| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ssa_builder.h" |
| |
| #include "nodes.h" |
| #include "reference_type_propagation.h" |
| #include "ssa_phi_elimination.h" |
| |
| namespace art { |
| |
| void SsaBuilder::SetLoopHeaderPhiInputs() { |
| for (size_t i = loop_headers_.size(); i > 0; --i) { |
| HBasicBlock* block = loop_headers_[i - 1]; |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| size_t vreg = phi->GetRegNumber(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| HInstruction* value = ValueOfLocal(predecessor, vreg); |
| if (value == nullptr) { |
| // Vreg is undefined at this predecessor. Mark it dead and leave with |
| // fewer inputs than predecessors. SsaChecker will fail if not removed. |
| phi->SetDead(); |
| break; |
| } else { |
| phi->AddInput(value); |
| } |
| } |
| } |
| } |
| } |
| |
| void SsaBuilder::FixNullConstantType() { |
| // The order doesn't matter here. |
| for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { |
| for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* equality_instr = it.Current(); |
| if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { |
| continue; |
| } |
| HInstruction* left = equality_instr->InputAt(0); |
| HInstruction* right = equality_instr->InputAt(1); |
| HInstruction* int_operand = nullptr; |
| |
| if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) { |
| int_operand = right; |
| } else if ((right->GetType() == Primitive::kPrimNot) |
| && (left->GetType() == Primitive::kPrimInt)) { |
| int_operand = left; |
| } else { |
| continue; |
| } |
| |
| // If we got here, we are comparing against a reference and the int constant |
| // should be replaced with a null constant. |
| // Both type propagation and redundant phi elimination ensure `int_operand` |
| // can only be the 0 constant. |
| DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName(); |
| DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); |
| equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0); |
| } |
| } |
| } |
| |
| void SsaBuilder::EquivalentPhisCleanup() { |
| // The order doesn't matter here. |
| for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { |
| for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| HPhi* next = phi->GetNextEquivalentPhiWithSameType(); |
| if (next != nullptr) { |
| // Make sure we do not replace a live phi with a dead phi. A live phi |
| // has been handled by the type propagation phase, unlike a dead phi. |
| if (next->IsLive()) { |
| phi->ReplaceWith(next); |
| phi->SetDead(); |
| } else { |
| next->ReplaceWith(phi); |
| } |
| DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) |
| << "More then one phi equivalent with type " << phi->GetType() |
| << " found for phi" << phi->GetId(); |
| } |
| } |
| } |
| } |
| |
| void SsaBuilder::FixEnvironmentPhis() { |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { |
| HPhi* phi = it_phis.Current()->AsPhi(); |
| // If the phi is not dead, or has no environment uses, there is nothing to do. |
| if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; |
| HInstruction* next = phi->GetNext(); |
| if (!phi->IsVRegEquivalentOf(next)) continue; |
| if (next->AsPhi()->IsDead()) { |
| // If the phi equivalent is dead, check if there is another one. |
| next = next->GetNext(); |
| if (!phi->IsVRegEquivalentOf(next)) continue; |
| // There can be at most two phi equivalents. |
| DCHECK(!phi->IsVRegEquivalentOf(next->GetNext())); |
| if (next->AsPhi()->IsDead()) continue; |
| } |
| // We found a live phi equivalent. Update the environment uses of `phi` with it. |
| phi->ReplaceWith(next); |
| } |
| } |
| } |
| |
| static void AddDependentInstructionsToWorklist(HInstruction* instruction, |
| ArenaVector<HPhi*>* worklist) { |
| // If `instruction` is a dead phi, type conflict was just identified. All its |
| // live phi users, and transitively users of those users, therefore need to be |
| // marked dead/conflicting too, so we add them to the worklist. Otherwise we |
| // add users whose type does not match and needs to be updated. |
| bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead(); |
| for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { |
| HInstruction* user = it.Current()->GetUser(); |
| if (user->IsPhi() && user->AsPhi()->IsLive()) { |
| if (add_all_live_phis || user->GetType() != instruction->GetType()) { |
| worklist->push_back(user->AsPhi()); |
| } |
| } |
| } |
| } |
| |
| // Find a candidate primitive type for `phi` by merging the type of its inputs. |
| // Return false if conflict is identified. |
| static bool TypePhiFromInputs(HPhi* phi) { |
| Primitive::Type common_type = phi->GetType(); |
