| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "heap.h" |
| |
| #define ATRACE_TAG ATRACE_TAG_DALVIK |
| #include <cutils/trace.h> |
| |
| #include <limits> |
| #include <vector> |
| #include <valgrind.h> |
| |
| #include "base/histogram-inl.h" |
| #include "base/stl_util.h" |
| #include "common_throws.h" |
| #include "cutils/sched_policy.h" |
| #include "debugger.h" |
| #include "gc/accounting/atomic_stack.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap-inl.h" |
| #include "gc/accounting/mod_union_table.h" |
| #include "gc/accounting/mod_union_table-inl.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/collector/mark_sweep-inl.h" |
| #include "gc/collector/partial_mark_sweep.h" |
| #include "gc/collector/semi_space.h" |
| #include "gc/collector/sticky_mark_sweep.h" |
| #include "gc/space/bump_pointer_space.h" |
| #include "gc/space/dlmalloc_space-inl.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/rosalloc_space-inl.h" |
| #include "gc/space/space-inl.h" |
| #include "heap-inl.h" |
| #include "image.h" |
| #include "invoke_arg_array_builder.h" |
| #include "mirror/art_field-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "object_utils.h" |
| #include "os.h" |
| #include "runtime.h" |
| #include "ScopedLocalRef.h" |
| #include "scoped_thread_state_change.h" |
| #include "sirt_ref.h" |
| #include "thread_list.h" |
| #include "UniquePtr.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator); |
| |
| namespace gc { |
| |
| static constexpr bool kGCALotMode = false; |
| static constexpr size_t kGcAlotInterval = KB; |
| // Minimum amount of remaining bytes before a concurrent GC is triggered. |
| static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB; |
| |
| Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, |
| double target_utilization, size_t capacity, const std::string& image_file_name, |
| CollectorType post_zygote_collector_type, size_t parallel_gc_threads, |
| size_t conc_gc_threads, bool low_memory_mode, size_t long_pause_log_threshold, |
| size_t long_gc_log_threshold, bool ignore_max_footprint, bool use_tlab) |
| : non_moving_space_(nullptr), |
| concurrent_gc_(false), |
| collector_type_(kCollectorTypeNone), |
| post_zygote_collector_type_(post_zygote_collector_type), |
| parallel_gc_threads_(parallel_gc_threads), |
| conc_gc_threads_(conc_gc_threads), |
| low_memory_mode_(low_memory_mode), |
| long_pause_log_threshold_(long_pause_log_threshold), |
| long_gc_log_threshold_(long_gc_log_threshold), |
| ignore_max_footprint_(ignore_max_footprint), |
| have_zygote_space_(false), |
| soft_reference_queue_(this), |
| weak_reference_queue_(this), |
| finalizer_reference_queue_(this), |
| phantom_reference_queue_(this), |
| cleared_references_(this), |
| is_gc_running_(false), |
| last_gc_type_(collector::kGcTypeNone), |
| next_gc_type_(collector::kGcTypePartial), |
| capacity_(capacity), |
| growth_limit_(growth_limit), |
| max_allowed_footprint_(initial_size), |
| native_footprint_gc_watermark_(initial_size), |
| native_footprint_limit_(2 * initial_size), |
| native_need_to_run_finalization_(false), |
| // Initially assume we perceive jank in case the process state is never updated. |
| process_state_(kProcessStateJankPerceptible), |
| concurrent_start_bytes_(std::numeric_limits<size_t>::max()), |
| total_bytes_freed_ever_(0), |
| total_objects_freed_ever_(0), |
| num_bytes_allocated_(0), |
| native_bytes_allocated_(0), |
| gc_memory_overhead_(0), |
| verify_missing_card_marks_(false), |
| verify_system_weaks_(false), |
| verify_pre_gc_heap_(false), |
| verify_post_gc_heap_(false), |
| verify_mod_union_table_(false), |
| min_alloc_space_size_for_sticky_gc_(2 * MB), |
| min_remaining_space_for_sticky_gc_(1 * MB), |
| last_trim_time_ms_(0), |
| allocation_rate_(0), |
| /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This |
| * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap |
| * verification is enabled, we limit the size of allocation stacks to speed up their |
| * searching. |
| */ |
| max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval |
| : (kDesiredHeapVerification > kVerifyAllFast) ? KB : MB), |
| current_allocator_(kMovingCollector ? kAllocatorTypeBumpPointer : kAllocatorTypeFreeList), |
| current_non_moving_allocator_(kAllocatorTypeFreeList), |
| bump_pointer_space_(nullptr), |
| temp_space_(nullptr), |
| reference_referent_offset_(0), |
| reference_queue_offset_(0), |
| reference_queueNext_offset_(0), |
| reference_pendingNext_offset_(0), |
| finalizer_reference_zombie_offset_(0), |
| min_free_(min_free), |
| max_free_(max_free), |
| target_utilization_(target_utilization), |
| total_wait_time_(0), |
| total_allocation_time_(0), |
| verify_object_mode_(kHeapVerificationNotPermitted), |
| gc_disable_count_(0), |
| running_on_valgrind_(RUNNING_ON_VALGRIND), |
| use_tlab_(use_tlab) { |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() entering"; |
| } |
| // If we aren't the zygote, switch to the default non zygote allocator. This may update the |
| // entrypoints. |
| if (!Runtime::Current()->IsZygote()) { |
| ChangeCollector(post_zygote_collector_type_); |
| } else { |
| // We are the zygote, use bump pointer allocation + semi space collector. |
| ChangeCollector(kCollectorTypeSS); |
| } |
| |
| live_bitmap_.reset(new accounting::HeapBitmap(this)); |
| mark_bitmap_.reset(new accounting::HeapBitmap(this)); |
| // Requested begin for the alloc space, to follow the mapped image and oat files |
| byte* requested_alloc_space_begin = nullptr; |
| if (!image_file_name.empty()) { |
| space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str()); |
| CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name; |
| AddSpace(image_space); |
| // Oat files referenced by image files immediately follow them in memory, ensure alloc space |
| // isn't going to get in the middle |
| byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd(); |
| CHECK_GT(oat_file_end_addr, image_space->End()); |
| if (oat_file_end_addr > requested_alloc_space_begin) { |
| requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize); |
| } |
| } |
| |
| const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space"; |
| if (!kUseRosAlloc) { |
| non_moving_space_ = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity, |
| requested_alloc_space_begin); |
| } else { |
| non_moving_space_ = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity, |
| requested_alloc_space_begin, low_memory_mode_); |
| } |
| if (kMovingCollector) { |
| // TODO: Place bump-pointer spaces somewhere to minimize size of card table. |
| // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation |
| // issues. |
| const size_t bump_pointer_space_size = std::min(non_moving_space_->Capacity(), 128 * MB); |
| bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space", |
| bump_pointer_space_size, nullptr); |
| CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space"; |
| AddSpace(bump_pointer_space_); |
| temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size, |
| nullptr); |
| CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space"; |
| AddSpace(temp_space_); |
| } |
| |
| CHECK(non_moving_space_ != NULL) << "Failed to create non-moving space"; |
| non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); |
| AddSpace(non_moving_space_); |
| |
| // Allocate the large object space. |
| const bool kUseFreeListSpaceForLOS = false; |
| if (kUseFreeListSpaceForLOS) { |
| large_object_space_ = space::FreeListSpace::Create("large object space", NULL, capacity); |
| } else { |
| large_object_space_ = space::LargeObjectMapSpace::Create("large object space"); |
| } |
| CHECK(large_object_space_ != NULL) << "Failed to create large object space"; |
| AddSpace(large_object_space_); |
| |
| // Compute heap capacity. Continuous spaces are sorted in order of Begin(). |
| CHECK(!continuous_spaces_.empty()); |
| // Relies on the spaces being sorted. |
| byte* heap_begin = continuous_spaces_.front()->Begin(); |
| byte* heap_end = continuous_spaces_.back()->Limit(); |
| size_t heap_capacity = heap_end - heap_begin; |
| |
| // Allocate the card table. |
| card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity)); |
| CHECK(card_table_.get() != NULL) << "Failed to create card table"; |
| |
| // Card cache for now since it makes it easier for us to update the references to the copying |
| // spaces. |
| accounting::ModUnionTable* mod_union_table = |
| new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace()); |
| CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table"; |
| AddModUnionTable(mod_union_table); |
| |
| // TODO: Count objects in the image space here. |
| num_bytes_allocated_ = 0; |
| |
| // Default mark stack size in bytes. |
| static const size_t default_mark_stack_size = 64 * KB; |
| mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size)); |
| allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack", |
| max_allocation_stack_size_)); |
| live_stack_.reset(accounting::ObjectStack::Create("live stack", |
| max_allocation_stack_size_)); |
| |
| // It's still too early to take a lock because there are no threads yet, but we can create locks |
| // now. We don't create it earlier to make it clear that you can't use locks during heap |
| // initialization. |
| gc_complete_lock_ = new Mutex("GC complete lock"); |
| gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", |
| *gc_complete_lock_)); |
| last_gc_time_ns_ = NanoTime(); |
| last_gc_size_ = GetBytesAllocated(); |
| |
| if (ignore_max_footprint_) { |
| SetIdealFootprint(std::numeric_limits<size_t>::max()); |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| } |
| CHECK_NE(max_allowed_footprint_, 0U); |
| |
| // Create our garbage collectors. |
| for (size_t i = 0; i < 2; ++i) { |
| const bool concurrent = i != 0; |
| garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent)); |
| garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); |
| garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); |
| } |
| if (kMovingCollector) { |
| // TODO: Clean this up. |
| semi_space_collector_ = new collector::SemiSpace(this); |
| garbage_collectors_.push_back(semi_space_collector_); |
| } |
| |
| if (running_on_valgrind_) { |
| Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints(); |
| } |
| |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() exiting"; |
| } |
| } |
| |
| void Heap::ChangeAllocator(AllocatorType allocator) { |
| DCHECK_NE(allocator, kAllocatorTypeLOS); |
| if (current_allocator_ != allocator) { |
| current_allocator_ = allocator; |
| SetQuickAllocEntryPointsAllocator(current_allocator_); |
| Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints(); |
| } |
| } |
| |
| bool Heap::IsCompilingBoot() const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace()) { |
| return false; |
| } else if (space->IsZygoteSpace()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Heap::HasImageSpace() const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Heap::IncrementDisableGC(Thread* self) { |
| // Need to do this holding the lock to prevent races where the GC is about to run / running when |
| // we attempt to disable it. |
| ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| WaitForGcToCompleteLocked(self); |
| ++gc_disable_count_; |
| } |
| |
| void Heap::DecrementDisableGC(Thread* self) { |
| MutexLock mu(self, *gc_complete_lock_); |
| CHECK_GE(gc_disable_count_, 0U); |
| --gc_disable_count_; |
| } |
| |
| void Heap::UpdateProcessState(ProcessState process_state) { |
| process_state_ = process_state; |
| } |
| |
| void Heap::CreateThreadPool() { |
| const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_); |
| if (num_threads != 0) { |
| thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads)); |
| } |
| } |
| |
| void Heap::VisitObjects(ObjectVisitorCallback callback, void* arg) { |
| Thread* self = Thread::Current(); |
| // GCs can move objects, so don't allow this. |
| const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects"); |
| if (bump_pointer_space_ != nullptr) { |
| // Visit objects in bump pointer space. |
| bump_pointer_space_->Walk(callback, arg); |
| } |
| // TODO: Switch to standard begin and end to use ranged a based loop. |
| for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End(); |
| it < end; ++it) { |
| mirror::Object* obj = *it; |
| callback(obj, arg); |
| } |
| GetLiveBitmap()->Walk(callback, arg); |
| self->EndAssertNoThreadSuspension(old_cause); |
| } |
| |
| void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) { |
| MarkAllocStack(non_moving_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), stack); |
| } |
| |
| void Heap::DeleteThreadPool() { |
| thread_pool_.reset(nullptr); |
| } |
| |
| void Heap::AddSpace(space::Space* space) { |
| DCHECK(space != NULL); |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| if (space->IsContinuousSpace()) { |
| DCHECK(!space->IsDiscontinuousSpace()); |
| space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); |
| // Continuous spaces don't necessarily have bitmaps. |
| accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); |
| accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); |
| if (live_bitmap != nullptr) { |
| DCHECK(mark_bitmap != nullptr); |
| live_bitmap_->AddContinuousSpaceBitmap(live_bitmap); |
| mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap); |
| } |
| |
| continuous_spaces_.push_back(continuous_space); |
| if (continuous_space->IsMallocSpace()) { |
| non_moving_space_ = continuous_space->AsMallocSpace(); |
| } |
| |
| // Ensure that spaces remain sorted in increasing order of start address. |
| std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), |
| [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) { |
| return a->Begin() < b->Begin(); |
| }); |
| // Ensure that ImageSpaces < ZygoteSpaces < AllocSpaces so that we can do address based checks to |
| // avoid redundant marking. |
| bool seen_zygote = false, seen_alloc = false; |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace()) { |
| CHECK(!seen_zygote); |
| CHECK(!seen_alloc); |
| } else if (space->IsZygoteSpace()) { |
| CHECK(!seen_alloc); |
| seen_zygote = true; |
| } else if (space->IsMallocSpace()) { |
| seen_alloc = true; |
| } |
| } |
| } else { |
| DCHECK(space->IsDiscontinuousSpace()); |
| space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); |
| DCHECK(discontinuous_space->GetLiveObjects() != nullptr); |
| live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects()); |
| DCHECK(discontinuous_space->GetMarkObjects() != nullptr); |
| mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects()); |
| discontinuous_spaces_.push_back(discontinuous_space); |
| } |
| if (space->IsAllocSpace()) { |
| alloc_spaces_.push_back(space->AsAllocSpace()); |
| } |
| } |
| |
| void Heap::RegisterGCAllocation(size_t bytes) { |
| if (this != nullptr) { |
| gc_memory_overhead_.FetchAndAdd(bytes); |
| } |
| } |
| |
| void Heap::RegisterGCDeAllocation(size_t bytes) { |
| if (this != nullptr) { |
| gc_memory_overhead_.FetchAndSub(bytes); |
| } |
| } |
| |
| void Heap::DumpGcPerformanceInfo(std::ostream& os) { |
| // Dump cumulative timings. |
| os << "Dumping cumulative Gc timings\n"; |
| uint64_t total_duration = 0; |
| |
| // Dump cumulative loggers for each GC type. |
| uint64_t total_paused_time = 0; |
| for (const auto& collector : garbage_collectors_) { |
| CumulativeLogger& logger = collector->GetCumulativeTimings(); |
| if (logger.GetTotalNs() != 0) { |
| os << Dumpable<CumulativeLogger>(logger); |
| const uint64_t total_ns = logger.GetTotalNs(); |
| const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs(); |
| double seconds = NsToMs(logger.GetTotalNs()) / 1000.0; |
| const uint64_t freed_bytes = collector->GetTotalFreedBytes(); |
| const uint64_t freed_objects = collector->GetTotalFreedObjects(); |
| Histogram<uint64_t>::CumulativeData cumulative_data; |
| collector->GetPauseHistogram().CreateHistogram(&cumulative_data); |
| collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data); |
| os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n" |
| << collector->GetName() << " freed: " << freed_objects |
| << " objects with total size " << PrettySize(freed_bytes) << "\n" |
| << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / " |
| << PrettySize(freed_bytes / seconds) << "/s\n"; |
| total_duration += total_ns; |
| total_paused_time += total_pause_ns; |
| } |
| } |
| uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust; |
| if (total_duration != 0) { |
| const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0; |
| os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; |
| os << "Mean GC size throughput: " |
| << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n"; |
| os << "Mean GC object throughput: " |
| << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; |
| } |
| size_t total_objects_allocated = GetObjectsAllocatedEver(); |
| os << "Total number of allocations: " << total_objects_allocated << "\n"; |
| size_t total_bytes_allocated = GetBytesAllocatedEver(); |
| os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n"; |
| if (kMeasureAllocationTime) { |
| os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n"; |
| os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated) |
| << "\n"; |
| } |
| os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; |
| os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; |
| os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_; |
| } |
| |
| Heap::~Heap() { |
| VLOG(heap) << "Starting ~Heap()"; |
| STLDeleteElements(&garbage_collectors_); |
| // If we don't reset then the mark stack complains in its destructor. |
| allocation_stack_->Reset(); |
| live_stack_->Reset(); |
| STLDeleteValues(&mod_union_tables_); |
| STLDeleteElements(&continuous_spaces_); |
| STLDeleteElements(&discontinuous_spaces_); |
| delete gc_complete_lock_; |
| VLOG(heap) << "Finished ~Heap()"; |
| } |
| |
| space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj, |
| bool fail_ok) const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->Contains(obj)) { |
| return space; |
| } |
| } |
| if (!fail_ok) { |
| LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; |
| } |
| return NULL; |
| } |
| |
| space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj, |
| bool fail_ok) const { |
| for (const auto& space : discontinuous_spaces_) { |
| if (space->Contains(obj)) { |
| return space; |
| } |
| } |
| if (!fail_ok) { |
| LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; |
| } |
| return NULL; |
| } |
| |
| space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { |
| space::Space* result = FindContinuousSpaceFromObject(obj, true); |
| if (result != NULL) { |
| return result; |
| } |
| return FindDiscontinuousSpaceFromObject(obj, true); |
| } |
| |
| struct SoftReferenceArgs { |
| RootVisitor* is_marked_callback_; |
| RootVisitor* recursive_mark_callback_; |
| void* arg_; |
| }; |
| |
| mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) { |
| SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg); |
| // TODO: Not preserve all soft references. |
| return args->recursive_mark_callback_(obj, args->arg_); |
| } |
| |
| // Process reference class instances and schedule finalizations. |
| void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft, |
| RootVisitor* is_marked_callback, |
| RootVisitor* recursive_mark_object_callback, void* arg) { |
| // Unless we are in the zygote or required to clear soft references with white references, |
| // preserve some white referents. |
| if (!clear_soft && !Runtime::Current()->IsZygote()) { |
| SoftReferenceArgs soft_reference_args; |
| soft_reference_args.is_marked_callback_ = is_marked_callback; |
