| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <string> |
| #include <inttypes.h> |
| |
| #include "codegen_x86.h" |
| #include "dex/compiler_internals.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "mirror/array.h" |
| #include "mirror/string.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| static const RegStorage core_regs_arr[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP, rs_rBP, rs_rSI, rs_rDI |
| #ifdef TARGET_REX_SUPPORT |
| rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 |
| #endif |
| }; |
| static const RegStorage sp_regs_arr[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| #ifdef TARGET_REX_SUPPORT |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 |
| #endif |
| }; |
| static const RegStorage dp_regs_arr[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| #ifdef TARGET_REX_SUPPORT |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 |
| #endif |
| }; |
| static const RegStorage reserved_regs_arr[] = {rs_rX86_SP}; |
| static const RegStorage core_temps_arr[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; |
| static const RegStorage sp_temps_arr[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| #ifdef TARGET_REX_SUPPORT |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 |
| #endif |
| }; |
| static const RegStorage dp_temps_arr[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| #ifdef TARGET_REX_SUPPORT |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 |
| #endif |
| }; |
| |
| static const std::vector<RegStorage> core_regs(core_regs_arr, |
| core_regs_arr + sizeof(core_regs_arr) / sizeof(core_regs_arr[0])); |
| static const std::vector<RegStorage> sp_regs(sp_regs_arr, |
| sp_regs_arr + sizeof(sp_regs_arr) / sizeof(sp_regs_arr[0])); |
| static const std::vector<RegStorage> dp_regs(dp_regs_arr, |
| dp_regs_arr + sizeof(dp_regs_arr) / sizeof(dp_regs_arr[0])); |
| static const std::vector<RegStorage> reserved_regs(reserved_regs_arr, |
| reserved_regs_arr + sizeof(reserved_regs_arr) / sizeof(reserved_regs_arr[0])); |
| static const std::vector<RegStorage> core_temps(core_temps_arr, |
| core_temps_arr + sizeof(core_temps_arr) / sizeof(core_temps_arr[0])); |
| static const std::vector<RegStorage> sp_temps(sp_temps_arr, |
| sp_temps_arr + sizeof(sp_temps_arr) / sizeof(sp_temps_arr[0])); |
| static const std::vector<RegStorage> dp_temps(dp_temps_arr, |
| dp_temps_arr + sizeof(dp_temps_arr) / sizeof(dp_temps_arr[0])); |
| |
| RegLocation X86Mir2Lir::LocCReturn() { |
| return x86_loc_c_return; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnWide() { |
| return x86_loc_c_return_wide; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnFloat() { |
| return x86_loc_c_return_float; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnDouble() { |
| return x86_loc_c_return_double; |
| } |
| |
| // Return a target-dependent special register. |
| RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { |
| RegStorage res_reg = RegStorage::InvalidReg(); |
| switch (reg) { |
| case kSelf: res_reg = RegStorage::InvalidReg(); break; |
| case kSuspend: res_reg = RegStorage::InvalidReg(); break; |
| case kLr: res_reg = RegStorage::InvalidReg(); break; |
| case kPc: res_reg = RegStorage::InvalidReg(); break; |
| case kSp: res_reg = rs_rX86_SP; break; |
| case kArg0: res_reg = rs_rX86_ARG0; break; |
| case kArg1: res_reg = rs_rX86_ARG1; break; |
| case kArg2: res_reg = rs_rX86_ARG2; break; |
| case kArg3: res_reg = rs_rX86_ARG3; break; |
| case kFArg0: res_reg = rs_rX86_FARG0; break; |
| case kFArg1: res_reg = rs_rX86_FARG1; break; |
| case kFArg2: res_reg = rs_rX86_FARG2; break; |
| case kFArg3: res_reg = rs_rX86_FARG3; break; |
| case kRet0: res_reg = rs_rX86_RET0; break; |
| case kRet1: res_reg = rs_rX86_RET1; break; |
| case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break; |
| case kHiddenArg: res_reg = rs_rAX; break; |
| case kHiddenFpArg: res_reg = rs_fr0; break; |
| case kCount: res_reg = rs_rX86_COUNT; break; |
| } |
| return res_reg; |
| } |
| |
| RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) { |
| // For the 32-bit internal ABI, the first 3 arguments are passed in registers. |
