blob: fe839f7312eb2e6578c60af7d977d31e7d8995a0 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "verifier_deps.h"
#include <cstring>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/indenter.h"
#include "base/leb128.h"
#include "base/stl_util.h"
#include "compiler_callbacks.h"
#include "dex/dex_file-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "obj_ptr-inl.h"
#include "runtime.h"
namespace art {
namespace verifier {
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files, bool output_only)
: output_only_(output_only) {
for (const DexFile* dex_file : dex_files) {
DCHECK(GetDexFileDeps(*dex_file) == nullptr);
std::unique_ptr<DexFileDeps> deps(new DexFileDeps());
dex_deps_.emplace(dex_file, std::move(deps));
}
}
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files)
: VerifierDeps(dex_files, /*output_only*/ true) {}
void VerifierDeps::MergeWith(const VerifierDeps& other,
const std::vector<const DexFile*>& dex_files) {
DCHECK(dex_deps_.size() == other.dex_deps_.size());
for (const DexFile* dex_file : dex_files) {
DexFileDeps* my_deps = GetDexFileDeps(*dex_file);
const DexFileDeps& other_deps = *other.GetDexFileDeps(*dex_file);
// We currently collect extra strings only on the main `VerifierDeps`,
// which should be the one passed as `this` in this method.
DCHECK(other_deps.strings_.empty());
MergeSets(my_deps->assignable_types_, other_deps.assignable_types_);
MergeSets(my_deps->unassignable_types_, other_deps.unassignable_types_);
MergeSets(my_deps->classes_, other_deps.classes_);
MergeSets(my_deps->fields_, other_deps.fields_);
MergeSets(my_deps->methods_, other_deps.methods_);
MergeSets(my_deps->unverified_classes_, other_deps.unverified_classes_);
}
}
VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) {
auto it = dex_deps_.find(&dex_file);
return (it == dex_deps_.end()) ? nullptr : it->second.get();
}
const VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) const {
auto it = dex_deps_.find(&dex_file);
return (it == dex_deps_.end()) ? nullptr : it->second.get();
}
// Access flags that impact vdex verification.
static constexpr uint32_t kAccVdexAccessFlags =
kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccInterface;
template <typename T>
uint16_t VerifierDeps::GetAccessFlags(T* element) {
static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant");
if (element == nullptr) {
return VerifierDeps::kUnresolvedMarker;
} else {
uint16_t access_flags = Low16Bits(element->GetAccessFlags()) & kAccVdexAccessFlags;
CHECK_NE(access_flags, VerifierDeps::kUnresolvedMarker);
return access_flags;
}
}
dex::StringIndex VerifierDeps::GetClassDescriptorStringId(const DexFile& dex_file,
ObjPtr<mirror::Class> klass) {
DCHECK(klass != nullptr);
ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
// Array and proxy classes do not have a dex cache.
if (!klass->IsArrayClass() && !klass->IsProxyClass()) {
DCHECK(dex_cache != nullptr) << klass->PrettyClass();
if (dex_cache->GetDexFile() == &dex_file) {
// FindStringId is slow, try to go through the class def if we have one.
const DexFile::ClassDef* class_def = klass->GetClassDef();
DCHECK(class_def != nullptr) << klass->PrettyClass();
const DexFile::TypeId& type_id = dex_file.GetTypeId(class_def->class_idx_);
if (kIsDebugBuild) {
std::string temp;
CHECK_EQ(GetIdFromString(dex_file, klass->GetDescriptor(&temp)), type_id.descriptor_idx_);
}
return type_id.descriptor_idx_;
}
}
std::string temp;
return GetIdFromString(dex_file, klass->GetDescriptor(&temp));
}
// Try to find the string descriptor of the class. type_idx is a best guess of a matching string id.
static dex::StringIndex TryGetClassDescriptorStringId(const DexFile& dex_file,
dex::TypeIndex type_idx,
ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!klass->IsArrayClass()) {
const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
const DexFile& klass_dex = klass->GetDexFile();
const DexFile::TypeId& klass_type_id = klass_dex.GetTypeId(klass->GetClassDef()->class_idx_);
if (strcmp(dex_file.GetTypeDescriptor(type_id),
klass_dex.GetTypeDescriptor(klass_type_id)) == 0) {
return type_id.descriptor_idx_;
}
}
return dex::StringIndex::Invalid();
}
dex::StringIndex VerifierDeps::GetMethodDeclaringClassStringId(const DexFile& dex_file,
uint32_t dex_method_index,
ArtMethod* method) {
static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant");
if (method == nullptr) {
return dex::StringIndex(VerifierDeps::kUnresolvedMarker);
}
const dex::StringIndex string_id = TryGetClassDescriptorStringId(
dex_file,
dex_file.GetMethodId(dex_method_index).class_idx_,
method->GetDeclaringClass());
if (string_id.IsValid()) {
// Got lucky using the original dex file, return based on the input dex file.
