blob: c6dfdf78a8a7f31fc781f2664c193d6e9e6d2b4b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "heap.h"
#include <sys/types.h>
#include <sys/wait.h>
#include <limits>
#include <vector>
#include "card_table.h"
#include "debugger.h"
#include "image.h"
#include "mark_sweep.h"
#include "mod_union_table.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#include "scoped_heap_lock.h"
#include "scoped_jni_thread_state.h"
#include "scoped_thread_list_lock_releaser.h"
#include "ScopedLocalRef.h"
#include "space.h"
#include "stl_util.h"
#include "thread_list.h"
#include "timing_logger.h"
#include "UniquePtr.h"
#include "well_known_classes.h"
namespace art {
static void UpdateFirstAndLastSpace(Space** first_space, Space** last_space, Space* space) {
if (*first_space == NULL) {
*first_space = space;
*last_space = space;
} else {
if ((*first_space)->Begin() > space->Begin()) {
*first_space = space;
} else if (space->Begin() > (*last_space)->Begin()) {
*last_space = space;
}
}
}
static bool GenerateImage(const std::string& image_file_name) {
const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
std::vector<std::string> boot_class_path;
Split(boot_class_path_string, ':', boot_class_path);
if (boot_class_path.empty()) {
LOG(FATAL) << "Failed to generate image because no boot class path specified";
}
std::vector<char*> arg_vector;
std::string dex2oat_string(GetAndroidRoot());
dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
const char* dex2oat = dex2oat_string.c_str();
arg_vector.push_back(strdup(dex2oat));
std::string image_option_string("--image=");
image_option_string += image_file_name;
const char* image_option = image_option_string.c_str();
arg_vector.push_back(strdup(image_option));
arg_vector.push_back(strdup("--runtime-arg"));
arg_vector.push_back(strdup("-Xms64m"));
arg_vector.push_back(strdup("--runtime-arg"));
arg_vector.push_back(strdup("-Xmx64m"));
for (size_t i = 0; i < boot_class_path.size(); i++) {
std::string dex_file_option_string("--dex-file=");
dex_file_option_string += boot_class_path[i];
const char* dex_file_option = dex_file_option_string.c_str();
arg_vector.push_back(strdup(dex_file_option));
}
std::string oat_file_option_string("--oat-file=");
oat_file_option_string += image_file_name;
oat_file_option_string.erase(oat_file_option_string.size() - 3);
oat_file_option_string += "oat";
const char* oat_file_option = oat_file_option_string.c_str();
arg_vector.push_back(strdup(oat_file_option));
arg_vector.push_back(strdup("--base=0x60000000"));
std::string command_line(Join(arg_vector, ' '));
LOG(INFO) << command_line;
arg_vector.push_back(NULL);
char** argv = &arg_vector[0];
// fork and exec dex2oat
pid_t pid = fork();
if (pid == 0) {
// no allocation allowed between fork and exec
// change process groups, so we don't get reaped by ProcessManager
setpgid(0, 0);
execv(dex2oat, argv);
PLOG(FATAL) << "execv(" << dex2oat << ") failed";
return false;
} else {
STLDeleteElements(&arg_vector);
// wait for dex2oat to finish
int status;
pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
if (got_pid != pid) {
PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid;
return false;
}
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << dex2oat << " failed: " << command_line;
return false;
}
}
return true;
}
Heap::Heap(size_t initial_size, size_t growth_limit, size_t capacity,
const std::string& original_image_file_name)
: lock_(NULL),
image_space_(NULL),
alloc_space_(NULL),
mark_bitmap_(NULL),
live_bitmap_(NULL),
card_table_(NULL),
card_marking_disabled_(false),
is_gc_running_(false),
concurrent_start_size_(128 * KB),
concurrent_min_free_(256 * KB),
try_running_gc_(false),
requesting_gc_(false),
num_bytes_allocated_(0),
num_objects_allocated_(0),
last_trim_time_(0),
reference_referent_offset_(0),
reference_queue_offset_(0),
reference_queueNext_offset_(0),
reference_pendingNext_offset_(0),
finalizer_reference_zombie_offset_(0),
target_utilization_(0.5),
verify_objects_(false) {
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Heap() entering";
}
// Compute the bounds of all spaces for allocating live and mark bitmaps
// there will be at least one space (the alloc space)
Space* first_space = NULL;
Space* last_space = NULL;
// Requested begin for the alloc space, to follow the mapped image and oat files
byte* requested_begin = NULL;
std::string image_file_name(original_image_file_name);
if (!image_file_name.empty()) {
if (OS::FileExists(image_file_name.c_str())) {
// If the /system file exists, it should be up-to-date, don't try to generate
image_space_ = Space::CreateImageSpace(image_file_name);
} else {
// If the /system file didn't exist, we need to use one from the art-cache.