| |
| for (HInputIterator it(phi); !it.Done(); it.Advance()) { |
| HInstruction* input = it.Current(); |
| if (input->IsPhi() && input->AsPhi()->IsDead()) { |
| // Phis are constructed live so if an input is a dead phi, it must have |
| // been made dead due to type conflict. Mark this phi conflicting too. |
| return false; |
| } |
| |
| Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); |
| if (common_type == input_type) { |
| // No change in type. |
| } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) { |
| // Types are of different sizes, e.g. int vs. long. Must be a conflict. |
| return false; |
| } else if (Primitive::IsIntegralType(common_type)) { |
| // Previous inputs were integral, this one is not but is of the same size. |
| // This does not imply conflict since some bytecode instruction types are |
| // ambiguous. TypeInputsOfPhi will either type them or detect a conflict. |
| DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot); |
| common_type = input_type; |
| } else if (Primitive::IsIntegralType(input_type)) { |
| // Input is integral, common type is not. Same as in the previous case, if |
| // there is a conflict, it will be detected during TypeInputsOfPhi. |
| DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot); |
| } else { |
| // Combining float and reference types. Clearly a conflict. |
| DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) || |
| (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat)); |
| return false; |
| } |
| } |
| |
| // We have found a candidate type for the phi. Set it and return true. We may |
| // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi. |
| phi->SetType(common_type); |
| return true; |
| } |
| |
| // Replace inputs of `phi` to match its type. Return false if conflict is identified. |
| bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) { |
| Primitive::Type common_type = phi->GetType(); |
| if (common_type == Primitive::kPrimVoid || Primitive::IsIntegralType(common_type)) { |
| // Phi either contains only other untyped phis (common_type == kPrimVoid), |
| // or `common_type` is integral and we do not need to retype ambiguous inputs |
| // because they are always constructed with the integral type candidate. |
| if (kIsDebugBuild) { |
| for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { |
| HInstruction* input = phi->InputAt(i); |
| if (common_type == Primitive::kPrimVoid) { |
| DCHECK(input->IsPhi() && input->GetType() == Primitive::kPrimVoid); |
| } else { |
| DCHECK((input->IsPhi() && input->GetType() == Primitive::kPrimVoid) || |
| HPhi::ToPhiType(input->GetType()) == common_type); |
| } |
| } |
| } |
| // Inputs did not need to be replaced, hence no conflict. Report success. |
| return true; |
| } else { |
| DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type)); |
| for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { |
| HInstruction* input = phi->InputAt(i); |
| if (input->GetType() != common_type) { |
| // Input type does not match phi's type. Try to retype the input or |
| // generate a suitably typed equivalent. |
| HInstruction* equivalent = (common_type == Primitive::kPrimNot) |
| ? GetReferenceTypeEquivalent(input) |
| : GetFloatOrDoubleEquivalent(input, common_type); |
| if (equivalent == nullptr) { |
| // Input could not be typed. Report conflict. |
| return false; |
| } |
| // Make sure the input did not change its type and we do not need to |
| // update its users. |
| DCHECK_NE(input, equivalent); |
| |
| phi->ReplaceInput(equivalent, i); |
| if (equivalent->IsPhi()) { |
| worklist->push_back(equivalent->AsPhi()); |
| } |
| } |
| } |
| // All inputs either matched the type of the phi or we successfully replaced |
| // them with a suitable equivalent. Report success. |
| return true; |
| } |
| } |
| |
| // Attempt to set the primitive type of `phi` to match its inputs. Return whether |
| // it was changed by the algorithm or not. |
| bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) { |
| DCHECK(phi->IsLive()); |
| Primitive::Type original_type = phi->GetType(); |
| |
| // Try to type the phi in two stages: |
| // (1) find a candidate type for the phi by merging types of all its inputs, |
| // (2) try to type the phi's inputs to that candidate type. |
| // Either of these stages may detect a type conflict and fail, in which case |
| // we immediately abort. |
| if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) { |
| // Conflict detected. Mark the phi dead and return true because it changed. |
| phi->SetDead(); |
| return true; |
| } |
| |
| // Return true if the type of the phi has changed. |