DCHECK_EQ(GetClassDescriptorStringId(dex_file, method->GetDeclaringClass()), string_id);
return string_id;
}
return GetClassDescriptorStringId(dex_file, method->GetDeclaringClass());
}
dex::StringIndex VerifierDeps::GetFieldDeclaringClassStringId(const DexFile& dex_file,
uint32_t dex_field_idx,
ArtField* field) {
static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant");
if (field == nullptr) {
return dex::StringIndex(VerifierDeps::kUnresolvedMarker);
}
const dex::StringIndex string_id = TryGetClassDescriptorStringId(
dex_file,
dex_file.GetFieldId(dex_field_idx).class_idx_,
field->GetDeclaringClass());
if (string_id.IsValid()) {
// Got lucky using the original dex file, return based on the input dex file.
DCHECK_EQ(GetClassDescriptorStringId(dex_file, field->GetDeclaringClass()), string_id);
return string_id;
}
return GetClassDescriptorStringId(dex_file, field->GetDeclaringClass());
}
static inline VerifierDeps* GetMainVerifierDeps() {
// The main VerifierDeps is the one set in the compiler callbacks, which at the
// end of verification will have all the per-thread VerifierDeps merged into it.
CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks();
if (callbacks == nullptr) {
return nullptr;
}
return callbacks->GetVerifierDeps();
}
static inline VerifierDeps* GetThreadLocalVerifierDeps() {
// During AOT, each thread has its own VerifierDeps, to avoid lock contention. At the end
// of full verification, these VerifierDeps will be merged into the main one.
if (!Runtime::Current()->IsAotCompiler()) {
return nullptr;
}
return Thread::Current()->GetVerifierDeps();
}
static bool FindExistingStringId(const std::vector<std::string>& strings,
const std::string& str,
uint32_t* found_id) {
uint32_t num_extra_ids = strings.size();
for (size_t i = 0; i < num_extra_ids; ++i) {
if (strings[i] == str) {
*found_id = i;
return true;
}
}
return false;
}
dex::StringIndex VerifierDeps::GetIdFromString(const DexFile& dex_file, const std::string& str) {
const DexFile::StringId* string_id = dex_file.FindStringId(str.c_str());
if (string_id != nullptr) {
// String is in the DEX file. Return its ID.
return dex_file.GetIndexForStringId(*string_id);
}
// String is not in the DEX file. Assign a new ID to it which is higher than
// the number of strings in the DEX file.
// We use the main `VerifierDeps` for adding new strings to simplify
// synchronization/merging of these entries between threads.
VerifierDeps* singleton = GetMainVerifierDeps();
DexFileDeps* deps = singleton->GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
uint32_t num_ids_in_dex = dex_file.NumStringIds();
uint32_t found_id;
{
ReaderMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
if (FindExistingStringId(deps->strings_, str, &found_id)) {
return dex::StringIndex(num_ids_in_dex + found_id);
}
}
{
WriterMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
if (FindExistingStringId(deps->strings_, str, &found_id)) {
return dex::StringIndex(num_ids_in_dex + found_id);
}
deps->strings_.push_back(str);
dex::StringIndex new_id(num_ids_in_dex + deps->strings_.size() - 1);
CHECK_GE(new_id.index_, num_ids_in_dex); // check for overflows
DCHECK_EQ(str, singleton->GetStringFromId(dex_file, new_id));
return new_id;
}
}
std::string VerifierDeps::GetStringFromId(const DexFile& dex_file, dex::StringIndex string_id)
const {
uint32_t num_ids_in_dex = dex_file.NumStringIds();
if (string_id.index_ < num_ids_in_dex) {
return std::string(dex_file.StringDataByIdx(string_id));
} else {
const DexFileDeps* deps = GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
string_id.index_ -= num_ids_in_dex;
CHECK_LT(string_id.index_, deps->strings_.size());
return deps->strings_[string_id.index_];
}
}
bool VerifierDeps::IsInClassPath(ObjPtr<mirror::Class> klass) const {
DCHECK(klass != nullptr);
// For array types, we return whether the non-array component type
// is in the classpath.
while (klass->IsArrayClass()) {
klass = klass->GetComponentType();
}
if (klass->IsPrimitive()) {
return true;
}
ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
DCHECK(dex_cache != nullptr);
const DexFile* dex_file = dex_cache->GetDexFile();
DCHECK(dex_file != nullptr);
// Test if the `dex_deps_` contains an entry for `dex_file`. If not, the dex
// file was not registered as being compiled and we assume `klass` is in the
// classpath.
