blob: 698d686afd40599300851dfc6ae688e7e7adcfab [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_UTILS_H_
#define ART_RUNTIME_UTILS_H_
#include <pthread.h>
#include <limits>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "arch/instruction_set.h"
#include "base/logging.h"
#include "base/mutex.h"
#include "globals.h"
#include "primitive.h"
namespace art {
class DexFile;
namespace mirror {
class ArtField;
class ArtMethod;
class Class;
class Object;
class String;
} // namespace mirror
enum TimeUnit {
kTimeUnitNanosecond,
kTimeUnitMicrosecond,
kTimeUnitMillisecond,
kTimeUnitSecond,
};
template <typename T>
bool ParseUint(const char *in, T* out) {
char* end;
unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int)
if (in == end || *end != '\0') {
return false;
}
if (std::numeric_limits<T>::max() < result) {
return false;
}
*out = static_cast<T>(result);
return true;
}
template <typename T>
bool ParseInt(const char* in, T* out) {
char* end;
long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int)
if (in == end || *end != '\0') {
return false;
}
if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
return false;
}
*out = static_cast<T>(result);
return true;
}
template<typename T>
static constexpr bool IsPowerOfTwo(T x) {
return (x & (x - 1)) == 0;
}
template<int n, typename T>
static inline bool IsAligned(T x) {
static_assert((n & (n - 1)) == 0, "n is not a power of two");
return (x & (n - 1)) == 0;
}
template<int n, typename T>
static inline bool IsAligned(T* x) {
return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
}
template<typename T>
static inline bool IsAlignedParam(T x, int n) {
return (x & (n - 1)) == 0;
}
#define CHECK_ALIGNED(value, alignment) \
CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED(value, alignment) \
DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED_PARAM(value, alignment) \
DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
// Check whether an N-bit two's-complement representation can hold value.
static inline bool IsInt(int N, intptr_t value) {
CHECK_LT(0, N);
CHECK_LT(N, kBitsPerIntPtrT);
intptr_t limit = static_cast<intptr_t>(1) << (N - 1);
return (-limit <= value) && (value < limit);
}
template <typename T>
static constexpr T GetIntLimit(size_t bits) {
return
DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0)
DCHECK_CONSTEXPR(bits < kBitsPerByte * sizeof(T), "kBits must be < max.", 0)
static_cast<T>(1) << (bits - 1);
}
template <size_t kBits, typename T>
static constexpr bool IsInt(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be <= max.");
static_assert(std::is_signed<T>::value, "Needs a signed type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
return (kBits == kBitsPerByte * sizeof(T)) ?
true :
(-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
}
template <size_t kBits, typename T>
static constexpr bool IsUint(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be <= max.");
static_assert(std::is_integral<T>::value, "Needs an integral type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
return (0 <= value) &&
(kBits == kBitsPerByte * sizeof(T) ||
(static_cast<typename std::make_unsigned<T>::type>(value) <=
GetIntLimit<typename std::make_unsigned<T>::type>(kBits + 1) - 1));
}
template <size_t kBits, typename T>
static constexpr bool IsAbsoluteUint(T value) {
static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be < max.");
return (kBits == kBitsPerByte * sizeof(T)) ?
true :
IsUint<kBits, T>(value < 0 ? -value : value);
}
static inline uint16_t Low16Bits(uint32_t value) {
return static_cast<uint16_t>(value);
}
static inline uint16_t High16Bits(uint32_t value) {
return static_cast<uint16_t>(value >> 16);
}
static inline uint32_t Low32Bits(uint64_t value) {
return static_cast<uint32_t>(value);
}
static inline uint32_t High32Bits(uint64_t value) {
return static_cast<uint32_t>(value >> 32);
}
// Type identity.
template <typename T>
struct TypeIdentity {
typedef T type;
};
// Like sizeof, but count how many bits a type takes. Pass type explicitly.
template <typename T>
static constexpr size_t BitSizeOf() {
return sizeof(T) * CHAR_BIT;
}
// Like sizeof, but count how many bits a type takes. Infers type from parameter.
template <typename T>
static constexpr size_t BitSizeOf(T /*x*/) {
return sizeof(T) * CHAR_BIT;
}
// For rounding integers.
template<typename T>
static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
template<typename T>
static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
return
DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
(x & -n);
}
template<typename T>
static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
template<typename T>
static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
return RoundDown(x + n - 1, n);
}
// For aligning pointers.
template<typename T>
static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
static inline T* AlignDown(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
}
template<typename T>
static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
static inline T* AlignUp(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
}
namespace utils {
namespace detail { // Private, implementation-specific namespace. Do not poke outside of this file.
template <typename T>
static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) {
return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1);
}
} // namespace detail
} // namespace utils
// Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
// figure 3-3, page 48, where the function is called clp2.
