| /* |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "jit.h" |
| |
| #include <dlfcn.h> |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/memory_tool.h" |
| #include "base/runtime_debug.h" |
| #include "base/utils.h" |
| #include "class_root.h" |
| #include "debugger.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "interpreter/interpreter.h" |
| #include "jit_code_cache.h" |
| #include "jni/java_vm_ext.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/var_handle.h" |
| #include "oat_file_manager.h" |
| #include "oat_quick_method_header.h" |
| #include "profile/profile_compilation_info.h" |
| #include "profile_saver.h" |
| #include "runtime.h" |
| #include "runtime_options.h" |
| #include "stack.h" |
| #include "stack_map.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| |
| namespace art { |
| namespace jit { |
| |
| static constexpr bool kEnableOnStackReplacement = true; |
| |
| // Different compilation threshold constants. These can be overridden on the command line. |
| static constexpr size_t kJitDefaultCompileThreshold = 10000; // Non-debug default. |
| static constexpr size_t kJitStressDefaultCompileThreshold = 100; // Fast-debug build. |
| static constexpr size_t kJitSlowStressDefaultCompileThreshold = 2; // Slow-debug build. |
| |
| // JIT compiler |
| void* Jit::jit_library_handle_ = nullptr; |
| void* Jit::jit_compiler_handle_ = nullptr; |
| void* (*Jit::jit_load_)(bool*) = nullptr; |
| void (*Jit::jit_unload_)(void*) = nullptr; |
| bool (*Jit::jit_compile_method_)(void*, ArtMethod*, Thread*, bool) = nullptr; |
| void (*Jit::jit_types_loaded_)(void*, mirror::Class**, size_t count) = nullptr; |
| |
| struct StressModeHelper { |
| DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode); |
| }; |
| DEFINE_RUNTIME_DEBUG_FLAG(StressModeHelper, kSlowMode); |
| |
| JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) { |
| auto* jit_options = new JitOptions; |
| jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation); |
| |
| jit_options->code_cache_initial_capacity_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity); |
| jit_options->code_cache_max_capacity_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity); |
| jit_options->dump_info_on_shutdown_ = |
| options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown); |
| jit_options->profile_saver_options_ = |
| options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts); |
| jit_options->thread_pool_pthread_priority_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITPoolThreadPthreadPriority); |
| |
| if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) { |
| jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold); |
| } else { |
| jit_options->compile_threshold_ = |
| kIsDebugBuild |
| ? (StressModeHelper::kSlowMode |
| ? kJitSlowStressDefaultCompileThreshold |
| : kJitStressDefaultCompileThreshold) |
| : kJitDefaultCompileThreshold; |
| } |
| if (jit_options->compile_threshold_ > std::numeric_limits<uint16_t>::max()) { |
| LOG(FATAL) << "Method compilation threshold is above its internal limit."; |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) { |
| jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold); |
| if (jit_options->warmup_threshold_ > std::numeric_limits<uint16_t>::max()) { |
| LOG(FATAL) << "Method warmup threshold is above its internal limit."; |
| } |
| } else { |
| jit_options->warmup_threshold_ = jit_options->compile_threshold_ / 2; |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) { |
| jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold); |
| if (jit_options->osr_threshold_ > std::numeric_limits<uint16_t>::max()) { |
| LOG(FATAL) << "Method on stack replacement threshold is above its internal limit."; |
| } |
| } else { |
| jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2; |
| if (jit_options->osr_threshold_ > std::numeric_limits<uint16_t>::max()) { |
| jit_options->osr_threshold_ = std::numeric_limits<uint16_t>::max(); |
| } |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) { |
