blob: 86bb69d01eb210f015bfc89c53f385c26eacd82b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mir_to_lir-inl.h"
#include "base/bit_vector-inl.h"
#include "dex/mir_graph.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "dex_file-inl.h"
#include "gc_map.h"
#include "gc_map_builder.h"
#include "mapping_table.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "utils/dex_cache_arrays_layout-inl.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
#include "vmap_table.h"
namespace art {
namespace {
/* Dump a mapping table */
template <typename It>
void DumpMappingTable(const char* table_name, const char* descriptor, const char* name,
const Signature& signature, uint32_t size, It first) {
if (size != 0) {
std::string line(StringPrintf("\n %s %s%s_%s_table[%u] = {", table_name,
descriptor, name, signature.ToString().c_str(), size));
std::replace(line.begin(), line.end(), ';', '_');
LOG(INFO) << line;
for (uint32_t i = 0; i != size; ++i) {
line = StringPrintf(" {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc());
++first;
LOG(INFO) << line;
}
LOG(INFO) <<" };\n\n";
}
}
} // anonymous namespace
bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
bool res = false;
if (rl_src.is_const) {
if (rl_src.wide) {
// For wide registers, check whether we're the high partner. In that case we need to switch
// to the lower one for the correct value.
if (rl_src.high_word) {
rl_src.high_word = false;
rl_src.s_reg_low--;
rl_src.orig_sreg--;
}
if (rl_src.fp) {
res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
} else {
res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
}
} else {
if (rl_src.fp) {
res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
} else {
res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
}
}
}
return res;
}
void Mir2Lir::MarkSafepointPC(LIR* inst) {
DCHECK(!inst->flags.use_def_invalid);
inst->u.m.def_mask = &kEncodeAll;
LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty()));
safepoints_.emplace_back(safepoint_pc, current_mir_);
}
void Mir2Lir::MarkSafepointPCAfter(LIR* after) {
DCHECK(!after->flags.use_def_invalid);
after->u.m.def_mask = &kEncodeAll;
// As NewLIR0 uses Append, we need to create the LIR by hand.
LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC);
if (after->next == nullptr) {
DCHECK_EQ(after, last_lir_insn_);
AppendLIR(safepoint_pc);
} else {
InsertLIRAfter(after, safepoint_pc);
}
DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty()));
safepoints_.emplace_back(safepoint_pc, current_mir_);
}
/* Remove a LIR from the list. */
void Mir2Lir::UnlinkLIR(LIR* lir) {
if (UNLIKELY(lir == first_lir_insn_)) {
first_lir_insn_ = lir->next;
if (lir->next != nullptr) {
lir->next->prev = nullptr;
} else {
DCHECK(lir->next == nullptr);
DCHECK(lir == last_lir_insn_);
last_lir_insn_ = nullptr;
}
} else if (lir == last_lir_insn_) {
last_lir_insn_ = lir->prev;
lir->prev->next = nullptr;
} else if ((lir->prev != nullptr) && (lir->next != nullptr)) {
lir->prev->next = lir->next;
lir->next->prev = lir->prev;
}
}
/* Convert an instruction to a NOP */
void Mir2Lir::NopLIR(LIR* lir) {
lir->flags.is_nop = true;
if (!cu_->verbose) {
UnlinkLIR(lir);
}
}
void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
DCHECK(!lir->flags.use_def_invalid);
// TODO: Avoid the extra Arena allocation!
const ResourceMask** mask_ptr;
ResourceMask mask;
if (is_load) {
mask_ptr = &lir->u.m.use_mask;
} else {
mask_ptr = &lir->u.m.def_mask;
}
mask = **mask_ptr;
/* Clear out the memref flags */
mask.ClearBits(kEncodeMem);
/* ..and then add back the one we need */
switch (mem_type) {
case ResourceMask::kLiteral:
DCHECK(is_load);
mask.SetBit(ResourceMask::kLiteral);
break;
case ResourceMask::kDalvikReg:
mask.SetBit(ResourceMask::kDalvikReg);
break;
case ResourceMask::kHeapRef:
mask.SetBit(ResourceMask::kHeapRef);
break;
case ResourceMask::kMustNotAlias:
/* Currently only loads can be marked as kMustNotAlias */
DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
mask.SetBit(ResourceMask::kMustNotAlias);
break;
default:
LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
}
*mask_ptr = mask_cache_.GetMask(mask);
}
/*
* Mark load/store instructions that access Dalvik registers through the stack.
*/
void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
bool is64bit) {
DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals(
kEncodeDalvikReg));
/*
* Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
* access.
*/
lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
}
/*
* Debugging macros
*/
#define DUMP_RESOURCE_MASK(X)
/* Pretty-print a LIR instruction */
void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
int offset = lir->offset;
int dest = lir->operands[0];
const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));
/* Handle pseudo-ops individually, and all regular insns as a group */
switch (lir->opcode) {
case kPseudoPrologueBegin:
LOG(INFO) << "-------- PrologueBegin";
break;
case kPseudoPrologueEnd:
LOG(INFO) << "-------- PrologueEnd";
break;
case kPseudoEpilogueBegin:
LOG(INFO) << "-------- EpilogueBegin";
break;
case kPseudoEpilogueEnd:
LOG(INFO) << "-------- EpilogueEnd";
break;
case kPseudoBarrier:
LOG(INFO) << "-------- BARRIER";
break;
case kPseudoEntryBlock:
LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
break;
case kPseudoDalvikByteCodeBoundary:
if (lir->operands[0] == 0) {
// NOTE: only used for debug listings.
lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string"));
}
LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
<< lir->dalvik_offset << " @ "
<< UnwrapPointer<char>(lir->operands[0]);
break;
case kPseudoExitBlock:
LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
break;
case kPseudoPseudoAlign4:
LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
<< offset << "): .align4";
break;
case kPseudoEHBlockLabel:
LOG(INFO) << "Exception_Handling:";
break;
case kPseudoTargetLabel:
case kPseudoNormalBlockLabel:
LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoThrowTarget:
LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoIntrinsicRetry:
LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSuspendTarget:
LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSafepointPC:
LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoExportedPC:
LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoCaseLabel:
LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
<< std::hex << lir->operands[0] << "|" << std::dec <<
lir->operands[0];
break;
default:
if (lir->flags.is_nop && !dump_nop) {
break;
} else {
std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
lir, base_addr));
std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
lir, base_addr));
LOG(INFO) << StringPrintf("%5p|0x%02x: %-9s%s%s",
base_addr + offset,
lir->dalvik_offset,
op_name.c_str(), op_operands.c_str(),
lir->flags.is_nop ? "(nop)" : "");
}
break;
}
if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use"));
}
if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def"));
}
}
void Mir2Lir::DumpPromotionMap() {
uint32_t num_regs = mir_graph_->GetNumOfCodeAndTempVRs();
for (uint32_t i = 0; i < num_regs; i++) {
PromotionMap v_reg_map = promotion_map_[i];
std::string buf;
if (v_reg_map.fp_location == kLocPhysReg) {
StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg));
}
std::string buf3;
if (i < mir_graph_->GetNumOfCodeVRs()) {
StringAppendF(&buf3, "%02d", i);
} else if (i == mir_graph_->GetNumOfCodeVRs()) {
buf3 = "Method*";
} else {
uint32_t diff = i - mir_graph_->GetNumOfCodeVRs();
StringAppendF(&buf3, "ct%d", diff);
}
LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
v_reg_map.core_location == kLocPhysReg ?
"r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
v_reg_map.core_reg : SRegOffset(i),
buf.c_str());
}
}
void Mir2Lir::UpdateLIROffsets() {
// Only used for code listings.
size_t offset = 0;
for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) {
lir->offset = offset;
if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) {
offset += GetInsnSize(lir);
} else if (lir->opcode == kPseudoPseudoAlign4) {
offset += (offset & 0x2);
}
}
}
void Mir2Lir::MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg) {
DCHECK(val_reg.Valid());
DCHECK_EQ(val_reg.Is64Bit(), cu_->target64);
if ((opt_flags & MIR_STORE_NON_NULL_VALUE) != 0) {
UnconditionallyMarkGCCard(tgt_addr_reg);
} else {
LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, nullptr);
UnconditionallyMarkGCCard(tgt_addr_reg);
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
}
}
/* Dump instructions and constant pool contents */
void Mir2Lir::CodegenDump() {
LOG(INFO) << "Dumping LIR insns for "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
LIR* lir_insn;
int insns_size = mir_graph_->GetNumDalvikInsns();
LOG(INFO) << "Regs (excluding ins) : " << mir_graph_->GetNumOfLocalCodeVRs();
LOG(INFO) << "Ins : " << mir_graph_->GetNumOfInVRs();
LOG(INFO) << "Outs : " << mir_graph_->GetNumOfOutVRs();
LOG(INFO) << "CoreSpills : " << num_core_spills_;
LOG(INFO) << "FPSpills : " << num_fp_spills_;
LOG(INFO) << "CompilerTemps : " << mir_graph_->GetNumUsedCompilerTemps();
LOG(INFO) << "Frame size : " << frame_size_;
LOG(INFO) << "code size is " << total_size_ <<
" bytes, Dalvik size is " << insns_size * 2;
LOG(INFO) << "expansion factor: "
<< static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
DumpPromotionMap();
UpdateLIROffsets();
for (lir_insn = first_lir_insn_; lir_insn != nullptr; lir_insn = lir_insn->next) {
DumpLIRInsn(lir_insn, 0);
}
for (lir_insn = literal_list_; lir_insn != nullptr; lir_insn = lir_insn->next) {
LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
lir_insn->operands[0]);
}
const DexFile::MethodId& method_id =
cu_->dex_file->GetMethodId(cu_->method_idx);
const Signature signature = cu_->dex_file->GetMethodSignature(method_id);
const char* name = cu_->dex_file->GetMethodName(method_id);
const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));
// Dump mapping tables
if (!encoded_mapping_table_.empty()) {
MappingTable table(&encoded_mapping_table_[0]);
DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature,
table.PcToDexSize(), table.PcToDexBegin());
DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature,
table.DexToPcSize(), table.DexToPcBegin());
}
}
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
while (data_target) {
if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
return data_target;
data_target = data_target->next;
}
return nullptr;
}
/* Search the existing constants in the literal pool for an exact wide match */
LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
bool lo_match = false;
LIR* lo_target = nullptr;
while (data_target) {
if (lo_match && (data_target->operands[0] == val_hi)) {
// Record high word in case we need to expand this later.
