blob: c9a5b44c540c1fc2b66ab15cbfbca50eca9b92b6 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#include "interpreter.h"
#include <math.h>
#include <iostream>
#include <sstream>
#include <atomic>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/macros.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "handle_scope-inl.h"
#include "jit/jit.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "obj_ptr.h"
#include "stack.h"
#include "thread.h"
#include "well_known_classes.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter()
REQUIRES_SHARED(Locks::mutator_lock_);
template <bool kMonitorCounting>
static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorEnter(self);
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().AddMonitor(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorExit(self);
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self);
}
return true;
}
void AbortTransactionF(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
REQUIRES_SHARED(Locks::mutator_lock_);
void AbortTransactionV(Thread* self, const char* fmt, va_list args)
REQUIRES_SHARED(Locks::mutator_lock_);
void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_);
// Invokes the given method. This is part of the invocation support and is used by DoInvoke and
// DoInvokeVirtualQuick functions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result);
// Handles all invoke-XXX/range instructions except for invoke-polymorphic[/range].
// Returns true on success, otherwise throws an exception and returns false.
template<InvokeType type, bool is_range, bool do_access_check>
static inline bool DoInvoke(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result) {
const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
ObjPtr<mirror::Object> receiver = (type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC);
ArtMethod* sf_method = shadow_frame.GetMethod();
ArtMethod* const called_method = FindMethodFromCode<type, do_access_check>(
method_idx, &receiver, sf_method, self);
// The shadow frame should already be pushed, so we don't need to update it.
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(!called_method->IsInvokable())) {
called_method->ThrowInvocationTimeError();
result->SetJ(0);
return false;
} else {
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
if (type == kVirtual || type == kInterface) {
jit->InvokeVirtualOrInterface(receiver, sf_method, shadow_frame.GetDexPC(), called_method);
}
jit->AddSamples(self, sf_method, 1, /*with_backedges*/false);
}
// TODO: Remove the InvokeVirtualOrInterface instrumentation, as it was only used by the JIT.
if (type == kVirtual || type == kInterface) {
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) {
instrumentation->InvokeVirtualOrInterface(
self, receiver.Ptr(), sf_method, shadow_frame.GetDexPC(), called_method);
}
}
return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data,
result);
}
}
// Performs a signature polymorphic invoke (invoke-polymorphic/invoke-polymorphic-range).
template<bool is_range, bool do_access_check>
bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data,
JValue* result);
// Handles invoke-virtual-quick and invoke-virtual-quick-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range>
static inline bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data,
JValue* result) {
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
ObjPtr<mirror::Object> const receiver = shadow_frame.GetVRegReference(vregC);
if (UNLIKELY(receiver == nullptr)) {
// We lost the reference to the method index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
const uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
// Debug code for b/31357497. To be removed.
if (kUseReadBarrier) {
CHECK(receiver->GetClass() != nullptr)
<< "Null class found in object " << receiver << " in region type "
<< Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->
RegionSpace()->GetRegionType(receiver.Ptr());
}
CHECK(receiver->GetClass()->ShouldHaveEmbeddedVTable());
ArtMethod* const called_method = receiver->GetClass()->GetEmbeddedVTableEntry(
vtable_idx, kRuntimePointerSize);
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(!called_method->IsInvokable())) {
called_method->ThrowInvocationTimeError();
result->SetJ(0);
return false;
} else {
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
jit->InvokeVirtualOrInterface(
receiver, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), called_method);
jit->AddSamples(self, shadow_frame.GetMethod(), 1, /*with_backedges*/false);
}
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
// TODO: Remove the InvokeVirtualOrInterface instrumentation, as it was only used by the JIT.
if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) {
instrumentation->InvokeVirtualOrInterface(
self, receiver.Ptr(), shadow_frame.GetMethod(), shadow_frame.GetDexPC(), called_method);
}
// No need to check since we've been quickened.
return DoCall<is_range, false>(called_method, self, shadow_frame, inst, inst_data, result);
}
}
// Handles iget-XXX and sget-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_);
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_);
// Handles iput-XXX and sput-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_);
// Handles iput-quick, iput-wide-quick and iput-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_);
// Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the
// java.lang.String class is initialized.
static inline ObjPtr<mirror::String> ResolveString(Thread* self,
ShadowFrame& shadow_frame,
dex::StringIndex string_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> java_lang_string_class = mirror::String::GetJavaLangString();
if (UNLIKELY(!java_lang_string_class->IsInitialized())) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class));
if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
}
ArtMethod* method = shadow_frame.GetMethod();
ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
// MethodVerifier refuses methods with string_idx out of bounds.