| jit_options->priority_thread_weight_ = |
| *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight); |
| if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) { |
| LOG(FATAL) << "Priority thread weight is above the warmup threshold."; |
| } else if (jit_options->priority_thread_weight_ == 0) { |
| LOG(FATAL) << "Priority thread weight cannot be 0."; |
| } |
| } else { |
| jit_options->priority_thread_weight_ = std::max( |
| jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio, |
| static_cast<size_t>(1)); |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) { |
| jit_options->invoke_transition_weight_ = |
| *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight); |
| if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) { |
| LOG(FATAL) << "Invoke transition weight is above the warmup threshold."; |
| } else if (jit_options->invoke_transition_weight_ == 0) { |
| LOG(FATAL) << "Invoke transition weight cannot be 0."; |
| } |
| } else { |
| jit_options->invoke_transition_weight_ = std::max( |
| jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio, |
| static_cast<size_t>(1)); |
| } |
| |
| return jit_options; |
| } |
| |
| bool Jit::ShouldUsePriorityThreadWeight(Thread* self) { |
| return self->IsJitSensitiveThread() && Runtime::Current()->InJankPerceptibleProcessState(); |
| } |
| |
| void Jit::DumpInfo(std::ostream& os) { |
| code_cache_->Dump(os); |
| cumulative_timings_.Dump(os); |
| MutexLock mu(Thread::Current(), lock_); |
| memory_use_.PrintMemoryUse(os); |
| } |
| |
| void Jit::DumpForSigQuit(std::ostream& os) { |
| DumpInfo(os); |
| ProfileSaver::DumpInstanceInfo(os); |
| } |
| |
| void Jit::AddTimingLogger(const TimingLogger& logger) { |
| cumulative_timings_.AddLogger(logger); |
| } |
| |
| Jit::Jit(JitCodeCache* code_cache, JitOptions* options) |
| : code_cache_(code_cache), |
| options_(options), |
| cumulative_timings_("JIT timings"), |
| memory_use_("Memory used for compilation", 16), |
| lock_("JIT memory use lock") {} |
| |
| Jit* Jit::Create(JitCodeCache* code_cache, JitOptions* options) { |
| if (jit_load_ == nullptr) { |
| LOG(WARNING) << "Not creating JIT: library not loaded"; |
| return nullptr; |
| } |
| bool will_generate_debug_symbols = false; |
| jit_compiler_handle_ = (jit_load_)(&will_generate_debug_symbols); |
| if (jit_compiler_handle_ == nullptr) { |
| LOG(WARNING) << "Not creating JIT: failed to allocate a compiler"; |
| return nullptr; |
| } |
| std::unique_ptr<Jit> jit(new Jit(code_cache, options)); |
| jit->generate_debug_info_ = will_generate_debug_symbols; |
| |
| // With 'perf', we want a 1-1 mapping between an address and a method. |
| // We aren't able to keep method pointers live during the instrumentation method entry trampoline |
| // so we will just disable jit-gc if we are doing that. |
| code_cache->SetGarbageCollectCode(!jit->generate_debug_info_ && |
| !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()); |
| |
| VLOG(jit) << "JIT created with initial_capacity=" |
| << PrettySize(options->GetCodeCacheInitialCapacity()) |
| << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity()) |
| << ", compile_threshold=" << options->GetCompileThreshold() |
| << ", profile_saver_options=" << options->GetProfileSaverOptions(); |
| |
| jit->CreateThreadPool(); |
| |
| // Notify native debugger about the classes already loaded before the creation of the jit. |
| jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker()); |
| return jit.release(); |
| } |
| |
| bool Jit::LoadCompilerLibrary(std::string* error_msg) { |
| jit_library_handle_ = dlopen( |
| kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW); |
| if (jit_library_handle_ == nullptr) { |
| std::ostringstream oss; |
| oss << "JIT could not load libart-compiler.so: " << dlerror(); |
| *error_msg = oss.str(); |
| return false; |
| } |
| jit_load_ = reinterpret_cast<void* (*)(bool*)>(dlsym(jit_library_handle_, "jit_load")); |
| if (jit_load_ == nullptr) { |
| dlclose(jit_library_handle_); |