// If the cache file exists, try to open, but if it fails, regenerate.
// If it does not exist, generate.
image_file_name = GetArtCacheFilenameOrDie(image_file_name);
if (OS::FileExists(image_file_name.c_str())) {
image_space_ = Space::CreateImageSpace(image_file_name);
}
if (image_space_ == NULL) {
if (!GenerateImage(image_file_name)) {
LOG(FATAL) << "Failed to generate image: " << image_file_name;
}
image_space_ = Space::CreateImageSpace(image_file_name);
}
}
if (image_space_ == NULL) {
LOG(FATAL) << "Failed to create space from " << image_file_name;
}
AddSpace(image_space_);
UpdateFirstAndLastSpace(&first_space, &last_space, image_space_);
// Oat files referenced by image files immediately follow them in memory, ensure alloc space
// isn't going to get in the middle
byte* oat_end_addr = image_space_->GetImageHeader().GetOatEnd();
CHECK(oat_end_addr > image_space_->End());
if (oat_end_addr > requested_begin) {
requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr),
kPageSize));
}
}
alloc_space_ = Space::CreateAllocSpace("alloc space", initial_size, growth_limit, capacity,
requested_begin);
if (alloc_space_ == NULL) {
LOG(FATAL) << "Failed to create alloc space";
}
AddSpace(alloc_space_);
UpdateFirstAndLastSpace(&first_space, &last_space, alloc_space_);
byte* heap_begin = first_space->Begin();
size_t heap_capacity = (last_space->Begin() - first_space->Begin()) + last_space->NonGrowthLimitCapacity();
// Allocate the initial live bitmap.
UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create("dalvik-bitmap-1", heap_begin, heap_capacity));
if (live_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create live bitmap";
}
// Mark image objects in the live bitmap
for (size_t i = 0; i < spaces_.size(); ++i) {
Space* space = spaces_[i];
if (space->IsImageSpace()) {
space->AsImageSpace()->RecordImageAllocations(live_bitmap.get());
}
}
// Allocate the initial mark bitmap.
UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create("dalvik-bitmap-2", heap_begin, heap_capacity));
if (mark_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create mark bitmap";
}
// Allocate the card table.
UniquePtr<CardTable> card_table(CardTable::Create(heap_begin, heap_capacity));
if (card_table.get() == NULL) {
LOG(FATAL) << "Failed to create card table";
}
// Allocate the mod-union table
ModUnionTableBitmap* mod_union_table = new ModUnionTableBitmap(this);
mod_union_table->Init();
mod_union_table_ = mod_union_table;
live_bitmap_ = live_bitmap.release();
mark_bitmap_ = mark_bitmap.release();
card_table_ = card_table.release();
num_bytes_allocated_ = 0;
num_objects_allocated_ = 0;
mark_stack_ = MarkStack::Create();
// It's still too early to take a lock because there are no threads yet,
// but we can create the heap lock now. We don't create it earlier to
// make it clear that you can't use locks during heap initialization.
lock_ = new Mutex("Heap lock", kHeapLock);
condition_ = new ConditionVariable("Heap condition variable");
concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Heap() exiting";
}
}
void Heap::AddSpace(Space* space) {
spaces_.push_back(space);
}
Heap::~Heap() {
VLOG(heap) << "~Heap()";
// We can't take the heap lock here because there might be a daemon thread suspended with the
// heap lock held. We know though that no non-daemon threads are executing, and we know that
// all daemon threads are suspended, and we also know that the threads list have been deleted, so
// those threads can't resume. We're the only running thread, and we can do whatever we like...