| return phi->GetType() != original_type; |
| } |
| |
| void SsaBuilder::RunPrimitiveTypePropagation() { |
| ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); |
| |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsLoopHeader()) { |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HPhi* phi = phi_it.Current()->AsPhi(); |
| if (phi->IsLive()) { |
| worklist.push_back(phi); |
| } |
| } |
| } else { |
| for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| // Eagerly compute the type of the phi, for quicker convergence. Note |
| // that we don't need to add users to the worklist because we are |
| // doing a reverse post-order visit, therefore either the phi users are |
| // non-loop phi and will be visited later in the visit, or are loop-phis, |
| // and they are already in the work list. |
| HPhi* phi = phi_it.Current()->AsPhi(); |
| if (phi->IsLive()) { |
| UpdatePrimitiveType(phi, &worklist); |
| } |
| } |
| } |
| } |
| |
| ProcessPrimitiveTypePropagationWorklist(&worklist); |
| EquivalentPhisCleanup(); |
| } |
| |
| void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) { |
| // Process worklist |
| while (!worklist->empty()) { |
| HPhi* phi = worklist->back(); |
| worklist->pop_back(); |
| // The phi could have been made dead as a result of conflicts while in the |
| // worklist. If it is now dead, there is no point in updating its type. |
| if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) { |
| AddDependentInstructionsToWorklist(phi, worklist); |
| } |
| } |
| } |
| |
| static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { |
| Primitive::Type type = aget->GetType(); |
| DCHECK(Primitive::IsIntOrLongType(type)); |
| HArrayGet* next = aget->GetNext()->AsArrayGet(); |
| return (next != nullptr && next->IsEquivalentOf(aget)) ? next : nullptr; |
| } |
| |
| static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { |
| Primitive::Type type = aget->GetType(); |
| DCHECK(Primitive::IsIntOrLongType(type)); |
| DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr); |
| |
| HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet( |
| aget->GetArray(), |
| aget->GetIndex(), |
| type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble, |
| aget->GetDexPc()); |
| aget->GetBlock()->InsertInstructionAfter(equivalent, aget); |
| return equivalent; |
| } |
| |
| static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| ReferenceTypeInfo array_type = array->GetReferenceTypeInfo(); |
| DCHECK(array_type.IsPrimitiveArrayClass()); |
| return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType(); |
| } |
| |
| bool SsaBuilder::FixAmbiguousArrayOps() { |
| if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) { |
| return true; |
| } |
| |
| // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet |
| // uses (because they are untyped) and environment uses (if --debuggable). |
| // After resolving all ambiguous ArrayGets, we will re-run primitive type |
| // propagation on the Phis which need to be updated. |
| ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); |
| |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| for (HArrayGet* aget_int : ambiguous_agets_) { |
| HInstruction* array = aget_int->GetArray(); |
| if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { |
| // RTP did not type the input array. Bail. |
| return false; |
| } |
| |
| HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int); |
| Primitive::Type array_type = GetPrimitiveArrayComponentType(array); |
| DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type)); |
| |
| if (Primitive::IsIntOrLongType(array_type)) { |
| if (aget_float != nullptr) { |
| // There is a float/double equivalent. We must replace it and re-run |
| // primitive type propagation on all dependent instructions. |
| aget_float->ReplaceWith(aget_int); |
| aget_float->GetBlock()->RemoveInstruction(aget_float); |
| AddDependentInstructionsToWorklist(aget_int, &worklist); |
| } |
| } else { |
| DCHECK(Primitive::IsFloatingPointType(array_type)); |
| if (aget_float == nullptr) { |
| // This is a float/double ArrayGet but there were no typed uses which |
| // would create the typed equivalent. Create it now. |
| aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int); |
| } |
| // Replace the original int/long instruction. Note that it may have phi |
| // uses, environment uses, as well as real uses (from untyped ArraySets). |
| // We need to re-run primitive type propagation on its dependent instructions. |
| aget_int->ReplaceWith(aget_float); |
| aget_int->GetBlock()->RemoveInstruction(aget_int); |
| AddDependentInstructionsToWorklist(aget_float, &worklist); |
| } |
| } |
| |