| *error_msg = "JIT couldn't find jit_load entry point"; |
| return false; |
| } |
| jit_unload_ = reinterpret_cast<void (*)(void*)>( |
| dlsym(jit_library_handle_, "jit_unload")); |
| if (jit_unload_ == nullptr) { |
| dlclose(jit_library_handle_); |
| *error_msg = "JIT couldn't find jit_unload entry point"; |
| return false; |
| } |
| jit_compile_method_ = reinterpret_cast<bool (*)(void*, ArtMethod*, Thread*, bool)>( |
| dlsym(jit_library_handle_, "jit_compile_method")); |
| if (jit_compile_method_ == nullptr) { |
| dlclose(jit_library_handle_); |
| *error_msg = "JIT couldn't find jit_compile_method entry point"; |
| return false; |
| } |
| jit_types_loaded_ = reinterpret_cast<void (*)(void*, mirror::Class**, size_t)>( |
| dlsym(jit_library_handle_, "jit_types_loaded")); |
| if (jit_types_loaded_ == nullptr) { |
| dlclose(jit_library_handle_); |
| *error_msg = "JIT couldn't find jit_types_loaded entry point"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool osr) { |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| DCHECK(!method->IsRuntimeMethod()); |
| |
| RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks(); |
| // Don't compile the method if it has breakpoints. |
| if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) { |
| VLOG(jit) << "JIT not compiling " << method->PrettyMethod() |
| << " due to not being safe to jit according to runtime-callbacks. For example, there" |
| << " could be breakpoints in this method."; |
| return false; |
| } |
| |
| // Don't compile the method if we are supposed to be deoptimized. |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) { |
| VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization"; |
| return false; |
| } |
| |
| // If we get a request to compile a proxy method, we pass the actual Java method |
| // of that proxy method, as the compiler does not expect a proxy method. |
| ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr)) { |
| return false; |
| } |
| |
| VLOG(jit) << "Compiling method " |
| << ArtMethod::PrettyMethod(method_to_compile) |
| << " osr=" << std::boolalpha << osr; |
| bool success = jit_compile_method_(jit_compiler_handle_, method_to_compile, self, osr); |
| code_cache_->DoneCompiling(method_to_compile, self, osr); |
| if (!success) { |
| VLOG(jit) << "Failed to compile method " |
| << ArtMethod::PrettyMethod(method_to_compile) |
| << " osr=" << std::boolalpha << osr; |
| } |
| if (kIsDebugBuild) { |
| if (self->IsExceptionPending()) { |
| mirror::Throwable* exception = self->GetException(); |
| LOG(FATAL) << "No pending exception expected after compiling " |
| << ArtMethod::PrettyMethod(method) |
| << ": " |
| << exception->Dump(); |
| } |
| } |
| return success; |
| } |
| |
| void Jit::CreateThreadPool() { |
| // There is a DCHECK in the 'AddSamples' method to ensure the tread pool |
| // is not null when we instrument. |
| |
| // We need peers as we may report the JIT thread, e.g., in the debugger. |
| constexpr bool kJitPoolNeedsPeers = true; |
| thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers)); |
| |
| thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority()); |
| Start(); |
| } |
| |
| void Jit::DeleteThreadPool() { |
| Thread* self = Thread::Current(); |
| DCHECK(Runtime::Current()->IsShuttingDown(self)); |
| if (thread_pool_ != nullptr) { |
| std::unique_ptr<ThreadPool> pool; |
| { |
| ScopedSuspendAll ssa(__FUNCTION__); |
| // Clear thread_pool_ field while the threads are suspended. |
| // A mutator in the 'AddSamples' method will check against it. |
| pool = std::move(thread_pool_); |
| } |
| |
| // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue. |
| if (!kRunningOnMemoryTool) { |
| pool->StopWorkers(self); |
| pool->RemoveAllTasks(self); |
| } |
| // We could just suspend all threads, but we know those threads |
| // will finish in a short period, so it's not worth adding a suspend logic |
| // here. Besides, this is only done for shutdown. |
| pool->Wait(self, false, false); |
| } |
| } |
| |
| void Jit::StartProfileSaver(const std::string& filename, |
