetLifetimePosition() + 1);
}
}
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
private:
LiveInterval(ArenaAllocator* allocator,
Primitive::Type type,
HInstruction* defined_by = nullptr,
bool is_fixed = false,
int reg = kNoRegister,
bool is_temp = false,
bool is_slow_path_safepoint = false,
bool is_high_interval = false)
: allocator_(allocator),
first_range_(nullptr),
last_range_(nullptr),
last_visited_range_(nullptr),
first_use_(nullptr),
type_(type),
next_sibling_(nullptr),
parent_(this),
register_(reg),
spill_slot_(kNoSpillSlot),
is_fixed_(is_fixed),
is_temp_(is_temp),
is_slow_path_safepoint_(is_slow_path_safepoint),
is_high_interval_(is_high_interval),
high_or_low_interval_(nullptr),
defined_by_(defined_by) {}
// Returns a LiveRange covering the given position or nullptr if no such range
// exists in the interval.
// This is a linear search optimized for multiple queries in a non-decreasing
// position order typical for linear scan register allocation.
LiveRange* FindRangeAt(size_t position) {
// Make sure operations on the interval didn't leave us with a cached result
// from a sibling.
if (kIsDebugBuild) {
if (last_visited_range_ != nullptr) {
DCHECK_GE(last_visited_range_->GetStart(), GetStart());
DCHECK_LE(last_visited_range_->GetEnd(), GetEnd());
}
}
// If this method was called earlier on a lower position, use that result as
// a starting point to save time. However, linear scan performs 3 scans:
// integers, floats, and resolution. Instead of resetting at the beginning
// of a scan, we do it here.
LiveRange* current;
if (last_visited_range_ != nullptr && position >= last_visited_range_->GetStart()) {
current = last_visited_range_;
} else {
current = first_range_;
}
while (current != nullptr && current->GetEnd() <= position) {
current = current->GetNext();
}
last_visited_range_ = current;
if (current != nullptr && position >= current->GetStart()) {
return current;
} else {
return nullptr;
}
}
ArenaAllocator* const allocator_;
// Ranges of this interval. We need a quick access to the last range to test
// for liveness (see `IsDeadAt`).
LiveRange* first_range_;
LiveRange* last_range_;
// Last visited range. This is a range search optimization leveraging the fact
// that the register allocator does a linear scan through the intervals.
LiveRange* last_visited_range_;
// Uses of this interval. Note that this linked list is shared amongst siblings.
UsePosition* first_use_;
// The instruction type this interval corresponds to.
const Primitive::Type type_;
// Live interval that is the result of a split.
LiveInterval* next_sibling_;
// The first interval from which split intervals come from.
LiveInterval* parent_;
// The register allocated to this interval.
int register_;
// The spill slot allocated to this interval.
int spill_slot_;
// Whether the interval is for a fixed register.
const bool is_fixed_;
// Whether the interval is for a temporary.
const bool is_temp_;
// Whether the interval is for a safepoint that calls on slow path.
const bool is_slow_path_safepoint_;
// Whether this interval is a synthesized interval for register pair.
const bool is_high_interval_;
// If this interval needs a register pair, the high or low equivalent.
// `is_high_interval_` tells whether this holds the low or the high.
LiveInterval* high_or_low_interval_;
// The instruction represented by this interval.
HInstruction* const defined_by_;
static constexpr int kNoRegister = -1;
static constexpr int kNoSpillSlot = -1;
ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive);
DISALLOW_COPY_AND_ASSIGN(LiveInterval);
};
class SsaLivenessAnalysis : public ValueObject {
public:
SsaLivenessAnalysis(const HGraph& graph, CodeGenerator* codegen)
: graph_(graph),
codegen_(codegen),
linear_order_(graph.GetArena(), graph.GetBlocks().Size()),
block_infos_(graph.GetArena(), graph.GetBlocks().Size()),
instructions_from_ssa_index_(graph.GetArena(), 0),
instructions_from_lifetime_position_(graph.GetArena(), 0),
number_of_ssa_values_(0) {
block_infos_.SetSize(graph.GetBlocks().Size());
}
void Analyze();
BitVector* GetLiveInSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_in_;
}
BitVector* GetLiveOutSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_out_;
}
BitVector* GetKillSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->kill_;
}
const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
return linear_order_;
}
HInstruction* GetInstructionFromSsaIndex(size_t index) const {
return instructions_from_ssa_index_.Get(index);
}
HInstruction* GetInstructionFromPosition(size_t index) const {
return instructions_from_lifetime_position_.Get(index);
}
HInstruction* GetTempUser(LiveInterval* temp) const {
// A temporary shares the same lifetime start as the instruction that requires it.
DCHECK(temp->IsTemp());
return GetInstructionFromPosition(temp->GetStart() / 2);
}
size_t GetMaxLifetimePosition() const {
return instructions_from_lifetime_position_.Size() * 2 - 1;
}
size_t GetNumberOfSsaValues() const {
return number_of_ssa_values_;
}
static constexpr const char* kLivenessPassName = "liveness";
private:
// Linearize the graph so that:
// (1): a block is always after its dominator,
// (2): blocks of loops are contiguous.
// This creates a natural and efficient ordering when visualizing live ranges.
void LinearizeGraph();
// Give an SSA number to each instruction that defines a value used by another instruction,
// and setup the lifetime information of each instruction and block.
void NumberInstructions();
// Compute live ranges of instructions, as well as live_in, live_out and kill sets.
void ComputeLiveness();
// Compute the live ranges of instructions, as well as the initial live_in, live_out and
// kill sets, that do not take into account backward branches.
void ComputeLiveRanges();
// After computing the initial sets, this method does a fixed point
// calculation over the live_in and live_out set to take into account
// backwards branches.
void ComputeLiveInAndLiveOutSets();
// Update the live_in set of the block and returns whether it has changed.
bool UpdateLiveIn(const HBasicBlock& block);
// Update the live_out set of the block and returns whether it has changed.
bool UpdateLiveOut(const HBasicBlock& block);
const HGraph& graph_;
CodeGenerator* const codegen_;
GrowableArray<HBasicBlock*> linear_order_;
GrowableArray<BlockInfo*> block_infos_;
// Temporary array used when computing live_in, live_out, and kill sets.
GrowableArray<HInstruction*> instructions_from_ssa_index_;
// Temporary array used when inserting moves in the graph.
GrowableArray<HInstruction*> instructions_from_lifetime_position_;
size_t number_of_ssa_values_;
DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
};
class HLinearPostOrderIterator : public ValueObject {
public:
explicit HLinearPostOrderIterator(const SsaLivenessAnalysis& liveness)
: order_(liveness.GetLinearOrder()), index_(liveness.GetLinearOrder().Size()) {}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return order_.Get(index_ -1); }
void Advance() {
--index_;
DCHECK_GE(index_, 0U);
}
private:
const GrowableArray<HBasicBlock*>& order_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
};
class HLinearOrderIterator : public ValueObject {
public:
explicit HLinearOrderIterator(const SsaLivenessAnalysis& liveness)
: order_(liveness.GetLinearOrder()), index_(0) {}
bool Done() const { return index_ == order_.Size(); }
HBasicBlock* Current() const { return order_.Get(index_); }
void Advance() { ++index_; }
private:
const GrowableArray<HBasicBlock*>& order_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_