return (GetDexFileDeps(*dex_file) == nullptr);
}
void VerifierDeps::AddClassResolution(const DexFile& dex_file,
dex::TypeIndex type_idx,
mirror::Class* klass) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (klass != nullptr && !IsInClassPath(klass)) {
// Class resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
dex_deps->classes_.emplace(ClassResolution(type_idx, GetAccessFlags(klass)));
}
void VerifierDeps::AddFieldResolution(const DexFile& dex_file,
uint32_t field_idx,
ArtField* field) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (field != nullptr && !IsInClassPath(field->GetDeclaringClass())) {
// Field resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
dex_deps->fields_.emplace(FieldResolution(field_idx,
GetAccessFlags(field),
GetFieldDeclaringClassStringId(dex_file,
field_idx,
field)));
}
void VerifierDeps::AddMethodResolution(const DexFile& dex_file,
uint32_t method_idx,
ArtMethod* method) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a dex file which is not being compiled.
return;
}
if (method != nullptr && !IsInClassPath(method->GetDeclaringClass())) {
// Method resolved into one of the DEX files which are being compiled.
// This is not a classpath dependency.
return;
}
MethodResolution method_tuple(method_idx,
GetAccessFlags(method),
GetMethodDeclaringClassStringId(dex_file, method_idx, method));
dex_deps->methods_.insert(method_tuple);
}
mirror::Class* VerifierDeps::FindOneClassPathBoundaryForInterface(mirror::Class* destination,
mirror::Class* source) const {
DCHECK(destination->IsInterface());
DCHECK(IsInClassPath(destination));
Thread* thread = Thread::Current();
mirror::Class* current = source;
// Record the classes that are at the boundary between the compiled DEX files and
// the classpath. We will check those classes later to find one class that inherits
// `destination`.
std::vector<ObjPtr<mirror::Class>> boundaries;
// If the destination is a direct interface of a class defined in the DEX files being
// compiled, no need to record it.
while (!IsInClassPath(current)) {
for (size_t i = 0; i < current->NumDirectInterfaces(); ++i) {
ObjPtr<mirror::Class> direct = mirror::Class::GetDirectInterface(thread, current, i);
if (direct == destination) {
return nullptr;
} else if (IsInClassPath(direct)) {
boundaries.push_back(direct);
}
}
current = current->GetSuperClass();
}
DCHECK(current != nullptr);
boundaries.push_back(current);
// Check if we have an interface defined in the DEX files being compiled, direclty
// inheriting `destination`.
int32_t iftable_count = source->GetIfTableCount();
ObjPtr<mirror::IfTable> iftable = source->GetIfTable();
for (int32_t i = 0; i < iftable_count; ++i) {
mirror::Class* itf = iftable->GetInterface(i);
if (!IsInClassPath(itf)) {
for (size_t j = 0; j < itf->NumDirectInterfaces(); ++j) {
ObjPtr<mirror::Class> direct = mirror::Class::GetDirectInterface(thread, itf, j);
if (direct == destination) {
return nullptr;
} else if (IsInClassPath(direct)) {
boundaries.push_back(direct);
}
}
}
}
// Find a boundary making `source` inherit from `destination`. We must find one.
for (const ObjPtr<mirror::Class>& boundary : boundaries) {
if (destination->IsAssignableFrom(boundary)) {
return boundary.Ptr();
}
}
LOG(FATAL) << "Should have found a classpath boundary";
UNREACHABLE();
}
void VerifierDeps::AddAssignability(const DexFile& dex_file,
mirror::Class* destination,
mirror::Class* source,
bool is_strict,
bool is_assignable) {
// Test that the method is only called on reference types.
// Note that concurrent verification of `destination` and `source` may have
// set their status to erroneous. However, the tests performed below rely
// merely on no issues with linking (valid access flags, superclass and
// implemented interfaces). If the class at any point reached the IsResolved
// status, the requirement holds. This is guaranteed by RegTypeCache::ResolveClass.
DCHECK(destination != nullptr);
DCHECK(source != nullptr);
if (destination->IsPrimitive() || source->IsPrimitive()) {
// Primitive types are trivially non-assignable to anything else.
// We do not need to record trivial assignability, as it will
// not change across releases.
return;
}
if (source->IsObjectClass() && !is_assignable) {
// j.l.Object is trivially non-assignable to other types, don't
// record it.
return;
}
if (destination == source ||
destination->IsObjectClass() ||
(!is_strict && destination->IsInterface())) {
// Cases when `destination` is trivially assignable from `source`.
DCHECK(is_assignable);
return;
}
if (destination->IsArrayClass() && source->IsArrayClass()) {
// Both types are arrays. Break down to component types and add recursively.