lo_target->operands[1] = val_hi;
return lo_target;
}
lo_match = false;
if (data_target->operands[0] == val_lo) {
lo_match = true;
lo_target = data_target;
}
data_target = data_target->next;
}
return nullptr;
}
/* Search the existing constants in the literal pool for an exact method match */
LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) {
while (data_target) {
if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index &&
UnwrapPointer<DexFile>(data_target->operands[1]) == method.dex_file) {
return data_target;
}
data_target = data_target->next;
}
return nullptr;
}
/* Search the existing constants in the literal pool for an exact class match */
LIR* Mir2Lir::ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx) {
while (data_target) {
if (static_cast<uint32_t>(data_target->operands[0]) == type_idx &&
UnwrapPointer<DexFile>(data_target->operands[1]) == &dex_file) {
return data_target;
}
data_target = data_target->next;
}
return nullptr;
}
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant to the constant pool */
LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
/* Add the constant to the literal pool */
if (constant_list_p) {
LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
new_value->operands[0] = value;
new_value->next = *constant_list_p;
*constant_list_p = new_value;
estimated_native_code_size_ += sizeof(value);
return new_value;
}
return nullptr;
}
/* Add a 64-bit constant to the constant pool or mixed with code */
LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
AddWordData(constant_list_p, val_hi);
return AddWordData(constant_list_p, val_lo);
}
/**
* @brief Push a compressed reference which needs patching at link/patchoat-time.
* @details This needs to be kept consistent with the code which actually does the patching in
* oat_writer.cc and in the patchoat tool.
*/
static void PushUnpatchedReference(CodeBuffer* buf) {
// Note that we can safely initialize the patches to zero. The code deduplication mechanism takes
// the patches into account when determining whether two pieces of codes are functionally
// equivalent.
Push32(buf, UINT32_C(0));
}
static void AlignBuffer(CodeBuffer* buf, size_t offset) {
DCHECK_LE(buf->size(), offset);
buf->insert(buf->end(), offset - buf->size(), 0u);
}
/* Write the literal pool to the output stream */
void Mir2Lir::InstallLiteralPools() {
AlignBuffer(&code_buffer_, data_offset_);
LIR* data_lir = literal_list_;
while (data_lir != nullptr) {
Push32(&code_buffer_, data_lir->operands[0]);
data_lir = NEXT_LIR(data_lir);
}
// TODO: patches_.reserve() as needed.
// Push code and method literals, record offsets for the compiler to patch.
data_lir = code_literal_list_;
while (data_lir != nullptr) {
uint32_t target_method_idx = data_lir->operands[0];
const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
patches_.push_back(LinkerPatch::CodePatch(code_buffer_.size(),
target_dex_file, target_method_idx));
PushUnpatchedReference(&code_buffer_);
data_lir = NEXT_LIR(data_lir);
}
data_lir = method_literal_list_;
while (data_lir != nullptr) {
uint32_t target_method_idx = data_lir->operands[0];
const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
patches_.push_back(LinkerPatch::MethodPatch(code_buffer_.size(),
target_dex_file, target_method_idx));
PushUnpatchedReference(&code_buffer_);
data_lir = NEXT_LIR(data_lir);
}
// Push class literals.
data_lir = class_literal_list_;
while (data_lir != nullptr) {
uint32_t target_type_idx = data_lir->operands[0];
const DexFile* class_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
patches_.push_back(LinkerPatch::TypePatch(code_buffer_.size(),
class_dex_file, target_type_idx));
PushUnpatchedReference(&code_buffer_);
data_lir = NEXT_LIR(data_lir);
}
}
/* Write the switch tables to the output stream */
void Mir2Lir::InstallSwitchTables() {
for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
AlignBuffer(&code_buffer_, tab_rec->offset);
/*
* For Arm, our reference point is the address of the bx
* instruction that does the launch, so we have to subtract
* the auto pc-advance. For other targets the reference point
* is a label, so we can use the offset as-is.
*/
int bx_offset = INVALID_OFFSET;
switch (cu_->instruction_set) {
case kThumb2:
DCHECK(tab_rec->anchor->flags.fixup != kFixupNone);
bx_offset = tab_rec->anchor->offset + 4;
break;
case kX86_64:
// RIP relative to switch table.
bx_offset = tab_rec->offset;
break;
case kX86:
case kArm64:
case kMips:
case kMips64:
bx_offset = tab_rec->anchor->offset;
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
}
if (cu_->verbose) {
LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
}
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
DCHECK(tab_rec->switch_mir != nullptr);
BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb);
DCHECK(bb != nullptr);
int elems = 0;
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
int key = successor_block_info->key;
int target = successor_block_info->block;
LIR* boundary_lir = InsertCaseLabel(target, key);
DCHECK(boundary_lir != nullptr);
int disp = boundary_lir->offset - bx_offset;
Push32(&code_buffer_, key);
Push32(&code_buffer_, disp);
if (cu_->verbose) {
LOG(INFO) << " Case[" << elems << "] key: 0x"
<< std::hex << key << ", disp: 0x"
<< std::hex << disp;
}
elems++;
}
DCHECK_EQ(elems, tab_rec->table[1]);
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
DCHECK(tab_rec->switch_mir != nullptr);
BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb);
DCHECK(bb != nullptr);
int elems = 0;
int low_key = s4FromSwitchData(&tab_rec->table[2]);
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
int key = successor_block_info->key;
DCHECK_EQ(elems + low_key, key);
int target = successor_block_info->block;
LIR* boundary_lir = InsertCaseLabel(target, key);
DCHECK(boundary_lir != nullptr);
int disp = boundary_lir->offset - bx_offset;
Push32(&code_buffer_, disp);
if (cu_->verbose) {
LOG(INFO) << " Case[" << elems << "] disp: 0x"
<< std::hex << disp;
}
elems++;
}
DCHECK_EQ(elems, tab_rec->table[1]);
}
}
}
/* Write the fill array dta to the output stream */
void Mir2Lir::InstallFillArrayData() {
for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
AlignBuffer(&code_buffer_, tab_rec->offset);
for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
code_buffer_.push_back(tab_rec->table[i] & 0xFF);
code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
}
}
}
static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) {
for (; lir != nullptr; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
return offset;
}
static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset,
unsigned int element_size) {
// Align to natural pointer size.