DCHECK_LT(string_idx.index_ % mirror::DexCache::kDexCacheStringCacheSize,
declaring_class->GetDexFile().NumStringIds());
ObjPtr<mirror::String> string_ptr =
mirror::StringDexCachePair::Lookup(declaring_class->GetDexCacheStrings(),
string_idx.index_,
mirror::DexCache::kDexCacheStringCacheSize).Read();
if (UNLIKELY(string_ptr == nullptr)) {
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(declaring_class->GetDexCache()));
string_ptr = Runtime::Current()->GetClassLinker()->ResolveString(*method->GetDexFile(),
string_idx,
dex_cache);
}
return string_ptr;
}
// Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, kMinInt);
} else {
shadow_frame.SetVReg(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, 0);
} else {
shadow_frame.SetVReg(result_reg, dividend % divisor);
}
return true;
}
// Handles div-long and div-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongDivide(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, kMinLong);
} else {
shadow_frame.SetVRegLong(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-long and rem-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongRemainder(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, 0);
} else {
shadow_frame.SetVRegLong(result_reg, dividend % divisor);
}
return true;
}
// Handles filled-new-array and filled-new-array-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result);
// Handles packed-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
uint16_t size = switch_data[1];
if (size == 0) {
// Empty packed switch, move forward by 3 (size of PACKED_SWITCH).
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
int32_t first_key = keys[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]);
DCHECK_ALIGNED(targets, 4);
int32_t index = test_val - first_key;
if (index >= 0 && index < size) {
return targets[index];
} else {
// No corresponding value: move forward by 3 (size of PACKED_SWITCH).
return 3;
}
}
// Handles sparse-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
uint16_t size = switch_data[1];
// Return length of SPARSE_SWITCH if size is 0.
if (size == 0) {
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
const int32_t* entries = keys + size;
DCHECK_ALIGNED(entries, 4);
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int32_t foundVal = keys[mid];
if (test_val < foundVal) {
hi = mid - 1;
} else if (test_val > foundVal) {
lo = mid + 1;
} else {
return entries[mid];
}
}
// No corresponding value: move forward by 3 (size of SPARSE_SWITCH).
return 3;
}
uint32_t FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame,
uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation)
REQUIRES_SHARED(Locks::mutator_lock_);
NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame)
__attribute__((cold))
REQUIRES_SHARED(Locks::mutator_lock_);
// Set true if you want TraceExecution invocation before each bytecode execution.
constexpr bool kTraceExecutionEnabled = false;
static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst,
const uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kTraceExecutionEnabled) {
#define TRACE_LOG std::cerr
std::ostringstream oss;
oss << shadow_frame.GetMethod()->PrettyMethod()
<< StringPrintf("\n0x%x: ", dex_pc)
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n";
for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) {
uint32_t raw_value = shadow_frame.GetVReg(i);
ObjPtr<mirror::Object> ref_value = shadow_frame.GetVRegReference(i);
oss << StringPrintf(" vreg%u=0x%08X", i, raw_value);
if (ref_value != nullptr) {
if (ref_value->GetClass()->IsStringClass() &&
!ref_value->AsString()->IsValueNull()) {
oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\"";
} else {
oss << "/" << ref_value->PrettyTypeOf();
}
}
}
TRACE_LOG << oss.str() << "\n";
#undef TRACE_LOG
}
}
static inline bool IsBackwardBranch(int32_t branch_offset) {
return branch_offset <= 0;
}
// Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame.
static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame,
size_t dest_reg, size_t src_reg)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Uint required, so that sign extension does not make this wrong on 64b systems
uint32_t src_value = shadow_frame.GetVReg(src_reg);
ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference<kVerifyNone>(src_reg);
// If both register locations contains the same value, the register probably holds a reference.
// Note: As an optimization, non-moving collectors leave a stale reference value
// in the references array even after the original vreg was overwritten to a non-reference.
if (src_value == reinterpret_cast<uintptr_t>(o.Ptr())) {
new_shadow_frame->SetVRegReference(dest_reg, o.Ptr());
} else {
new_shadow_frame->SetVReg(dest_reg, src_value);
}
}
void ArtInterpreterToCompiledCodeBridge(Thread* self,
ArtMethod* caller,
const DexFile::CodeItem* code_item,
ShadowFrame* shadow_frame,
JValue* result);
// Set string value created from StringFactory.newStringFromXXX() into all aliases of
// StringFactory.newEmptyString().
void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
uint16_t this_obj_vreg,
JValue result);
// Explicitly instantiate all DoInvoke functions.
#define EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, _is_range, _do_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoInvoke<_type, _is_range, _do_check>(Thread* self, ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
#define EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(_type) \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, false); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, true); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, false); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, true);
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kStatic) // invoke-static/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kDirect) // invoke-direct/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kVirtual) // invoke-virtual/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kSuper) // invoke-super/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kInterface) // invoke-interface/range.
#undef EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_INVOKE_TEMPLATE_DECL
// Explicitly instantiate all DoInvokeVirtualQuick functions.
#define EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(_is_range) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoInvokeVirtualQuick<_is_range>(Thread* self, ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(false); // invoke-virtual-quick.
EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(true); // invoke-virtual-quick-range.
#undef EXPLICIT_INSTANTIATION_DO_INVOKE_VIRTUAL_QUICK
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_