// This helps filter out destinations from compiled DEX files (see below)
// and deduplicate entries with the same canonical component type.
mirror::Class* destination_component = destination->GetComponentType();
mirror::Class* source_component = source->GetComponentType();
// Only perform the optimization if both types are resolved which guarantees
// that they linked successfully, as required at the top of this method.
if (destination_component->IsResolved() && source_component->IsResolved()) {
AddAssignability(dex_file,
destination_component,
source_component,
/* is_strict */ true,
is_assignable);
return;
}
} else {
// We only do this check for non-array types, as arrays might have erroneous
// component types which makes the IsAssignableFrom check unreliable.
DCHECK_EQ(is_assignable, destination->IsAssignableFrom(source));
}
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a DEX file which is not being compiled.
return;
}
if (!IsInClassPath(destination) && !IsInClassPath(source)) {
// Both `destination` and `source` are defined in the compiled DEX files.
// No need to record a dependency.
return;
}
if (!IsInClassPath(source)) {
if (!destination->IsInterface() && !source->IsInterface()) {
// Find the super class at the classpath boundary. Only that class
// can change the assignability.
do {
source = source->GetSuperClass();
} while (!IsInClassPath(source));
// If that class is the actual destination, no need to record it.
if (source == destination) {
return;
}
} else if (is_assignable) {
source = FindOneClassPathBoundaryForInterface(destination, source);
if (source == nullptr) {
// There was no classpath boundary, no need to record.
return;
}
DCHECK(IsInClassPath(source));
}
}
// Get string IDs for both descriptors and store in the appropriate set.
dex::StringIndex destination_id = GetClassDescriptorStringId(dex_file, destination);
dex::StringIndex source_id = GetClassDescriptorStringId(dex_file, source);
if (is_assignable) {
dex_deps->assignable_types_.emplace(TypeAssignability(destination_id, source_id));
} else {
dex_deps->unassignable_types_.emplace(TypeAssignability(destination_id, source_id));
}
}
void VerifierDeps::MaybeRecordVerificationStatus(const DexFile& dex_file,
dex::TypeIndex type_idx,
FailureKind failure_kind) {
if (failure_kind == FailureKind::kNoFailure) {
// We only record classes that did not fully verify at compile time.
return;
}
VerifierDeps* thread_deps = GetThreadLocalVerifierDeps();
if (thread_deps != nullptr) {
DexFileDeps* dex_deps = thread_deps->GetDexFileDeps(dex_file);
dex_deps->unverified_classes_.insert(type_idx);
}
}
void VerifierDeps::MaybeRecordClassResolution(const DexFile& dex_file,
dex::TypeIndex type_idx,
mirror::Class* klass) {
VerifierDeps* thread_deps = GetThreadLocalVerifierDeps();
if (thread_deps != nullptr) {
thread_deps->AddClassResolution(dex_file, type_idx, klass);
}
}
void VerifierDeps::MaybeRecordFieldResolution(const DexFile& dex_file,
uint32_t field_idx,
ArtField* field) {
VerifierDeps* thread_deps = GetThreadLocalVerifierDeps();
if (thread_deps != nullptr) {
thread_deps->AddFieldResolution(dex_file, field_idx, field);
}
}
void VerifierDeps::MaybeRecordMethodResolution(const DexFile& dex_file,
uint32_t method_idx,
ArtMethod* method) {
VerifierDeps* thread_deps = GetThreadLocalVerifierDeps();
if (thread_deps != nullptr) {
thread_deps->AddMethodResolution(dex_file, method_idx, method);
}
}
void VerifierDeps::MaybeRecordAssignability(const DexFile& dex_file,
mirror::Class* destination,
mirror::Class* source,
bool is_strict,
bool is_assignable) {
VerifierDeps* thread_deps = GetThreadLocalVerifierDeps();
if (thread_deps != nullptr) {
thread_deps->AddAssignability(dex_file, destination, source, is_strict, is_assignable);
}
}
namespace {
static inline uint32_t DecodeUint32WithOverflowCheck(const uint8_t** in, const uint8_t* end) {
CHECK_LT(*in, end);
return DecodeUnsignedLeb128(in);
}
template<typename T> inline uint32_t Encode(T in);
template<> inline uint32_t Encode<uint16_t>(uint16_t in) {
return in;
}
template<> inline uint32_t Encode<uint32_t>(uint32_t in) {
return in;
}
template<> inline uint32_t Encode<dex::TypeIndex>(dex::TypeIndex in) {
return in.index_;
}
template<> inline uint32_t Encode<dex::StringIndex>(dex::StringIndex in) {
return in.index_;
}
template<typename T> inline T Decode(uint32_t in);
template<> inline uint16_t Decode<uint16_t>(uint32_t in) {
return dchecked_integral_cast<uint16_t>(in);
}
template<> inline uint32_t Decode<uint32_t>(uint32_t in) {
return in;
}
template<> inline dex::TypeIndex Decode<dex::TypeIndex>(uint32_t in) {
return dex::TypeIndex(in);
}
template<> inline dex::StringIndex Decode<dex::StringIndex>(uint32_t in) {
return dex::StringIndex(in);
}
// TODO: Clean this up, if we use a template arg here it confuses the compiler.