| soft_reference_args.recursive_mark_callback_ = recursive_mark_object_callback; |
| soft_reference_args.arg_ = arg; |
| soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback, |
| &soft_reference_args); |
| } |
| timings.StartSplit("ProcessReferences"); |
| // Clear all remaining soft and weak references with white referents. |
| soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg); |
| weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg); |
| timings.EndSplit(); |
| // Preserve all white objects with finalize methods and schedule them for finalization. |
| timings.StartSplit("EnqueueFinalizerReferences"); |
| finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback, |
| recursive_mark_object_callback, arg); |
| timings.EndSplit(); |
| timings.StartSplit("ProcessReferences"); |
| // Clear all f-reachable soft and weak references with white referents. |
| soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg); |
| weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg); |
| // Clear all phantom references with white referents. |
| phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg); |
| // At this point all reference queues other than the cleared references should be empty. |
| DCHECK(soft_reference_queue_.IsEmpty()); |
| DCHECK(weak_reference_queue_.IsEmpty()); |
| DCHECK(finalizer_reference_queue_.IsEmpty()); |
| DCHECK(phantom_reference_queue_.IsEmpty()); |
| timings.EndSplit(); |
| } |
| |
| bool Heap::IsEnqueued(mirror::Object* ref) const { |
| // Since the references are stored as cyclic lists it means that once enqueued, the pending next |
| // will always be non-null. |
| return ref->GetFieldObject<mirror::Object*>(GetReferencePendingNextOffset(), false) != nullptr; |
| } |
| |
| bool Heap::IsEnqueuable(const mirror::Object* ref) const { |
| DCHECK(ref != nullptr); |
| const mirror::Object* queue = |
| ref->GetFieldObject<mirror::Object*>(GetReferenceQueueOffset(), false); |
| const mirror::Object* queue_next = |
| ref->GetFieldObject<mirror::Object*>(GetReferenceQueueNextOffset(), false); |
| return queue != nullptr && queue_next == nullptr; |
| } |
| |
| // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been |
| // marked, put it on the appropriate list in the heap for later processing. |
| void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj, |
| RootVisitor mark_visitor, void* arg) { |
| DCHECK(klass != nullptr); |
| DCHECK(klass->IsReferenceClass()); |
| DCHECK(obj != nullptr); |
| mirror::Object* referent = GetReferenceReferent(obj); |
| if (referent != nullptr) { |
| mirror::Object* forward_address = mark_visitor(referent, arg); |
| // Null means that the object is not currently marked. |
| if (forward_address == nullptr) { |
| Thread* self = Thread::Current(); |
| // TODO: Remove these locks, and use atomic stacks for storing references? |
| // We need to check that the references haven't already been enqueued since we can end up |
| // scanning the same reference multiple times due to dirty cards. |
| if (klass->IsSoftReferenceClass()) { |
| soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj); |
| } else if (klass->IsWeakReferenceClass()) { |
| weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj); |
| } else if (klass->IsFinalizerReferenceClass()) { |
| finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj); |
| } else if (klass->IsPhantomReferenceClass()) { |
| phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj); |
| } else { |
| LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex |
| << klass->GetAccessFlags(); |
| } |
| } else if (referent != forward_address) { |
| // Referent is already marked and we need to update it. |
| SetReferenceReferent(obj, forward_address); |
| } |
| } |
| } |
| |
| space::ImageSpace* Heap::GetImageSpace() const { |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsImageSpace()) { |
| return space->AsImageSpace(); |
| } |
| } |
| return NULL; |
| } |
| |
| static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) { |
| size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start); |
| if (used_bytes < chunk_size) { |
| size_t chunk_free_bytes = chunk_size - used_bytes; |
| size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg); |
| max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes); |
| } |
| } |
| |
| void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) { |
| std::ostringstream oss; |
| int64_t total_bytes_free = GetFreeMemory(); |
| oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free |
| << " free bytes"; |
| // If the allocation failed due to fragmentation, print out the largest continuous allocation. |
| if (!large_object_allocation && total_bytes_free >= byte_count) { |
| size_t max_contiguous_allocation = 0; |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsMallocSpace()) { |
| // To allow the Walk/InspectAll() to exclusively-lock the mutator |
| // lock, temporarily release the shared access to the mutator |
| // lock here by transitioning to the suspended state. |
| Locks::mutator_lock_->AssertSharedHeld(self); |
| self->TransitionFromRunnableToSuspended(kSuspended); |
| space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation); |
| self->TransitionFromSuspendedToRunnable(); |
| Locks::mutator_lock_->AssertSharedHeld(self); |
| } |
| } |
| oss << "; failed due to fragmentation (largest possible contiguous allocation " |
| << max_contiguous_allocation << " bytes)"; |
| } |
| self->ThrowOutOfMemoryError(oss.str().c_str()); |
| } |
| |
| void Heap::Trim() { |
| uint64_t start_ns = NanoTime(); |
| // Trim the managed spaces. |
| uint64_t total_alloc_space_allocated = 0; |
| uint64_t total_alloc_space_size = 0; |
| uint64_t managed_reclaimed = 0; |
| for (const auto& space : continuous_spaces_) { |
| if (space->IsMallocSpace() && !space->IsZygoteSpace()) { |
| gc::space::MallocSpace* alloc_space = space->AsMallocSpace(); |
| total_alloc_space_size += alloc_space->Size(); |
| managed_reclaimed += alloc_space->Trim(); |
| } |
| } |
| total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() - |
| bump_pointer_space_->Size(); |
| const float managed_utilization = static_cast<float>(total_alloc_space_allocated) / |
| static_cast<float>(total_alloc_space_size); |
| uint64_t gc_heap_end_ns = NanoTime(); |
| // Trim the native heap. |
| dlmalloc_trim(0); |
| size_t native_reclaimed = 0; |
| dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed); |
| uint64_t end_ns = NanoTime(); |
| VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns) |
| << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration=" |
| << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed) |
| << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization) |
| << "%."; |
| } |
| |
| bool Heap::IsValidObjectAddress(const mirror::Object* obj) const { |
| // Note: we deliberately don't take the lock here, and mustn't test anything that would require |
| // taking the lock. |
| if (obj == nullptr) { |
| return true; |
| } |
| return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj); |
| } |
| |
| bool Heap::IsHeapAddress(const mirror::Object* obj) const { |
| if (kMovingCollector && bump_pointer_space_->HasAddress(obj)) { |
| return true; |
| } |
| // TODO: This probably doesn't work for large objects. |
| return FindSpaceFromObject(obj, true) != nullptr; |
| } |
| |
| bool Heap::IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack, |
| bool search_live_stack, bool sorted) { |
| // Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current()); |
| if (obj == nullptr || UNLIKELY(!IsAligned<kObjectAlignment>(obj))) { |
| return false; |
| } |
| space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true); |
| space::DiscontinuousSpace* d_space = NULL; |
| if (c_space != NULL) { |
| if (c_space->GetLiveBitmap()->Test(obj)) { |
| return true; |
| } |
| } else if (bump_pointer_space_->Contains(obj) || temp_space_->Contains(obj)) { |
| return true; |
| } else { |
| d_space = FindDiscontinuousSpaceFromObject(obj, true); |
| if (d_space != NULL) { |
| if (d_space->GetLiveObjects()->Test(obj)) { |
| return true; |
| } |
| } |
| } |
| // This is covering the allocation/live stack swapping that is done without mutators suspended. |
| for (size_t i = 0; i < (sorted ? 1 : 5); ++i) { |
| if (i > 0) { |
| NanoSleep(MsToNs(10)); |
| } |
| if (search_allocation_stack) { |
| if (sorted) { |
| if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) { |
| return true; |
| } |
| } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) { |
| return true; |
| } |
| } |
| |
| if (search_live_stack) { |
| if (sorted) { |
| if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) { |
| return true; |
| } |
| } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) { |
| return true; |
| } |
| } |
| } |
| // We need to check the bitmaps again since there is a race where we mark something as live and |
| // then clear the stack containing it. |
| if (c_space != NULL) { |
| if (c_space->GetLiveBitmap()->Test(obj)) { |
| return true; |
| } |
| } else { |
| d_space = FindDiscontinuousSpaceFromObject(obj, true); |
| if (d_space != NULL && d_space->GetLiveObjects()->Test(obj)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Heap::VerifyObjectImpl(const mirror::Object* obj) { |
| if (Thread::Current() == NULL || |
| Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) { |
| return; |
| } |
| VerifyObjectBody(obj); |
| } |
| |
| void Heap::DumpSpaces(std::ostream& stream) { |
| for (const auto& space : continuous_spaces_) { |
| accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); |
| stream << space << " " << *space << "\n"; |
| if (live_bitmap != nullptr) { |
| stream << live_bitmap << " " << *live_bitmap << "\n"; |
| } |
| if (mark_bitmap != nullptr) { |
| stream << mark_bitmap << " " << *mark_bitmap << "\n"; |
| } |
| } |
| for (const auto& space : discontinuous_spaces_) { |