template <typename T>
static constexpr inline T RoundUpToPowerOfTwo(T x) {
return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1;
}
// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
template <typename T>
static constexpr ssize_t MostSignificantBit(T value) {
return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1);
}
// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
template <typename T>
static constexpr size_t MinimumBitsToStore(T value) {
return static_cast<size_t>(MostSignificantBit(value) + 1);
}
template<typename T>
static constexpr int CLZ(T x) {
static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long"); // NOLINT [runtime/int] [4]
return (sizeof(T) == sizeof(uint32_t))
? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0
: __builtin_clzll(x);
}
template<typename T>
static constexpr int CTZ(T x) {
return (sizeof(T) == sizeof(uint32_t))
? __builtin_ctz(x)
: __builtin_ctzll(x);
}
template<typename T>
static constexpr int POPCOUNT(T x) {
return (sizeof(T) == sizeof(uint32_t))
? __builtin_popcount(x)
: __builtin_popcountll(x);
}
static inline uint32_t PointerToLowMemUInt32(const void* p) {
uintptr_t intp = reinterpret_cast<uintptr_t>(p);
DCHECK_LE(intp, 0xFFFFFFFFU);
return intp & 0xFFFFFFFFU;
}
static inline bool NeedsEscaping(uint16_t ch) {
return (ch < ' ' || ch > '~');
}
// Interpret the bit pattern of input (type U) as type V. Requires the size
// of V >= size of U (compile-time checked).
template<typename U, typename V>
static inline V bit_cast(U in) {
static_assert(sizeof(U) <= sizeof(V), "Size of U not <= size of V");
union {
U u;
V v;
} tmp;
tmp.u = in;
return tmp.v;
}
std::string PrintableChar(uint16_t ch);
// Returns an ASCII string corresponding to the given UTF-8 string.
// Java escapes are used for non-ASCII characters.
std::string PrintableString(const char* utf8);
// Tests whether 's' starts with 'prefix'.
bool StartsWith(const std::string& s, const char* prefix);
// Tests whether 's' starts with 'suffix'.
bool EndsWith(const std::string& s, const char* suffix);
// Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
// one of which is probably more useful to you.
// Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
// "[[I" would be "int[][]", "[Ljava/lang/String;" would be
// "java.lang.String[]", and so forth.
std::string PrettyDescriptor(mirror::String* descriptor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
std::string PrettyDescriptor(const char* descriptor);
std::string PrettyDescriptor(mirror::Class* klass)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
std::string PrettyDescriptor(Primitive::Type type);
// Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
// "int a.b.C.f" (depending on the value of 'with_type').
std::string PrettyField(mirror::ArtField* f, bool with_type = true)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
// Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
// "a.b.C.m(II)V" (depending on the value of 'with_signature').
std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
// Returns a human-readable form of the name of the *class* of the given object.
// So given an instance of java.lang.String, the output would
// be "java.lang.String". Given an array of int, the output would be "int[]".
// Given String.class, the output would be "java.lang.Class<java.lang.String>".
std::string PrettyTypeOf(mirror::Object* obj)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns a human-readable form of the type at an index in the specified dex file.
// Example outputs: char[], java.lang.String.
std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
// Returns a human-readable form of the name of the given class.
// Given String.class, the output would be "java.lang.Class<java.lang.String>".
std::string PrettyClass(mirror::Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns a human-readable form of the name of the given class with its class loader.
std::string PrettyClassAndClassLoader(mirror::Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns a human-readable version of the Java part of the access flags, e.g., "private static "
// (note the trailing whitespace).
std::string PrettyJavaAccessFlags(uint32_t access_flags);
// Returns a human-readable size string such as "1MB".
std::string PrettySize(int64_t size_in_bytes);
// Returns a human-readable time string which prints every nanosecond while trying to limit the
// number of trailing zeros. Prints using the largest human readable unit up to a second.
// e.g. "1ms", "1.000000001s", "1.001us"
std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
// Format a nanosecond time to specified units.
std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
size_t max_fraction_digits);
// Get the appropriate unit for a nanosecond duration.
TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
// Get the divisor to convert from a nanoseconds to a time unit.
uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
// Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
// of the JNI spec.
std::string MangleForJni(const std::string& s);
// Turn "java.lang.String" into "Ljava/lang/String;".
std::string DotToDescriptor(const char* class_name);
// Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
// java.lang.Class.getName().
std::string DescriptorToDot(const char* descriptor);
// Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
// java.lang.Class.getName().
std::string DescriptorToName(const char* descriptor);
// Tests for whether 's' is a valid class name in the three common forms:
bool IsValidBinaryClassName(const char* s); // "java.lang.String"
bool IsValidJniClassName(const char* s); // "java/lang/String"
bool IsValidDescriptor(const char* s); // "Ljava/lang/String;"
// Returns whether the given string is a valid field or method name,
// additionally allowing names that begin with '<' and end with '>'.
bool IsValidMemberName(const char* s);
// Returns the JNI native function name for the non-overloaded method 'm'.
std::string JniShortName(mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the JNI native function name for the overloaded method 'm'.