static inline void EncodeTuple(std::vector<uint8_t>* out, const dex::TypeIndex& t) {
EncodeUnsignedLeb128(out, Encode(t));
}
// TODO: Clean this up, if we use a template arg here it confuses the compiler.
static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, dex::TypeIndex* t) {
*t = Decode<dex::TypeIndex>(DecodeUint32WithOverflowCheck(in, end));
}
template<typename T1, typename T2>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2>& t) {
EncodeUnsignedLeb128(out, Encode(std::get<0>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<1>(t)));
}
template<typename T1, typename T2>
static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2>* t) {
T1 v1 = Decode<T1>(DecodeUint32WithOverflowCheck(in, end));
T2 v2 = Decode<T2>(DecodeUint32WithOverflowCheck(in, end));
*t = std::make_tuple(v1, v2);
}
template<typename T1, typename T2, typename T3>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2, T3>& t) {
EncodeUnsignedLeb128(out, Encode(std::get<0>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<1>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<2>(t)));
}
template<typename T1, typename T2, typename T3>
static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2, T3>* t) {
T1 v1 = Decode<T1>(DecodeUint32WithOverflowCheck(in, end));
T2 v2 = Decode<T2>(DecodeUint32WithOverflowCheck(in, end));
T3 v3 = Decode<T3>(DecodeUint32WithOverflowCheck(in, end));
*t = std::make_tuple(v1, v2, v3);
}
template<typename T>
static inline void EncodeSet(std::vector<uint8_t>* out, const std::set<T>& set) {
EncodeUnsignedLeb128(out, set.size());
for (const T& entry : set) {
EncodeTuple(out, entry);
}
}
template <typename T>
static inline void EncodeUint16Vector(std::vector<uint8_t>* out,
const std::vector<T>& vector) {
EncodeUnsignedLeb128(out, vector.size());
for (const T& entry : vector) {
EncodeUnsignedLeb128(out, Encode(entry));
}
}
template<typename T>
static inline void DecodeSet(const uint8_t** in, const uint8_t* end, std::set<T>* set) {
DCHECK(set->empty());
size_t num_entries = DecodeUint32WithOverflowCheck(in, end);
for (size_t i = 0; i < num_entries; ++i) {
T tuple;
DecodeTuple(in, end, &tuple);
set->emplace(tuple);
}
}
template<typename T>
static inline void DecodeUint16Vector(const uint8_t** in,
const uint8_t* end,
std::vector<T>* vector) {
DCHECK(vector->empty());
size_t num_entries = DecodeUint32WithOverflowCheck(in, end);
vector->reserve(num_entries);
for (size_t i = 0; i < num_entries; ++i) {
vector->push_back(
Decode<T>(dchecked_integral_cast<uint16_t>(DecodeUint32WithOverflowCheck(in, end))));
}
}
static inline void EncodeStringVector(std::vector<uint8_t>* out,
const std::vector<std::string>& strings) {
EncodeUnsignedLeb128(out, strings.size());
for (const std::string& str : strings) {
const uint8_t* data = reinterpret_cast<const uint8_t*>(str.c_str());
size_t length = str.length() + 1;
out->insert(out->end(), data, data + length);
DCHECK_EQ(0u, out->back());
}
}
static inline void DecodeStringVector(const uint8_t** in,
const uint8_t* end,
std::vector<std::string>* strings) {
DCHECK(strings->empty());
size_t num_strings = DecodeUint32WithOverflowCheck(in, end);
strings->reserve(num_strings);
for (size_t i = 0; i < num_strings; ++i) {
CHECK_LT(*in, end);
const char* string_start = reinterpret_cast<const char*>(*in);
strings->emplace_back(std::string(string_start));
*in += strings->back().length() + 1;
}
}
} // namespace
void VerifierDeps::Encode(const std::vector<const DexFile*>& dex_files,
std::vector<uint8_t>* buffer) const {
for (const DexFile* dex_file : dex_files) {
const DexFileDeps& deps = *GetDexFileDeps(*dex_file);
EncodeStringVector(buffer, deps.strings_);
EncodeSet(buffer, deps.assignable_types_);
EncodeSet(buffer, deps.unassignable_types_);
EncodeSet(buffer, deps.classes_);
EncodeSet(buffer, deps.fields_);
EncodeSet(buffer, deps.methods_);
EncodeSet(buffer, deps.unverified_classes_);
}
}
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files,
ArrayRef<const uint8_t> data)
: VerifierDeps(dex_files, /*output_only*/ false) {
if (data.empty()) {
// Return eagerly, as the first thing we expect from VerifierDeps data is
// the number of created strings, even if there is no dependency.