| // Set a flag stating that types of ArrayGets have been resolved. Requesting |
| // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet |
| // will fail from now on. |
| agets_fixed_ = true; |
| |
| for (HArraySet* aset : ambiguous_asets_) { |
| HInstruction* array = aset->GetArray(); |
| if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { |
| // RTP did not type the input array. Bail. |
| return false; |
| } |
| |
| HInstruction* value = aset->GetValue(); |
| Primitive::Type value_type = value->GetType(); |
| Primitive::Type array_type = GetPrimitiveArrayComponentType(array); |
| DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type)); |
| |
| if (Primitive::IsFloatingPointType(array_type)) { |
| if (!Primitive::IsFloatingPointType(value_type)) { |
| DCHECK(Primitive::IsIntegralType(value_type)); |
| // Array elements are floating-point but the value has not been replaced |
| // with its floating-point equivalent. The replacement must always |
| // succeed in code validated by the verifier. |
| HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type); |
| DCHECK(equivalent != nullptr); |
| aset->ReplaceInput(equivalent, /* input_index */ 2); |
| if (equivalent->IsPhi()) { |
| // Returned equivalent is a phi which may not have had its inputs |
| // replaced yet. We need to run primitive type propagation on it. |
| worklist.push_back(equivalent->AsPhi()); |
| } |
| } |
| } else { |
| // Array elements are integral and the value assigned to it initially |
| // was integral too. Nothing to do. |
| DCHECK(Primitive::IsIntegralType(array_type)); |
| DCHECK(Primitive::IsIntegralType(value_type)); |
| } |
| } |
| } |
| |
| if (!worklist.empty()) { |
| ProcessPrimitiveTypePropagationWorklist(&worklist); |
| EquivalentPhisCleanup(); |
| } |
| |
| return true; |
| } |
| |
| void SsaBuilder::RemoveRedundantUninitializedStrings() { |
| if (GetGraph()->IsDebuggable()) { |
| // Do not perform the optimization for consistency with the interpreter |
| // which always allocates an object for new-instance of String. |
| return; |
| } |
| |
| for (HNewInstance* new_instance : uninitialized_strings_) { |
| DCHECK(new_instance->IsStringAlloc()); |
| |
| // Replace NewInstance of String with NullConstant if not used prior to |
| // calling StringFactory. In case of deoptimization, the interpreter is |
| // expected to skip null check on the `this` argument of the StringFactory call. |
| if (!new_instance->HasNonEnvironmentUses()) { |
| new_instance->ReplaceWith(GetGraph()->GetNullConstant()); |
| new_instance->GetBlock()->RemoveInstruction(new_instance); |
| |
| // Remove LoadClass if not needed any more. |
| HLoadClass* load_class = new_instance->InputAt(0)->AsLoadClass(); |
| DCHECK(load_class != nullptr); |
| DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible"; |
| if (!load_class->HasUses()) { |
| load_class->GetBlock()->RemoveInstruction(load_class); |
| } |
| } |
| } |
| } |
| |
| GraphAnalysisResult SsaBuilder::BuildSsa() { |
| DCHECK(!GetGraph()->IsInSsaForm()); |
| |
| // 1) Visit in reverse post order. We need to have all predecessors of a block |
| // visited (with the exception of loops) in order to create the right environment |
| // for that block. For loops, we create phis whose inputs will be set in 2). |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| VisitBasicBlock(it.Current()); |
| } |
| |
| // 2) Set inputs of loop header phis. |
| SetLoopHeaderPhiInputs(); |
| |
| // 3) Propagate types of phis. At this point, phis are typed void in the general |
| // case, or float/double/reference if we created an equivalent phi. So we need |
| // to propagate the types across phis to give them a correct type. If a type |
| // conflict is detected in this stage, the phi is marked dead. |
| RunPrimitiveTypePropagation(); |
| |
| // 4) Now that the correct primitive types have been assigned, we can get rid |
| // of redundant phis. Note that we cannot do this phase before type propagation, |
| // otherwise we could get rid of phi equivalents, whose presence is a requirement |
| // for the type propagation phase. Note that this is to satisfy statement (a) |
| // of the SsaBuilder (see ssa_builder.h). |
| SsaRedundantPhiElimination(GetGraph()).Run(); |
| |
| // 5) Fix the type for null constants which are part of an equality comparison. |
| // We need to do this after redundant phi elimination, to ensure the only cases |
| // that we can see are reference comparison against 0. The redundant phi |
| // elimination ensures we do not see a phi taking two 0 constants in a HEqual |
| // or HNotEqual. |
| FixNullConstantType(); |
| |