| stream << space << " " << *space << "\n"; |
| } |
| } |
| |
| void Heap::VerifyObjectBody(const mirror::Object* obj) { |
| CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj; |
| // Ignore early dawn of the universe verifications. |
| if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) { |
| return; |
| } |
| const byte* raw_addr = reinterpret_cast<const byte*>(obj) + |
| mirror::Object::ClassOffset().Int32Value(); |
| const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr); |
| if (UNLIKELY(c == NULL)) { |
| LOG(FATAL) << "Null class in object: " << obj; |
| } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) { |
| LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; |
| } |
| // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() |
| // Note: we don't use the accessors here as they have internal sanity checks |
| // that we don't want to run |
| raw_addr = reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value(); |
| const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr); |
| raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value(); |
| const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr); |
| CHECK_EQ(c_c, c_c_c); |
| |
| if (verify_object_mode_ > kVerifyAllFast) { |
| // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the |
| // heap_bitmap_lock_. |
| if (!IsLiveObjectLocked(obj)) { |
| DumpSpaces(); |
| LOG(FATAL) << "Object is dead: " << obj; |
| } |
| if (!IsLiveObjectLocked(c)) { |
| LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; |
| } |
| } |
| } |
| |
| void Heap::VerificationCallback(mirror::Object* obj, void* arg) { |
| DCHECK(obj != NULL); |
| reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj); |
| } |
| |
| void Heap::VerifyHeap() { |
| ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Walk(Heap::VerificationCallback, this); |
| } |
| |
| void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) { |
| DCHECK_LE(freed_bytes, static_cast<size_t>(num_bytes_allocated_)); |
| num_bytes_allocated_.FetchAndSub(freed_bytes); |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| thread_stats->freed_objects += freed_objects; |
| thread_stats->freed_bytes += freed_bytes; |
| // TODO: Do this concurrently. |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| global_stats->freed_objects += freed_objects; |
| global_stats->freed_bytes += freed_bytes; |
| } |
| } |
| |
| mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator, |
| size_t alloc_size, size_t* bytes_allocated, |
| mirror::Class** klass) { |
| mirror::Object* ptr = nullptr; |
| DCHECK(klass != nullptr); |
| SirtRef<mirror::Class> sirt_klass(self, *klass); |
| // The allocation failed. If the GC is running, block until it completes, and then retry the |
| // allocation. |
| collector::GcType last_gc = WaitForGcToComplete(self); |
| if (last_gc != collector::kGcTypeNone) { |
| // A GC was in progress and we blocked, retry allocation now that memory has been freed. |
| ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated); |
| } |
| |
| // Loop through our different Gc types and try to Gc until we get enough free memory. |
| for (collector::GcType gc_type : gc_plan_) { |
| if (ptr != nullptr) { |
| break; |
| } |
| // Attempt to run the collector, if we succeed, re-try the allocation. |
| if (CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone) { |
| // Did we free sufficient memory for the allocation to succeed? |
| ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated); |
| } |
| } |
| // Allocations have failed after GCs; this is an exceptional state. |
| if (ptr == nullptr) { |
| // Try harder, growing the heap if necessary. |
| ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated); |
| } |
| if (ptr == nullptr) { |
| // Most allocations should have succeeded by now, so the heap is really full, really fragmented, |
| // or the requested size is really big. Do another GC, collecting SoftReferences this time. The |
| // VM spec requires that all SoftReferences have been collected and cleared before throwing |
| // OOME. |
| VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) |
| << " allocation"; |
| // TODO: Run finalization, but this may cause more allocations to occur. |
| // We don't need a WaitForGcToComplete here either. |
| DCHECK(!gc_plan_.empty()); |
| CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true); |
| ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated); |
| if (ptr == nullptr) { |
| ThrowOutOfMemoryError(self, alloc_size, false); |
| } |
| } |
| *klass = sirt_klass.get(); |
| return ptr; |
| } |
| |
| void Heap::SetTargetHeapUtilization(float target) { |
| DCHECK_GT(target, 0.0f); // asserted in Java code |
| DCHECK_LT(target, 1.0f); |
| target_utilization_ = target; |
| } |
| |
| size_t Heap::GetObjectsAllocated() const { |
| size_t total = 0; |
| for (space::AllocSpace* space : alloc_spaces_) { |
| total += space->GetObjectsAllocated(); |
| } |
| return total; |
| } |
| |
| size_t Heap::GetObjectsAllocatedEver() const { |
| return GetObjectsFreedEver() + GetObjectsAllocated(); |
| } |
| |
| size_t Heap::GetBytesAllocatedEver() const { |
| return GetBytesFreedEver() + GetBytesAllocated(); |
| } |
| |
| class InstanceCounter { |
| public: |
| InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) { |
| } |
| |
| void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < classes_.size(); ++i) { |
| const mirror::Class* instance_class = o->GetClass(); |
| if (use_is_assignable_from_) { |
| if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) { |
| ++counts_[i]; |
| } |
| } else { |
| if (instance_class == classes_[i]) { |
| ++counts_[i]; |
| } |
| } |
| } |
| } |
| |
| private: |
| const std::vector<mirror::Class*>& classes_; |
| bool use_is_assignable_from_; |
| uint64_t* const counts_; |
| |
| DISALLOW_COPY_AND_ASSIGN(InstanceCounter); |
| }; |
| |
| void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, |
| uint64_t* counts) { |
| // We only want reachable instances, so do a GC. This also ensures that the alloc stack |
| // is empty, so the live bitmap is the only place we need to look. |
| Thread* self = Thread::Current(); |
| self->TransitionFromRunnableToSuspended(kNative); |
| CollectGarbage(false); |
| self->TransitionFromSuspendedToRunnable(); |
| |
| InstanceCounter counter(classes, use_is_assignable_from, counts); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Visit(counter); |
| } |
| |
| class InstanceCollector { |
| public: |
| InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : class_(c), max_count_(max_count), instances_(instances) { |
| } |
| |
| void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| const mirror::Class* instance_class = o->GetClass(); |
| if (instance_class == class_) { |
| if (max_count_ == 0 || instances_.size() < max_count_) { |
| instances_.push_back(const_cast<mirror::Object*>(o)); |
| } |
| } |
| } |
| |
| private: |
| mirror::Class* class_; |
| uint32_t max_count_; |
| std::vector<mirror::Object*>& instances_; |
| |
| DISALLOW_COPY_AND_ASSIGN(InstanceCollector); |
| }; |
| |
| void Heap::GetInstances(mirror::Class* c, int32_t max_count, |
| std::vector<mirror::Object*>& instances) { |
| // We only want reachable instances, so do a GC. This also ensures that the alloc stack |
| // is empty, so the live bitmap is the only place we need to look. |
| Thread* self = Thread::Current(); |
| self->TransitionFromRunnableToSuspended(kNative); |
| CollectGarbage(false); |
| self->TransitionFromSuspendedToRunnable(); |
| |
| InstanceCollector collector(c, max_count, instances); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Visit(collector); |
| } |
| |
| class ReferringObjectsFinder { |
| public: |
| ReferringObjectsFinder(mirror::Object* object, int32_t max_count, |
| std::vector<mirror::Object*>& referring_objects) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : object_(object), max_count_(max_count), referring_objects_(referring_objects) { |
| } |
| |
| // For bitmap Visit. |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for |
| // annotalysis on visitors. |
| void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS { |
| collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true); |
| } |
| |
| // For MarkSweep::VisitObjectReferences. |
| void operator()(mirror::Object* referrer, mirror::Object* object, |
| const MemberOffset&, bool) const { |
| if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) { |
| referring_objects_.push_back(referrer); |
| } |
| } |
| |
| private: |
| mirror::Object* object_; |
| uint32_t max_count_; |
| std::vector<mirror::Object*>& referring_objects_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder); |
| }; |
| |
| void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count, |
| std::vector<mirror::Object*>& referring_objects) { |
| // We only want reachable instances, so do a GC. This also ensures that the alloc stack |
| // is empty, so the live bitmap is the only place we need to look. |
| Thread* self = Thread::Current(); |
| self->TransitionFromRunnableToSuspended(kNative); |
| CollectGarbage(false); |
| self->TransitionFromSuspendedToRunnable(); |
| |
| ReferringObjectsFinder finder(o, max_count, referring_objects); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Visit(finder); |
| } |
| |
| void Heap::CollectGarbage(bool clear_soft_references) { |
| // Even if we waited for a GC we still need to do another GC since weaks allocated during the |
| // last GC will not have necessarily been cleared. |
| CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references); |
| } |
| |
| void Heap::ChangeCollector(CollectorType collector_type) { |
| // TODO: Only do this with all mutators suspended to avoid races. |
| if (collector_type != collector_type_) { |
| collector_type_ = collector_type; |
| gc_plan_.clear(); |
| switch (collector_type_) { |
| case kCollectorTypeSS: { |