| // TODO: This is not 64-bit compliant and depends on new internal ABI. |
| switch (arg_num) { |
| case 0: |
| return rs_rX86_ARG1; |
| case 1: |
| return rs_rX86_ARG2; |
| case 2: |
| return rs_rX86_ARG3; |
| default: |
| return RegStorage::InvalidReg(); |
| } |
| } |
| |
| /* |
| * Decode the register id. |
| */ |
| uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) { |
| uint64_t seed; |
| int shift; |
| int reg_id; |
| |
| reg_id = reg.GetRegNum(); |
| /* Double registers in x86 are just a single FP register */ |
| seed = 1; |
| /* FP register starts at bit position 16 */ |
| shift = reg.IsFloat() ? kX86FPReg0 : 0; |
| /* Expand the double register id into single offset */ |
| shift += reg_id; |
| return (seed << shift); |
| } |
| |
| uint64_t X86Mir2Lir::GetPCUseDefEncoding() { |
| /* |
| * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be |
| * able to clean up some of the x86/Arm_Mips differences |
| */ |
| LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86"; |
| return 0ULL; |
| } |
| |
| void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) { |
| DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); |
| DCHECK(!lir->flags.use_def_invalid); |
| |
| // X86-specific resource map setup here. |
| if (flags & REG_USE_SP) { |
| lir->u.m.use_mask |= ENCODE_X86_REG_SP; |
| } |
| |
| if (flags & REG_DEF_SP) { |
| lir->u.m.def_mask |= ENCODE_X86_REG_SP; |
| } |
| |
| if (flags & REG_DEFA) { |
| SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_DEFD) { |
| SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg()); |
| } |
| if (flags & REG_USEA) { |
| SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_USEC) { |
| SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg()); |
| } |
| |
| if (flags & REG_USED) { |
| SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg()); |
| } |
| |
| if (flags & REG_USEB) { |
| SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg()); |
| } |
| |
| // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. |
| if (lir->opcode == kX86RepneScasw) { |
| SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg()); |
| SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg()); |
| SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg()); |
| SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg()); |
| } |
| |
| if (flags & USE_FP_STACK) { |
| lir->u.m.use_mask |= ENCODE_X86_FP_STACK; |
| lir->u.m.def_mask |= ENCODE_X86_FP_STACK; |
| } |
| } |
| |
| /* For dumping instructions */ |
| static const char* x86RegName[] = { |
| "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| |
| static const char* x86CondName[] = { |
| "O", |
| "NO", |
| "B/NAE/C", |
| "NB/AE/NC", |
| "Z/EQ", |
| "NZ/NE", |
| "BE/NA", |
| "NBE/A", |
| "S", |
| "NS", |
| "P/PE", |
| "NP/PO", |
| "L/NGE", |
| "NL/GE", |
| "LE/NG", |
| "NLE/G" |
| }; |
| |
| /* |
| * Interpret a format string and build a string no longer than size |
| * See format key in Assemble.cc. |
| */ |
| std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { |
| std::string buf; |
| size_t i = 0; |
| size_t fmt_len = strlen(fmt); |
| while (i < fmt_len) { |
| if (fmt[i] != '!') { |
| buf += fmt[i]; |
| i++; |
| } else { |
| i++; |
| DCHECK_LT(i, fmt_len); |
| char operand_number_ch = fmt[i]; |
| i++; |
| if (operand_number_ch == '!') { |
| buf += "!"; |
| } else { |
| int operand_number = operand_number_ch - '0'; |
| DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. |
| DCHECK_LT(i, fmt_len); |
| int operand = lir->operands[operand_number]; |
| switch (fmt[i]) { |
| case 'c': |
| DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); |
| buf += x86CondName[operand]; |
| break; |
| case 'd': |
| buf += StringPrintf("%d", operand); |
| break; |
| case 'p': { |
| EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand)); |
| buf += StringPrintf("0x%08x", tab_rec->offset); |
| break; |
| } |
| case 'r': |
| if (RegStorage::IsFloat(operand)) { |
| int fp_reg = RegStorage::RegNum(operand); |
| buf += StringPrintf("xmm%d", fp_reg); |
| } else { |
| int reg_num = RegStorage::RegNum(operand); |
| DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName)); |
