| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mir_to_lir-inl.h" |
| |
| #include "base/bit_vector-inl.h" |
| #include "dex/mir_graph.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "dex_file-inl.h" |
| #include "gc_map.h" |
| #include "gc_map_builder.h" |
| #include "mapping_table.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex/verification_results.h" |
| #include "dex/verified_method.h" |
| #include "utils/dex_cache_arrays_layout-inl.h" |
| #include "verifier/dex_gc_map.h" |
| #include "verifier/method_verifier.h" |
| #include "vmap_table.h" |
| |
| namespace art { |
| |
| namespace { |
| |
| /* Dump a mapping table */ |
| template <typename It> |
| void DumpMappingTable(const char* table_name, const char* descriptor, const char* name, |
| const Signature& signature, uint32_t size, It first) { |
| if (size != 0) { |
| std::string line(StringPrintf("\n %s %s%s_%s_table[%u] = {", table_name, |
| descriptor, name, signature.ToString().c_str(), size)); |
| std::replace(line.begin(), line.end(), ';', '_'); |
| LOG(INFO) << line; |
| for (uint32_t i = 0; i != size; ++i) { |
| line = StringPrintf(" {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc()); |
| ++first; |
| LOG(INFO) << line; |
| } |
| LOG(INFO) <<" };\n\n"; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) { |
| bool res = false; |
| if (rl_src.is_const) { |
| if (rl_src.wide) { |
| // For wide registers, check whether we're the high partner. In that case we need to switch |
| // to the lower one for the correct value. |
| if (rl_src.high_word) { |
| rl_src.high_word = false; |
| rl_src.s_reg_low--; |
| rl_src.orig_sreg--; |
| } |
| if (rl_src.fp) { |
| res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src)); |
| } else { |
| res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src)); |
| } |
| } else { |
| if (rl_src.fp) { |
| res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src)); |
| } else { |
| res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src)); |
| } |
| } |
| } |
| return res; |
| } |
| |
| void Mir2Lir::MarkSafepointPC(LIR* inst) { |
| DCHECK(!inst->flags.use_def_invalid); |
| inst->u.m.def_mask = &kEncodeAll; |
| LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC); |
| DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll)); |
| DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty())); |
| safepoints_.emplace_back(safepoint_pc, current_mir_); |
| } |
| |
| void Mir2Lir::MarkSafepointPCAfter(LIR* after) { |
| DCHECK(!after->flags.use_def_invalid); |
| after->u.m.def_mask = &kEncodeAll; |
| // As NewLIR0 uses Append, we need to create the LIR by hand. |
| LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC); |
| if (after->next == nullptr) { |
| DCHECK_EQ(after, last_lir_insn_); |
| AppendLIR(safepoint_pc); |
| } else { |
| InsertLIRAfter(after, safepoint_pc); |
| } |
| DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll)); |
| DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty())); |
| safepoints_.emplace_back(safepoint_pc, current_mir_); |
| } |
| |
| /* Remove a LIR from the list. */ |
| void Mir2Lir::UnlinkLIR(LIR* lir) { |
| if (UNLIKELY(lir == first_lir_insn_)) { |
| first_lir_insn_ = lir->next; |
| if (lir->next != nullptr) { |
| lir->next->prev = nullptr; |
| } else { |
| DCHECK(lir->next == nullptr); |
| DCHECK(lir == last_lir_insn_); |
| last_lir_insn_ = nullptr; |
| } |
| } else if (lir == last_lir_insn_) { |
| last_lir_insn_ = lir->prev; |
| lir->prev->next = nullptr; |
| } else if ((lir->prev != nullptr) && (lir->next != nullptr)) { |
| lir->prev->next = lir->next; |
| lir->next->prev = lir->prev; |
| } |
| } |
| |
| /* Convert an instruction to a NOP */ |
| void Mir2Lir::NopLIR(LIR* lir) { |
| lir->flags.is_nop = true; |
| if (!cu_->verbose) { |
| UnlinkLIR(lir); |
| } |
| } |
| |
| void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) { |
| DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE)); |
| DCHECK(!lir->flags.use_def_invalid); |
| // TODO: Avoid the extra Arena allocation! |
| const ResourceMask** mask_ptr; |
| ResourceMask mask; |
| if (is_load) { |
| mask_ptr = &lir->u.m.use_mask; |
| } else { |
| mask_ptr = &lir->u.m.def_mask; |
| } |
| mask = **mask_ptr; |
| /* Clear out the memref flags */ |
| mask.ClearBits(kEncodeMem); |
| /* ..and then add back the one we need */ |
| switch (mem_type) { |
| case ResourceMask::kLiteral: |
| DCHECK(is_load); |
| mask.SetBit(ResourceMask::kLiteral); |
| break; |
| case ResourceMask::kDalvikReg: |
| mask.SetBit(ResourceMask::kDalvikReg); |
| break; |
| case ResourceMask::kHeapRef: |
| mask.SetBit(ResourceMask::kHeapRef); |
| break; |
| case ResourceMask::kMustNotAlias: |
| /* Currently only loads can be marked as kMustNotAlias */ |
| DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE)); |
| mask.SetBit(ResourceMask::kMustNotAlias); |
| break; |
| default: |
| LOG(FATAL) << "Oat: invalid memref kind - " << mem_type; |
| } |
| *mask_ptr = mask_cache_.GetMask(mask); |
| } |
| |
| /* |
| * Mark load/store instructions that access Dalvik registers through the stack. |
| */ |
| void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, |
| bool is64bit) { |
| DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals( |
| kEncodeDalvikReg)); |
| |
| /* |
| * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit |
| * access. |
| */ |
| lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit); |
| } |
| |
| /* |
| * Debugging macros |
| */ |
| #define DUMP_RESOURCE_MASK(X) |
| |
| /* Pretty-print a LIR instruction */ |
| void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) { |
| int offset = lir->offset; |
| int dest = lir->operands[0]; |
| const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops)); |
| |
| /* Handle pseudo-ops individually, and all regular insns as a group */ |
| switch (lir->opcode) { |
| case kPseudoPrologueBegin: |
| LOG(INFO) << "-------- PrologueBegin"; |
| break; |
| case kPseudoPrologueEnd: |
| LOG(INFO) << "-------- PrologueEnd"; |
| break; |
| case kPseudoEpilogueBegin: |
| LOG(INFO) << "-------- EpilogueBegin"; |
| break; |
| case kPseudoEpilogueEnd: |
| LOG(INFO) << "-------- EpilogueEnd"; |
| break; |
| case kPseudoBarrier: |
| LOG(INFO) << "-------- BARRIER"; |
| break; |
| case kPseudoEntryBlock: |
| LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoDalvikByteCodeBoundary: |
| if (lir->operands[0] == 0) { |
| // NOTE: only used for debug listings. |
| lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string")); |
| } |
| LOG(INFO) << "-------- dalvik offset: 0x" << std::hex |
| << lir->dalvik_offset << " @ " |
| << UnwrapPointer<char>(lir->operands[0]); |
| break; |
| case kPseudoExitBlock: |
| LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoPseudoAlign4: |
| LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex |
| << offset << "): .align4"; |
| break; |
| case kPseudoEHBlockLabel: |
| LOG(INFO) << "Exception_Handling:"; |
| break; |
| case kPseudoTargetLabel: |
| case kPseudoNormalBlockLabel: |
| LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoThrowTarget: |
| LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoIntrinsicRetry: |
| LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSuspendTarget: |
| LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSafepointPC: |
| LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoExportedPC: |
| LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoCaseLabel: |
| LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x" |
| << std::hex << lir->operands[0] << "|" << std::dec << |
| lir->operands[0]; |
| break; |
| default: |
| if (lir->flags.is_nop && !dump_nop) { |
| break; |
| } else { |
| std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode), |
| lir, base_addr)); |
| std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode), |
| lir, base_addr)); |
| LOG(INFO) << StringPrintf("%5p|0x%02x: %-9s%s%s", |
| base_addr + offset, |
| lir->dalvik_offset, |
| op_name.c_str(), op_operands.c_str(), |
| lir->flags.is_nop ? "(nop)" : ""); |
| } |
| break; |
| } |
| |
| if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use")); |
| } |
| if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def")); |
| } |
| } |
| |
| void Mir2Lir::DumpPromotionMap() { |
| uint32_t num_regs = mir_graph_->GetNumOfCodeAndTempVRs(); |
| for (uint32_t i = 0; i < num_regs; i++) { |
| PromotionMap v_reg_map = promotion_map_[i]; |
| std::string buf; |
| if (v_reg_map.fp_location == kLocPhysReg) { |
| StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg)); |
| } |
| |
| std::string buf3; |
| if (i < mir_graph_->GetNumOfCodeVRs()) { |
| StringAppendF(&buf3, "%02d", i); |
| } else if (i == mir_graph_->GetNumOfCodeVRs()) { |
| buf3 = "Method*"; |
| } else { |
| uint32_t diff = i - mir_graph_->GetNumOfCodeVRs(); |
| StringAppendF(&buf3, "ct%d", diff); |
| } |
| |
| LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), |
| v_reg_map.core_location == kLocPhysReg ? |
| "r" : "SP+", v_reg_map.core_location == kLocPhysReg ? |
| v_reg_map.core_reg : SRegOffset(i), |
| buf.c_str()); |
| } |
| } |
| |
| void Mir2Lir::UpdateLIROffsets() { |
| // Only used for code listings. |
| size_t offset = 0; |
| for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) { |
| lir->offset = offset; |
| if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) { |
| offset += GetInsnSize(lir); |
| } else if (lir->opcode == kPseudoPseudoAlign4) { |
| offset += (offset & 0x2); |
| } |
| } |
| } |
| |
| void Mir2Lir::MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg) { |
| DCHECK(val_reg.Valid()); |
| DCHECK_EQ(val_reg.Is64Bit(), cu_->target64); |
| if ((opt_flags & MIR_STORE_NON_NULL_VALUE) != 0) { |
| UnconditionallyMarkGCCard(tgt_addr_reg); |
| } else { |
| LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, nullptr); |
| UnconditionallyMarkGCCard(tgt_addr_reg); |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| } |
| } |
| |
| /* Dump instructions and constant pool contents */ |
| void Mir2Lir::CodegenDump() { |
| LOG(INFO) << "Dumping LIR insns for " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LIR* lir_insn; |
| int insns_size = mir_graph_->GetNumDalvikInsns(); |
| |
| LOG(INFO) << "Regs (excluding ins) : " << mir_graph_->GetNumOfLocalCodeVRs(); |
| LOG(INFO) << "Ins : " << mir_graph_->GetNumOfInVRs(); |
| LOG(INFO) << "Outs : " << mir_graph_->GetNumOfOutVRs(); |
| LOG(INFO) << "CoreSpills : " << num_core_spills_; |
| LOG(INFO) << "FPSpills : " << num_fp_spills_; |
| LOG(INFO) << "CompilerTemps : " << mir_graph_->GetNumUsedCompilerTemps(); |
| LOG(INFO) << "Frame size : " << frame_size_; |
| LOG(INFO) << "code size is " << total_size_ << |
| " bytes, Dalvik size is " << insns_size * 2; |
| LOG(INFO) << "expansion factor: " |
| << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2); |
| DumpPromotionMap(); |
| UpdateLIROffsets(); |
| for (lir_insn = first_lir_insn_; lir_insn != nullptr; lir_insn = lir_insn->next) { |
| DumpLIRInsn(lir_insn, 0); |
| } |
| for (lir_insn = literal_list_; lir_insn != nullptr; lir_insn = lir_insn->next) { |
| LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset, |
| lir_insn->operands[0]); |
| } |
| |
| const DexFile::MethodId& method_id = |
| cu_->dex_file->GetMethodId(cu_->method_idx); |
| const Signature signature = cu_->dex_file->GetMethodSignature(method_id); |
| const char* name = cu_->dex_file->GetMethodName(method_id); |
| const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id)); |
| |
| // Dump mapping tables |
| if (!encoded_mapping_table_.empty()) { |
| MappingTable table(&encoded_mapping_table_[0]); |
| DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, |
| table.PcToDexSize(), table.PcToDexBegin()); |
| DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, |
| table.DexToPcSize(), table.DexToPcBegin()); |
| } |
| } |
| |
| /* |
| * Search the existing constants in the literal pool for an exact or close match |
| * within specified delta (greater or equal to 0). |
| */ |
| LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) { |
| while (data_target) { |
| if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta) |
| return data_target; |
| data_target = data_target->next; |
| } |
| return nullptr; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact wide match */ |
| LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) { |
| bool lo_match = false; |
| LIR* lo_target = nullptr; |
| while (data_target) { |
| if (lo_match && (data_target->operands[0] == val_hi)) { |
| // Record high word in case we need to expand this later. |