| concurrent_gc_ = false; |
| gc_plan_.push_back(collector::kGcTypeFull); |
| if (use_tlab_) { |
| ChangeAllocator(kAllocatorTypeTLAB); |
| } else { |
| ChangeAllocator(kAllocatorTypeBumpPointer); |
| } |
| break; |
| } |
| case kCollectorTypeMS: { |
| concurrent_gc_ = false; |
| gc_plan_.push_back(collector::kGcTypeSticky); |
| gc_plan_.push_back(collector::kGcTypePartial); |
| gc_plan_.push_back(collector::kGcTypeFull); |
| ChangeAllocator(kAllocatorTypeFreeList); |
| break; |
| } |
| case kCollectorTypeCMS: { |
| concurrent_gc_ = true; |
| gc_plan_.push_back(collector::kGcTypeSticky); |
| gc_plan_.push_back(collector::kGcTypePartial); |
| gc_plan_.push_back(collector::kGcTypeFull); |
| ChangeAllocator(kAllocatorTypeFreeList); |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| } |
| if (concurrent_gc_) { |
| concurrent_start_bytes_ = |
| std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes; |
| } else { |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| } |
| } |
| } |
| |
| static void MarkInBitmapCallback(mirror::Object* obj, void* arg) { |
| reinterpret_cast<accounting::SpaceBitmap*>(arg)->Set(obj); |
| } |
| |
| void Heap::PreZygoteFork() { |
| static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock); |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, zygote_creation_lock_); |
| // Try to see if we have any Zygote spaces. |
| if (have_zygote_space_) { |
| return; |
| } |
| VLOG(heap) << "Starting PreZygoteFork"; |
| // Do this before acquiring the zygote creation lock so that we don't get lock order violations. |
| CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false); |
| // Trim the pages at the end of the non moving space. |
| non_moving_space_->Trim(); |
| non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| // Change the collector to the post zygote one. |
| ChangeCollector(post_zygote_collector_type_); |
| // TODO: Delete bump_pointer_space_ and temp_pointer_space_? |
| if (semi_space_collector_ != nullptr) { |
| // Create a new bump pointer space which we will compact into. |
| space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(), |
| non_moving_space_->Limit()); |
| // Compact the bump pointer space to a new zygote bump pointer space. |
| temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); |
| Compact(&target_space, bump_pointer_space_); |
| CHECK(temp_space_->IsEmpty()); |
| total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects(); |
| total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes(); |
| // Update the end and write out image. |
| non_moving_space_->SetEnd(target_space.End()); |
| non_moving_space_->SetLimit(target_space.Limit()); |
| accounting::SpaceBitmap* bitmap = non_moving_space_->GetLiveBitmap(); |
| // Record the allocations in the bitmap. |
| VLOG(heap) << "Recording zygote allocations"; |
| target_space.Walk(MarkInBitmapCallback, bitmap); |
| } |
| // Turn the current alloc space into a zygote space and obtain the new alloc space composed of |
| // the remaining available heap memory. |
| space::MallocSpace* zygote_space = non_moving_space_; |
| non_moving_space_ = zygote_space->CreateZygoteSpace("alloc space", low_memory_mode_); |
| non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); |
| // Change the GC retention policy of the zygote space to only collect when full. |
| zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect); |
| AddSpace(non_moving_space_); |
| have_zygote_space_ = true; |
| zygote_space->InvalidateAllocator(); |
| // Create the zygote space mod union table. |
| accounting::ModUnionTable* mod_union_table = |
| new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space); |
| CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table"; |
| AddModUnionTable(mod_union_table); |
| // Reset the cumulative loggers since we now have a few additional timing phases. |
| for (const auto& collector : garbage_collectors_) { |
| collector->ResetCumulativeStatistics(); |
| } |
| } |
| |
| void Heap::FlushAllocStack() { |
| MarkAllocStack(non_moving_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), |
| allocation_stack_.get()); |
| allocation_stack_->Reset(); |
| } |
| |
| void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects, |
| accounting::ObjectStack* stack) { |
| mirror::Object** limit = stack->End(); |
| for (mirror::Object** it = stack->Begin(); it != limit; ++it) { |
| const mirror::Object* obj = *it; |
| DCHECK(obj != NULL); |
| if (LIKELY(bitmap->HasAddress(obj))) { |
| bitmap->Set(obj); |
| } else { |
| large_objects->Set(obj); |
| } |
| } |
| } |
| |
| const char* PrettyCause(GcCause cause) { |
| switch (cause) { |
| case kGcCauseForAlloc: return "Alloc"; |
| case kGcCauseBackground: return "Background"; |
| case kGcCauseExplicit: return "Explicit"; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| return ""; |
| } |
| |
| void Heap::SwapSemiSpaces() { |
| // Swap the spaces so we allocate into the space which we just evacuated. |
| std::swap(bump_pointer_space_, temp_space_); |
| } |
| |
| void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space, |
| space::ContinuousMemMapAllocSpace* source_space) { |
| CHECK(kMovingCollector); |
| CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported"; |
| if (target_space != source_space) { |
| semi_space_collector_->SetFromSpace(source_space); |
| semi_space_collector_->SetToSpace(target_space); |
| semi_space_collector_->Run(false); |
| } |
| } |
| |
| collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause, |
| bool clear_soft_references) { |
| Thread* self = Thread::Current(); |
| Runtime* runtime = Runtime::Current(); |
| // If the heap can't run the GC, silently fail and return that no GC was run. |
| switch (gc_type) { |
| case collector::kGcTypeSticky: { |
| const size_t alloc_space_size = non_moving_space_->Size(); |
| if (alloc_space_size < min_alloc_space_size_for_sticky_gc_ || |
| non_moving_space_->Capacity() - alloc_space_size < min_remaining_space_for_sticky_gc_) { |
| return collector::kGcTypeNone; |
| } |
| break; |
| } |
| case collector::kGcTypePartial: { |
| if (!have_zygote_space_) { |
| return collector::kGcTypeNone; |
| } |
| break; |
| } |
| default: { |
| // Other GC types don't have any special cases which makes them not runnable. The main case |
| // here is full GC. |
| } |
| } |
| ScopedThreadStateChange tsc(self, kWaitingPerformingGc); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| if (self->IsHandlingStackOverflow()) { |
| LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow."; |
| } |
| { |
| gc_complete_lock_->AssertNotHeld(self); |
| MutexLock mu(self, *gc_complete_lock_); |
| // Ensure there is only one GC at a time. |
| WaitForGcToCompleteLocked(self); |
| // TODO: if another thread beat this one to do the GC, perhaps we should just return here? |
| // Not doing at the moment to ensure soft references are cleared. |
| // GC can be disabled if someone has a used GetPrimitiveArrayCritical. |
| if (gc_disable_count_ != 0) { |
| LOG(WARNING) << "Skipping GC due to disable count " << gc_disable_count_; |
| return collector::kGcTypeNone; |
| } |
| is_gc_running_ = true; |
| } |
| if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) { |
| ++runtime->GetStats()->gc_for_alloc_count; |
| ++self->GetStats()->gc_for_alloc_count; |
| } |
| uint64_t gc_start_time_ns = NanoTime(); |
| uint64_t gc_start_size = GetBytesAllocated(); |
| // Approximate allocation rate in bytes / second. |
| uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_); |
| // Back to back GCs can cause 0 ms of wait time in between GC invocations. |
| if (LIKELY(ms_delta != 0)) { |
| allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta; |
| VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s"; |
| } |
| |
| DCHECK_LT(gc_type, collector::kGcTypeMax); |
| DCHECK_NE(gc_type, collector::kGcTypeNone); |
| |
| collector::GarbageCollector* collector = nullptr; |
| // TODO: Clean this up. |
| if (collector_type_ == kCollectorTypeSS) { |
| DCHECK(current_allocator_ == kAllocatorTypeBumpPointer || |
| current_allocator_ == kAllocatorTypeTLAB); |
| gc_type = semi_space_collector_->GetGcType(); |
| CHECK(temp_space_->IsEmpty()); |
| semi_space_collector_->SetFromSpace(bump_pointer_space_); |
| semi_space_collector_->SetToSpace(temp_space_); |
| mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE); |
| collector = semi_space_collector_; |
| gc_type = collector::kGcTypeFull; |
| } else if (current_allocator_ == kAllocatorTypeFreeList) { |
| for (const auto& cur_collector : garbage_collectors_) { |
| if (cur_collector->IsConcurrent() == concurrent_gc_ && |
| cur_collector->GetGcType() == gc_type) { |
| collector = cur_collector; |
| break; |
| } |
| } |
| } else { |
| LOG(FATAL) << "Invalid current allocator " << current_allocator_; |
| } |
| CHECK(collector != nullptr) |
| << "Could not find garbage collector with concurrent=" << concurrent_gc_ |
| << " and type=" << gc_type; |
| |
| ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str()); |
| |
| collector->Run(clear_soft_references); |
| total_objects_freed_ever_ += collector->GetFreedObjects(); |
| total_bytes_freed_ever_ += collector->GetFreedBytes(); |
| |
| // Enqueue cleared references. |
| EnqueueClearedReferences(); |
| |
| // Grow the heap so that we know when to perform the next GC. |
| GrowForUtilization(gc_type, collector->GetDurationNs()); |
| |
| if (CareAboutPauseTimes()) { |
| const size_t duration = collector->GetDurationNs(); |
| std::vector<uint64_t> pauses = collector->GetPauseTimes(); |
| // GC for alloc pauses the allocating thread, so consider it as a pause. |
| bool was_slow = duration > long_gc_log_threshold_ || |
| (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_); |
| if (!was_slow) { |
| for (uint64_t pause : pauses) { |
| was_slow = was_slow || pause > long_pause_log_threshold_; |