offset = RoundUp(offset, element_size);
for (; lir != nullptr; lir = lir->next) {
lir->offset = offset;
offset += element_size;
}
return offset;
}
// Make sure we have a code address for every declared catch entry
bool Mir2Lir::VerifyCatchEntries() {
MappingTable table(&encoded_mapping_table_[0]);
std::vector<uint32_t> dex_pcs;
dex_pcs.reserve(table.DexToPcSize());
for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) {
dex_pcs.push_back(it.DexPc());
}
// Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_.
std::sort(dex_pcs.begin(), dex_pcs.end());
bool success = true;
auto it = dex_pcs.begin(), end = dex_pcs.end();
for (uint32_t dex_pc : mir_graph_->catches_) {
while (it != end && *it < dex_pc) {
LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it;
++it;
success = false;
}
if (it == end || *it > dex_pc) {
LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
success = false;
} else {
++it;
}
}
if (!success) {
LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
<< table.DexToPcSize();
}
return success;
}
void Mir2Lir::CreateMappingTables() {
bool generate_src_map = cu_->compiler_driver->GetCompilerOptions().GetIncludeDebugSymbols();
uint32_t pc2dex_data_size = 0u;
uint32_t pc2dex_entries = 0u;
uint32_t pc2dex_offset = 0u;
uint32_t pc2dex_dalvik_offset = 0u;
uint32_t pc2dex_src_entries = 0u;
uint32_t dex2pc_data_size = 0u;
uint32_t dex2pc_entries = 0u;
uint32_t dex2pc_offset = 0u;
uint32_t dex2pc_dalvik_offset = 0u;
for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
pc2dex_src_entries++;
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
pc2dex_entries += 1;
DCHECK(pc2dex_offset <= tgt_lir->offset);
pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset);
pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
static_cast<int32_t>(pc2dex_dalvik_offset));
pc2dex_offset = tgt_lir->offset;
pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
dex2pc_entries += 1;
DCHECK(dex2pc_offset <= tgt_lir->offset);
dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset);
dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
static_cast<int32_t>(dex2pc_dalvik_offset));
dex2pc_offset = tgt_lir->offset;
dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
}
}
if (generate_src_map) {
src_mapping_table_.reserve(pc2dex_src_entries);
}
uint32_t total_entries = pc2dex_entries + dex2pc_entries;
uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
encoded_mapping_table_.resize(data_size);
uint8_t* write_pos = &encoded_mapping_table_[0];
write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size);
uint8_t* write_pos2 = write_pos + pc2dex_data_size;
bool is_in_prologue_or_epilogue = false;
pc2dex_offset = 0u;
pc2dex_dalvik_offset = 0u;
dex2pc_offset = 0u;
dex2pc_dalvik_offset = 0u;
for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
if (generate_src_map && !tgt_lir->flags.is_nop && tgt_lir->opcode >= 0) {
if (!is_in_prologue_or_epilogue) {
src_mapping_table_.push_back(SrcMapElem({tgt_lir->offset,
static_cast<int32_t>(tgt_lir->dalvik_offset)}));
}
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
DCHECK(pc2dex_offset <= tgt_lir->offset);
write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset);
write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) -
static_cast<int32_t>(pc2dex_dalvik_offset));
pc2dex_offset = tgt_lir->offset;
pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
DCHECK(dex2pc_offset <= tgt_lir->offset);
write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset);
write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) -
static_cast<int32_t>(dex2pc_dalvik_offset));
dex2pc_offset = tgt_lir->offset;
dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
}
if (tgt_lir->opcode == kPseudoPrologueBegin || tgt_lir->opcode == kPseudoEpilogueBegin) {
is_in_prologue_or_epilogue = true;
}
if (tgt_lir->opcode == kPseudoPrologueEnd || tgt_lir->opcode == kPseudoEpilogueEnd) {
is_in_prologue_or_epilogue = false;
}
}
DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]),
hdr_data_size + pc2dex_data_size);
DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size);
if (kIsDebugBuild) {
CHECK(VerifyCatchEntries());
// Verify the encoded table holds the expected data.
MappingTable table(&encoded_mapping_table_[0]);
CHECK_EQ(table.TotalSize(), total_entries);
CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
auto it = table.PcToDexBegin();
auto it2 = table.DexToPcBegin();
for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
CHECK_EQ(tgt_lir->offset, it.NativePcOffset());
CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc());
++it;
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
CHECK_EQ(tgt_lir->offset, it2.NativePcOffset());
CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc());
++it2;
}
}
CHECK(it == table.PcToDexEnd());
CHECK(it2 == table.DexToPcEnd());
}
}
void Mir2Lir::CreateNativeGcMap() {
if (UNLIKELY((cu_->disable_opt & (1u << kPromoteRegs)) != 0u)) {
// If we're not promoting to physical registers, it's safe to use the verifier's notion of
// references. (We disable register promotion when type inference finds a type conflict and
// in that the case we defer to the verifier to avoid using the compiler's conflicting info.)