| lo_target->operands[1] = val_hi; |
| return lo_target; |
| } |
| lo_match = false; |
| if (data_target->operands[0] == val_lo) { |
| lo_match = true; |
| lo_target = data_target; |
| } |
| data_target = data_target->next; |
| } |
| return nullptr; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact method match */ |
| LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) { |
| while (data_target) { |
| if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index && |
| UnwrapPointer<DexFile>(data_target->operands[1]) == method.dex_file) { |
| return data_target; |
| } |
| data_target = data_target->next; |
| } |
| return nullptr; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact class match */ |
| LIR* Mir2Lir::ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx) { |
| while (data_target) { |
| if (static_cast<uint32_t>(data_target->operands[0]) == type_idx && |
| UnwrapPointer<DexFile>(data_target->operands[1]) == &dex_file) { |
| return data_target; |
| } |
| data_target = data_target->next; |
| } |
| return nullptr; |
| } |
| |
| /* |
| * The following are building blocks to insert constants into the pool or |
| * instruction streams. |
| */ |
| |
| /* Add a 32-bit constant to the constant pool */ |
| LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) { |
| /* Add the constant to the literal pool */ |
| if (constant_list_p) { |
| LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); |
| new_value->operands[0] = value; |
| new_value->next = *constant_list_p; |
| *constant_list_p = new_value; |
| estimated_native_code_size_ += sizeof(value); |
| return new_value; |
| } |
| return nullptr; |
| } |
| |
| /* Add a 64-bit constant to the constant pool or mixed with code */ |
| LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) { |
| AddWordData(constant_list_p, val_hi); |
| return AddWordData(constant_list_p, val_lo); |
| } |
| |
| /** |
| * @brief Push a compressed reference which needs patching at link/patchoat-time. |
| * @details This needs to be kept consistent with the code which actually does the patching in |
| * oat_writer.cc and in the patchoat tool. |
| */ |
| static void PushUnpatchedReference(CodeBuffer* buf) { |
| // Note that we can safely initialize the patches to zero. The code deduplication mechanism takes |
| // the patches into account when determining whether two pieces of codes are functionally |
| // equivalent. |
| Push32(buf, UINT32_C(0)); |
| } |
| |
| static void AlignBuffer(CodeBuffer* buf, size_t offset) { |
| DCHECK_LE(buf->size(), offset); |
| buf->insert(buf->end(), offset - buf->size(), 0u); |
| } |
| |
| /* Write the literal pool to the output stream */ |
| void Mir2Lir::InstallLiteralPools() { |
| AlignBuffer(&code_buffer_, data_offset_); |
| LIR* data_lir = literal_list_; |
| while (data_lir != nullptr) { |
| Push32(&code_buffer_, data_lir->operands[0]); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| // TODO: patches_.reserve() as needed. |
| // Push code and method literals, record offsets for the compiler to patch. |
| data_lir = code_literal_list_; |
| while (data_lir != nullptr) { |
| uint32_t target_method_idx = data_lir->operands[0]; |
| const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]); |
| patches_.push_back(LinkerPatch::CodePatch(code_buffer_.size(), |
| target_dex_file, target_method_idx)); |
| PushUnpatchedReference(&code_buffer_); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| data_lir = method_literal_list_; |
| while (data_lir != nullptr) { |
| uint32_t target_method_idx = data_lir->operands[0]; |
| const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]); |
| patches_.push_back(LinkerPatch::MethodPatch(code_buffer_.size(), |
| target_dex_file, target_method_idx)); |
| PushUnpatchedReference(&code_buffer_); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| // Push class literals. |
| data_lir = class_literal_list_; |
| while (data_lir != nullptr) { |
| uint32_t target_type_idx = data_lir->operands[0]; |
| const DexFile* class_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]); |
| patches_.push_back(LinkerPatch::TypePatch(code_buffer_.size(), |
| class_dex_file, target_type_idx)); |
| PushUnpatchedReference(&code_buffer_); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| } |
| |
| /* Write the switch tables to the output stream */ |
| void Mir2Lir::InstallSwitchTables() { |
| for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) { |
| AlignBuffer(&code_buffer_, tab_rec->offset); |
| /* |
| * For Arm, our reference point is the address of the bx |
| * instruction that does the launch, so we have to subtract |
| * the auto pc-advance. For other targets the reference point |
| * is a label, so we can use the offset as-is. |
| */ |
| int bx_offset = INVALID_OFFSET; |
| switch (cu_->instruction_set) { |
| case kThumb2: |
| DCHECK(tab_rec->anchor->flags.fixup != kFixupNone); |
| bx_offset = tab_rec->anchor->offset + 4; |
| break; |
| case kX86_64: |
| // RIP relative to switch table. |
| bx_offset = tab_rec->offset; |
| break; |
| case kX86: |
| case kArm64: |
| case kMips: |
| case kMips64: |
| bx_offset = tab_rec->anchor->offset; |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; |
| } |
| if (cu_->verbose) { |
| LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset; |
| } |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| DCHECK(tab_rec->switch_mir != nullptr); |
| BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb); |
| DCHECK(bb != nullptr); |
| int elems = 0; |
| for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { |
| int key = successor_block_info->key; |
| int target = successor_block_info->block; |
| LIR* boundary_lir = InsertCaseLabel(target, key); |
| DCHECK(boundary_lir != nullptr); |
| int disp = boundary_lir->offset - bx_offset; |
| Push32(&code_buffer_, key); |
| Push32(&code_buffer_, disp); |
| if (cu_->verbose) { |
| LOG(INFO) << " Case[" << elems << "] key: 0x" |
| << std::hex << key << ", disp: 0x" |
| << std::hex << disp; |
| } |
| elems++; |
| } |
| DCHECK_EQ(elems, tab_rec->table[1]); |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| DCHECK(tab_rec->switch_mir != nullptr); |
| BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb); |
| DCHECK(bb != nullptr); |
| int elems = 0; |