| } |
| } |
| if (was_slow) { |
| const size_t percent_free = GetPercentFree(); |
| const size_t current_heap_size = GetBytesAllocated(); |
| const size_t total_memory = GetTotalMemory(); |
| std::ostringstream pause_string; |
| for (size_t i = 0; i < pauses.size(); ++i) { |
| pause_string << PrettyDuration((pauses[i] / 1000) * 1000) |
| << ((i != pauses.size() - 1) ? ", " : ""); |
| } |
| LOG(INFO) << gc_cause << " " << collector->GetName() |
| << " GC freed " << collector->GetFreedObjects() << "(" |
| << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, " |
| << collector->GetFreedLargeObjects() << "(" |
| << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, " |
| << percent_free << "% free, " << PrettySize(current_heap_size) << "/" |
| << PrettySize(total_memory) << ", " << "paused " << pause_string.str() |
| << " total " << PrettyDuration((duration / 1000) * 1000); |
| if (VLOG_IS_ON(heap)) { |
| LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings()); |
| } |
| } |
| } |
| |
| { |
| MutexLock mu(self, *gc_complete_lock_); |
| is_gc_running_ = false; |
| last_gc_type_ = gc_type; |
| // Wake anyone who may have been waiting for the GC to complete. |
| gc_complete_cond_->Broadcast(self); |
| } |
| |
| ATRACE_END(); |
| |
| // Inform DDMS that a GC completed. |
| Dbg::GcDidFinish(); |
| return gc_type; |
| } |
| |
| static mirror::Object* RootMatchesObjectVisitor(mirror::Object* root, void* arg) { |
| mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg); |
| if (root == obj) { |
| LOG(INFO) << "Object " << obj << " is a root"; |
| } |
| return root; |
| } |
| |
| class ScanVisitor { |
| public: |
| void operator()(const mirror::Object* obj) const { |
| LOG(ERROR) << "Would have rescanned object " << obj; |
| } |
| }; |
| |
| // Verify a reference from an object. |
| class VerifyReferenceVisitor { |
| public: |
| explicit VerifyReferenceVisitor(Heap* heap) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) |
| : heap_(heap), failed_(false) {} |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter |
| // analysis on visitors. |
| void operator()(const mirror::Object* obj, const mirror::Object* ref, |
| const MemberOffset& offset, bool /* is_static */) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // Verify that the reference is live. |
| if (UNLIKELY(ref != NULL && !IsLive(ref))) { |
| accounting::CardTable* card_table = heap_->GetCardTable(); |
| accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); |
| accounting::ObjectStack* live_stack = heap_->live_stack_.get(); |
| if (!failed_) { |
| // Print message on only on first failure to prevent spam. |
| LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!"; |
| failed_ = true; |
| } |
| if (obj != nullptr) { |
| byte* card_addr = card_table->CardFromAddr(obj); |
| LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " |
| << offset << "\n card value = " << static_cast<int>(*card_addr); |
| if (heap_->IsValidObjectAddress(obj->GetClass())) { |
| LOG(ERROR) << "Obj type " << PrettyTypeOf(obj); |
| } else { |
| LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address"; |
| } |
| |
| // Attmept to find the class inside of the recently freed objects. |
| space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true); |
| if (ref_space != nullptr && ref_space->IsMallocSpace()) { |
| space::MallocSpace* space = ref_space->AsMallocSpace(); |
| mirror::Class* ref_class = space->FindRecentFreedObject(ref); |
| if (ref_class != nullptr) { |
| LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class " |
| << PrettyClass(ref_class); |
| } else { |
| LOG(ERROR) << "Reference " << ref << " not found as a recently freed object"; |
| } |
| } |
| |
| if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) && |
| ref->GetClass()->IsClass()) { |
| LOG(ERROR) << "Ref type " << PrettyTypeOf(ref); |
| } else { |
| LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass() |
| << ") is not a valid heap address"; |
| } |
| |
| card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj)); |
| void* cover_begin = card_table->AddrFromCard(card_addr); |
| void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) + |
| accounting::CardTable::kCardSize); |
| LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin |
| << "-" << cover_end; |
| accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); |
| |
| // Print out how the object is live. |
| if (bitmap != NULL && bitmap->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) { |
| LOG(ERROR) << "Object " << obj << " found in allocation stack"; |
| } |
| if (live_stack->Contains(const_cast<mirror::Object*>(obj))) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) { |
| LOG(ERROR) << "Ref " << ref << " found in allocation stack"; |
| } |
| if (live_stack->Contains(const_cast<mirror::Object*>(ref))) { |
| LOG(ERROR) << "Ref " << ref << " found in live stack"; |
| } |
| // Attempt to see if the card table missed the reference. |
| ScanVisitor scan_visitor; |
| byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr)); |
| card_table->Scan(bitmap, byte_cover_begin, |
| byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor); |
| |
| // Search to see if any of the roots reference our object. |
| void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj)); |
| Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false); |
| |
| // Search to see if any of the roots reference our reference. |
| arg = const_cast<void*>(reinterpret_cast<const void*>(ref)); |
| Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false); |
| } else { |
| LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref); |
| } |
| } |
| } |
| |
| bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { |
| return heap_->IsLiveObjectLocked(obj, true, false, true); |
| } |
| |
| static mirror::Object* VerifyRoots(mirror::Object* root, void* arg) { |
| VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg); |
| (*visitor)(nullptr, root, MemberOffset(0), true); |
| return root; |
| } |
| |
| private: |
| Heap* const heap_; |
| mutable bool failed_; |
| }; |
| |
| // Verify all references within an object, for use with HeapBitmap::Visit. |
| class VerifyObjectVisitor { |
| public: |
| explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {} |
| |
| void operator()(mirror::Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| // Note: we are verifying the references in obj but not obj itself, this is because obj must |
| // be live or else how did we find it in the live bitmap? |
| VerifyReferenceVisitor visitor(heap_); |
| // The class doesn't count as a reference but we should verify it anyways. |
| collector::MarkSweep::VisitObjectReferences(obj, visitor, true); |
| if (obj->GetClass()->IsReferenceClass()) { |
| visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false); |
| } |
| failed_ = failed_ || visitor.Failed(); |
| } |
| |
| static void VisitCallback(mirror::Object* obj, void* arg) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg); |
| visitor->operator()(obj); |
| } |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| private: |
| Heap* const heap_; |
| mutable bool failed_; |
| }; |
| |
| // Must do this with mutators suspended since we are directly accessing the allocation stacks. |
| bool Heap::VerifyHeapReferences() { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| // Lets sort our allocation stacks so that we can efficiently binary search them. |
| allocation_stack_->Sort(); |
| live_stack_->Sort(); |
| VerifyObjectVisitor visitor(this); |
| // Verify objects in the allocation stack since these will be objects which were: |
| // 1. Allocated prior to the GC (pre GC verification). |
| // 2. Allocated during the GC (pre sweep GC verification). |
| // We don't want to verify the objects in the live stack since they themselves may be |
| // pointing to dead objects if they are not reachable. |
| VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor); |
| // Verify the roots: |
| Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false); |
| if (visitor.Failed()) { |
| // Dump mod-union tables. |
| for (const auto& table_pair : mod_union_tables_) { |
| accounting::ModUnionTable* mod_union_table = table_pair.second; |
| mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": "); |
| } |
| DumpSpaces(); |
| return false; |
| } |
| return true; |
| } |
| |
| class VerifyReferenceCardVisitor { |
| public: |
| VerifyReferenceCardVisitor(Heap* heap, bool* failed) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, |
| Locks::heap_bitmap_lock_) |
| : heap_(heap), failed_(failed) { |
| } |
| |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for |
| // annotalysis on visitors. |
| void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset, |
| bool is_static) const NO_THREAD_SAFETY_ANALYSIS { |
| // Filter out class references since changing an object's class does not mark the card as dirty. |
| // Also handles large objects, since the only reference they hold is a class reference. |
| if (ref != NULL && !ref->IsClass()) { |
| accounting::CardTable* card_table = heap_->GetCardTable(); |
| // If the object is not dirty and it is referencing something in the live stack other than |
| // class, then it must be on a dirty card. |
| if (!card_table->AddrIsInCardTable(obj)) { |
| LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; |
| *failed_ = true; |
| } else if (!card_table->IsDirty(obj)) { |
| // Card should be either kCardDirty if it got re-dirtied after we aged it, or |
| // kCardDirty - 1 if it didnt get touched since we aged it. |
| accounting::ObjectStack* live_stack = heap_->live_stack_.get(); |
| if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) { |
| if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (heap_->GetLiveBitmap()->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj) |
| << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack"; |