STLDeleteElements(&spaces_);
delete mark_bitmap_;
delete live_bitmap_;
delete card_table_;
delete mod_union_table_;
delete mark_stack_;
delete condition_;
delete lock_;
}
static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
size_t chunk_size = static_cast<size_t>(reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start));
size_t chunk_free_bytes = 0;
if (used_bytes < chunk_size) {
chunk_free_bytes = chunk_size - used_bytes;
}
if (chunk_free_bytes > max_contiguous_allocation) {
max_contiguous_allocation = chunk_free_bytes;
}
}
Object* Heap::AllocObject(Class* c, size_t byte_count) {
// Used in the detail message if we throw an OOME.
int64_t total_bytes_free;
size_t max_contiguous_allocation;
{
ScopedHeapLock heap_lock;
DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(Class)) ||
(c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
strlen(ClassHelper(c).GetDescriptor()) == 0);
DCHECK_GE(byte_count, sizeof(Object));
Object* obj = AllocateLocked(byte_count);
if (obj != NULL) {
obj->SetClass(c);
if (Dbg::IsAllocTrackingEnabled()) {
Dbg::RecordAllocation(c, byte_count);
}
if (!is_gc_running_ && num_bytes_allocated_ >= concurrent_start_bytes_) {
// The SirtRef is necessary since the calls in RequestConcurrentGC
// are a safepoint.
SirtRef<Object> ref(obj);
RequestConcurrentGC();
}
VerifyObject(obj);
return obj;
}
total_bytes_free = GetFreeMemory();
max_contiguous_allocation = 0;
GetAllocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
}
std::string msg(StringPrintf("Failed to allocate a %zd-byte %s (%lld total bytes free; largest possible contiguous allocation %zd bytes)",
byte_count,
PrettyDescriptor(c).c_str(),
total_bytes_free, max_contiguous_allocation));
Thread::Current()->ThrowOutOfMemoryError(msg.c_str());
return NULL;
}
bool Heap::IsHeapAddress(const Object* obj) {
// Note: we deliberately don't take the lock here, and mustn't test anything that would
// require taking the lock.
if (obj == NULL) {
return true;
}
if (!IsAligned<kObjectAlignment>(obj)) {
return false;
}
for (size_t i = 0; i < spaces_.size(); ++i) {
if (spaces_[i]->Contains(obj)) {
return true;
}
}
return false;
}
bool Heap::IsLiveObjectLocked(const Object* obj) {
lock_->AssertHeld();
return IsHeapAddress(obj) && live_bitmap_->Test(obj);
}
#if VERIFY_OBJECT_ENABLED
void Heap::VerifyObject(const Object* obj) {
if (this == NULL || !verify_objects_ || Runtime::Current()->IsShuttingDown() ||
Thread::Current() == NULL ||
Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
return;
}
ScopedHeapLock heap_lock;
Heap::VerifyObjectLocked(obj);
}
#endif
void Heap::VerifyObjectLocked(const Object* obj) {
lock_->AssertHeld();
if (obj != NULL) {
if (!IsAligned<kObjectAlignment>(obj)) {
LOG(FATAL) << "Object isn't aligned: " << obj;
} else if (!live_bitmap_->Test(obj)) {
LOG(FATAL) << "Object is dead: " << obj;
}
// Ignore early dawn of the universe verifications
if (num_objects_allocated_ > 10) {
const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
Object::ClassOffset().Int32Value();
const Class* c = *reinterpret_cast<Class* const *>(raw_addr);
if (c == NULL) {
LOG(FATAL) << "Null class in object: " << obj;
} else if (!IsAligned<kObjectAlignment>(c)) {
LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
} else if (!live_bitmap_->Test(c)) {
LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
}
// Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
// Note: we don't use the accessors here as they have internal sanity checks
// that we don't want to run
raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value();
const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr);
raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value();
const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr);
CHECK_EQ(c_c, c_c_c);
}
}
}
void Heap::VerificationCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
reinterpret_cast<Heap*>(arg)->VerifyObjectLocked(obj);
}
void Heap::VerifyHeap() {
ScopedHeapLock heap_lock;
live_bitmap_->Walk(Heap::VerificationCallback, this);
}
void Heap::RecordAllocationLocked(AllocSpace* space, const Object* obj) {
#ifndef NDEBUG
if (Runtime::Current()->IsStarted()) {
lock_->AssertHeld();
}
#endif
size_t size = space->AllocationSize(obj);
DCHECK_GT(size, 0u);
num_bytes_allocated_ += size;
num_objects_allocated_ += 1;
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->allocated_objects;
++thread_stats->allocated_objects;
global_stats->allocated_bytes += size;
thread_stats->allocated_bytes += size;
}
live_bitmap_->Set(obj);
}
void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) {
lock_->AssertHeld();
if (freed_objects < num_objects_allocated_) {
num_objects_allocated_ -= freed_objects;
} else {
num_objects_allocated_ = 0;
}
if (freed_bytes < num_bytes_allocated_) {
num_bytes_allocated_ -= freed_bytes;
} else {
num_bytes_allocated_ = 0;
}
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->freed_objects;
++thread_stats->freed_objects;
global_stats->freed_bytes += freed_bytes;
thread_stats->freed_bytes += freed_bytes;
}
}
Object* Heap::AllocateLocked(size_t size) {
lock_->AssertHeld();
DCHECK(alloc_space_ != NULL);
AllocSpace* space = alloc_space_;
Object* obj = AllocateLocked(space, size);
if (obj != NULL) {
RecordAllocationLocked(space, obj);
}
return obj;
}
Object* Heap::AllocateLocked(AllocSpace* space, size_t alloc_size) {
lock_->AssertHeld();
// Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
// done in the runnable state where suspension is expected.