| // 6) Compute type of reference type instructions. The pass assumes that |
| // NullConstant has been fixed up. |
| ReferenceTypePropagation(GetGraph(), handles_, /* is_first_run */ true).Run(); |
| |
| // 7) Step 1) duplicated ArrayGet instructions with ambiguous type (int/float |
| // or long/double) and marked ArraySets with ambiguous input type. Now that RTP |
| // computed the type of the array input, the ambiguity can be resolved and the |
| // correct equivalents kept. |
| if (!FixAmbiguousArrayOps()) { |
| return kAnalysisFailAmbiguousArrayOp; |
| } |
| |
| // 8) Mark dead phis. This will mark phis which are not used by instructions |
| // or other live phis. If compiling as debuggable code, phis will also be kept |
| // live if they have an environment use. |
| SsaDeadPhiElimination dead_phi_elimimation(GetGraph()); |
| dead_phi_elimimation.MarkDeadPhis(); |
| |
| // 9) Make sure environments use the right phi equivalent: a phi marked dead |
| // can have a phi equivalent that is not dead. In that case we have to replace |
| // it with the live equivalent because deoptimization and try/catch rely on |
| // environments containing values of all live vregs at that point. Note that |
| // there can be multiple phis for the same Dex register that are live |
| // (for example when merging constants), in which case it is okay for the |
| // environments to just reference one. |
| FixEnvironmentPhis(); |
| |
| // 10) Now that the right phis are used for the environments, we can eliminate |
| // phis we do not need. Regardless of the debuggable status, this phase is |
| /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well |
| // as for the code generation, which does not deal with phis of conflicting |
| // input types. |
| dead_phi_elimimation.EliminateDeadPhis(); |
| |
| // 11) Step 1) replaced uses of NewInstances of String with the results of |
| // their corresponding StringFactory calls. Unless the String objects are used |
| // before they are initialized, they can be replaced with NullConstant. |
| // Note that this optimization is valid only if unsimplified code does not use |
| // the uninitialized value because we assume execution can be deoptimized at |
| // any safepoint. We must therefore perform it before any other optimizations. |
| RemoveRedundantUninitializedStrings(); |
| |
| // 12) Clear locals. |
| for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); |
| !it.Done(); |
| it.Advance()) { |
| HInstruction* current = it.Current(); |
| if (current->IsLocal()) { |
| current->GetBlock()->RemoveInstruction(current); |
| } |
| } |
| |
| GetGraph()->SetInSsaForm(); |
| return kAnalysisSuccess; |
| } |
| |
| ArenaVector<HInstruction*>* SsaBuilder::GetLocalsFor(HBasicBlock* block) { |
| ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; |
| const size_t vregs = GetGraph()->GetNumberOfVRegs(); |
| if (locals->empty() && vregs != 0u) { |
| locals->resize(vregs, nullptr); |
| |
| if (block->IsCatchBlock()) { |
| ArenaAllocator* arena = GetGraph()->GetArena(); |
| // We record incoming inputs of catch phis at throwing instructions and |
| // must therefore eagerly create the phis. Phis for undefined vregs will |
| // be deleted when the first throwing instruction with the vreg undefined |
| // is encountered. Unused phis will be removed by dead phi analysis. |
| for (size_t i = 0; i < vregs; ++i) { |
| // No point in creating the catch phi if it is already undefined at |
| // the first throwing instruction. |
| HInstruction* current_local_value = (*current_locals_)[i]; |
| if (current_local_value != nullptr) { |
| HPhi* phi = new (arena) HPhi( |
| arena, |
| i, |
| 0, |
| current_local_value->GetType()); |
| block->AddPhi(phi); |
| (*locals)[i] = phi; |
| } |
| } |
| } |
| } |
| return locals; |
| } |
| |
| HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) { |
| ArenaVector<HInstruction*>* locals = GetLocalsFor(block); |
| return (*locals)[local]; |
| } |
| |
| void SsaBuilder::VisitBasicBlock(HBasicBlock* block) { |
| current_locals_ = GetLocalsFor(block); |
| |
| if (block->IsCatchBlock()) { |
| // Catch phis were already created and inputs collected from throwing sites. |
| if (kIsDebugBuild) { |
| // Make sure there was at least one throwing instruction which initialized |
| // locals (guaranteed by HGraphBuilder) and that all try blocks have been |
| // visited already (from HTryBoundary scoping and reverse post order). |
| bool throwing_instruction_found = false; |
| bool catch_block_visited = false; |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| HBasicBlock* current = it.Current(); |
| if (current == block) { |
| catch_block_visited = true; |