| int low_key = s4FromSwitchData(&tab_rec->table[2]); |
| for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { |
| int key = successor_block_info->key; |
| DCHECK_EQ(elems + low_key, key); |
| int target = successor_block_info->block; |
| LIR* boundary_lir = InsertCaseLabel(target, key); |
| DCHECK(boundary_lir != nullptr); |
| int disp = boundary_lir->offset - bx_offset; |
| Push32(&code_buffer_, disp); |
| if (cu_->verbose) { |
| LOG(INFO) << " Case[" << elems << "] disp: 0x" |
| << std::hex << disp; |
| } |
| elems++; |
| } |
| DCHECK_EQ(elems, tab_rec->table[1]); |
| } |
| } |
| } |
| |
| /* Write the fill array dta to the output stream */ |
| void Mir2Lir::InstallFillArrayData() { |
| for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) { |
| AlignBuffer(&code_buffer_, tab_rec->offset); |
| for (int i = 0; i < (tab_rec->size + 1) / 2; i++) { |
| code_buffer_.push_back(tab_rec->table[i] & 0xFF); |
| code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF); |
| } |
| } |
| } |
| |
| static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) { |
| for (; lir != nullptr; lir = lir->next) { |
| lir->offset = offset; |
| offset += 4; |
| } |
| return offset; |
| } |
| |
| static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset, |
| unsigned int element_size) { |
| // Align to natural pointer size. |
| offset = RoundUp(offset, element_size); |
| for (; lir != nullptr; lir = lir->next) { |
| lir->offset = offset; |
| offset += element_size; |
| } |
| return offset; |
| } |
| |
| // Make sure we have a code address for every declared catch entry |
| bool Mir2Lir::VerifyCatchEntries() { |
| MappingTable table(&encoded_mapping_table_[0]); |
| std::vector<uint32_t> dex_pcs; |
| dex_pcs.reserve(table.DexToPcSize()); |
| for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) { |
| dex_pcs.push_back(it.DexPc()); |
| } |
| // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_. |
| std::sort(dex_pcs.begin(), dex_pcs.end()); |
| |
| bool success = true; |
| auto it = dex_pcs.begin(), end = dex_pcs.end(); |
| for (uint32_t dex_pc : mir_graph_->catches_) { |
| while (it != end && *it < dex_pc) { |
| LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it; |
| ++it; |
| success = false; |
| } |
| if (it == end || *it > dex_pc) { |
| LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc; |
| success = false; |
| } else { |
| ++it; |
| } |
| } |
| if (!success) { |
| LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: " |
| << table.DexToPcSize(); |
| } |
| return success; |
| } |
| |
| |
| void Mir2Lir::CreateMappingTables() { |
| bool generate_src_map = cu_->compiler_driver->GetCompilerOptions().GetIncludeDebugSymbols(); |
| |
| uint32_t pc2dex_data_size = 0u; |
| uint32_t pc2dex_entries = 0u; |
| uint32_t pc2dex_offset = 0u; |
| uint32_t pc2dex_dalvik_offset = 0u; |
| uint32_t pc2dex_src_entries = 0u; |
| uint32_t dex2pc_data_size = 0u; |
| uint32_t dex2pc_entries = 0u; |
| uint32_t dex2pc_offset = 0u; |
| uint32_t dex2pc_dalvik_offset = 0u; |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) { |
| pc2dex_src_entries++; |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| pc2dex_entries += 1; |
| DCHECK(pc2dex_offset <= tgt_lir->offset); |
| pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset); |
| pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(pc2dex_dalvik_offset)); |
| pc2dex_offset = tgt_lir->offset; |
| pc2dex_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| dex2pc_entries += 1; |
| DCHECK(dex2pc_offset <= tgt_lir->offset); |
| dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset); |
| dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(dex2pc_dalvik_offset)); |
| dex2pc_offset = tgt_lir->offset; |
| dex2pc_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| } |
| |
| if (generate_src_map) { |
| src_mapping_table_.reserve(pc2dex_src_entries); |
| } |
| |
| uint32_t total_entries = pc2dex_entries + dex2pc_entries; |
| uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); |
| uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; |
| encoded_mapping_table_.resize(data_size); |
| uint8_t* write_pos = &encoded_mapping_table_[0]; |
| write_pos = EncodeUnsignedLeb128(write_pos, total_entries); |
| write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); |
| DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size); |
| uint8_t* write_pos2 = write_pos + pc2dex_data_size; |
| |
| bool is_in_prologue_or_epilogue = false; |
| pc2dex_offset = 0u; |
| pc2dex_dalvik_offset = 0u; |
| dex2pc_offset = 0u; |
| dex2pc_dalvik_offset = 0u; |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (generate_src_map && !tgt_lir->flags.is_nop && tgt_lir->opcode >= 0) { |
| if (!is_in_prologue_or_epilogue) { |
| src_mapping_table_.push_back(SrcMapElem({tgt_lir->offset, |
| static_cast<int32_t>(tgt_lir->dalvik_offset)})); |
| } |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| DCHECK(pc2dex_offset <= tgt_lir->offset); |
| write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset); |
| write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(pc2dex_dalvik_offset)); |
| pc2dex_offset = tgt_lir->offset; |
| pc2dex_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| DCHECK(dex2pc_offset <= tgt_lir->offset); |
| write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset); |
| write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(dex2pc_dalvik_offset)); |
| dex2pc_offset = tgt_lir->offset; |
| dex2pc_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| if (tgt_lir->opcode == kPseudoPrologueBegin || tgt_lir->opcode == kPseudoEpilogueBegin) { |
| is_in_prologue_or_epilogue = true; |
| } |
| if (tgt_lir->opcode == kPseudoPrologueEnd || tgt_lir->opcode == kPseudoEpilogueEnd) { |
| is_in_prologue_or_epilogue = false; |
| } |
| } |
| DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), |
| hdr_data_size + pc2dex_data_size); |
| DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size); |
| |
| if (kIsDebugBuild) { |
| CHECK(VerifyCatchEntries()); |
| |
| // Verify the encoded table holds the expected data. |
| MappingTable table(&encoded_mapping_table_[0]); |
| CHECK_EQ(table.TotalSize(), total_entries); |
| CHECK_EQ(table.PcToDexSize(), pc2dex_entries); |
| auto it = table.PcToDexBegin(); |