| buf += x86RegName[reg_num]; |
| } |
| break; |
| case 't': |
| buf += StringPrintf("0x%08" PRIxPTR " (L%p)", |
| reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand, |
| lir->target); |
| break; |
| default: |
| buf += StringPrintf("DecodeError '%c'", fmt[i]); |
| break; |
| } |
| i++; |
| } |
| } |
| } |
| return buf; |
| } |
| |
| void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) { |
| char buf[256]; |
| buf[0] = 0; |
| |
| if (mask == ENCODE_ALL) { |
| strcpy(buf, "all"); |
| } else { |
| char num[8]; |
| int i; |
| |
| for (i = 0; i < kX86RegEnd; i++) { |
| if (mask & (1ULL << i)) { |
| snprintf(num, arraysize(num), "%d ", i); |
| strcat(buf, num); |
| } |
| } |
| |
| if (mask & ENCODE_CCODE) { |
| strcat(buf, "cc "); |
| } |
| /* Memory bits */ |
| if (x86LIR && (mask & ENCODE_DALVIK_REG)) { |
| snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", |
| DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), |
| (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); |
| } |
| if (mask & ENCODE_LITERAL) { |
| strcat(buf, "lit "); |
| } |
| |
| if (mask & ENCODE_HEAP_REF) { |
| strcat(buf, "heap "); |
| } |
| if (mask & ENCODE_MUST_NOT_ALIAS) { |
| strcat(buf, "noalias "); |
| } |
| } |
| if (buf[0]) { |
| LOG(INFO) << prefix << ": " << buf; |
| } |
| } |
| |
| void X86Mir2Lir::AdjustSpillMask() { |
| // Adjustment for LR spilling, x86 has no LR so nothing to do here |
| core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); |
| num_core_spills_++; |
| } |
| |
| /* |
| * Mark a callee-save fp register as promoted. Note that |
| * vpush/vpop uses contiguous register lists so we must |
| * include any holes in the mask. Associate holes with |
| * Dalvik register INVALID_VREG (0xFFFFU). |
| */ |
| void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) { |
| UNIMPLEMENTED(FATAL) << "MarkPreservedSingle"; |
| } |
| |
| void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) { |
| UNIMPLEMENTED(FATAL) << "MarkPreservedDouble"; |
| } |
| |
| /* Clobber all regs that might be used by an external C call */ |
| void X86Mir2Lir::ClobberCallerSave() { |
| Clobber(rs_rAX); |
| Clobber(rs_rCX); |
| Clobber(rs_rDX); |
| Clobber(rs_rBX); |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnWideAlt() { |
| RegLocation res = LocCReturnWide(); |
| DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg()); |
| DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg()); |
| Clobber(rs_rAX); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rAX); |
| MarkInUse(rs_rDX); |
| MarkWide(res.reg); |
| return res; |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnAlt() { |
| RegLocation res = LocCReturn(); |
| res.reg.SetReg(rs_rDX.GetReg()); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rDX); |
| return res; |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::LockCallTemps() { |
| LockTemp(rs_rX86_ARG0); |
| LockTemp(rs_rX86_ARG1); |
| LockTemp(rs_rX86_ARG2); |
| LockTemp(rs_rX86_ARG3); |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::FreeCallTemps() { |
| FreeTemp(rs_rX86_ARG0); |
| FreeTemp(rs_rX86_ARG1); |
| FreeTemp(rs_rX86_ARG2); |
| FreeTemp(rs_rX86_ARG3); |
| } |
| |
| bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { |
| switch (opcode) { |
| case kX86LockCmpxchgMR: |
| case kX86LockCmpxchgAR: |
| case kX86LockCmpxchg8bM: |
| case kX86LockCmpxchg8bA: |
| case kX86XchgMR: |
| case kX86Mfence: |
| // Atomic memory instructions provide full barrier. |
| return true; |
| default: |
| break; |
| } |
| |
| // Conservative if cannot prove it provides full barrier. |
| return false; |
| } |
| |
| bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { |
| #if ANDROID_SMP != 0 |
| // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. |
| LIR* mem_barrier = last_lir_insn_; |
| |
| bool ret = false; |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers |
| * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need |
| * to ensure is that there is a scheduling barrier in place. |
| */ |
| if (barrier_kind == kStoreLoad) { |
| // If no LIR exists already that can be used a barrier, then generate an mfence. |