DCHECK_EQ(Thread::Current()->GetState(), kRunnable);
Thread::Current()->AssertThreadSuspensionIsAllowable();
// Fail impossible allocations
if (alloc_size > space->Capacity()) {
// On failure collect soft references
WaitForConcurrentGcToComplete();
CollectGarbageInternal(false, true);
return NULL;
}
Object* ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
// The allocation failed. If the GC is running, block until it completes and retry.
if (is_gc_running_) {
// The GC is concurrently tracing the heap. Release the heap lock, wait for the GC to
// complete, and retrying allocating.
WaitForConcurrentGcToComplete();
ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
}
// Another failure. Our thread was starved or there may be too many
// live objects. Try a foreground GC. This will have no effect if
// the concurrent GC is already running.
if (Runtime::Current()->HasStatsEnabled()) {
++Runtime::Current()->GetStats()->gc_for_alloc_count;
++Thread::Current()->GetStats()->gc_for_alloc_count;
}
// We don't need a WaitForConcurrentGcToComplete here since we checked
// is_gc_running_ earlier and we are in a heap lock.
CollectGarbageInternal(false, false);
ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
// Even that didn't work; this is an exceptional state.
// Try harder, growing the heap if necessary.
ptr = space->AllocWithGrowth(alloc_size);
if (ptr != NULL) {
size_t new_footprint = space->GetFootprintLimit();
// OLD-TODO: may want to grow a little bit more so that the amount of
// free space is equal to the old free space + the
// utilization slop for the new allocation.
VLOG(gc) << "Grow heap (frag case) to " << PrettySize(new_footprint)
<< " for a " << PrettySize(alloc_size) << " allocation";
return ptr;
}
// Most allocations should have succeeded by now, so the heap is really full, really fragmented,
// or the requested size is really big. Do another GC, collecting SoftReferences this time. The
// VM spec requires that all SoftReferences have been collected and cleared before throwing OOME.
// OLD-TODO: wait for the finalizers from the previous GC to finish
VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation";
// We don't need a WaitForConcurrentGcToComplete here either.
CollectGarbageInternal(false, true);
ptr = space->AllocWithGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
return NULL;
}
int64_t Heap::GetMaxMemory() {
return alloc_space_->Capacity();
}
int64_t Heap::GetTotalMemory() {
return alloc_space_->Capacity();
}
int64_t Heap::GetFreeMemory() {
return alloc_space_->Capacity() - num_bytes_allocated_;
}
class InstanceCounter {
public:
InstanceCounter(Class* c, bool count_assignable)
: class_(c), count_assignable_(count_assignable), count_(0) {
}
size_t GetCount() {
return count_;
}
static void Callback(Object* o, void* arg) {
reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o);
}
private:
void VisitInstance(Object* o) {
Class* instance_class = o->GetClass();
if (count_assignable_) {
if (instance_class == class_) {
++count_;
}
} else {
if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) {
++count_;
}
}
}
Class* class_;
bool count_assignable_;
size_t count_;
};
int64_t Heap::CountInstances(Class* c, bool count_assignable) {
ScopedHeapLock heap_lock;
InstanceCounter counter(c, count_assignable);
live_bitmap_->Walk(InstanceCounter::Callback, &counter);
return counter.GetCount();
}
void Heap::CollectGarbage(bool clear_soft_references) {
ScopedHeapLock heap_lock;
// If we just waited for a GC to complete then we do not need to do another
// GC unless we clear soft references.