| auto it2 = table.DexToPcBegin(); |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| CHECK_EQ(tgt_lir->offset, it.NativePcOffset()); |
| CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc()); |
| ++it; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| CHECK_EQ(tgt_lir->offset, it2.NativePcOffset()); |
| CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc()); |
| ++it2; |
| } |
| } |
| CHECK(it == table.PcToDexEnd()); |
| CHECK(it2 == table.DexToPcEnd()); |
| } |
| } |
| |
| void Mir2Lir::CreateNativeGcMap() { |
| if (UNLIKELY((cu_->disable_opt & (1u << kPromoteRegs)) != 0u)) { |
| // If we're not promoting to physical registers, it's safe to use the verifier's notion of |
| // references. (We disable register promotion when type inference finds a type conflict and |
| // in that the case we defer to the verifier to avoid using the compiler's conflicting info.) |
| CreateNativeGcMapWithoutRegisterPromotion(); |
| return; |
| } |
| |
| ArenaBitVector* references = new (arena_) ArenaBitVector(arena_, mir_graph_->GetNumSSARegs(), |
| false); |
| |
| // Calculate max native offset and max reference vreg. |
| MIR* prev_mir = nullptr; |
| int max_ref_vreg = -1; |
| CodeOffset max_native_offset = 0u; |
| for (const auto& entry : safepoints_) { |
| uint32_t native_offset = entry.first->offset; |
| max_native_offset = std::max(max_native_offset, native_offset); |
| MIR* mir = entry.second; |
| UpdateReferenceVRegs(mir, prev_mir, references); |
| max_ref_vreg = std::max(max_ref_vreg, references->GetHighestBitSet()); |
| prev_mir = mir; |
| } |
| |
| #if defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN) |
| static constexpr bool kLittleEndian = true; |
| #else |
| static constexpr bool kLittleEndian = false; |
| #endif |
| |
| // Build the GC map. |
| uint32_t reg_width = static_cast<uint32_t>((max_ref_vreg + 8) / 8); |
| GcMapBuilder native_gc_map_builder(&native_gc_map_, |
| safepoints_.size(), |
| max_native_offset, reg_width); |
| if (kLittleEndian) { |
| for (const auto& entry : safepoints_) { |
| uint32_t native_offset = entry.first->offset; |
| MIR* mir = entry.second; |
| UpdateReferenceVRegs(mir, prev_mir, references); |
| // For little-endian, the bytes comprising the bit vector's raw storage are what we need. |
| native_gc_map_builder.AddEntry(native_offset, |
| reinterpret_cast<const uint8_t*>(references->GetRawStorage())); |
| prev_mir = mir; |
| } |
| } else { |
| ArenaVector<uint8_t> references_buffer(arena_->Adapter()); |
| references_buffer.resize(reg_width); |
| for (const auto& entry : safepoints_) { |
| uint32_t native_offset = entry.first->offset; |
| MIR* mir = entry.second; |
| UpdateReferenceVRegs(mir, prev_mir, references); |
| // Big-endian or unknown endianness, manually translate the bit vector data. |
| const auto* raw_storage = references->GetRawStorage(); |
| for (size_t i = 0; i != reg_width; ++i) { |
| references_buffer[i] = static_cast<uint8_t>( |
| raw_storage[i / sizeof(raw_storage[0])] >> (8u * (i % sizeof(raw_storage[0])))); |
| } |
| native_gc_map_builder.AddEntry(native_offset, &references_buffer[0]); |
| prev_mir = mir; |
| } |
| } |
| } |
| |
| void Mir2Lir::CreateNativeGcMapWithoutRegisterPromotion() { |
| DCHECK(!encoded_mapping_table_.empty()); |
| MappingTable mapping_table(&encoded_mapping_table_[0]); |
| uint32_t max_native_offset = 0; |
| for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { |
| uint32_t native_offset = it.NativePcOffset(); |
| if (native_offset > max_native_offset) { |
| max_native_offset = native_offset; |
| } |
| } |
| MethodReference method_ref(cu_->dex_file, cu_->method_idx); |
| const std::vector<uint8_t>& gc_map_raw = |
| mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap(); |
| verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); |
| DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize()); |
| // Compute native offset to references size. |
| GcMapBuilder native_gc_map_builder(&native_gc_map_, |
| mapping_table.PcToDexSize(), |
| max_native_offset, dex_gc_map.RegWidth()); |
| |
| for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { |
| uint32_t native_offset = it.NativePcOffset(); |
| uint32_t dex_pc = it.DexPc(); |
| const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); |
| CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc << |
| ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| native_gc_map_builder.AddEntry(native_offset, references); |
| } |
| |
| // Maybe not necessary, but this could help prevent errors where we access the verified method |
| // after it has been deleted. |
| mir_graph_->GetCurrentDexCompilationUnit()->ClearVerifiedMethod(); |
| } |
| |
| /* Determine the offset of each literal field */ |
| int Mir2Lir::AssignLiteralOffset(CodeOffset offset) { |
| offset = AssignLiteralOffsetCommon(literal_list_, offset); |
| constexpr unsigned int ptr_size = sizeof(uint32_t); |
| static_assert(ptr_size >= sizeof(mirror::HeapReference<mirror::Object>), |
| "Pointer size cannot hold a heap reference"); |
| offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size); |
| offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size); |
| offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size); |
| return offset; |
| } |
| |
| int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) { |
| for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) { |
| tab_rec->offset = offset; |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| offset += tab_rec->table[1] * (sizeof(int) * 2); |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| offset += tab_rec->table[1] * sizeof(int); |
| } |
| } |
| return offset; |
| } |
| |
| int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) { |
| for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) { |
| tab_rec->offset = offset; |
| offset += tab_rec->size; |
| // word align |
| offset = RoundUp(offset, 4); |
| } |
| return offset; |
| } |
| |
| /* |
| * Insert a kPseudoCaseLabel at the beginning of the Dalvik |
| * offset vaddr if pretty-printing, otherise use the standard block |
| * label. The selected label will be used to fix up the case |
| * branch table during the assembly phase. All resource flags |
| * are set to prevent code motion. KeyVal is just there for debugging. |
| */ |
