| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dead_code_elimination.h" |
| |
| #include "base/array_ref.h" |
| #include "base/bit_vector-inl.h" |
| #include "ssa_phi_elimination.h" |
| |
| namespace art { |
| |
| static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) { |
| ArenaVector<HBasicBlock*> worklist(graph->GetArena()->Adapter(kArenaAllocDCE)); |
| constexpr size_t kDefaultWorlistSize = 8; |
| worklist.reserve(kDefaultWorlistSize); |
| visited->SetBit(graph->GetEntryBlock()->GetBlockId()); |
| worklist.push_back(graph->GetEntryBlock()); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* block = worklist.back(); |
| worklist.pop_back(); |
| int block_id = block->GetBlockId(); |
| DCHECK(visited->IsBitSet(block_id)); |
| |
| ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors()); |
| HInstruction* last_instruction = block->GetLastInstruction(); |
| if (last_instruction->IsIf()) { |
| HIf* if_instruction = last_instruction->AsIf(); |
| HInstruction* condition = if_instruction->InputAt(0); |
| if (condition->IsIntConstant()) { |
| if (condition->AsIntConstant()->IsTrue()) { |
| live_successors = live_successors.SubArray(0u, 1u); |
| DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor()); |
| } else { |
| DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue(); |
| live_successors = live_successors.SubArray(1u, 1u); |
| DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor()); |
| } |
| } |
| } else if (last_instruction->IsPackedSwitch()) { |
| HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch(); |
| HInstruction* switch_input = switch_instruction->InputAt(0); |
| if (switch_input->IsIntConstant()) { |
| int32_t switch_value = switch_input->AsIntConstant()->GetValue(); |
| int32_t start_value = switch_instruction->GetStartValue(); |
| // Note: Though the spec forbids packed-switch values to wrap around, we leave |
| // that task to the verifier and use unsigned arithmetic with it's "modulo 2^32" |
| // semantics to check if the value is in range, wrapped or not. |
| uint32_t switch_index = |
| static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value); |
| if (switch_index < switch_instruction->GetNumEntries()) { |
| live_successors = live_successors.SubArray(switch_index, 1u); |
| DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]); |
| } else { |
| live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u); |
| DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock()); |
| } |
| } |
| } |
| |
| for (HBasicBlock* successor : live_successors) { |
| // Add only those successors that have not been visited yet. |
| if (!visited->IsBitSet(successor->GetBlockId())) { |
| visited->SetBit(successor->GetBlockId()); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| } |
| |
| void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) { |
| if (stats_ != nullptr) { |
| stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction, |
| block->GetPhis().CountSize() + block->GetInstructions().CountSize()); |
| } |
| } |
| |
| void HDeadCodeElimination::MaybeRecordSimplifyIf() { |
| if (stats_ != nullptr) { |
| stats_->RecordStat(MethodCompilationStat::kSimplifyIf); |
| } |
| } |
| |
| static bool HasInput(HCondition* instruction, HInstruction* input) { |
| return (instruction->InputAt(0) == input) || |
| (instruction->InputAt(1) == input); |
| } |
| |
| static bool HasEquality(IfCondition condition) { |
| switch (condition) { |
| case kCondEQ: |
| case kCondLE: |
| case kCondGE: |
| case kCondBE: |
| case kCondAE: |
| return true; |
| case kCondNE: |
| case kCondLT: |
| case kCondGT: |
| case kCondB: |
| case kCondA: |
| return false; |
| } |
| } |
| |
| static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) { |
| if (left == right && !Primitive::IsFloatingPointType(left->GetType())) { |
| return condition->GetBlock()->GetGraph()->GetIntConstant( |
| HasEquality(condition->GetCondition()) ? 1 : 0); |
| } |
| |
| if (!left->IsConstant() || !right->IsConstant()) { |
| return nullptr; |
| } |
| |
| if (left->IsIntConstant()) { |
| return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant()); |
| } else if (left->IsNullConstant()) { |