if (!WaitForConcurrentGcToComplete() || clear_soft_references) {
CollectGarbageInternal(false, clear_soft_references);
}
}
void Heap::CollectGarbageInternal(bool concurrent, bool clear_soft_references) {
lock_->AssertHeld();
CHECK(!is_gc_running_);
is_gc_running_ = true;
TimingLogger timings("CollectGarbageInternal");
uint64_t t0 = NanoTime(), root_end = 0, dirty_begin = 0, dirty_end = 0;
ThreadList* thread_list = Runtime::Current()->GetThreadList();
thread_list->SuspendAll();
timings.AddSplit("SuspendAll");
size_t initial_size = num_bytes_allocated_;
Object* cleared_references = NULL;
{
MarkSweep mark_sweep(mark_stack_);
timings.AddSplit("ctor");
mark_sweep.Init();
timings.AddSplit("Init");
if (concurrent) {
card_table_->ClearNonImageSpaceCards(this);
timings.AddSplit("ClearNonImageSpaceCards");
}
// Clear image space cards and keep track of cards we cleared in the mod-union table.
mod_union_table_->ClearCards();
mark_sweep.MarkRoots();
timings.AddSplit("MarkRoots");
// Roots are marked on the bitmap and the mark_stack is empty.
DCHECK(mark_sweep.IsMarkStackEmpty());
if (concurrent) {
// We need to resume before unlocking or else a thread waiting for the
// heap lock would re-suspend since we have not yet called ResumeAll.
thread_list->ResumeAll();
Unlock();
root_end = NanoTime();
timings.AddSplit("RootEnd");
}
// Processes the cards we cleared earlier and adds their objects into the mod-union table.
mod_union_table_->Update(&mark_sweep);
timings.AddSplit("UpdateModUnionBitmap");
// Scans all objects in the mod-union table.
mod_union_table_->MarkReferences(&mark_sweep);
timings.AddSplit("ProcessModUnionBitmap");
// Recursively mark all the non-image bits set in the mark bitmap.
mark_sweep.RecursiveMark();
timings.AddSplit("RecursiveMark");
if (concurrent) {
dirty_begin = NanoTime();
Lock();
thread_list->SuspendAll();
timings.AddSplit("ReSuspend");
// Re-mark root set.
mark_sweep.ReMarkRoots();
timings.AddSplit("ReMarkRoots");
// Scan dirty objects, this is only required if we are not doing concurrent GC.
mark_sweep.RecursiveMarkDirtyObjects();
timings.AddSplit("RecursiveMarkDirtyObjects");
}
mark_sweep.ProcessReferences(clear_soft_references);
timings.AddSplit("ProcessReferences");
// TODO: swap live and marked bitmaps
// Note: Need to be careful about image spaces if we do this since not
// everything image space will be marked, resulting in things not being
// marked as live anymore.
// Verify that we only reach marked objects from the image space
mark_sweep.VerifyImageRoots();
timings.AddSplit("VerifyImageRoots");
if (concurrent) {
thread_list->ResumeAll();
dirty_end = NanoTime();
}
mark_sweep.Sweep();
timings.AddSplit("Sweep");
cleared_references = mark_sweep.GetClearedReferences();
}
GrowForUtilization();
timings.AddSplit("GrowForUtilization");
if (!concurrent) {
thread_list->ResumeAll();
dirty_end = NanoTime();
}
EnqueueClearedReferences(&cleared_references);
RequestHeapTrim();
timings.AddSplit("Finish");
if (VLOG_IS_ON(gc)) {
uint64_t t1 = NanoTime();
// TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
// Reason: For CMS sometimes initial_size < num_bytes_allocated_ results in overflow (3GB freed message).
size_t bytes_freed = initial_size - num_bytes_allocated_;
uint64_t duration_ns = t1 - t0;
duration_ns -= duration_ns % 1000;
// If the GC was slow, then print timings in the log.