| } else if (current->IsTryBlock() && |
| current->GetTryCatchInformation()->GetTryEntry().HasExceptionHandler(*block)) { |
| DCHECK(!catch_block_visited) << "Catch block visited before its try block."; |
| throwing_instruction_found |= current->HasThrowingInstructions(); |
| } |
| } |
| DCHECK(throwing_instruction_found) << "No instructions throwing into a live catch block."; |
| } |
| } else if (block->IsLoopHeader()) { |
| // If the block is a loop header, we know we only have visited the pre header |
| // because we are visiting in reverse post order. We create phis for all initialized |
| // locals from the pre header. Their inputs will be populated at the end of |
| // the analysis. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local); |
| if (incoming != nullptr) { |
| HPhi* phi = new (GetGraph()->GetArena()) HPhi( |
| GetGraph()->GetArena(), |
| local, |
| 0, |
| incoming->GetType()); |
| block->AddPhi(phi); |
| (*current_locals_)[local] = phi; |
| } |
| } |
| // Save the loop header so that the last phase of the analysis knows which |
| // blocks need to be updated. |
| loop_headers_.push_back(block); |
| } else if (block->GetPredecessors().size() > 0) { |
| // All predecessors have already been visited because we are visiting in reverse post order. |
| // We merge the values of all locals, creating phis if those values differ. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| bool one_predecessor_has_no_value = false; |
| bool is_different = false; |
| HInstruction* value = ValueOfLocal(block->GetPredecessors()[0], local); |
| |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| HInstruction* current = ValueOfLocal(predecessor, local); |
| if (current == nullptr) { |
| one_predecessor_has_no_value = true; |
| break; |
| } else if (current != value) { |
| is_different = true; |
| } |
| } |
| |
| if (one_predecessor_has_no_value) { |
| // If one predecessor has no value for this local, we trust the verifier has |
| // successfully checked that there is a store dominating any read after this block. |
| continue; |
| } |
| |
| if (is_different) { |
| HInstruction* first_input = ValueOfLocal(block->GetPredecessors()[0], local); |
| HPhi* phi = new (GetGraph()->GetArena()) HPhi( |
| GetGraph()->GetArena(), |
| local, |
| block->GetPredecessors().size(), |
| first_input->GetType()); |
| for (size_t i = 0; i < block->GetPredecessors().size(); i++) { |
| HInstruction* pred_value = ValueOfLocal(block->GetPredecessors()[i], local); |
| phi->SetRawInputAt(i, pred_value); |
| } |
| block->AddPhi(phi); |
| value = phi; |
| } |
| (*current_locals_)[local] = value; |
| } |
| } |
| |
| // Visit all instructions. The instructions of interest are: |
| // - HLoadLocal: replace them with the current value of the local. |
| // - HStoreLocal: update current value of the local and remove the instruction. |
| // - Instructions that require an environment: populate their environment |
| // with the current values of the locals. |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| } |
| |
| /** |
| * Constants in the Dex format are not typed. So the builder types them as |
| * integers, but when doing the SSA form, we might realize the constant |
| * is used for floating point operations. We create a floating-point equivalent |
| * constant to make the operations correctly typed. |
| */ |
| HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { |
| // We place the floating point constant next to this constant. |
| HFloatConstant* result = constant->GetNext()->AsFloatConstant(); |
| if (result == nullptr) { |
| HGraph* graph = constant->GetBlock()->GetGraph(); |
| ArenaAllocator* allocator = graph->GetArena(); |
| result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue())); |
| constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); |
| graph->CacheFloatConstant(result); |
| } else { |
| // If there is already a constant with the expected type, we know it is |
| // the floating point equivalent of this constant. |
| DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); |
| } |
| return result; |
| } |
| |
| /** |
| * Wide constants in the Dex format are not typed. So the builder types them as |
| * longs, but when doing the SSA form, we might realize the constant |
| * is used for floating point operations. We create a floating-point equivalent |
| * constant to make the operations correctly typed. |
| */ |
| HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { |
| // We place the floating point constant next to this constant. |
| HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); |
| if (result == nullptr) { |