| if (mem_barrier == nullptr) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| |
| // If last instruction does not provide full barrier, then insert an mfence. |
| if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| } |
| |
| // Now ensure that a scheduling barrier is in place. |
| if (mem_barrier == nullptr) { |
| GenBarrier(); |
| } else { |
| // Mark as a scheduling barrier. |
| DCHECK(!mem_barrier->flags.use_def_invalid); |
| mem_barrier->u.m.def_mask = ENCODE_ALL; |
| } |
| return ret; |
| #else |
| return false; |
| #endif |
| } |
| |
| // Alloc a pair of core registers, or a double. |
| RegStorage X86Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class) { |
| if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { |
| return AllocTempDouble(); |
| } |
| RegStorage low_reg = AllocTemp(); |
| RegStorage high_reg = AllocTemp(); |
| return RegStorage::MakeRegPair(low_reg, high_reg); |
| } |
| |
| RegStorage X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) { |
| if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) { |
| return AllocTempSingle(); |
| } |
| return AllocTemp(); |
| } |
| |
| void X86Mir2Lir::CompilerInitializeRegAlloc() { |
| reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, sp_regs, dp_regs, reserved_regs, |
| core_temps, sp_temps, dp_temps); |
| |
| // Target-specific adjustments. |
| |
| // Alias single precision xmm to double xmms. |
| // TODO: as needed, add larger vector sizes - alias all to the largest. |
| GrowableArray<RegisterInfo*>::Iterator it(®_pool_->sp_regs_); |
| for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) { |
| int sp_reg_num = info->GetReg().GetRegNum(); |
| RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | sp_reg_num); |
| RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); |
| // 64-bit xmm vector register's master storage should refer to itself. |
| DCHECK_EQ(dp_reg_info, dp_reg_info->Master()); |
| // Redirect 32-bit vector's master storage to 64-bit vector. |
| info->SetMaster(dp_reg_info); |
| } |
| |
| // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. |
| // TODO: adjust for x86/hard float calling convention. |
| reg_pool_->next_core_reg_ = 2; |
| reg_pool_->next_sp_reg_ = 2; |
| reg_pool_->next_dp_reg_ = 1; |
| } |
| |
| void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) { |
| DCHECK(rl_keep.wide); |
| DCHECK(rl_free.wide); |
| int free_low = rl_free.reg.GetLowReg(); |
| int free_high = rl_free.reg.GetHighReg(); |
| int keep_low = rl_keep.reg.GetLowReg(); |
| int keep_high = rl_keep.reg.GetHighReg(); |
| if ((free_low != keep_low) && (free_low != keep_high) && |
| (free_high != keep_low) && (free_high != keep_high)) { |
| // No overlap, free both |
| FreeTemp(rl_free.reg); |
| } |
| } |
| |
| void X86Mir2Lir::SpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = frame_size_ - (4 * num_core_spills_); |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg)); |
| offset += 4; |
| } |
| } |
| } |
| |
| void X86Mir2Lir::UnSpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = frame_size_ - (4 * num_core_spills_); |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg)); |
| offset += 4; |
| } |
| } |
| } |
| |
| bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { |
| return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); |
| } |
| |
| bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) { |
| return true; |
| } |
| |
| RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { |
| if (UNLIKELY(is_volatile)) { |
| // On x86, atomic 64-bit load/store requires an fp register. |
| // Smaller aligned load/store is atomic for both core and fp registers. |
| if (size == k64 || size == kDouble) { |
| return kFPReg; |
| } |
| } |
| return RegClassBySize(size); |
| } |
| |
| X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) |
| : Mir2Lir(cu, mir_graph, arena), |
| base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false), |
| method_address_insns_(arena, 100, kGrowableArrayMisc), |
| class_type_address_insns_(arena, 100, kGrowableArrayMisc), |
| call_method_insns_(arena, 100, kGrowableArrayMisc), |
| stack_decrement_(nullptr), stack_increment_(nullptr) { |