// Currently, only the boot image does not have any VerifierDeps data.
return;
}
const uint8_t* data_start = data.data();
const uint8_t* data_end = data_start + data.size();
for (const DexFile* dex_file : dex_files) {
DexFileDeps* deps = GetDexFileDeps(*dex_file);
DecodeStringVector(&data_start, data_end, &deps->strings_);
DecodeSet(&data_start, data_end, &deps->assignable_types_);
DecodeSet(&data_start, data_end, &deps->unassignable_types_);
DecodeSet(&data_start, data_end, &deps->classes_);
DecodeSet(&data_start, data_end, &deps->fields_);
DecodeSet(&data_start, data_end, &deps->methods_);
DecodeSet(&data_start, data_end, &deps->unverified_classes_);
}
CHECK_LE(data_start, data_end);
}
bool VerifierDeps::Equals(const VerifierDeps& rhs) const {
if (dex_deps_.size() != rhs.dex_deps_.size()) {
return false;
}
auto lhs_it = dex_deps_.begin();
auto rhs_it = rhs.dex_deps_.begin();
for (; (lhs_it != dex_deps_.end()) && (rhs_it != rhs.dex_deps_.end()); lhs_it++, rhs_it++) {
const DexFile* lhs_dex_file = lhs_it->first;
const DexFile* rhs_dex_file = rhs_it->first;
if (lhs_dex_file != rhs_dex_file) {
return false;
}
DexFileDeps* lhs_deps = lhs_it->second.get();
DexFileDeps* rhs_deps = rhs_it->second.get();
if (!lhs_deps->Equals(*rhs_deps)) {
return false;
}
}
DCHECK((lhs_it == dex_deps_.end()) && (rhs_it == rhs.dex_deps_.end()));
return true;
}
bool VerifierDeps::DexFileDeps::Equals(const VerifierDeps::DexFileDeps& rhs) const {
return (strings_ == rhs.strings_) &&
(assignable_types_ == rhs.assignable_types_) &&
(unassignable_types_ == rhs.unassignable_types_) &&
(classes_ == rhs.classes_) &&
(fields_ == rhs.fields_) &&
(methods_ == rhs.methods_) &&
(unverified_classes_ == rhs.unverified_classes_);
}
void VerifierDeps::Dump(VariableIndentationOutputStream* vios) const {
for (const auto& dep : dex_deps_) {
const DexFile& dex_file = *dep.first;
vios->Stream()
<< "Dependencies of "
<< dex_file.GetLocation()
<< ":\n";
ScopedIndentation indent(vios);
for (const std::string& str : dep.second->strings_) {
vios->Stream() << "Extra string: " << str << "\n";
}
for (const TypeAssignability& entry : dep.second->assignable_types_) {
vios->Stream()
<< GetStringFromId(dex_file, entry.GetSource())
<< " must be assignable to "
<< GetStringFromId(dex_file, entry.GetDestination())
<< "\n";
}
for (const TypeAssignability& entry : dep.second->unassignable_types_) {
vios->Stream()
<< GetStringFromId(dex_file, entry.GetSource())
<< " must not be assignable to "
<< GetStringFromId(dex_file, entry.GetDestination())
<< "\n";
}
for (const ClassResolution& entry : dep.second->classes_) {
vios->Stream()
<< dex_file.StringByTypeIdx(entry.GetDexTypeIndex())
<< (entry.IsResolved() ? " must be resolved " : "must not be resolved ")
<< " with access flags " << std::hex << entry.GetAccessFlags() << std::dec
<< "\n";
}
for (const FieldResolution& entry : dep.second->fields_) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(entry.GetDexFieldIndex());
vios->Stream()
<< dex_file.GetFieldDeclaringClassDescriptor(field_id) << "->"
<< dex_file.GetFieldName(field_id) << ":"
<< dex_file.GetFieldTypeDescriptor(field_id)
<< " is expected to be ";
if (!entry.IsResolved()) {
vios->Stream() << "unresolved\n";
} else {
vios->Stream()
<< "in class "
<< GetStringFromId(dex_file, entry.GetDeclaringClassIndex())
<< ", and have the access flags " << std::hex << entry.GetAccessFlags() << std::dec
<< "\n";
}
}
for (const MethodResolution& method : dep.second->methods_) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(method.GetDexMethodIndex());
vios->Stream()
<< dex_file.GetMethodDeclaringClassDescriptor(method_id) << "->"
<< dex_file.GetMethodName(method_id)
<< dex_file.GetMethodSignature(method_id).ToString()
<< " is expected to be ";
if (!method.IsResolved()) {
vios->Stream() << "unresolved\n";
} else {
vios->Stream()
<< "in class "
<< GetStringFromId(dex_file, method.GetDeclaringClassIndex())
<< ", have the access flags " << std::hex << method.GetAccessFlags() << std::dec
<< "\n";
}
}
for (dex::TypeIndex type_index : dep.second->unverified_classes_) {
vios->Stream()
<< dex_file.StringByTypeIdx(type_index)
<< " is expected to be verified at runtime\n";
}
}
}
bool VerifierDeps::ValidateDependencies(Handle<mirror::ClassLoader> class_loader,
Thread* self) const {
for (const auto& entry : dex_deps_) {
if (!VerifyDexFile(class_loader, *entry.first, *entry.second, self)) {
return false;
}
}
return true;
}
// TODO: share that helper with other parts of the compiler that have
// the same lookup pattern.