| HGraph* graph = constant->GetBlock()->GetGraph(); |
| ArenaAllocator* allocator = graph->GetArena(); |
| result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue())); |
| constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); |
| graph->CacheDoubleConstant(result); |
| } else { |
| // If there is already a constant with the expected type, we know it is |
| // the floating point equivalent of this constant. |
| DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); |
| } |
| return result; |
| } |
| |
| /** |
| * Because of Dex format, we might end up having the same phi being |
| * used for non floating point operations and floating point / reference operations. |
| * Because we want the graph to be correctly typed (and thereafter avoid moves between |
| * floating point registers and core registers), we need to create a copy of the |
| * phi with a floating point / reference type. |
| */ |
| HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { |
| DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one."; |
| |
| // We place the floating point /reference phi next to this phi. |
| HInstruction* next = phi->GetNext(); |
| if (next != nullptr |
| && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() |
| && next->GetType() != type) { |
| // Move to the next phi to see if it is the one we are looking for. |
| next = next->GetNext(); |
| } |
| |
| if (next == nullptr |
| || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) |
| || (next->GetType() != type)) { |
| ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); |
| HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); |
| for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { |
| // Copy the inputs. Note that the graph may not be correctly typed |
| // by doing this copy, but the type propagation phase will fix it. |
| new_phi->SetRawInputAt(i, phi->InputAt(i)); |
| } |
| phi->GetBlock()->InsertPhiAfter(new_phi, phi); |
| DCHECK(new_phi->IsLive()); |
| return new_phi; |
| } else { |
| // An existing equivalent was found. If it is dead, conflict was previously |
| // identified and we return nullptr instead. |
| HPhi* next_phi = next->AsPhi(); |
| DCHECK_EQ(next_phi->GetType(), type); |
| return next_phi->IsLive() ? next_phi : nullptr; |
| } |
| } |
| |
| HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { |
| DCHECK(Primitive::IsIntegralType(aget->GetType())); |
| |
| if (!Primitive::IsIntOrLongType(aget->GetType())) { |
| // Cannot type boolean, char, byte, short to float/double. |
| return nullptr; |
| } |
| |
| DCHECK(ContainsElement(ambiguous_agets_, aget)); |
| if (agets_fixed_) { |
| // This used to be an ambiguous ArrayGet but its type has been resolved to |
| // int/long. Requesting a float/double equivalent should lead to a conflict. |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray()))); |
| } |
| return nullptr; |
| } else { |
| // This is an ambiguous ArrayGet which has not been resolved yet. Return an |
| // equivalent float/double instruction to use until it is resolved. |
| HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget); |
| return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent; |
| } |
| } |
| |
| HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) { |
| if (value->IsArrayGet()) { |
| return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet()); |
| } else if (value->IsLongConstant()) { |
| return GetDoubleEquivalent(value->AsLongConstant()); |
| } else if (value->IsIntConstant()) { |
| return GetFloatEquivalent(value->AsIntConstant()); |
| } else if (value->IsPhi()) { |
| return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { |
| if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { |
| return value->GetBlock()->GetGraph()->GetNullConstant(); |
| } else if (value->IsPhi()) { |
| return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { |
| Primitive::Type load_type = load->GetType(); |
| HInstruction* value = (*current_locals_)[load->GetLocal()->GetRegNumber()]; |
| // If the operation requests a specific type, we make sure its input is of that type. |
| if (load_type != value->GetType()) { |
| if (load_type == Primitive::kPrimFloat || load_type == Primitive::kPrimDouble) { |
| value = GetFloatOrDoubleEquivalent(value, load_type); |
| } else if (load_type == Primitive::kPrimNot) { |
| value = GetReferenceTypeEquivalent(value); |
| } |
| } |
| |
| load->ReplaceWith(value); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| void SsaBuilder::VisitStoreLocal(HStoreLocal* store) { |
| uint32_t reg_number = store->GetLocal()->GetRegNumber(); |
| HInstruction* stored_value = store->InputAt(1); |