| if (kIsDebugBuild) { |
| for (int i = 0; i < kX86Last; i++) { |
| if (X86Mir2Lir::EncodingMap[i].opcode != i) { |
| LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name |
| << " is wrong: expecting " << i << ", seeing " |
| << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); |
| } |
| } |
| } |
| } |
| |
| Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena) { |
| return new X86Mir2Lir(cu, mir_graph, arena); |
| } |
| |
| // Not used in x86 |
| RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) { |
| LOG(FATAL) << "Unexpected use of LoadHelper in x86"; |
| return RegStorage::InvalidReg(); |
| } |
| |
| // Not used in x86 |
| RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) { |
| LOG(FATAL) << "Unexpected use of LoadHelper in x86"; |
| return RegStorage::InvalidReg(); |
| } |
| |
| LIR* X86Mir2Lir::CheckSuspendUsingLoad() { |
| LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86"; |
| return nullptr; |
| } |
| |
| uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].flags; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstName(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].name; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].fmt; |
| } |
| |
| void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { |
| // Can we do this directly to memory? |
| rl_dest = UpdateLocWide(rl_dest); |
| if ((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)) { |
| int32_t val_lo = Low32Bits(value); |
| int32_t val_hi = High32Bits(value); |
| int r_base = TargetReg(kSp).GetReg(); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| |
| LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); |
| AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); |
| AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| return; |
| } |
| |
| // Just use the standard code to do the generation. |
| Mir2Lir::GenConstWide(rl_dest, value); |
| } |
| |
| // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc |
| void X86Mir2Lir::DumpRegLocation(RegLocation loc) { |
| LOG(INFO) << "location: " << loc.location << ',' |
| << (loc.wide ? " w" : " ") |
| << (loc.defined ? " D" : " ") |
| << (loc.is_const ? " c" : " ") |
| << (loc.fp ? " F" : " ") |
| << (loc.core ? " C" : " ") |
| << (loc.ref ? " r" : " ") |
| << (loc.high_word ? " h" : " ") |
| << (loc.home ? " H" : " ") |
| << ", low: " << static_cast<int>(loc.reg.GetLowReg()) |
| << ", high: " << static_cast<int>(loc.reg.GetHighReg()) |
| << ", s_reg: " << loc.s_reg_low |
| << ", orig: " << loc.orig_sreg; |
| } |
| |
| void X86Mir2Lir::Materialize() { |
| // A good place to put the analysis before starting. |
| AnalyzeMIR(); |
| |
| // Now continue with regular code generation. |
| Mir2Lir::Materialize(); |
| } |
| |
| void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); |
| uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); |
| |
| // Generate the move instruction with the unique pointer and save index, dex_file, and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(), |
| static_cast<int>(target_method_id_ptr), target_method_idx, |
| WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(move); |
| method_address_insns_.Insert(move); |
| } |
| |
| void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx); |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(&id); |
| |
| // Generate the move instruction with the unique pointer and save index and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(), |
| static_cast<int>(ptr), type_idx); |
| AppendLIR(move); |
| class_type_address_insns_.Insert(move); |
| } |
| |
| LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { |
| /* |
| * For x86, just generate a 32 bit call relative instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); |
| uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); |
| |
| // Generate the call instruction with the unique pointer and save index, dex_file, and type. |
| LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr), |
| target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(call); |
| call_method_insns_.Insert(call); |
| return call; |
| } |
| |