static mirror::Class* FindClassAndClearException(ClassLinker* class_linker,
Thread* self,
const char* name,
Handle<mirror::ClassLoader> class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Class* result = class_linker->FindClass(self, name, class_loader);
if (result == nullptr) {
DCHECK(self->IsExceptionPending());
self->ClearException();
}
return result;
}
bool VerifierDeps::VerifyAssignability(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const std::set<TypeAssignability>& assignables,
bool expected_assignability,
Thread* self) const {
StackHandleScope<2> hs(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::Class> source(hs.NewHandle<mirror::Class>(nullptr));
MutableHandle<mirror::Class> destination(hs.NewHandle<mirror::Class>(nullptr));
for (const auto& entry : assignables) {
const std::string& destination_desc = GetStringFromId(dex_file, entry.GetDestination());
destination.Assign(
FindClassAndClearException(class_linker, self, destination_desc.c_str(), class_loader));
const std::string& source_desc = GetStringFromId(dex_file, entry.GetSource());
source.Assign(
FindClassAndClearException(class_linker, self, source_desc.c_str(), class_loader));
if (destination == nullptr) {
LOG(INFO) << "VerifiersDeps: Could not resolve class " << destination_desc;
return false;
}
if (source == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve class " << source_desc;
return false;
}
DCHECK(destination->IsResolved() && source->IsResolved());
if (destination->IsAssignableFrom(source.Get()) != expected_assignability) {
LOG(INFO) << "VerifierDeps: Class "
<< destination_desc
<< (expected_assignability ? " not " : " ")
<< "assignable from "
<< source_desc;
return false;
}
}
return true;
}
bool VerifierDeps::VerifyClasses(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const std::set<ClassResolution>& classes,
Thread* self) const {
StackHandleScope<1> hs(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr));
for (const auto& entry : classes) {
const char* descriptor = dex_file.StringByTypeIdx(entry.GetDexTypeIndex());
cls.Assign(FindClassAndClearException(class_linker, self, descriptor, class_loader));
if (entry.IsResolved()) {
if (cls == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve class " << descriptor;
return false;
} else if (entry.GetAccessFlags() != GetAccessFlags(cls.Get())) {
LOG(INFO) << "VerifierDeps: Unexpected access flags on class "
<< descriptor
<< std::hex
<< " (expected="
<< entry.GetAccessFlags()
<< ", actual="
<< GetAccessFlags(cls.Get()) << ")"
<< std::dec;
return false;
}
} else if (cls != nullptr) {
LOG(INFO) << "VerifierDeps: Unexpected successful resolution of class " << descriptor;
return false;
}
}
return true;
}
static std::string GetFieldDescription(const DexFile& dex_file, uint32_t index) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(index);
return std::string(dex_file.GetFieldDeclaringClassDescriptor(field_id))
+ "->"
+ dex_file.GetFieldName(field_id)
+ ":"
+ dex_file.GetFieldTypeDescriptor(field_id);
}
bool VerifierDeps::VerifyFields(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const std::set<FieldResolution>& fields,
Thread* self) const {
// Check recorded fields are resolved the same way, have the same recorded class,
// and have the same recorded flags.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
for (const auto& entry : fields) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(entry.GetDexFieldIndex());
StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
StringPiece type(dex_file.StringDataByIdx(dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
// Only use field_id.class_idx_ when the entry is unresolved, which is rare.