| LIR* Mir2Lir::InsertCaseLabel(uint32_t bbid, int keyVal) { |
| LIR* boundary_lir = &block_label_list_[bbid]; |
| LIR* res = boundary_lir; |
| if (cu_->verbose) { |
| // Only pay the expense if we're pretty-printing. |
| LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR)); |
| BasicBlock* bb = mir_graph_->GetBasicBlock(bbid); |
| DCHECK(bb != nullptr); |
| new_label->dalvik_offset = bb->start_offset; |
| new_label->opcode = kPseudoCaseLabel; |
| new_label->operands[0] = keyVal; |
| new_label->flags.fixup = kFixupLabel; |
| DCHECK(!new_label->flags.use_def_invalid); |
| new_label->u.m.def_mask = &kEncodeAll; |
| InsertLIRAfter(boundary_lir, new_label); |
| } |
| return res; |
| } |
| |
| void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) { |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| uint16_t ident = table[0]; |
| int entries = table[1]; |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); |
| const int32_t* targets = &keys[entries]; |
| LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; |
| } |
| } |
| |
| void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) { |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| uint16_t ident = table[0]; |
| const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]); |
| int entries = table[1]; |
| int low_key = s4FromSwitchData(&table[2]); |
| LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries << ", low_key: " << low_key; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex |
| << targets[i]; |
| } |
| } |
| |
| /* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */ |
| void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) { |
| UNUSED(offset); |
| // NOTE: only used for debug listings. |
| NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str))); |
| } |
| |
| // Convert relation of src1/src2 to src2/src1 |
| ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) { |
| ConditionCode res; |
| switch (before) { |
| case kCondEq: res = kCondEq; break; |
| case kCondNe: res = kCondNe; break; |
| case kCondLt: res = kCondGt; break; |
| case kCondGt: res = kCondLt; break; |
| case kCondLe: res = kCondGe; break; |
| case kCondGe: res = kCondLe; break; |
| default: |
| LOG(FATAL) << "Unexpected ccode " << before; |
| UNREACHABLE(); |
| } |
| return res; |
| } |
| |
| ConditionCode Mir2Lir::NegateComparison(ConditionCode before) { |
| ConditionCode res; |
| switch (before) { |
| case kCondEq: res = kCondNe; break; |
| case kCondNe: res = kCondEq; break; |
| case kCondLt: res = kCondGe; break; |
| case kCondGt: res = kCondLe; break; |
| case kCondLe: res = kCondGt; break; |
| case kCondGe: res = kCondLt; break; |
| default: |
| LOG(FATAL) << "Unexpected ccode " << before; |
| UNREACHABLE(); |
| } |
| return res; |
| } |
| |
| // TODO: move to mir_to_lir.cc |
| Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) |
| : literal_list_(nullptr), |
| method_literal_list_(nullptr), |
| class_literal_list_(nullptr), |
| code_literal_list_(nullptr), |
| first_fixup_(nullptr), |
| arena_(arena), |
| cu_(cu), |
| mir_graph_(mir_graph), |
| switch_tables_(arena->Adapter(kArenaAllocSwitchTable)), |
| fill_array_data_(arena->Adapter(kArenaAllocFillArrayData)), |
| tempreg_info_(arena->Adapter()), |
| reginfo_map_(arena->Adapter()), |
| pointer_storage_(arena->Adapter()), |
| data_offset_(0), |
| total_size_(0), |
| block_label_list_(nullptr), |
| promotion_map_(nullptr), |
| current_dalvik_offset_(0), |
| current_mir_(nullptr), |
| estimated_native_code_size_(0), |
| reg_pool_(nullptr), |
| live_sreg_(0), |
| code_buffer_(mir_graph->GetArena()->Adapter()), |
| encoded_mapping_table_(mir_graph->GetArena()->Adapter()), |
| core_vmap_table_(mir_graph->GetArena()->Adapter()), |
| fp_vmap_table_(mir_graph->GetArena()->Adapter()), |
| native_gc_map_(mir_graph->GetArena()->Adapter()), |
| patches_(mir_graph->GetArena()->Adapter()), |
| num_core_spills_(0), |
| num_fp_spills_(0), |
| frame_size_(0), |
| core_spill_mask_(0), |
| fp_spill_mask_(0), |
| first_lir_insn_(nullptr), |
| last_lir_insn_(nullptr), |
| slow_paths_(arena->Adapter(kArenaAllocSlowPaths)), |
| mem_ref_type_(ResourceMask::kHeapRef), |
| mask_cache_(arena), |
| safepoints_(arena->Adapter()), |
| dex_cache_arrays_layout_(cu->compiler_driver->GetDexCacheArraysLayout(cu->dex_file)), |
| pc_rel_temp_(nullptr), |
| dex_cache_arrays_min_offset_(std::numeric_limits<uint32_t>::max()), |
| cfi_(&last_lir_insn_, |
| cu->compiler_driver->GetCompilerOptions().GetIncludeCFI(), |
| arena), |
| in_to_reg_storage_mapping_(arena) { |
| switch_tables_.reserve(4); |
| fill_array_data_.reserve(4); |
| tempreg_info_.reserve(20); |
| reginfo_map_.reserve(RegStorage::kMaxRegs); |
| pointer_storage_.reserve(128); |
| slow_paths_.reserve(32); |
| // Reserve pointer id 0 for null. |
| size_t null_idx = WrapPointer<void>(nullptr); |
| DCHECK_EQ(null_idx, 0U); |
| } |
| |
| void Mir2Lir::Materialize() { |
| cu_->NewTimingSplit("RegisterAllocation"); |
| CompilerInitializeRegAlloc(); // Needs to happen after SSA naming |
| |
| /* Allocate Registers using simple local allocation scheme */ |
| SimpleRegAlloc(); |
| |
| /* First try the custom light codegen for special cases. */ |
| DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); |
| bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) |
| ->GenSpecial(this, cu_->method_idx); |
| |
| /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */ |
| if (special_worked == false) { |
| MethodMIR2LIR(); |
| } |
| |
| /* Method is not empty */ |
| if (first_lir_insn_) { |
| /* Convert LIR into machine code. */ |
| AssembleLIR(); |
| |
| if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) { |
| CodegenDump(); |
| } |
| } |
| } |
| |
| CompiledMethod* Mir2Lir::GetCompiledMethod() { |
| // Combine vmap tables - core regs, then fp regs - into vmap_table. |
| Leb128EncodingVector vmap_encoder; |
| if (frame_size_ > 0) { |
| // Prefix the encoded data with its size. |
| size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size(); |
| vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). |
| vmap_encoder.PushBackUnsigned(size); |
| // Core regs may have been inserted out of order - sort first. |
| std::sort(core_vmap_table_.begin(), core_vmap_table_.end()); |
| for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) { |