if (concurrent) {
uint64_t pause_roots_time = (root_end - t0) / 1000 * 1000;
uint64_t pause_dirty_time = (dirty_end - dirty_begin) / 1000 * 1000;
if (pause_roots_time > MsToNs(5) || pause_dirty_time > MsToNs(5)) {
LOG(INFO) << "GC freed " << PrettySize(bytes_freed) << ", " << GetPercentFree() << "% free, "
<< PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory()) << ", "
<< "paused " << PrettyDuration(pause_roots_time) << "+" << PrettyDuration(pause_dirty_time)
<< ", total " << PrettyDuration(duration_ns);
}
} else {
if (duration_ns > MsToNs(50)) {
uint64_t markSweepTime = (dirty_end - t0) / 1000 * 1000;
LOG(INFO) << "GC freed " << PrettySize(bytes_freed) << ", " << GetPercentFree() << "% free, "
<< PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory()) << ", "
<< "paused " << PrettyDuration(markSweepTime)
<< ", total " << PrettyDuration(duration_ns);
}
}
}
Dbg::GcDidFinish();
if (VLOG_IS_ON(heap)) {
timings.Dump();
}
is_gc_running_ = false;
// Wake anyone who may have been waiting for the GC to complete.
condition_->Broadcast();
}
bool Heap::WaitForConcurrentGcToComplete() {
lock_->AssertHeld();
// Busy wait for GC to finish
if (is_gc_running_) {
uint64_t wait_start = NanoTime();
do {
ScopedThreadStateChange tsc(Thread::Current(), kVmWait);
ScopedThreadListLockReleaser list_lock_releaser;
condition_->Wait(*lock_);
} while (is_gc_running_);
uint64_t wait_time = NanoTime() - wait_start;
if (wait_time > MsToNs(5)) {
LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time);
}
DCHECK(!is_gc_running_);
return true;
}
return false;
}
void Heap::DumpForSigQuit(std::ostream& os) {
os << "Heap: " << GetPercentFree() << "% free, "
<< PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory())
<< "; " << num_objects_allocated_ << " objects\n";
}
size_t Heap::GetPercentFree() {
size_t total = GetTotalMemory();
return 100 - static_cast<size_t>(100.0f * static_cast<float>(num_bytes_allocated_) / total);
}
void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
size_t alloc_space_capacity = alloc_space_->Capacity();
if (max_allowed_footprint > alloc_space_capacity) {
VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint)
<< " to " << PrettySize(alloc_space_capacity);
max_allowed_footprint = alloc_space_capacity;
}
alloc_space_->SetFootprintLimit(max_allowed_footprint);
}
// kHeapIdealFree is the ideal maximum free size, when we grow the heap for utilization.
static const size_t kHeapIdealFree = 2 * MB;
// kHeapMinFree guarantees that you always have at least 512 KB free, when you grow for utilization,
// regardless of target utilization ratio.
static const size_t kHeapMinFree = kHeapIdealFree / 4;
void Heap::GrowForUtilization() {
lock_->AssertHeld();
// We know what our utilization is at this moment.
// This doesn't actually resize any memory. It just lets the heap grow more
// when necessary.
size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization());
if (target_size > num_bytes_allocated_ + kHeapIdealFree) {
target_size = num_bytes_allocated_ + kHeapIdealFree;
} else if (target_size < num_bytes_allocated_ + kHeapMinFree) {
target_size = num_bytes_allocated_ + kHeapMinFree;
}
// Calculate when to perform the next ConcurrentGC.
if (GetTotalMemory() - num_bytes_allocated_ < concurrent_min_free_) {
// Not enough free memory to perform concurrent GC.
concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
} else {
concurrent_start_bytes_ = alloc_space_->GetFootprintLimit() - concurrent_start_size_;
}
SetIdealFootprint(target_size);
}
void Heap::ClearGrowthLimit() {
ScopedHeapLock heap_lock;
WaitForConcurrentGcToComplete();
alloc_space_->ClearGrowthLimit();
}
pid_t Heap::GetLockOwner() {
return lock_->GetOwner();
}
void Heap::Lock() {
// Grab the lock, but put ourselves into kVmWait if it looks
// like we're going to have to wait on the mutex. This prevents
// deadlock if another thread is calling CollectGarbageInternal,
// since they will have the heap lock and be waiting for mutators to
// suspend.