| void X86Mir2Lir::InstallLiteralPools() { |
| // These are handled differently for x86. |
| DCHECK(code_literal_list_ == nullptr); |
| DCHECK(method_literal_list_ == nullptr); |
| DCHECK(class_literal_list_ == nullptr); |
| |
| // Handle the fixups for methods. |
| for (uint32_t i = 0; i < method_address_insns_.Size(); i++) { |
| LIR* p = method_address_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| uint32_t target_method_idx = p->operands[2]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, cu_->invoke_type, |
| target_method_idx, target_dex_file, |
| static_cast<InvokeType>(p->operands[4]), |
| patch_offset); |
| } |
| |
| // Handle the fixups for class types. |
| for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) { |
| LIR* p = class_type_address_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| uint32_t target_method_idx = p->operands[2]; |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, target_method_idx, patch_offset); |
| } |
| |
| // And now the PC-relative calls to methods. |
| for (uint32_t i = 0; i < call_method_insns_.Size(); i++) { |
| LIR* p = call_method_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86CallI); |
| uint32_t target_method_idx = p->operands[1]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, cu_->invoke_type, |
| target_method_idx, target_dex_file, |
| static_cast<InvokeType>(p->operands[3]), |
| patch_offset, -4 /* offset */); |
| } |
| |
| // And do the normal processing. |
| Mir2Lir::InstallLiteralPools(); |
| } |
| |
| /* |
| * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, |
| * otherwise bails to standard library code. |
| */ |
| bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| |
| // EAX: 16 bit character being searched. |
| // ECX: count: number of words to be searched. |
| // EDI: String being searched. |
| // EDX: temporary during execution. |
| // EBX: temporary during execution. |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_char = info->args[1]; |
| RegLocation rl_start; // Note: only present in III flavor or IndexOf. |
| |
| uint32_t char_value = |
| rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; |
| |
| if (char_value > 0xFFFF) { |
| // We have to punt to the real String.indexOf. |
| return false; |
| } |
| |
| // Okay, we are commited to inlining this. |
| RegLocation rl_return = GetReturn(false); |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Is the string non-NULL? |
| LoadValueDirectFixed(rl_obj, rs_rDX); |
| GenNullCheck(rs_rDX, info->opt_flags); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. |
| |
| // Does the character fit in 16 bits? |
| LIR* slowpath_branch = nullptr; |
| if (rl_char.is_const) { |
| // We need the value in EAX. |
| LoadConstantNoClobber(rs_rAX, char_value); |
| } else { |
| // Character is not a constant; compare at runtime. |
| LoadValueDirectFixed(rl_char, rs_rAX); |
| slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in 16 bits. |
| // Location of reference to data array within the String object. |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array. |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_. |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| // Character is in EAX. |
| // Object pointer is in EDX. |
| |
| // We need to preserve EDI, but have no spare registers, so push it on the stack. |
| // We have to remember that all stack addresses after this are offset by sizeof(EDI). |
| NewLIR1(kX86Push32R, rs_rDI.GetReg()); |
| |
| // Compute the number of words to search in to rCX. |
| Load32Disp(rs_rDX, count_offset, rs_rCX); |
| LIR *length_compare = nullptr; |
| int start_value = 0; |
| bool is_index_on_stack = false; |
| if (zero_based) { |
| // We have to handle an empty string. Use special instruction JECXZ. |
| length_compare = NewLIR0(kX86Jecxz8); |
| } else { |
| rl_start = info->args[2]; |
| // We have to offset by the start index. |
| if (rl_start.is_const) { |
| start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); |
| start_value = std::max(start_value, 0); |
| |
| // Is the start > count? |
| length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); |
| |
| if (start_value != 0) { |