| return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant()); |
| } else if (left->IsLongConstant()) { |
| return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant()); |
| } else if (left->IsFloatConstant()) { |
| return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant()); |
| } else { |
| DCHECK(left->IsDoubleConstant()); |
| return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant()); |
| } |
| } |
| |
| // Simplify the pattern: |
| // |
| // B1 B2 ... |
| // goto goto goto |
| // \ | / |
| // \ | / |
| // B3 |
| // i1 = phi(input, input) |
| // (i2 = condition on i1) |
| // if i1 (or i2) |
| // / \ |
| // / \ |
| // B4 B5 |
| // |
| // Into: |
| // |
| // B1 B2 ... |
| // | | | |
| // B4 B5 B? |
| // |
| // This simplification cannot be applied for loop headers, as they |
| // contain a suspend check. |
| // |
| // Note that we rely on the dead code elimination to get rid of B3. |
| bool HDeadCodeElimination::SimplifyIfs() { |
| bool simplified_one_or_more_ifs = false; |
| bool rerun_dominance_and_loop_analysis = false; |
| |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| HInstruction* last = block->GetLastInstruction(); |
| HInstruction* first = block->GetFirstInstruction(); |
| if (last->IsIf() && |
| block->HasSinglePhi() && |
| block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) { |
| bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi()); |
| bool has_only_phi_condition_and_if = |
| !has_only_phi_and_if && |
| first->IsCondition() && |
| HasInput(first->AsCondition(), block->GetFirstPhi()) && |
| (first->GetNext() == last) && |
| (last->InputAt(0) == first) && |
| first->HasOnlyOneNonEnvironmentUse(); |
| |
| if (has_only_phi_and_if || has_only_phi_condition_and_if) { |
| DCHECK(!block->IsLoopHeader()); |
| HPhi* phi = block->GetFirstPhi()->AsPhi(); |
| bool phi_input_is_left = (first->InputAt(0) == phi); |
| |
| // Walk over all inputs of the phis and update the control flow of |
| // predecessors feeding constants to the phi. |
| // Note that phi->InputCount() may change inside the loop. |
| for (size_t i = 0; i < phi->InputCount();) { |
| HInstruction* input = phi->InputAt(i); |
| HInstruction* value_to_check = nullptr; |
| if (has_only_phi_and_if) { |
| if (input->IsIntConstant()) { |
| value_to_check = input; |
| } |
| } else { |
| DCHECK(has_only_phi_condition_and_if); |
| if (phi_input_is_left) { |
| value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1)); |
| } else { |
| value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input); |
| } |
| } |
| if (value_to_check == nullptr) { |
| // Could not evaluate to a constant, continue iterating over the inputs. |
| ++i; |
| } else { |
| HBasicBlock* predecessor_to_update = block->GetPredecessors()[i]; |
| HBasicBlock* successor_to_update = nullptr; |
| if (value_to_check->AsIntConstant()->IsTrue()) { |
| successor_to_update = last->AsIf()->IfTrueSuccessor(); |
| } else { |
| DCHECK(value_to_check->AsIntConstant()->IsFalse()) |
| << value_to_check->AsIntConstant()->GetValue(); |
| successor_to_update = last->AsIf()->IfFalseSuccessor(); |
| } |
| predecessor_to_update->ReplaceSuccessor(block, successor_to_update); |
| phi->RemoveInputAt(i); |
| simplified_one_or_more_ifs = true; |
| if (block->IsInLoop()) { |
| rerun_dominance_and_loop_analysis = true; |
| } |
| // For simplicity, don't create a dead block, let the dead code elimination |
| // pass deal with it. |
| if (phi->InputCount() == 1) { |
| break; |
| } |
| } |
| } |
| if (block->GetPredecessors().size() == 1) { |
| phi->ReplaceWith(phi->InputAt(0)); |
| block->RemovePhi(phi); |
| if (has_only_phi_condition_and_if) { |
| // Evaluate here (and not wait for a constant folding pass) to open |
| // more opportunities for DCE. |
| HInstruction* result = first->AsCondition()->TryStaticEvaluation(); |
| if (result != nullptr) { |
| first->ReplaceWith(result); |
| block->RemoveInstruction(first); |
| } |
| } |
| } |
| if (simplified_one_or_more_ifs) { |
| MaybeRecordSimplifyIf(); |
| } |
| } |
| } |
| } |
| // We need to re-analyze the graph in order to run DCE afterwards. |
| if (simplified_one_or_more_ifs) { |