std::string JniLongName(mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool ReadFileToString(const std::string& file_name, std::string* result);
bool PrintFileToLog(const std::string& file_name, LogSeverity level);
// Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
std::string GetIsoDate();
// Returns the monotonic time since some unspecified starting point in milliseconds.
uint64_t MilliTime();
// Returns the monotonic time since some unspecified starting point in microseconds.
uint64_t MicroTime();
// Returns the monotonic time since some unspecified starting point in nanoseconds.
uint64_t NanoTime();
// Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
uint64_t ThreadCpuNanoTime();
// Converts the given number of nanoseconds to milliseconds.
static constexpr inline uint64_t NsToMs(uint64_t ns) {
return ns / 1000 / 1000;
}
// Converts the given number of milliseconds to nanoseconds
static constexpr inline uint64_t MsToNs(uint64_t ns) {
return ns * 1000 * 1000;
}
#if defined(__APPLE__)
// No clocks to specify on OS/X, fake value to pass to routines that require a clock.
#define CLOCK_REALTIME 0xebadf00d
#endif
// Sleep for the given number of nanoseconds, a bad way to handle contention.
void NanoSleep(uint64_t ns);
// Initialize a timespec to either a relative time (ms,ns), or to the absolute
// time corresponding to the indicated clock value plus the supplied offset.
void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
// Splits a string using the given separator character into a vector of
// strings. Empty strings will be omitted.
void Split(const std::string& s, char separator, std::vector<std::string>* result);
// Trims whitespace off both ends of the given string.
std::string Trim(const std::string& s);
// Joins a vector of strings into a single string, using the given separator.
template <typename StringT> std::string Join(const std::vector<StringT>& strings, char separator);
// Returns the calling thread's tid. (The C libraries don't expose this.)
pid_t GetTid();
// Returns the given thread's name.
std::string GetThreadName(pid_t tid);
// Returns details of the given thread's stack.
void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
// Reads data from "/proc/self/task/${tid}/stat".
void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
// Returns the name of the scheduler group for the given thread the current process, or the empty string.
std::string GetSchedulerGroupName(pid_t tid);
// Sets the name of the current thread. The name may be truncated to an
// implementation-defined limit.
void SetThreadName(const char* thread_name);
// Dumps the native stack for thread 'tid' to 'os'.
void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
mirror::ArtMethod* current_method = nullptr, void* ucontext = nullptr)
NO_THREAD_SAFETY_ANALYSIS;
// Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
// Find $ANDROID_ROOT, /system, or abort.
const char* GetAndroidRoot();
// Find $ANDROID_DATA, /data, or abort.
const char* GetAndroidData();
// Find $ANDROID_DATA, /data, or return nullptr.
const char* GetAndroidDataSafe(std::string* error_msg);
// Returns the dalvik-cache location, or dies trying. subdir will be
// appended to the cache location.
std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
// Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
// have_android_data will be set to true if we have an ANDROID_DATA that exists,
// dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
// The flag is_global_cache tells whether this cache is /data/dalvik-cache.
void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache);
// Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
// rooted at cache_location.
bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
std::string* filename, std::string* error_msg);
// Returns the absolute dalvik-cache path for a DexFile or OatFile, or
// dies trying. The path returned will be rooted at cache_location.
std::string GetDalvikCacheFilenameOrDie(const char* file_location,
const char* cache_location);
// Returns the system location for an image
std::string GetSystemImageFilename(const char* location, InstructionSet isa);
// Returns an .odex file name next adjacent to the dex location.
// For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
// Note: does not support multidex location strings.
std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
// Check whether the given magic matches a known file type.
bool IsZipMagic(uint32_t magic);
bool IsDexMagic(uint32_t magic);
bool IsOatMagic(uint32_t magic);
// Wrapper on fork/execv to run a command in a subprocess.
bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
class VoidFunctor {
public:
template <typename A>
inline void operator() (A a) const {
UNUSED(a);
}
template <typename A, typename B>
inline void operator() (A a, B b) const {
UNUSED(a, b);
}
template <typename A, typename B, typename C>
inline void operator() (A a, B b, C c) const {
UNUSED(a, b, c);
}
};
template <typename Alloc>
void Push32(std::vector<uint8_t, Alloc>* buf, int32_t data) {
buf->push_back(data & 0xff);
buf->push_back((data >> 8) & 0xff);
buf->push_back((data >> 16) & 0xff);
buf->push_back((data >> 24) & 0xff);
}
void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* buf);
void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* buf);
// Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
struct FreeDelete {
// NOTE: Deleting a const object is valid but free() takes a non-const pointer.
void operator()(const void* ptr) const {
free(const_cast<void*>(ptr));
}
};
// Alias for std::unique_ptr<> that uses the C function free() to delete objects.
template <typename T>
using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
// C++14 from-the-future import (std::make_unique)
// Invoke the constructor of 'T' with the provided args, and wrap the result in a unique ptr.
template <typename T, typename ... Args>
std::unique_ptr<T> MakeUnique(Args&& ... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // namespace art
#endif // ART_RUNTIME_UTILS_H_