| const std::vector<std::string>& code_paths) { |
| if (options_->GetSaveProfilingInfo()) { |
| ProfileSaver::Start(options_->GetProfileSaverOptions(), filename, code_cache_, code_paths); |
| } |
| } |
| |
| void Jit::StopProfileSaver() { |
| if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) { |
| ProfileSaver::Stop(options_->DumpJitInfoOnShutdown()); |
| } |
| } |
| |
| bool Jit::JitAtFirstUse() { |
| return HotMethodThreshold() == 0; |
| } |
| |
| bool Jit::CanInvokeCompiledCode(ArtMethod* method) { |
| return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode()); |
| } |
| |
| Jit::~Jit() { |
| DCHECK(!options_->GetSaveProfilingInfo() || !ProfileSaver::IsStarted()); |
| if (options_->DumpJitInfoOnShutdown()) { |
| DumpInfo(LOG_STREAM(INFO)); |
| Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO)); |
| } |
| DeleteThreadPool(); |
| if (jit_compiler_handle_ != nullptr) { |
| jit_unload_(jit_compiler_handle_); |
| jit_compiler_handle_ = nullptr; |
| } |
| if (jit_library_handle_ != nullptr) { |
| dlclose(jit_library_handle_); |
| jit_library_handle_ = nullptr; |
| } |
| } |
| |
| void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) { |
| if (!Runtime::Current()->UseJitCompilation()) { |
| // No need to notify if we only use the JIT to save profiles. |
| return; |
| } |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit->generate_debug_info_) { |
| DCHECK(jit->jit_types_loaded_ != nullptr); |
| jit->jit_types_loaded_(jit->jit_compiler_handle_, &type, 1); |
| } |
| } |
| |
| void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) { |
| struct CollectClasses : public ClassVisitor { |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| classes_.push_back(klass.Ptr()); |
| return true; |
| } |
| std::vector<mirror::Class*> classes_; |
| }; |
| |
| if (generate_debug_info_) { |
| ScopedObjectAccess so(Thread::Current()); |
| |
| CollectClasses visitor; |
| linker->VisitClasses(&visitor); |
| jit_types_loaded_(jit_compiler_handle_, visitor.classes_.data(), visitor.classes_.size()); |
| } |
| } |
| |
| extern "C" void art_quick_osr_stub(void** stack, |
| size_t stack_size_in_bytes, |
| const uint8_t* native_pc, |
| JValue* result, |
| const char* shorty, |
| Thread* self); |
| |
| bool Jit::MaybeDoOnStackReplacement(Thread* thread, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| int32_t dex_pc_offset, |
| JValue* result) { |
| if (!kEnableOnStackReplacement) { |
| return false; |
| } |
| |
| Jit* jit = Runtime::Current()->GetJit(); |
| if (jit == nullptr) { |
| return false; |
| } |
| |
| if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) { |
| // Don't attempt to do an OSR if we are close to the stack limit. Since |
| // the interpreter frames are still on stack, OSR has the potential |
| // to stack overflow even for a simple loop. |
| // b/27094810. |
| return false; |
| } |
| |
| // Get the actual Java method if this method is from a proxy class. The compiler |
| // and the JIT code cache do not expect methods from proxy classes. |
| method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| |
| // Cheap check if the method has been compiled already. That's an indicator that we should |
| // osr into it. |
| if (!jit->GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| return false; |
| } |
| |
| // Fetch some data before looking up for an OSR method. We don't want thread |
| // suspension once we hold an OSR method, as the JIT code cache could delete the OSR |
| // method while we are being suspended. |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| const size_t number_of_vregs = accessor.RegistersSize(); |
| const char* shorty = method->GetShorty(); |
| std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : ""); |
| void** memory = nullptr; |
| size_t frame_size = 0; |
| ShadowFrame* shadow_frame = nullptr; |
| const uint8_t* native_pc = nullptr; |
| |
| { |
| ScopedAssertNoThreadSuspension sts("Holding OSR method"); |
| const OatQuickMethodHeader* osr_method = jit->GetCodeCache()->LookupOsrMethodHeader(method); |