CreateNativeGcMapWithoutRegisterPromotion();
return;
}
ArenaBitVector* references = new (arena_) ArenaBitVector(arena_, mir_graph_->GetNumSSARegs(),
false);
// Calculate max native offset and max reference vreg.
MIR* prev_mir = nullptr;
int max_ref_vreg = -1;
CodeOffset max_native_offset = 0u;
for (const auto& entry : safepoints_) {
uint32_t native_offset = entry.first->offset;
max_native_offset = std::max(max_native_offset, native_offset);
MIR* mir = entry.second;
UpdateReferenceVRegs(mir, prev_mir, references);
max_ref_vreg = std::max(max_ref_vreg, references->GetHighestBitSet());
prev_mir = mir;
}
#if defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
static constexpr bool kLittleEndian = true;
#else
static constexpr bool kLittleEndian = false;
#endif
// Build the GC map.
uint32_t reg_width = static_cast<uint32_t>((max_ref_vreg + 8) / 8);
GcMapBuilder native_gc_map_builder(&native_gc_map_,
safepoints_.size(),
max_native_offset, reg_width);
if (kLittleEndian) {
for (const auto& entry : safepoints_) {
uint32_t native_offset = entry.first->offset;
MIR* mir = entry.second;
UpdateReferenceVRegs(mir, prev_mir, references);
// For little-endian, the bytes comprising the bit vector's raw storage are what we need.
native_gc_map_builder.AddEntry(native_offset,
reinterpret_cast<const uint8_t*>(references->GetRawStorage()));
prev_mir = mir;
}
} else {
ArenaVector<uint8_t> references_buffer(arena_->Adapter());
references_buffer.resize(reg_width);
for (const auto& entry : safepoints_) {
uint32_t native_offset = entry.first->offset;
MIR* mir = entry.second;
UpdateReferenceVRegs(mir, prev_mir, references);
// Big-endian or unknown endianness, manually translate the bit vector data.
const auto* raw_storage = references->GetRawStorage();
for (size_t i = 0; i != reg_width; ++i) {
references_buffer[i] = static_cast<uint8_t>(
raw_storage[i / sizeof(raw_storage[0])] >> (8u * (i % sizeof(raw_storage[0]))));
}
native_gc_map_builder.AddEntry(native_offset, &references_buffer[0]);
prev_mir = mir;
}
}
}
void Mir2Lir::CreateNativeGcMapWithoutRegisterPromotion() {
DCHECK(!encoded_mapping_table_.empty());
MappingTable mapping_table(&encoded_mapping_table_[0]);
uint32_t max_native_offset = 0;
for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
uint32_t native_offset = it.NativePcOffset();
if (native_offset > max_native_offset) {
max_native_offset = native_offset;
}
}
MethodReference method_ref(cu_->dex_file, cu_->method_idx);
const std::vector<uint8_t>& gc_map_raw =
mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap();
verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize());
// Compute native offset to references size.
GcMapBuilder native_gc_map_builder(&native_gc_map_,
mapping_table.PcToDexSize(),
max_native_offset, dex_gc_map.RegWidth());
for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
uint32_t native_offset = it.NativePcOffset();
uint32_t dex_pc = it.DexPc();
const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc <<
": " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
native_gc_map_builder.AddEntry(native_offset, references);
}
// Maybe not necessary, but this could help prevent errors where we access the verified method
// after it has been deleted.
mir_graph_->GetCurrentDexCompilationUnit()->ClearVerifiedMethod();
}
/* Determine the offset of each literal field */
int Mir2Lir::AssignLiteralOffset(CodeOffset offset) {
offset = AssignLiteralOffsetCommon(literal_list_, offset);
constexpr unsigned int ptr_size = sizeof(uint32_t);
static_assert(ptr_size >= sizeof(mirror::HeapReference<mirror::Object>),
"Pointer size cannot hold a heap reference");
offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size);
offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size);
offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size);
return offset;
}
int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) {
for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
tab_rec->offset = offset;
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
offset += tab_rec->table[1] * (sizeof(int) * 2);
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
offset += tab_rec->table[1] * sizeof(int);
}
}
return offset;
}
int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) {
for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
tab_rec->offset = offset;
offset += tab_rec->size;
// word align
offset = RoundUp(offset, 4);
}
return offset;
}
/*
* Insert a kPseudoCaseLabel at the beginning of the Dalvik
* offset vaddr if pretty-printing, otherise use the standard block
* label. The selected label will be used to fix up the case
* branch table during the assembly phase. All resource flags
* are set to prevent code motion. KeyVal is just there for debugging.
*/
LIR* Mir2Lir::InsertCaseLabel(uint32_t bbid, int keyVal) {
LIR* boundary_lir = &block_label_list_[bbid];
LIR* res = boundary_lir;
if (cu_->verbose) {
// Only pay the expense if we're pretty-printing.
LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR));
BasicBlock* bb = mir_graph_->GetBasicBlock(bbid);
DCHECK(bb != nullptr);
new_label->dalvik_offset = bb->start_offset;
new_label->opcode = kPseudoCaseLabel;
new_label->operands[0] = keyVal;
new_label->flags.fixup = kFixupLabel;
DCHECK(!new_label->flags.use_def_invalid);
new_label->u.m.def_mask = &kEncodeAll;
InsertLIRAfter(boundary_lir, new_label);
}
return res;
}
void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
uint16_t ident = table[0];
int entries = table[1];
const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
const int32_t* targets = &keys[entries];
LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
}
}
void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
uint16_t ident = table[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]);
int entries = table[1];
int low_key = s4FromSwitchData(&table[2]);
LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries << ", low_key: " << low_key;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex
<< targets[i];
}
}
/* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */
void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) {
UNUSED(offset);
// NOTE: only used for debug listings.
NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str)));
}
// Convert relation of src1/src2 to src2/src1
ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
ConditionCode res;
switch (before) {
case kCondEq: res = kCondEq; break;
case kCondNe: res = kCondNe; break;
case kCondLt: res = kCondGt; break;
case kCondGt: res = kCondLt; break;
case kCondLe: res = kCondGe; break;
case kCondGe: res = kCondLe; break;
default:
LOG(FATAL) << "Unexpected ccode " << before;
UNREACHABLE();
}
return res;
}
ConditionCode Mir2Lir::NegateComparison(ConditionCode before) {
ConditionCode res;
switch (before) {
case kCondEq: res = kCondNe; break;
case kCondNe: res = kCondEq; break;
case kCondLt: res = kCondGe; break;
case kCondGt: res = kCondLe; break;
case kCondLe: res = kCondGt; break;
case kCondGe: res = kCondLt; break;
default:
LOG(FATAL) << "Unexpected ccode " << before;
UNREACHABLE();
}
return res;
}
// TODO: move to mir_to_lir.cc
Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: literal_list_(nullptr),
method_literal_list_(nullptr),
class_literal_list_(nullptr),
code_literal_list_(nullptr),
first_fixup_(nullptr),
arena_(arena),
cu_(cu),
mir_graph_(mir_graph),
switch_tables_(arena->Adapter(kArenaAllocSwitchTable)),
fill_array_data_(arena->Adapter(kArenaAllocFillArrayData)),
tempreg_info_(arena->Adapter()),
reginfo_map_(arena->Adapter()),
pointer_storage_(arena->Adapter()),
data_offset_(0),
total_size_(0),
block_label_list_(nullptr),
promotion_map_(nullptr),
current_dalvik_offset_(0),
current_mir_(nullptr),
estimated_native_code_size_(0),
reg_pool_(nullptr),
live_sreg_(0),
code_buffer_(mir_graph->GetArena()->Adapter()),
encoded_mapping_table_(mir_graph->GetArena()->Adapter()),
core_vmap_table_(mir_graph->GetArena()->Adapter()),
fp_vmap_table_(mir_graph->GetArena()->Adapter()),
native_gc_map_(mir_graph->GetArena()->Adapter()),
patches_(mir_graph->GetArena()->Adapter()),
num_core_spills_(0),
num_fp_spills_(0),
frame_size_(0),
core_spill_mask_(0),
fp_spill_mask_(0),
first_lir_insn_(nullptr),
last_lir_insn_(nullptr),
slow_paths_(arena->Adapter(kArenaAllocSlowPaths)),
mem_ref_type_(ResourceMask::kHeapRef),
mask_cache_(arena),
safepoints_(arena->Adapter()),
dex_cache_arrays_layout_(cu->compiler_driver->GetDexCacheArraysLayout(cu->dex_file)),
pc_rel_temp_(nullptr),
dex_cache_arrays_min_offset_(std::numeric_limits<uint32_t>::max()),
cfi_(&last_lir_insn_,
cu->compiler_driver->GetCompilerOptions().GetIncludeCFI(),
arena),
in_to_reg_storage_mapping_(arena) {
switch_tables_.reserve(4);
fill_array_data_.reserve(4);
tempreg_info_.reserve(20);
reginfo_map_.reserve(RegStorage::kMaxRegs);
pointer_storage_.reserve(128);
slow_paths_.reserve(32);
// Reserve pointer id 0 for null.
size_t null_idx = WrapPointer<void>(nullptr);
DCHECK_EQ(null_idx, 0U);
}
void Mir2Lir::Materialize() {
cu_->NewTimingSplit("RegisterAllocation");
CompilerInitializeRegAlloc(); // Needs to happen after SSA naming
/* Allocate Registers using simple local allocation scheme */
SimpleRegAlloc();
/* First try the custom light codegen for special cases. */
DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
->GenSpecial(this, cu_->method_idx);
/* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */
if (special_worked == false) {
MethodMIR2LIR();
}
/* Method is not empty */
if (first_lir_insn_) {
/* Convert LIR into machine code. */
AssembleLIR();
if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) {
CodegenDump();
}
}
}
CompiledMethod* Mir2Lir::GetCompiledMethod() {
// Combine vmap tables - core regs, then fp regs - into vmap_table.