if (!lock_->TryLock()) {
ScopedThreadStateChange tsc(Thread::Current(), kVmWait);
lock_->Lock();
}
}
void Heap::Unlock() {
lock_->Unlock();
}
void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
MemberOffset reference_queue_offset,
MemberOffset reference_queueNext_offset,
MemberOffset reference_pendingNext_offset,
MemberOffset finalizer_reference_zombie_offset) {
reference_referent_offset_ = reference_referent_offset;
reference_queue_offset_ = reference_queue_offset;
reference_queueNext_offset_ = reference_queueNext_offset;
reference_pendingNext_offset_ = reference_pendingNext_offset;
finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}
Object* Heap::GetReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
return reference->GetFieldObject<Object*>(reference_referent_offset_, true);
}
void Heap::ClearReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
reference->SetFieldObject(reference_referent_offset_, NULL, true);
}
// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const Object* ref) {
DCHECK(ref != NULL);
const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false);
const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false);
return (queue != NULL) && (queue_next == NULL);
}
void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) {
DCHECK(ref != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL);
EnqueuePendingReference(ref, cleared_reference_list);
}
void Heap::EnqueuePendingReference(Object* ref, Object** list) {
DCHECK(ref != NULL);
DCHECK(list != NULL);
if (*list == NULL) {
ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
*list = ref;
} else {
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
ref->SetFieldObject(reference_pendingNext_offset_, head, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
}
}
Object* Heap::DequeuePendingReference(Object** list) {
DCHECK(list != NULL);
DCHECK(*list != NULL);
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
Object* ref;
if (*list == head) {
ref = *list;
*list = NULL;
} else {
Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
ref = head;
}
ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
return ref;
}
void Heap::AddFinalizerReference(Thread* self, Object* object) {
ScopedJniThreadState ts(self);
JValue args[1];
args[0].SetL(object);
ts.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self, NULL, args, NULL);
}
void Heap::EnqueueClearedReferences(Object** cleared) {
DCHECK(cleared != NULL);
if (*cleared != NULL) {
ScopedJniThreadState ts(Thread::Current());
JValue args[1];
args[0].SetL(*cleared);
ts.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(ts.Self(), NULL, args, NULL);
*cleared = NULL;
}
}
void Heap::RequestConcurrentGC() {
// Make sure that we can do a concurrent GC.
if (requesting_gc_ ||
!Runtime::Current()->IsFinishedStarting() ||
Runtime::Current()->IsShuttingDown() ||
!Runtime::Current()->IsConcurrentGcEnabled()) {
return;
}
requesting_gc_ = true;
JNIEnv* env = Thread::Current()->GetJniEnv();
DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL);
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_requestGC);
CHECK(!env->ExceptionCheck());
requesting_gc_ = false;
}
void Heap::ConcurrentGC() {
if (Runtime::Current()->IsShuttingDown()) {
return;
}
ScopedHeapLock heap_lock;
// We shouldn't need a WaitForConcurrentGcToComplete here since only
// concurrent GC resumes threads before the GC is completed and this function
// is only called within the GC daemon thread.
CHECK(!is_gc_running_);
// Current thread needs to be runnable or else we can't suspend all threads.
ScopedThreadStateChange tsc(Thread::Current(), kRunnable);
CollectGarbageInternal(true, false);
}
void Heap::Trim() {
lock_->AssertHeld();
WaitForConcurrentGcToComplete();
GetAllocSpace()->Trim();
}
void Heap::RequestHeapTrim() {
// We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
// because that only marks object heads, so a large array looks like lots of empty space. We
// don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
// to utilization (which is probably inversely proportional to how much benefit we can expect).
// We could try mincore(2) but that's only a measure of how many pages we haven't given away,
// not how much use we're making of those pages.
float utilization = static_cast<float>(num_bytes_allocated_) / alloc_space_->Size();
uint64_t ms_time = NsToMs(NanoTime());
if (utilization > 0.75f || ms_time - last_trim_time_ < 2 * 1000) {
// Don't bother trimming the heap if it's more than 75% utilized, or if a
// heap trim occurred in the last two seconds.
return;
}
if (!Runtime::Current()->IsFinishedStarting() || Runtime::Current()->IsShuttingDown()) {
// Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
// Also: we do not wish to start a heap trim if the runtime is shutting down.
return;
}
last_trim_time_ = ms_time;
JNIEnv* env = Thread::Current()->GetJniEnv();
DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_requestHeapTrim);
CHECK(!env->ExceptionCheck());
}
} // namespace art