// Otherwise, we might end up resolving an application class, which is expensive.
std::string expected_decl_klass = entry.IsResolved()
? GetStringFromId(dex_file, entry.GetDeclaringClassIndex())
: dex_file.StringByTypeIdx(field_id.class_idx_);
mirror::Class* cls = FindClassAndClearException(
class_linker, self, expected_decl_klass.c_str(), class_loader);
if (cls == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve class " << expected_decl_klass;
return false;
}
DCHECK(cls->IsResolved());
ArtField* field = mirror::Class::FindField(self, cls, name, type);
if (entry.IsResolved()) {
std::string temp;
if (field == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve field "
<< GetFieldDescription(dex_file, entry.GetDexFieldIndex());
return false;
} else if (expected_decl_klass != field->GetDeclaringClass()->GetDescriptor(&temp)) {
LOG(INFO) << "VerifierDeps: Unexpected declaring class for field resolution "
<< GetFieldDescription(dex_file, entry.GetDexFieldIndex())
<< " (expected=" << expected_decl_klass
<< ", actual=" << field->GetDeclaringClass()->GetDescriptor(&temp) << ")";
return false;
} else if (entry.GetAccessFlags() != GetAccessFlags(field)) {
LOG(INFO) << "VerifierDeps: Unexpected access flags for resolved field "
<< GetFieldDescription(dex_file, entry.GetDexFieldIndex())
<< std::hex << " (expected=" << entry.GetAccessFlags()
<< ", actual=" << GetAccessFlags(field) << ")" << std::dec;
return false;
}
} else if (field != nullptr) {
LOG(INFO) << "VerifierDeps: Unexpected successful resolution of field "
<< GetFieldDescription(dex_file, entry.GetDexFieldIndex());
return false;
}
}
return true;
}
static std::string GetMethodDescription(const DexFile& dex_file, uint32_t index) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(index);
return std::string(dex_file.GetMethodDeclaringClassDescriptor(method_id))
+ "->"
+ dex_file.GetMethodName(method_id)
+ dex_file.GetMethodSignature(method_id).ToString();
}
bool VerifierDeps::VerifyMethods(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const std::set<MethodResolution>& methods,
Thread* self) const {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
PointerSize pointer_size = class_linker->GetImagePointerSize();
for (const auto& entry : methods) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(entry.GetDexMethodIndex());
const char* name = dex_file.GetMethodName(method_id);
const Signature signature = dex_file.GetMethodSignature(method_id);
// Only use method_id.class_idx_ when the entry is unresolved, which is rare.
// Otherwise, we might end up resolving an application class, which is expensive.
std::string expected_decl_klass = entry.IsResolved()
? GetStringFromId(dex_file, entry.GetDeclaringClassIndex())
: dex_file.StringByTypeIdx(method_id.class_idx_);
mirror::Class* cls = FindClassAndClearException(
class_linker, self, expected_decl_klass.c_str(), class_loader);
if (cls == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve class " << expected_decl_klass;
return false;
}
DCHECK(cls->IsResolved());
ArtMethod* method = nullptr;
if (cls->IsInterface()) {
method = cls->FindInterfaceMethod(name, signature, pointer_size);
} else {
method = cls->FindClassMethod(name, signature, pointer_size);
}
if (entry.IsResolved()) {
std::string temp;
if (method == nullptr) {
LOG(INFO) << "VerifierDeps: Could not resolve method "
<< GetMethodDescription(dex_file, entry.GetDexMethodIndex());
return false;
} else if (expected_decl_klass != method->GetDeclaringClass()->GetDescriptor(&temp)) {
LOG(INFO) << "VerifierDeps: Unexpected declaring class for method resolution "
<< GetMethodDescription(dex_file, entry.GetDexMethodIndex())
<< " (expected="
<< expected_decl_klass
<< ", actual="
<< method->GetDeclaringClass()->GetDescriptor(&temp)
<< ")";
return false;
} else if (entry.GetAccessFlags() != GetAccessFlags(method)) {
LOG(INFO) << "VerifierDeps: Unexpected access flags for resolved method resolution "
<< GetMethodDescription(dex_file, entry.GetDexMethodIndex())
<< std::hex
<< " (expected="
<< entry.GetAccessFlags()
<< ", actual="
<< GetAccessFlags(method) << ")"
<< std::dec;
return false;
}
} else if (method != nullptr) {
LOG(INFO) << "VerifierDeps: Unexpected successful resolution of method "
<< GetMethodDescription(dex_file, entry.GetDexMethodIndex());
return false;
}
}
return true;
}
bool VerifierDeps::VerifyDexFile(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const DexFileDeps& deps,
Thread* self) const {
bool result = VerifyAssignability(
class_loader, dex_file, deps.assignable_types_, /* expected_assignability */ true, self);
result = result && VerifyAssignability(
class_loader, dex_file, deps.unassignable_types_, /* expected_assignability */ false, self);
result = result && VerifyClasses(class_loader, dex_file, deps.classes_, self);
result = result && VerifyFields(class_loader, dex_file, deps.fields_, self);
result = result && VerifyMethods(class_loader, dex_file, deps.methods_, self);
return result;
}
} // namespace verifier
} // namespace art