| if (rerun_dominance_and_loop_analysis) { |
| graph_->ClearLoopInformation(); |
| graph_->ClearDominanceInformation(); |
| graph_->BuildDominatorTree(); |
| } else { |
| graph_->ClearDominanceInformation(); |
| // We have introduced critical edges, remove them. |
| graph_->SimplifyCFG(); |
| graph_->ComputeDominanceInformation(); |
| graph_->ComputeTryBlockInformation(); |
| } |
| } |
| |
| return simplified_one_or_more_ifs; |
| } |
| |
| void HDeadCodeElimination::ConnectSuccessiveBlocks() { |
| // Order does not matter. |
| for (HReversePostOrderIterator it(*graph_); !it.Done();) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsEntryBlock() || !block->GetLastInstruction()->IsGoto()) { |
| it.Advance(); |
| continue; |
| } |
| HBasicBlock* successor = block->GetSingleSuccessor(); |
| if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) { |
| it.Advance(); |
| continue; |
| } |
| block->MergeWith(successor); |
| // Reiterate on this block in case it can be merged with its new successor. |
| } |
| } |
| |
| bool HDeadCodeElimination::RemoveDeadBlocks() { |
| // Classify blocks as reachable/unreachable. |
| ArenaAllocator* allocator = graph_->GetArena(); |
| ArenaBitVector live_blocks(allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE); |
| |
| MarkReachableBlocks(graph_, &live_blocks); |
| bool removed_one_or_more_blocks = false; |
| bool rerun_dominance_and_loop_analysis = false; |
| |
| // Remove all dead blocks. Iterate in post order because removal needs the |
| // block's chain of dominators and nested loops need to be updated from the |
| // inside out. |
| for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| int id = block->GetBlockId(); |
| if (!live_blocks.IsBitSet(id)) { |
| MaybeRecordDeadBlock(block); |
| block->DisconnectAndDelete(); |
| removed_one_or_more_blocks = true; |
| if (block->IsInLoop()) { |
| rerun_dominance_and_loop_analysis = true; |
| } |
| } |
| } |
| |
| // If we removed at least one block, we need to recompute the full |
| // dominator tree and try block membership. |
| if (removed_one_or_more_blocks) { |
| if (rerun_dominance_and_loop_analysis) { |
| graph_->ClearLoopInformation(); |
| graph_->ClearDominanceInformation(); |
| graph_->BuildDominatorTree(); |
| } else { |
| graph_->ClearDominanceInformation(); |
| graph_->ComputeDominanceInformation(); |
| graph_->ComputeTryBlockInformation(); |
| } |
| } |
| return removed_one_or_more_blocks; |
| } |
| |
| void HDeadCodeElimination::RemoveDeadInstructions() { |
| // Process basic blocks in post-order in the dominator tree, so that |
| // a dead instruction depending on another dead instruction is removed. |
| for (HPostOrderIterator b(*graph_); !b.Done(); b.Advance()) { |
| HBasicBlock* block = b.Current(); |
| // Traverse this block's instructions in backward order and remove |
| // the unused ones. |
| HBackwardInstructionIterator i(block->GetInstructions()); |
| // Skip the first iteration, as the last instruction of a block is |
| // a branching instruction. |
| DCHECK(i.Current()->IsControlFlow()); |
| for (i.Advance(); !i.Done(); i.Advance()) { |
| HInstruction* inst = i.Current(); |
| DCHECK(!inst->IsControlFlow()); |
| if (inst->IsDeadAndRemovable()) { |
| block->RemoveInstruction(inst); |
| MaybeRecordStat(MethodCompilationStat::kRemovedDeadInstruction); |
| } |
| } |
| } |
| } |
| |
| void HDeadCodeElimination::Run() { |
| // Do not eliminate dead blocks if the graph has irreducible loops. We could |
| // support it, but that would require changes in our loop representation to handle |
| // multiple entry points. We decided it was not worth the complexity. |
| if (!graph_->HasIrreducibleLoops()) { |
| // Simplify graph to generate more dead block patterns. |
| ConnectSuccessiveBlocks(); |
| bool did_any_simplification = false; |
| did_any_simplification |= SimplifyIfs(); |
| did_any_simplification |= RemoveDeadBlocks(); |
| if (did_any_simplification) { |
| // Connect successive blocks created by dead branches. |
| ConnectSuccessiveBlocks(); |
| } |
| } |
| SsaRedundantPhiElimination(graph_).Run(); |
| RemoveDeadInstructions(); |
| } |
| |
| } // namespace art |