| if (osr_method == nullptr) { |
| // No osr method yet, just return to the interpreter. |
| return false; |
| } |
| |
| CodeInfo code_info(osr_method); |
| |
| // Find stack map starting at the target dex_pc. |
| StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc + dex_pc_offset); |
| if (!stack_map.IsValid()) { |
| // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the |
| // hope that the next branch has one. |
| return false; |
| } |
| |
| // Before allowing the jump, make sure no code is actively inspecting the method to avoid |
| // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively |
| // disable OSR when single stepping, but that's currently hard to know at this point. |
| if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) { |
| return false; |
| } |
| |
| // We found a stack map, now fill the frame with dex register values from the interpreter's |
| // shadow frame. |
| DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map); |
| |
| frame_size = osr_method->GetFrameSizeInBytes(); |
| |
| // Allocate memory to put shadow frame values. The osr stub will copy that memory to |
| // stack. |
| // Note that we could pass the shadow frame to the stub, and let it copy the values there, |
| // but that is engineering complexity not worth the effort for something like OSR. |
| memory = reinterpret_cast<void**>(malloc(frame_size)); |
| CHECK(memory != nullptr); |
| memset(memory, 0, frame_size); |
| |
| // Art ABI: ArtMethod is at the bottom of the stack. |
| memory[0] = method; |
| |
| shadow_frame = thread->PopShadowFrame(); |
| if (vreg_map.empty()) { |
| // If we don't have a dex register map, then there are no live dex registers at |
| // this dex pc. |
| } else { |
| DCHECK_EQ(vreg_map.size(), number_of_vregs); |
| for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) { |
| DexRegisterLocation::Kind location = vreg_map[vreg].GetKind(); |
| if (location == DexRegisterLocation::Kind::kNone) { |
| // Dex register is dead or uninitialized. |
| continue; |
| } |
| |
| if (location == DexRegisterLocation::Kind::kConstant) { |
| // We skip constants because the compiled code knows how to handle them. |
| continue; |
| } |
| |
| DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack); |
| |
| int32_t vreg_value = shadow_frame->GetVReg(vreg); |
| int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes(); |
| DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size)); |
| DCHECK_GT(slot_offset, 0); |
| (reinterpret_cast<int32_t*>(memory))[slot_offset / sizeof(int32_t)] = vreg_value; |
| } |
| } |
| |
| native_pc = stack_map.GetNativePcOffset(kRuntimeISA) + |
| osr_method->GetEntryPoint(); |
| VLOG(jit) << "Jumping to " |
| << method_name |
| << "@" |
| << std::hex << reinterpret_cast<uintptr_t>(native_pc); |
| } |
| |
| { |
| ManagedStack fragment; |
| thread->PushManagedStackFragment(&fragment); |
| (*art_quick_osr_stub)(memory, |
| frame_size, |
| native_pc, |
| result, |
| shorty, |
| thread); |
| |
| if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) { |
| thread->DeoptimizeWithDeoptimizationException(result); |
| } |
| thread->PopManagedStackFragment(fragment); |
| } |
| free(memory); |
| thread->PushShadowFrame(shadow_frame); |
| VLOG(jit) << "Done running OSR code for " << method_name; |
| return true; |
| } |
| |
| void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) { |
| if (bytes > 4 * MB) { |
| LOG(INFO) << "Compiler allocated " |
| << PrettySize(bytes) |
| << " to compile " |
| << ArtMethod::PrettyMethod(method); |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| memory_use_.AddValue(bytes); |
| } |
| |
| class JitCompileTask final : public Task { |
| public: |
| enum TaskKind { |
| kAllocateProfile, |
| kCompile, |
| kCompileOsr |
| }; |
| |
| JitCompileTask(ArtMethod* method, TaskKind kind) : method_(method), kind_(kind) { |
| ScopedObjectAccess soa(Thread::Current()); |
| // Add a global ref to the class to prevent class unloading until compilation is done. |
| klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass()); |
| CHECK(klass_ != nullptr); |
| } |
| |
| ~JitCompileTask() { |
| ScopedObjectAccess soa(Thread::Current()); |
| soa.Vm()->DeleteGlobalRef(soa.Self(), klass_); |
| } |
| |
| void Run(Thread* self) override { |
| ScopedObjectAccess soa(self); |
| if (kind_ == kCompile) { |
| Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr= */ false); |
| } else if (kind_ == kCompileOsr) { |
| Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr= */ true); |
| } else { |
| DCHECK(kind_ == kAllocateProfile); |
| if (ProfilingInfo::Create(self, method_, /* retry_allocation= */ true)) { |
| VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_); |
| } |
| } |
| ProfileSaver::NotifyJitActivity(); |
| } |
| |
| void Finalize() override { |
| delete this; |
| } |
| |
| private: |
| ArtMethod* const method_; |
| const TaskKind kind_; |
| jobject klass_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask); |
| }; |
| |
| static bool IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (method->IsClassInitializer() || !method->IsCompilable()) { |
| // We do not want to compile such methods. |
| return true; |
| } |
| if (method->IsNative()) { |
| ObjPtr<mirror::Class> klass = method->GetDeclaringClass(); |
| if (klass == GetClassRoot<mirror::MethodHandle>() || |
| klass == GetClassRoot<mirror::VarHandle>()) { |
| // MethodHandle and VarHandle invocation methods are required to throw an |
| // UnsupportedOperationException if invoked reflectively. We achieve this by having native |
| // implementations that arise the exception. We need to disable JIT compilation of these JNI |
| // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI |
| // stubs. Since these stubs have different stack representations we can then crash in stack |
| // walking (b/78151261). |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Jit::AddSamples(Thread* self, ArtMethod* method, uint16_t count, bool with_backedges) { |
| if (thread_pool_ == nullptr) { |
| // Should only see this when shutting down. |
| DCHECK(Runtime::Current()->IsShuttingDown(self)); |
| return; |
| } |
| if (IgnoreSamplesForMethod(method)) { |
| return; |
| } |
| if (HotMethodThreshold() == 0) { |
| // Tests might request JIT on first use (compiled synchronously in the interpreter). |
| return; |
| } |
| DCHECK(thread_pool_ != nullptr); |
| DCHECK_GT(WarmMethodThreshold(), 0); |
| DCHECK_GT(HotMethodThreshold(), WarmMethodThreshold()); |
| DCHECK_GT(OSRMethodThreshold(), HotMethodThreshold()); |
| DCHECK_GE(PriorityThreadWeight(), 1); |
| DCHECK_LE(PriorityThreadWeight(), HotMethodThreshold()); |
| |
| uint16_t starting_count = method->GetCounter(); |
| if (Jit::ShouldUsePriorityThreadWeight(self)) { |
| count *= PriorityThreadWeight(); |
| } |
| uint32_t new_count = starting_count + count; |
| // Note: Native method have no "warm" state or profiling info. |
| if (LIKELY(!method->IsNative()) && starting_count < WarmMethodThreshold()) { |
| if ((new_count >= WarmMethodThreshold()) && |
| (method->GetProfilingInfo(kRuntimePointerSize) == nullptr)) { |
| bool success = ProfilingInfo::Create(self, method, /* retry_allocation= */ false); |
| if (success) { |
| VLOG(jit) << "Start profiling " << method->PrettyMethod(); |
| } |
| |
| if (thread_pool_ == nullptr) { |
| // Calling ProfilingInfo::Create might put us in a suspended state, which could |
| // lead to the thread pool being deleted when we are shutting down. |
| DCHECK(Runtime::Current()->IsShuttingDown(self)); |
| return; |
| } |
| |
| if (!success) { |
| // We failed allocating. Instead of doing the collection on the Java thread, we push |
| // an allocation to a compiler thread, that will do the collection. |
| thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kAllocateProfile)); |
| } |
| } |
| // Avoid jumping more than one state at a time. |
| new_count = std::min(new_count, static_cast<uint32_t>(HotMethodThreshold() - 1)); |
| } else if (UseJitCompilation()) { |