| |
| // Print which field of the object is dead. |
| if (!obj->IsObjectArray()) { |
| const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass(); |
| CHECK(klass != NULL); |
| const mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields() |
| : klass->GetIFields(); |
| CHECK(fields != NULL); |
| for (int32_t i = 0; i < fields->GetLength(); ++i) { |
| const mirror::ArtField* cur = fields->Get(i); |
| if (cur->GetOffset().Int32Value() == offset.Int32Value()) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " |
| << PrettyField(cur); |
| break; |
| } |
| } |
| } else { |
| const mirror::ObjectArray<mirror::Object>* object_array = |
| obj->AsObjectArray<mirror::Object>(); |
| for (int32_t i = 0; i < object_array->GetLength(); ++i) { |
| if (object_array->Get(i) == ref) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; |
| } |
| } |
| } |
| |
| *failed_ = true; |
| } |
| } |
| } |
| } |
| |
| private: |
| Heap* const heap_; |
| bool* const failed_; |
| }; |
| |
| class VerifyLiveStackReferences { |
| public: |
| explicit VerifyLiveStackReferences(Heap* heap) |
| : heap_(heap), |
| failed_(false) {} |
| |
| void operator()(mirror::Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_)); |
| collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true); |
| } |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| private: |
| Heap* const heap_; |
| bool failed_; |
| }; |
| |
| bool Heap::VerifyMissingCardMarks() { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| |
| // We need to sort the live stack since we binary search it. |
| live_stack_->Sort(); |
| VerifyLiveStackReferences visitor(this); |
| GetLiveBitmap()->Visit(visitor); |
| |
| // We can verify objects in the live stack since none of these should reference dead objects. |
| for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) { |
| visitor(*it); |
| } |
| |
| if (visitor.Failed()) { |
| DumpSpaces(); |
| return false; |
| } |
| return true; |
| } |
| |
| void Heap::SwapStacks() { |
| allocation_stack_.swap(live_stack_); |
| } |
| |
| accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) { |
| auto it = mod_union_tables_.find(space); |
| if (it == mod_union_tables_.end()) { |
| return nullptr; |
| } |
| return it->second; |
| } |
| |
| void Heap::ProcessCards(TimingLogger& timings) { |
| // Clear cards and keep track of cards cleared in the mod-union table. |
| for (const auto& space : continuous_spaces_) { |
| accounting::ModUnionTable* table = FindModUnionTableFromSpace(space); |
| if (table != nullptr) { |
| const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" : |
| "ImageModUnionClearCards"; |
| TimingLogger::ScopedSplit split(name, &timings); |
| table->ClearCards(); |
| } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) { |
| TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings); |
| // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards |
| // were dirty before the GC started. |
| // TODO: Don't need to use atomic. |
| // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint |
| // roots and then we scan / update mod union tables after. We will always scan either card.// |
| // If we end up with the non aged card, we scan it it in the pause. |
| card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor()); |
| } |
| } |
| } |
| |
| static mirror::Object* IdentityCallback(mirror::Object* obj, void*) { |
| return obj; |
| } |
| |
| void Heap::PreGcVerification(collector::GarbageCollector* gc) { |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| Thread* self = Thread::Current(); |
| |
| if (verify_pre_gc_heap_) { |
| thread_list->SuspendAll(); |
| { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed"; |
| } |
| } |
| thread_list->ResumeAll(); |
| } |
| |
| // Check that all objects which reference things in the live stack are on dirty cards. |
| if (verify_missing_card_marks_) { |
| thread_list->SuspendAll(); |
| { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| SwapStacks(); |
| // Sort the live stack so that we can quickly binary search it later. |
| if (!VerifyMissingCardMarks()) { |
| LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed"; |
| } |
| SwapStacks(); |
| } |
| thread_list->ResumeAll(); |
| } |
| |
| if (verify_mod_union_table_) { |
| thread_list->SuspendAll(); |
| ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); |
| for (const auto& table_pair : mod_union_tables_) { |
| accounting::ModUnionTable* mod_union_table = table_pair.second; |
| mod_union_table->UpdateAndMarkReferences(IdentityCallback, nullptr); |
| mod_union_table->Verify(); |
| } |
| thread_list->ResumeAll(); |
| } |
| } |
| |
| void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { |
| // Called before sweeping occurs since we want to make sure we are not going so reclaim any |
| // reachable objects. |
| if (verify_post_gc_heap_) { |
| Thread* self = Thread::Current(); |
| CHECK_NE(self->GetState(), kRunnable); |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Swapping bound bitmaps does nothing. |
| gc->SwapBitmaps(); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed"; |
| } |
| gc->SwapBitmaps(); |
| } |
| } |
| } |
| |
| void Heap::PostGcVerification(collector::GarbageCollector* gc) { |
| if (verify_system_weaks_) { |
| Thread* self = Thread::Current(); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc); |
| mark_sweep->VerifySystemWeaks(); |
| } |
| } |
| |
| collector::GcType Heap::WaitForGcToComplete(Thread* self) { |
| ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); |
| MutexLock mu(self, *gc_complete_lock_); |
| return WaitForGcToCompleteLocked(self); |
| } |
| |
| collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) { |
| collector::GcType last_gc_type = collector::kGcTypeNone; |
| uint64_t wait_start = NanoTime(); |
| while (is_gc_running_) { |
| ATRACE_BEGIN("GC: Wait For Completion"); |
| // We must wait, change thread state then sleep on gc_complete_cond_; |
| gc_complete_cond_->Wait(self); |
| last_gc_type = last_gc_type_; |
| ATRACE_END(); |
| } |
| uint64_t wait_time = NanoTime() - wait_start; |
| total_wait_time_ += wait_time; |
| if (wait_time > long_pause_log_threshold_) { |
| LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time); |
| } |
| return last_gc_type; |
| } |
| |
| void Heap::DumpForSigQuit(std::ostream& os) { |
| os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" |
| << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; |
| DumpGcPerformanceInfo(os); |
| } |
| |
| size_t Heap::GetPercentFree() { |
| return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory()); |
| } |
| |
| void Heap::SetIdealFootprint(size_t max_allowed_footprint) { |
| if (max_allowed_footprint > GetMaxMemory()) { |
| VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to " |
| << PrettySize(GetMaxMemory()); |
| max_allowed_footprint = GetMaxMemory(); |
| } |
| max_allowed_footprint_ = max_allowed_footprint; |
| } |
| |
| bool Heap::IsMovableObject(const mirror::Object* obj) const { |
| if (kMovingCollector) { |
| DCHECK(!IsInTempSpace(obj)); |
| if (bump_pointer_space_->HasAddress(obj)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Heap::IsInTempSpace(const mirror::Object* obj) const { |
| if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) { |
| return true; |
| } |
| return false; |
| } |
| |
| void Heap::UpdateMaxNativeFootprint() { |
| size_t native_size = native_bytes_allocated_; |
| // TODO: Tune the native heap utilization to be a value other than the java heap utilization. |
| size_t target_size = native_size / GetTargetHeapUtilization(); |
| if (target_size > native_size + max_free_) { |
| target_size = native_size + max_free_; |
| } else if (target_size < native_size + min_free_) { |
| target_size = native_size + min_free_; |
| } |
| native_footprint_gc_watermark_ = target_size; |
| native_footprint_limit_ = 2 * target_size - native_size; |
| } |
| |
| void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) { |
| // We know what our utilization is at this moment. |
| // This doesn't actually resize any memory. It just lets the heap grow more when necessary. |
| const size_t bytes_allocated = GetBytesAllocated(); |
| last_gc_size_ = bytes_allocated; |
| last_gc_time_ns_ = NanoTime(); |
| size_t target_size; |
| if (gc_type != collector::kGcTypeSticky) { |
| // Grow the heap for non sticky GC. |
| target_size = bytes_allocated / GetTargetHeapUtilization(); |
| if (target_size > bytes_allocated + max_free_) { |
| target_size = bytes_allocated + max_free_; |
| } else if (target_size < bytes_allocated + min_free_) { |
| target_size = bytes_allocated + min_free_; |
| } |
| native_need_to_run_finalization_ = true; |
| next_gc_type_ = collector::kGcTypeSticky; |
| } else { |
| // Based on how close the current heap size is to the target size, decide |
| // whether or not to do a partial or sticky GC next. |
| if (bytes_allocated + min_free_ <= max_allowed_footprint_) { |
| next_gc_type_ = collector::kGcTypeSticky; |
| } else { |
| next_gc_type_ = collector::kGcTypePartial; |
| } |
| // If we have freed enough memory, shrink the heap back down. |
| if (bytes_allocated + max_free_ < max_allowed_footprint_) { |
| target_size = bytes_allocated + max_free_; |
| } else { |
| target_size = std::max(bytes_allocated, max_allowed_footprint_); |
| } |
| } |
| if (!ignore_max_footprint_) { |
| SetIdealFootprint(target_size); |
| if (concurrent_gc_) { |
| // Calculate when to perform the next ConcurrentGC. |
| // Calculate the estimated GC duration. |
| double gc_duration_seconds = NsToMs(gc_duration) / 1000.0; |
| // Estimate how many remaining bytes we will have when we need to start the next GC. |
| size_t remaining_bytes = allocation_rate_ * gc_duration_seconds; |
| remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); |
| if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) { |