| // Copy, stripping out the phys register sort key. |
| vmap_encoder.PushBackUnsigned( |
| ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment)); |
| } |
| // Push a marker to take place of lr. |
| vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); |
| if (cu_->instruction_set == kThumb2) { |
| // fp regs already sorted. |
| for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) { |
| vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment); |
| } |
| } else { |
| // For other platforms regs may have been inserted out of order - sort first. |
| std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end()); |
| for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) { |
| // Copy, stripping out the phys register sort key. |
| vmap_encoder.PushBackUnsigned( |
| ~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment)); |
| } |
| } |
| } else { |
| DCHECK_EQ(POPCOUNT(core_spill_mask_), 0); |
| DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0); |
| DCHECK_EQ(core_vmap_table_.size(), 0u); |
| DCHECK_EQ(fp_vmap_table_.size(), 0u); |
| vmap_encoder.PushBackUnsigned(0u); // Size is 0. |
| } |
| |
| // Sort patches by literal offset for better deduplication. |
| std::sort(patches_.begin(), patches_.end(), [](const LinkerPatch& lhs, const LinkerPatch& rhs) { |
| return lhs.LiteralOffset() < rhs.LiteralOffset(); |
| }); |
| |
| return CompiledMethod::SwapAllocCompiledMethod( |
| cu_->compiler_driver, cu_->instruction_set, |
| ArrayRef<const uint8_t>(code_buffer_), |
| frame_size_, core_spill_mask_, fp_spill_mask_, |
| &src_mapping_table_, |
| ArrayRef<const uint8_t>(encoded_mapping_table_), |
| ArrayRef<const uint8_t>(vmap_encoder.GetData()), |
| ArrayRef<const uint8_t>(native_gc_map_), |
| ArrayRef<const uint8_t>(*cfi_.Patch(code_buffer_.size())), |
| ArrayRef<const LinkerPatch>(patches_)); |
| } |
| |
| size_t Mir2Lir::GetMaxPossibleCompilerTemps() const { |
| // Chose a reasonably small value in order to contain stack growth. |
| // Backends that are smarter about spill region can return larger values. |
| const size_t max_compiler_temps = 10; |
| return max_compiler_temps; |
| } |
| |
| size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() { |
| // By default assume that the Mir2Lir will need one slot for each temporary. |
| // If the backend can better determine temps that have non-overlapping ranges and |
| // temps that do not need spilled, it can actually provide a small region. |
| mir_graph_->CommitCompilerTemps(); |
| return mir_graph_->GetNumBytesForSpecialTemps() + mir_graph_->GetMaximumBytesForNonSpecialTemps(); |
| } |
| |
| int Mir2Lir::ComputeFrameSize() { |
| /* Figure out the frame size */ |
| uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set) |
| + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set) |
| + sizeof(uint32_t) // Filler. |
| + mir_graph_->GetNumOfLocalCodeVRs() * sizeof(uint32_t) |
| + mir_graph_->GetNumOfOutVRs() * sizeof(uint32_t) |
| + GetNumBytesForCompilerTempSpillRegion(); |
| /* Align and set */ |
| return RoundUp(size, kStackAlignment); |
| } |
| |
| /* |
| * Append an LIR instruction to the LIR list maintained by a compilation |
| * unit |
| */ |
| void Mir2Lir::AppendLIR(LIR* lir) { |
| if (first_lir_insn_ == nullptr) { |
| DCHECK(last_lir_insn_ == nullptr); |
| last_lir_insn_ = first_lir_insn_ = lir; |
| lir->prev = lir->next = nullptr; |
| } else { |
| last_lir_insn_->next = lir; |
| lir->prev = last_lir_insn_; |
| lir->next = nullptr; |
| last_lir_insn_ = lir; |
| } |
| } |
| |
| /* |
| * Insert an LIR instruction before the current instruction, which cannot be the |
| * first instruction. |
| * |
| * prev_lir <-> new_lir <-> current_lir |
| */ |
| void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) { |
| DCHECK(current_lir->prev != nullptr); |
| LIR *prev_lir = current_lir->prev; |
| |
| prev_lir->next = new_lir; |
| new_lir->prev = prev_lir; |
| new_lir->next = current_lir; |
| current_lir->prev = new_lir; |
| } |
| |
| /* |
| * Insert an LIR instruction after the current instruction, which cannot be the |
| * last instruction. |
| * |
| * current_lir -> new_lir -> old_next |
| */ |
| void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) { |
| new_lir->prev = current_lir; |
| new_lir->next = current_lir->next; |
| current_lir->next = new_lir; |
| new_lir->next->prev = new_lir; |
| } |
| |
| bool Mir2Lir::PartiallyIntersects(RegLocation rl_src, RegLocation rl_dest) { |
| DCHECK(rl_src.wide); |
| DCHECK(rl_dest.wide); |
| return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1); |
| } |
| |
| bool Mir2Lir::Intersects(RegLocation rl_src, RegLocation rl_dest) { |
| DCHECK(rl_src.wide); |
| DCHECK(rl_dest.wide); |
| return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) <= 1); |
| } |
| |
| LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, |
| int offset, int check_value, LIR* target, LIR** compare) { |
| // Handle this for architectures that can't compare to memory. |
| LIR* inst = Load32Disp(base_reg, offset, temp_reg); |
| if (compare != nullptr) { |
| *compare = inst; |
| } |
| LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target); |
| return branch; |
| } |
| |
| void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) { |
| slow_paths_.push_back(slowpath); |
| ResetDefTracking(); |
| } |
| |
| void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg) { |
| LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method); |
| if (data_target == nullptr) { |
| data_target = AddWordData(&code_literal_list_, target_method.dex_method_index); |
| data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file)); |
| // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have |
| // the same method invoked with kVirtual, kSuper and kInterface but the class linker will |
| // resolve these invokes to the same method, so we don't care which one we record here. |
| data_target->operands[2] = type; |
| } |
| // Loads a code pointer. Code from oat file can be mapped anywhere. |
| OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target); |
| DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); |
| DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target); |
| } |
| |
| void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg) { |
| LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method); |
| if (data_target == nullptr) { |
| data_target = AddWordData(&method_literal_list_, target_method.dex_method_index); |
| data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file)); |
| // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have |
| // the same method invoked with kVirtual, kSuper and kInterface but the class linker will |
| // resolve these invokes to the same method, so we don't care which one we record here. |
| data_target->operands[2] = type; |
| } |
| // Loads an ArtMethod pointer, which is a reference as it lives in the heap. |
| OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target); |
| DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); |
| DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target); |
| } |
| |
| void Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx, |
| SpecialTargetRegister symbolic_reg) { |
| // Use the literal pool and a PC-relative load from a data word. |
| LIR* data_target = ScanLiteralPoolClass(class_literal_list_, dex_file, type_idx); |
| if (data_target == nullptr) { |
| data_target = AddWordData(&class_literal_list_, type_idx); |
| data_target->operands[1] = WrapPointer(const_cast<DexFile*>(&dex_file)); |
| } |
| // Loads a Class pointer, which is a reference as it lives in the heap. |
| OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target); |
| } |
| |
| bool Mir2Lir::CanUseOpPcRelDexCacheArrayLoad() const { |
| return false; |
| } |
| |
| void Mir2Lir::OpPcRelDexCacheArrayLoad(const DexFile* dex_file ATTRIBUTE_UNUSED, |
| int offset ATTRIBUTE_UNUSED, |
| RegStorage r_dest ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "No generic implementation."; |
| UNREACHABLE(); |
| } |
| |
| RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) { |
| if (loc.location == kLocPhysReg) { |
| DCHECK(!loc.reg.Is32Bit()); |
| if (loc.reg.IsPair()) { |
| RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow()); |
| RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh()); |
| info_lo->SetIsWide(false); |
| info_hi->SetIsWide(false); |
| loc.reg = info_lo->GetReg(); |
| } else { |
| RegisterInfo* info = GetRegInfo(loc.reg); |
| RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask); |
| DCHECK(info_new != nullptr); |
| if (info->IsLive() && (info->SReg() == loc.s_reg_low)) { |
| info->MarkDead(); |
| info_new->MarkLive(loc.s_reg_low); |
| } |
| loc.reg = info_new->GetReg(); |
| } |
| DCHECK(loc.reg.Valid()); |
| } |
| loc.wide = false; |
| return loc; |
| } |
| |
| void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { |
| UNUSED(bb, mir); |
| LOG(FATAL) << "Unknown MIR opcode not supported on this architecture"; |
| UNREACHABLE(); |
| } |
| |
| void Mir2Lir::InitReferenceVRegs(BasicBlock* bb, BitVector* references) { |
| // Mark the references coming from the first predecessor. |
| DCHECK(bb != nullptr); |
| DCHECK(bb->block_type == kEntryBlock || !bb->predecessors.empty()); |
| BasicBlock* first_bb = |
| (bb->block_type == kEntryBlock) ? bb : mir_graph_->GetBasicBlock(bb->predecessors[0]); |
| DCHECK(first_bb != nullptr); |
| DCHECK(first_bb->data_flow_info != nullptr); |
| DCHECK(first_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr); |
| const int32_t* first_vreg_to_ssa_map = first_bb->data_flow_info->vreg_to_ssa_map_exit; |
| references->ClearAllBits(); |
| for (uint32_t vreg = 0, num_vregs = mir_graph_->GetNumOfCodeVRs(); vreg != num_vregs; ++vreg) { |
| int32_t sreg = first_vreg_to_ssa_map[vreg]; |
| if (sreg != INVALID_SREG && mir_graph_->reg_location_[sreg].ref && |
| !mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[sreg])) { |
| references->SetBit(vreg); |
| } |
| } |
| // Unmark the references that are merging with a different value. |
| for (size_t i = 1u, num_pred = bb->predecessors.size(); i < num_pred; ++i) { |
| BasicBlock* pred_bb = mir_graph_->GetBasicBlock(bb->predecessors[i]); |
| DCHECK(pred_bb != nullptr); |
| DCHECK(pred_bb->data_flow_info != nullptr); |
| DCHECK(pred_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr); |
| const int32_t* pred_vreg_to_ssa_map = pred_bb->data_flow_info->vreg_to_ssa_map_exit; |
| for (uint32_t vreg : references->Indexes()) { |
| if (first_vreg_to_ssa_map[vreg] != pred_vreg_to_ssa_map[vreg]) { |
| // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again, |
| // so clearing the bit has no effect on the iterator. |
| references->ClearBit(vreg); |
| } |
| } |
| } |
| } |
| |
| bool Mir2Lir::UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references) { |
| DCHECK(mir == nullptr || mir->bb == prev_mir->bb); |
| DCHECK(prev_mir != nullptr); |
| while (prev_mir != nullptr) { |
| if (prev_mir == mir) { |
| return true; |
| } |
| const size_t num_defs = prev_mir->ssa_rep->num_defs; |
| const int32_t* defs = prev_mir->ssa_rep->defs; |
| if (num_defs == 1u && mir_graph_->reg_location_[defs[0]].ref && |
| !mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[defs[0]])) { |
| references->SetBit(mir_graph_->SRegToVReg(defs[0])); |
| } else { |
| for (size_t i = 0u; i != num_defs; ++i) { |
| references->ClearBit(mir_graph_->SRegToVReg(defs[i])); |
| } |
| } |
| prev_mir = prev_mir->next; |
| } |
| return false; |
| } |
| |
| void Mir2Lir::UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references) { |
| if (mir == nullptr) { |
| // Safepoint in entry sequence. |
| InitReferenceVRegs(mir_graph_->GetEntryBlock(), references); |
| return; |
| } |
| if (IsInstructionReturn(mir->dalvikInsn.opcode) || |
| mir->dalvikInsn.opcode == Instruction::RETURN_VOID_NO_BARRIER) { |
| references->ClearAllBits(); |
| if (mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT) { |
| references->SetBit(mir_graph_->SRegToVReg(mir->ssa_rep->uses[0])); |
| } |
| return; |
| } |
| if (prev_mir != nullptr && mir->bb == prev_mir->bb && |
| UpdateReferenceVRegsLocal(mir, prev_mir, references)) { |
| return; |
| } |
| BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb); |
| DCHECK(bb != nullptr); |
| InitReferenceVRegs(bb, references); |
| bool success = UpdateReferenceVRegsLocal(mir, bb->first_mir_insn, references); |
| DCHECK(success) << "MIR @0x" << std::hex << mir->offset << " not in BB#" << std::dec << mir->bb; |
| } |
| |
| } // namespace art |