| Primitive::Type stored_type = stored_value->GetType(); |
| DCHECK_NE(stored_type, Primitive::kPrimVoid); |
| |
| // Storing into vreg `reg_number` may implicitly invalidate the surrounding |
| // registers. Consider the following cases: |
| // (1) Storing a wide value must overwrite previous values in both `reg_number` |
| // and `reg_number+1`. We store `nullptr` in `reg_number+1`. |
| // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` |
| // must invalidate it. We store `nullptr` in `reg_number-1`. |
| // Consequently, storing a wide value into the high vreg of another wide value |
| // will invalidate both `reg_number-1` and `reg_number+1`. |
| |
| if (reg_number != 0) { |
| HInstruction* local_low = (*current_locals_)[reg_number - 1]; |
| if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { |
| // The vreg we are storing into was previously the high vreg of a pair. |
| // We need to invalidate its low vreg. |
| DCHECK((*current_locals_)[reg_number] == nullptr); |
| (*current_locals_)[reg_number - 1] = nullptr; |
| } |
| } |
| |
| (*current_locals_)[reg_number] = stored_value; |
| if (Primitive::Is64BitType(stored_type)) { |
| // We are storing a pair. Invalidate the instruction in the high vreg. |
| (*current_locals_)[reg_number + 1] = nullptr; |
| } |
| |
| store->GetBlock()->RemoveInstruction(store); |
| } |
| |
| void SsaBuilder::VisitInstruction(HInstruction* instruction) { |
| if (instruction->NeedsEnvironment()) { |
| HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment( |
| GetGraph()->GetArena(), |
| current_locals_->size(), |
| GetGraph()->GetDexFile(), |
| GetGraph()->GetMethodIdx(), |
| instruction->GetDexPc(), |
| GetGraph()->GetInvokeType(), |
| instruction); |
| environment->CopyFrom(*current_locals_); |
| instruction->SetRawEnvironment(environment); |
| } |
| |
| // If in a try block, propagate values of locals into catch blocks. |
| if (instruction->CanThrowIntoCatchBlock()) { |
| const HTryBoundary& try_entry = |
| instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry(); |
| for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { |
| ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); |
| DCHECK_EQ(handler_locals->size(), current_locals_->size()); |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| HInstruction* handler_value = (*handler_locals)[vreg]; |
| if (handler_value == nullptr) { |
| // Vreg was undefined at a previously encountered throwing instruction |
| // and the catch phi was deleted. Do not record the local value. |
| continue; |
| } |
| DCHECK(handler_value->IsPhi()); |
| |
| HInstruction* local_value = (*current_locals_)[vreg]; |
| if (local_value == nullptr) { |
| // This is the first instruction throwing into `catch_block` where |
| // `vreg` is undefined. Delete the catch phi. |
| catch_block->RemovePhi(handler_value->AsPhi()); |
| (*handler_locals)[vreg] = nullptr; |
| } else { |
| // Vreg has been defined at all instructions throwing into `catch_block` |
| // encountered so far. Record the local value in the catch phi. |
| handler_value->AsPhi()->AddInput(local_value); |
| } |
| } |
| } |
| } |
| } |
| |
| void SsaBuilder::VisitArrayGet(HArrayGet* aget) { |
| Primitive::Type type = aget->GetType(); |
| DCHECK(!Primitive::IsFloatingPointType(type)); |
| if (Primitive::IsIntOrLongType(type)) { |
| ambiguous_agets_.push_back(aget); |
| } |
| VisitInstruction(aget); |
| } |
| |
| void SsaBuilder::VisitArraySet(HArraySet* aset) { |
| Primitive::Type type = aset->GetValue()->GetType(); |
| if (Primitive::IsIntOrLongType(type)) { |
| ambiguous_asets_.push_back(aset); |
| } |
| VisitInstruction(aset); |
| } |
| |
| void SsaBuilder::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| VisitInstruction(invoke); |
| |
| if (invoke->IsStringInit()) { |
| // This is a StringFactory call which acts as a String constructor. Its |
| // result replaces the empty String pre-allocated by NewInstance. |
| HInstruction* arg_this = invoke->GetAndRemoveThisArgumentOfStringInit(); |
| |
| // Replacing the NewInstance might render it redundant. Keep a list of these |
| // to be visited once it is clear whether it is has remaining uses. |
| if (arg_this->IsNewInstance()) { |
| uninitialized_strings_.push_back(arg_this->AsNewInstance()); |
| } else { |
| DCHECK(arg_this->IsPhi()); |
| // NewInstance is not the direct input of the StringFactory call. It might |
| // be redundant but optimizing this case is not worth the effort. |
| } |
| |
| // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| if ((*current_locals_)[vreg] == arg_this) { |
| (*current_locals_)[vreg] = invoke; |
| } |
| } |
| } |
| } |
| |
| } // namespace art |