| if (starting_count < HotMethodThreshold()) { |
| if ((new_count >= HotMethodThreshold()) && |
| !code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| DCHECK(thread_pool_ != nullptr); |
| thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompile)); |
| } |
| // Avoid jumping more than one state at a time. |
| new_count = std::min(new_count, static_cast<uint32_t>(OSRMethodThreshold() - 1)); |
| } else if (starting_count < OSRMethodThreshold()) { |
| if (!with_backedges) { |
| // If the samples don't contain any back edge, we don't increment the hotness. |
| return; |
| } |
| DCHECK(!method->IsNative()); // No back edges reported for native methods. |
| if ((new_count >= OSRMethodThreshold()) && !code_cache_->IsOsrCompiled(method)) { |
| DCHECK(thread_pool_ != nullptr); |
| thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompileOsr)); |
| } |
| } |
| } |
| // Update hotness counter |
| method->SetCounter(new_count); |
| } |
| |
| class ScopedSetRuntimeThread { |
| public: |
| explicit ScopedSetRuntimeThread(Thread* self) |
| : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) { |
| self_->SetIsRuntimeThread(true); |
| } |
| |
| ~ScopedSetRuntimeThread() { |
| self_->SetIsRuntimeThread(was_runtime_thread_); |
| } |
| |
| private: |
| Thread* self_; |
| bool was_runtime_thread_; |
| }; |
| |
| void Jit::MethodEntered(Thread* thread, ArtMethod* method) { |
| Runtime* runtime = Runtime::Current(); |
| if (UNLIKELY(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse())) { |
| ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| if (np_method->IsCompilable()) { |
| if (!np_method->IsNative()) { |
| // The compiler requires a ProfilingInfo object for non-native methods. |
| ProfilingInfo::Create(thread, np_method, /* retry_allocation= */ true); |
| } |
| JitCompileTask compile_task(method, JitCompileTask::kCompile); |
| // Fake being in a runtime thread so that class-load behavior will be the same as normal jit. |
| ScopedSetRuntimeThread ssrt(thread); |
| compile_task.Run(thread); |
| } |
| return; |
| } |
| |
| ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); |
| // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it |
| // instead of interpreting the method. We don't update it for instrumentation as the entrypoint |
| // must remain the instrumentation entrypoint. |
| if ((profiling_info != nullptr) && |
| (profiling_info->GetSavedEntryPoint() != nullptr) && |
| (method->GetEntryPointFromQuickCompiledCode() != GetQuickInstrumentationEntryPoint())) { |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, profiling_info->GetSavedEntryPoint()); |
| } else { |
| AddSamples(thread, method, 1, /* with_backedges= */false); |
| } |
| } |
| |
| void Jit::InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object, |
| ArtMethod* caller, |
| uint32_t dex_pc, |
| ArtMethod* callee ATTRIBUTE_UNUSED) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| DCHECK(this_object != nullptr); |
| ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| info->AddInvokeInfo(dex_pc, this_object->GetClass()); |
| } |
| } |
| |
| void Jit::WaitForCompilationToFinish(Thread* self) { |
| if (thread_pool_ != nullptr) { |
| thread_pool_->Wait(self, false, false); |
| } |
| } |
| |
| void Jit::Stop() { |
| Thread* self = Thread::Current(); |
| // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice. |
| WaitForCompilationToFinish(self); |
| GetThreadPool()->StopWorkers(self); |
| WaitForCompilationToFinish(self); |
| } |
| |
| void Jit::Start() { |
| GetThreadPool()->StartWorkers(Thread::Current()); |
| } |
| |
| ScopedJitSuspend::ScopedJitSuspend() { |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr); |
| if (was_on_) { |
| jit->Stop(); |
| } |
| } |
| |
| ScopedJitSuspend::~ScopedJitSuspend() { |
| if (was_on_) { |
| DCHECK(Runtime::Current()->GetJit() != nullptr); |
| DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr); |
| Runtime::Current()->GetJit()->Start(); |
| } |
| } |
| |
| } // namespace jit |
| } // namespace art |