Leb128EncodingVector vmap_encoder;
if (frame_size_ > 0) {
// Prefix the encoded data with its size.
size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size();
vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128).
vmap_encoder.PushBackUnsigned(size);
// Core regs may have been inserted out of order - sort first.
std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
// Copy, stripping out the phys register sort key.
vmap_encoder.PushBackUnsigned(
~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment));
}
// Push a marker to take place of lr.
vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
if (cu_->instruction_set == kThumb2) {
// fp regs already sorted.
for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment);
}
} else {
// For other platforms regs may have been inserted out of order - sort first.
std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end());
for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) {
// Copy, stripping out the phys register sort key.
vmap_encoder.PushBackUnsigned(
~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment));
}
}
} else {
DCHECK_EQ(POPCOUNT(core_spill_mask_), 0);
DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0);
DCHECK_EQ(core_vmap_table_.size(), 0u);
DCHECK_EQ(fp_vmap_table_.size(), 0u);
vmap_encoder.PushBackUnsigned(0u); // Size is 0.
}
// Sort patches by literal offset for better deduplication.
std::sort(patches_.begin(), patches_.end(), [](const LinkerPatch& lhs, const LinkerPatch& rhs) {
return lhs.LiteralOffset() < rhs.LiteralOffset();
});
return CompiledMethod::SwapAllocCompiledMethod(
cu_->compiler_driver, cu_->instruction_set,
ArrayRef<const uint8_t>(code_buffer_),
frame_size_, core_spill_mask_, fp_spill_mask_,
&src_mapping_table_,
ArrayRef<const uint8_t>(encoded_mapping_table_),
ArrayRef<const uint8_t>(vmap_encoder.GetData()),
ArrayRef<const uint8_t>(native_gc_map_),
ArrayRef<const uint8_t>(*cfi_.Patch(code_buffer_.size())),
ArrayRef<const LinkerPatch>(patches_));
}
size_t Mir2Lir::GetMaxPossibleCompilerTemps() const {
// Chose a reasonably small value in order to contain stack growth.
// Backends that are smarter about spill region can return larger values.
const size_t max_compiler_temps = 10;
return max_compiler_temps;
}
size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() {
// By default assume that the Mir2Lir will need one slot for each temporary.
// If the backend can better determine temps that have non-overlapping ranges and
// temps that do not need spilled, it can actually provide a small region.
mir_graph_->CommitCompilerTemps();
return mir_graph_->GetNumBytesForSpecialTemps() + mir_graph_->GetMaximumBytesForNonSpecialTemps();
}
int Mir2Lir::ComputeFrameSize() {
/* Figure out the frame size */
uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set)
+ num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set)
+ sizeof(uint32_t) // Filler.
+ mir_graph_->GetNumOfLocalCodeVRs() * sizeof(uint32_t)
+ mir_graph_->GetNumOfOutVRs() * sizeof(uint32_t)
+ GetNumBytesForCompilerTempSpillRegion();
/* Align and set */
return RoundUp(size, kStackAlignment);
}
/*
* Append an LIR instruction to the LIR list maintained by a compilation
* unit
*/
void Mir2Lir::AppendLIR(LIR* lir) {
if (first_lir_insn_ == nullptr) {
DCHECK(last_lir_insn_ == nullptr);
last_lir_insn_ = first_lir_insn_ = lir;
lir->prev = lir->next = nullptr;
} else {
last_lir_insn_->next = lir;
lir->prev = last_lir_insn_;
lir->next = nullptr;
last_lir_insn_ = lir;
}
}
/*
* Insert an LIR instruction before the current instruction, which cannot be the
* first instruction.
*
* prev_lir <-> new_lir <-> current_lir
*/
void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
DCHECK(current_lir->prev != nullptr);
LIR *prev_lir = current_lir->prev;
prev_lir->next = new_lir;
new_lir->prev = prev_lir;
new_lir->next = current_lir;
current_lir->prev = new_lir;
}
/*
* Insert an LIR instruction after the current instruction, which cannot be the
* last instruction.
*
* current_lir -> new_lir -> old_next
*/
void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
new_lir->prev = current_lir;
new_lir->next = current_lir->next;
current_lir->next = new_lir;
new_lir->next->prev = new_lir;
}
bool Mir2Lir::PartiallyIntersects(RegLocation rl_src, RegLocation rl_dest) {
DCHECK(rl_src.wide);
DCHECK(rl_dest.wide);
return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1);
}
bool Mir2Lir::Intersects(RegLocation rl_src, RegLocation rl_dest) {
DCHECK(rl_src.wide);
DCHECK(rl_dest.wide);
return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) <= 1);
}
LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
int offset, int check_value, LIR* target, LIR** compare) {
// Handle this for architectures that can't compare to memory.
LIR* inst = Load32Disp(base_reg, offset, temp_reg);
if (compare != nullptr) {
*compare = inst;
}
LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
return branch;
}
void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) {
slow_paths_.push_back(slowpath);
ResetDefTracking();
}
void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg) {
LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method);
if (data_target == nullptr) {
data_target = AddWordData(&code_literal_list_, target_method.dex_method_index);
data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
// NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
// the same method invoked with kVirtual, kSuper and kInterface but the class linker will
// resolve these invokes to the same method, so we don't care which one we record here.
data_target->operands[2] = type;
}
// Loads a code pointer. Code from oat file can be mapped anywhere.
OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target);
DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target);
}
void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg) {
LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method);
if (data_target == nullptr) {
data_target = AddWordData(&method_literal_list_, target_method.dex_method_index);
data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
// NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
// the same method invoked with kVirtual, kSuper and kInterface but the class linker will
// resolve these invokes to the same method, so we don't care which one we record here.
data_target->operands[2] = type;
}
// Loads an ArtMethod pointer, which is a reference as it lives in the heap.
OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target);
}
void Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
SpecialTargetRegister symbolic_reg) {
// Use the literal pool and a PC-relative load from a data word.
LIR* data_target = ScanLiteralPoolClass(class_literal_list_, dex_file, type_idx);
if (data_target == nullptr) {
data_target = AddWordData(&class_literal_list_, type_idx);
data_target->operands[1] = WrapPointer(const_cast<DexFile*>(&dex_file));
}
// Loads a Class pointer, which is a reference as it lives in the heap.
OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
}
bool Mir2Lir::CanUseOpPcRelDexCacheArrayLoad() const {
return false;
}
void Mir2Lir::OpPcRelDexCacheArrayLoad(const DexFile* dex_file ATTRIBUTE_UNUSED,
int offset ATTRIBUTE_UNUSED,
RegStorage r_dest ATTRIBUTE_UNUSED) {
LOG(FATAL) << "No generic implementation.";
UNREACHABLE();
}
RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) {
if (loc.location == kLocPhysReg) {
DCHECK(!loc.reg.Is32Bit());
if (loc.reg.IsPair()) {
RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow());
RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh());
info_lo->SetIsWide(false);
info_hi->SetIsWide(false);
loc.reg = info_lo->GetReg();
} else {
RegisterInfo* info = GetRegInfo(loc.reg);
RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask);
DCHECK(info_new != nullptr);
if (info->IsLive() && (info->SReg() == loc.s_reg_low)) {
info->MarkDead();
info_new->MarkLive(loc.s_reg_low);
}
loc.reg = info_new->GetReg();
}
DCHECK(loc.reg.Valid());
}
loc.wide = false;
return loc;
}
void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
UNUSED(bb, mir);
LOG(FATAL) << "Unknown MIR opcode not supported on this architecture";
UNREACHABLE();
}
void Mir2Lir::InitReferenceVRegs(BasicBlock* bb, BitVector* references) {
// Mark the references coming from the first predecessor.
DCHECK(bb != nullptr);
DCHECK(bb->block_type == kEntryBlock || !bb->predecessors.empty());
BasicBlock* first_bb =
(bb->block_type == kEntryBlock) ? bb : mir_graph_->GetBasicBlock(bb->predecessors[0]);
DCHECK(first_bb != nullptr);
DCHECK(first_bb->data_flow_info != nullptr);
DCHECK(first_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr);
const int32_t* first_vreg_to_ssa_map = first_bb->data_flow_info->vreg_to_ssa_map_exit;
references->ClearAllBits();
for (uint32_t vreg = 0, num_vregs = mir_graph_->GetNumOfCodeVRs(); vreg != num_vregs; ++vreg) {
int32_t sreg = first_vreg_to_ssa_map[vreg];
if (sreg != INVALID_SREG && mir_graph_->reg_location_[sreg].ref &&
!mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[sreg])) {
references->SetBit(vreg);
}
}
// Unmark the references that are merging with a different value.
for (size_t i = 1u, num_pred = bb->predecessors.size(); i < num_pred; ++i) {
BasicBlock* pred_bb = mir_graph_->GetBasicBlock(bb->predecessors[i]);
DCHECK(pred_bb != nullptr);
DCHECK(pred_bb->data_flow_info != nullptr);
DCHECK(pred_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr);
const int32_t* pred_vreg_to_ssa_map = pred_bb->data_flow_info->vreg_to_ssa_map_exit;
for (uint32_t vreg : references->Indexes()) {
if (first_vreg_to_ssa_map[vreg] != pred_vreg_to_ssa_map[vreg]) {
// NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
// so clearing the bit has no effect on the iterator.
references->ClearBit(vreg);
}
}
}
}
bool Mir2Lir::UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references) {
DCHECK(mir == nullptr || mir->bb == prev_mir->bb);
DCHECK(prev_mir != nullptr);
while (prev_mir != nullptr) {
if (prev_mir == mir) {
return true;
}
const size_t num_defs = prev_mir->ssa_rep->num_defs;
const int32_t* defs = prev_mir->ssa_rep->defs;
if (num_defs == 1u && mir_graph_->reg_location_[defs[0]].ref &&
!mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[defs[0]])) {
references->SetBit(mir_graph_->SRegToVReg(defs[0]));
} else {
for (size_t i = 0u; i != num_defs; ++i) {
references->ClearBit(mir_graph_->SRegToVReg(defs[i]));
}
}
prev_mir = prev_mir->next;
}
return false;
}
void Mir2Lir::UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references) {
if (mir == nullptr) {
// Safepoint in entry sequence.
InitReferenceVRegs(mir_graph_->GetEntryBlock(), references);
return;
}
if (IsInstructionReturn(mir->dalvikInsn.opcode) ||
mir->dalvikInsn.opcode == Instruction::RETURN_VOID_NO_BARRIER) {
references->ClearAllBits();
if (mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT) {
references->SetBit(mir_graph_->SRegToVReg(mir->ssa_rep->uses[0]));
}
return;
}
if (prev_mir != nullptr && mir->bb == prev_mir->bb &&
UpdateReferenceVRegsLocal(mir, prev_mir, references)) {
return;
}
BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
DCHECK(bb != nullptr);
InitReferenceVRegs(bb, references);
bool success = UpdateReferenceVRegsLocal(mir, bb->first_mir_insn, references);
DCHECK(success) << "MIR @0x" << std::hex << mir->offset << " not in BB#" << std::dec << mir->bb;
}
} // namespace art