| OpRegImm(kOpSub, rs_rCX, start_value); |
| } |
| } else { |
| // Runtime start index. |
| rl_start = UpdateLocTyped(rl_start, kCoreReg); |
| if (rl_start.location == kLocPhysReg) { |
| // Handle "start index < 0" case. |
| OpRegReg(kOpXor, rs_rBX, rs_rBX); |
| OpRegReg(kOpCmp, rl_start.reg, rs_rBX); |
| OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX); |
| |
| // The length of the string should be greater than the start index. |
| length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr); |
| OpRegReg(kOpSub, rs_rCX, rl_start.reg); |
| if (rl_start.reg == rs_rDI) { |
| // The special case. We will use EDI further, so lets put start index to stack. |
| NewLIR1(kX86Push32R, rs_rDI.GetReg()); |
| is_index_on_stack = true; |
| } |
| } else { |
| // Load the start index from stack, remembering that we pushed EDI. |
| int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t); |
| Load32Disp(rs_rX86_SP, displacement, rs_rBX); |
| OpRegReg(kOpXor, rs_rDI, rs_rDI); |
| OpRegReg(kOpCmp, rs_rBX, rs_rDI); |
| OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI); |
| |
| length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr); |
| OpRegReg(kOpSub, rs_rCX, rs_rBX); |
| // Put the start index to stack. |
| NewLIR1(kX86Push32R, rs_rBX.GetReg()); |
| is_index_on_stack = true; |
| } |
| } |
| } |
| DCHECK(length_compare != nullptr); |
| |
| // ECX now contains the count in words to be searched. |
| |
| // Load the address of the string into EBX. |
| // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET. |
| Load32Disp(rs_rDX, value_offset, rs_rDI); |
| Load32Disp(rs_rDX, offset_offset, rs_rBX); |
| OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset); |
| |
| // Now compute into EDI where the search will start. |
| if (zero_based || rl_start.is_const) { |
| if (start_value == 0) { |
| OpRegCopy(rs_rDI, rs_rBX); |
| } else { |
| NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value); |
| } |
| } else { |
| if (is_index_on_stack == true) { |
| // Load the start index from stack. |
| NewLIR1(kX86Pop32R, rs_rDX.GetReg()); |
| OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0); |
| } else { |
| OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0); |
| } |
| } |
| |
| // EDI now contains the start of the string to be searched. |
| // We are all prepared to do the search for the character. |
| NewLIR0(kX86RepneScasw); |
| |
| // Did we find a match? |
| LIR* failed_branch = OpCondBranch(kCondNe, nullptr); |
| |
| // yes, we matched. Compute the index of the result. |
| // index = ((curr_ptr - orig_ptr) / 2) - 1. |
| OpRegReg(kOpSub, rs_rDI, rs_rBX); |
| OpRegImm(kOpAsr, rs_rDI, 1); |
| NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1); |
| LIR *all_done = NewLIR1(kX86Jmp8, 0); |
| |
| // Failed to match; return -1. |
| LIR *not_found = NewLIR0(kPseudoTargetLabel); |
| length_compare->target = not_found; |
| failed_branch->target = not_found; |
| LoadConstantNoClobber(rl_return.reg, -1); |
| |
| // And join up at the end. |
| all_done->target = NewLIR0(kPseudoTargetLabel); |
| // Restore EDI from the stack. |
| NewLIR1(kX86Pop32R, rs_rDI.GetReg()); |
| |
| // Out of line code returns here. |
| if (slowpath_branch != nullptr) { |
| LIR *return_point = NewLIR0(kPseudoTargetLabel); |
| AddIntrinsicSlowPath(info, slowpath_branch, return_point); |
| } |
| |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| /* |
| * @brief Enter a 32 bit quantity into the FDE buffer |
| * @param buf FDE buffer. |
| * @param data Data value. |
| */ |
| static void PushWord(std::vector<uint8_t>&buf, int data) { |
| buf.push_back(data & 0xff); |
| buf.push_back((data >> 8) & 0xff); |
| buf.push_back((data >> 16) & 0xff); |
| buf.push_back((data >> 24) & 0xff); |
| } |
| |
| /* |
| * @brief Enter an 'advance LOC' into the FDE buffer |
| * @param buf FDE buffer. |
| * @param increment Amount by which to increase the current location. |
| */ |
| static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) { |
| if (increment < 64) { |
| // Encoding in opcode. |
| buf.push_back(0x1 << 6 | increment); |
| } else if (increment < 256) { |
| // Single byte delta. |