| // A never going to happen situation that from the estimated allocation rate we will exceed |
| // the applications entire footprint with the given estimated allocation rate. Schedule |
| // another GC straight away. |
| concurrent_start_bytes_ = bytes_allocated; |
| } else { |
| // Start a concurrent GC when we get close to the estimated remaining bytes. When the |
| // allocation rate is very high, remaining_bytes could tell us that we should start a GC |
| // right away. |
| concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, |
| bytes_allocated); |
| } |
| DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_); |
| DCHECK_LE(max_allowed_footprint_, growth_limit_); |
| } |
| } |
| } |
| |
| void Heap::ClearGrowthLimit() { |
| growth_limit_ = capacity_; |
| non_moving_space_->ClearGrowthLimit(); |
| } |
| |
| void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset, |
| MemberOffset reference_queue_offset, |
| MemberOffset reference_queueNext_offset, |
| MemberOffset reference_pendingNext_offset, |
| MemberOffset finalizer_reference_zombie_offset) { |
| reference_referent_offset_ = reference_referent_offset; |
| reference_queue_offset_ = reference_queue_offset; |
| reference_queueNext_offset_ = reference_queueNext_offset; |
| reference_pendingNext_offset_ = reference_pendingNext_offset; |
| finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset; |
| CHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queue_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U); |
| } |
| |
| void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| reference->SetFieldObject(reference_referent_offset_, referent, true); |
| } |
| |
| mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true); |
| } |
| |
| void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) { |
| ScopedObjectAccess soa(self); |
| JValue result; |
| ArgArray arg_array(NULL, 0); |
| arg_array.Append(reinterpret_cast<uint32_t>(object)); |
| soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self, |
| arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); |
| } |
| |
| void Heap::EnqueueClearedReferences() { |
| if (!cleared_references_.IsEmpty()) { |
| // When a runtime isn't started there are no reference queues to care about so ignore. |
| if (LIKELY(Runtime::Current()->IsStarted())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| JValue result; |
| ArgArray arg_array(NULL, 0); |
| arg_array.Append(reinterpret_cast<uint32_t>(cleared_references_.GetList())); |
| soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(), |
| arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); |
| } |
| cleared_references_.Clear(); |
| } |
| } |
| |
| void Heap::RequestConcurrentGC(Thread* self) { |
| // Make sure that we can do a concurrent GC. |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) || |
| self->IsHandlingStackOverflow()) { |
| return; |
| } |
| // We already have a request pending, no reason to start more until we update |
| // concurrent_start_bytes_. |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| JNIEnv* env = self->GetJniEnv(); |
| DCHECK(WellKnownClasses::java_lang_Daemons != nullptr); |
| DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr); |
| env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, |
| WellKnownClasses::java_lang_Daemons_requestGC); |
| CHECK(!env->ExceptionCheck()); |
| } |
| |
| void Heap::ConcurrentGC(Thread* self) { |
| if (Runtime::Current()->IsShuttingDown(self)) { |
| return; |
| } |
| // Wait for any GCs currently running to finish. |
| if (WaitForGcToComplete(self) == collector::kGcTypeNone) { |
| // If the we can't run the GC type we wanted to run, find the next appropriate one and try that |
| // instead. E.g. can't do partial, so do full instead. |
| if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) == |
| collector::kGcTypeNone) { |
| for (collector::GcType gc_type : gc_plan_) { |
| // Attempt to run the collector, if we succeed, we are done. |
| if (gc_type > next_gc_type_ && |
| CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| void Heap::RequestHeapTrim() { |
| // GC completed and now we must decide whether to request a heap trim (advising pages back to the |
| // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans |
| // a space it will hold its lock and can become a cause of jank. |
| // Note, the large object space self trims and the Zygote space was trimmed and unchanging since |
| // forking. |
| |
| // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap |
| // because that only marks object heads, so a large array looks like lots of empty space. We |
| // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional |
| // to utilization (which is probably inversely proportional to how much benefit we can expect). |
| // We could try mincore(2) but that's only a measure of how many pages we haven't given away, |
| // not how much use we're making of those pages. |
| uint64_t ms_time = MilliTime(); |
| // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds. |
| if (ms_time - last_trim_time_ms_ < 2 * 1000) { |
| return; |
| } |
| |
| Thread* self = Thread::Current(); |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) { |
| // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time) |
| // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check |
| // as we don't hold the lock while requesting the trim). |
| return; |
| } |
| |
| last_trim_time_ms_ = ms_time; |
| |
| // Trim only if we do not currently care about pause times. |
| if (!CareAboutPauseTimes()) { |
| JNIEnv* env = self->GetJniEnv(); |
| DCHECK(WellKnownClasses::java_lang_Daemons != NULL); |
| DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL); |
| env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, |
| WellKnownClasses::java_lang_Daemons_requestHeapTrim); |
| CHECK(!env->ExceptionCheck()); |
| } |
| } |
| |
| void Heap::RevokeThreadLocalBuffers(Thread* thread) { |
| non_moving_space_->RevokeThreadLocalBuffers(thread); |
| if (bump_pointer_space_ != nullptr) { |
| bump_pointer_space_->RevokeThreadLocalBuffers(thread); |
| } |
| } |
| |
| void Heap::RevokeAllThreadLocalBuffers() { |
| non_moving_space_->RevokeAllThreadLocalBuffers(); |
| if (bump_pointer_space_ != nullptr) { |
| bump_pointer_space_->RevokeAllThreadLocalBuffers(); |
| } |
| } |
| |
| bool Heap::IsGCRequestPending() const { |
| return concurrent_start_bytes_ != std::numeric_limits<size_t>::max(); |
| } |
| |
| void Heap::RunFinalization(JNIEnv* env) { |
| // Can't do this in WellKnownClasses::Init since System is not properly set up at that point. |
| if (WellKnownClasses::java_lang_System_runFinalization == nullptr) { |
| CHECK(WellKnownClasses::java_lang_System != nullptr); |
| WellKnownClasses::java_lang_System_runFinalization = |
| CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V"); |
| CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr); |
| } |
| env->CallStaticVoidMethod(WellKnownClasses::java_lang_System, |
| WellKnownClasses::java_lang_System_runFinalization); |
| } |
| |
| void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) { |
| Thread* self = ThreadForEnv(env); |
| if (native_need_to_run_finalization_) { |
| RunFinalization(env); |
| UpdateMaxNativeFootprint(); |
| native_need_to_run_finalization_ = false; |
| } |
| // Total number of native bytes allocated. |
| native_bytes_allocated_.FetchAndAdd(bytes); |
| if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) { |
| collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial : |
| collector::kGcTypeFull; |
| |
| // The second watermark is higher than the gc watermark. If you hit this it means you are |
| // allocating native objects faster than the GC can keep up with. |
| if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) { |
| if (WaitForGcToComplete(self) != collector::kGcTypeNone) { |
| // Just finished a GC, attempt to run finalizers. |
| RunFinalization(env); |
| CHECK(!env->ExceptionCheck()); |
| } |
| // If we still are over the watermark, attempt a GC for alloc and run finalizers. |
| if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) { |
| CollectGarbageInternal(gc_type, kGcCauseForAlloc, false); |
| RunFinalization(env); |
| native_need_to_run_finalization_ = false; |
| CHECK(!env->ExceptionCheck()); |
| } |
| // We have just run finalizers, update the native watermark since it is very likely that |
| // finalizers released native managed allocations. |
| UpdateMaxNativeFootprint(); |
| } else if (!IsGCRequestPending()) { |
| if (concurrent_gc_) { |
| RequestConcurrentGC(self); |
| } else { |
| CollectGarbageInternal(gc_type, kGcCauseForAlloc, false); |
| } |
| } |
| } |
| } |
| |
| void Heap::RegisterNativeFree(JNIEnv* env, int bytes) { |
| int expected_size, new_size; |
| do { |
| expected_size = native_bytes_allocated_.Load(); |
| new_size = expected_size - bytes; |
| if (UNLIKELY(new_size < 0)) { |
| ScopedObjectAccess soa(env); |
| env->ThrowNew(WellKnownClasses::java_lang_RuntimeException, |
| StringPrintf("Attempted to free %d native bytes with only %d native bytes " |
| "registered as allocated", bytes, expected_size).c_str()); |
| break; |
| } |
| } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size)); |
| } |
| |
| int64_t Heap::GetTotalMemory() const { |
| int64_t ret = 0; |
| for (const auto& space : continuous_spaces_) { |
| // Currently don't include the image space. |
| if (!space->IsImageSpace()) { |
| ret += space->Size(); |
| } |
| } |
| for (const auto& space : discontinuous_spaces_) { |
| if (space->IsLargeObjectSpace()) { |
| ret += space->AsLargeObjectSpace()->GetBytesAllocated(); |
| } |
| } |
| return ret; |
| } |
| |
| void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) { |
| DCHECK(mod_union_table != nullptr); |
| mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table); |
| } |
| |
| } // namespace gc |
| } // namespace art |