| buf.push_back(0x02); |
| buf.push_back(increment); |
| } else if (increment < 256 * 256) { |
| // Two byte delta. |
| buf.push_back(0x03); |
| buf.push_back(increment & 0xff); |
| buf.push_back((increment >> 8) & 0xff); |
| } else { |
| // Four byte delta. |
| buf.push_back(0x04); |
| PushWord(buf, increment); |
| } |
| } |
| |
| |
| std::vector<uint8_t>* X86CFIInitialization() { |
| return X86Mir2Lir::ReturnCommonCallFrameInformation(); |
| } |
| |
| std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() { |
| std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; |
| |
| // Length of the CIE (except for this field). |
| PushWord(*cfi_info, 16); |
| |
| // CIE id. |
| PushWord(*cfi_info, 0xFFFFFFFFU); |
| |
| // Version: 3. |
| cfi_info->push_back(0x03); |
| |
| // Augmentation: empty string. |
| cfi_info->push_back(0x0); |
| |
| // Code alignment: 1. |
| cfi_info->push_back(0x01); |
| |
| // Data alignment: -4. |
| cfi_info->push_back(0x7C); |
| |
| // Return address register (R8). |
| cfi_info->push_back(0x08); |
| |
| // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4. |
| cfi_info->push_back(0x0C); |
| cfi_info->push_back(0x04); |
| cfi_info->push_back(0x04); |
| |
| // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);. |
| cfi_info->push_back(0x2 << 6 | 0x08); |
| cfi_info->push_back(0x01); |
| |
| // And 2 Noops to align to 4 byte boundary. |
| cfi_info->push_back(0x0); |
| cfi_info->push_back(0x0); |
| |
| DCHECK_EQ(cfi_info->size() & 3, 0U); |
| return cfi_info; |
| } |
| |
| static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) { |
| uint8_t buffer[12]; |
| uint8_t *ptr = EncodeUnsignedLeb128(buffer, value); |
| for (uint8_t *p = buffer; p < ptr; p++) { |
| buf.push_back(*p); |
| } |
| } |
| |
| std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() { |
| std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; |
| |
| // Generate the FDE for the method. |
| DCHECK_NE(data_offset_, 0U); |
| |
| // Length (will be filled in later in this routine). |
| PushWord(*cfi_info, 0); |
| |
| // CIE_pointer (can be filled in by linker); might be left at 0 if there is only |
| // one CIE for the whole debug_frame section. |
| PushWord(*cfi_info, 0); |
| |
| // 'initial_location' (filled in by linker). |
| PushWord(*cfi_info, 0); |
| |
| // 'address_range' (number of bytes in the method). |
| PushWord(*cfi_info, data_offset_); |
| |
| // The instructions in the FDE. |
| if (stack_decrement_ != nullptr) { |
| // Advance LOC to just past the stack decrement. |
| uint32_t pc = NEXT_LIR(stack_decrement_)->offset; |
| AdvanceLoc(*cfi_info, pc); |
| |
| // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size. |
| cfi_info->push_back(0x0e); |
| EncodeUnsignedLeb128(*cfi_info, frame_size_); |
| |
| // We continue with that stack until the epilogue. |
| if (stack_increment_ != nullptr) { |
| uint32_t new_pc = NEXT_LIR(stack_increment_)->offset; |
| AdvanceLoc(*cfi_info, new_pc - pc); |
| |
| // We probably have code snippets after the epilogue, so save the |
| // current state: DW_CFA_remember_state. |
| cfi_info->push_back(0x0a); |
| |
| // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return |
| // PC on the stack now. |
| cfi_info->push_back(0x0e); |
| EncodeUnsignedLeb128(*cfi_info, 4); |
| |
| // Everything after that is the same as before the epilogue. |
| // Stack bump was followed by RET instruction. |
| LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_)); |
| if (post_ret_insn != nullptr) { |
| pc = new_pc; |
| new_pc = post_ret_insn->offset; |
| AdvanceLoc(*cfi_info, new_pc - pc); |
| // Restore the state: DW_CFA_restore_state. |
| cfi_info->push_back(0x0b); |
| } |
| } |
| } |
| |
| // Padding to a multiple of 4 |
| while ((cfi_info->size() & 3) != 0) { |
| // DW_CFA_nop is encoded as 0. |
| cfi_info->push_back(0); |
| } |
| |
| // Set the length of the FDE inside the generated bytes. |
| uint32_t length = cfi_info->size() - 4; |
| (*cfi_info)[0] = length; |
| (*cfi_info)[1] = length >> 8; |
| (*cfi_info)[2] = length >> 16; |
| (*cfi_info)[3] = length >> 24; |
| return cfi_info; |
| } |
| |
| } // namespace art |