| // Copyright 2011 Google Inc. All Rights Reserved. |
| |
| #include "dex_verifier.h" |
| |
| #include <iostream> |
| |
| #include "class_linker.h" |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "dex_instruction_visitor.h" |
| #include "dex_verifier.h" |
| #include "logging.h" |
| #include "runtime.h" |
| #include "stringpiece.h" |
| |
| namespace art { |
| |
| #define k_ kRegTypeUnknown |
| #define kU kRegTypeUninit |
| #define kX kRegTypeConflict |
| #define k0 kRegTypeZero |
| #define k1 kRegTypeOne |
| #define kZ kRegTypeBoolean |
| #define ky kRegTypeConstPosByte |
| #define kY kRegTypeConstByte |
| #define kh kRegTypeConstPosShort |
| #define kH kRegTypeConstShort |
| #define kc kRegTypeConstChar |
| #define ki kRegTypeConstInteger |
| #define kb kRegTypePosByte |
| #define kB kRegTypeByte |
| #define ks kRegTypePosShort |
| #define kS kRegTypeShort |
| #define kC kRegTypeChar |
| #define kI kRegTypeInteger |
| #define kF kRegTypeFloat |
| #define kN kRegTypeConstLo |
| #define kn kRegTypeConstHi |
| #define kJ kRegTypeLongLo |
| #define kj kRegTypeLongHi |
| #define kD kRegTypeDoubleLo |
| #define kd kRegTypeDoubleHi |
| |
| const char DexVerifier::merge_table_[kRegTypeMAX][kRegTypeMAX] = |
| { |
| /* chk: _ U X 0 1 Z y Y h H c i b B s S C I F N n J j D d */ |
| { /*_*/ k_,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX }, |
| { /*U*/ kX,kU,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX }, |
| { /*X*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX }, |
| { /*0*/ kX,kX,kX,k0,kZ,kZ,ky,kY,kh,kH,kc,ki,kb,kB,ks,kS,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*1*/ kX,kX,kX,kZ,k1,kZ,ky,kY,kh,kH,kc,ki,kb,kB,ks,kS,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*Z*/ kX,kX,kX,kZ,kZ,kZ,ky,kY,kh,kH,kc,ki,kb,kB,ks,kS,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*y*/ kX,kX,kX,ky,ky,ky,ky,kY,kh,kH,kc,ki,kb,kB,ks,kS,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*Y*/ kX,kX,kX,kY,kY,kY,kY,kY,kh,kH,kc,ki,kB,kB,kS,kS,kI,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*h*/ kX,kX,kX,kh,kh,kh,kh,kh,kh,kH,kc,ki,ks,kS,ks,kS,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*H*/ kX,kX,kX,kH,kH,kH,kH,kH,kH,kH,kc,ki,kS,kS,kS,kS,kI,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*c*/ kX,kX,kX,kc,kc,kc,kc,kc,kc,kc,kc,ki,kC,kI,kC,kI,kC,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*i*/ kX,kX,kX,ki,ki,ki,ki,ki,ki,ki,ki,ki,kI,kI,kI,kI,kI,kI,kF,kX,kX,kX,kX,kX,kX }, |
| { /*b*/ kX,kX,kX,kb,kb,kb,kb,kB,ks,kS,kC,kI,kb,kB,ks,kS,kC,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*B*/ kX,kX,kX,kB,kB,kB,kB,kB,kS,kS,kI,kI,kB,kB,kS,kS,kI,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*s*/ kX,kX,kX,ks,ks,ks,ks,kS,ks,kS,kC,kI,ks,kS,ks,kS,kC,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*S*/ kX,kX,kX,kS,kS,kS,kS,kS,kS,kS,kI,kI,kS,kS,kS,kS,kI,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*C*/ kX,kX,kX,kC,kC,kC,kC,kI,kC,kI,kC,kI,kC,kI,kC,kI,kC,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*I*/ kX,kX,kX,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kI,kX,kX,kX,kX,kX,kX,kX }, |
| { /*F*/ kX,kX,kX,kF,kF,kF,kF,kF,kF,kF,kF,kF,kX,kX,kX,kX,kX,kX,kF,kX,kX,kX,kX,kX,kX }, |
| { /*N*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kN,kX,kJ,kX,kD,kX }, |
| { /*n*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kn,kX,kj,kX,kd }, |
| { /*J*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kJ,kX,kJ,kX,kX,kX }, |
| { /*j*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kj,kX,kj,kX,kX }, |
| { /*D*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kD,kX,kX,kX,kD,kX }, |
| { /*d*/ kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kX,kd,kX,kX,kX,kd }, |
| }; |
| |
| #undef k_ |
| #undef kU |
| #undef kX |
| #undef k0 |
| #undef k1 |
| #undef kZ |
| #undef ky |
| #undef kY |
| #undef kh |
| #undef kH |
| #undef kc |
| #undef ki |
| #undef kb |
| #undef kB |
| #undef ks |
| #undef kS |
| #undef kC |
| #undef kI |
| #undef kF |
| #undef kN |
| #undef kn |
| #undef kJ |
| #undef kj |
| #undef kD |
| #undef kd |
| |
| bool DexVerifier::VerifyClass(Class* klass) { |
| if (klass->IsVerified()) { |
| return true; |
| } |
| for (size_t i = 0; i < klass->NumDirectMethods(); ++i) { |
| Method* method = klass->GetDirectMethod(i); |
| if (!VerifyMethod(method)) { |
| LOG(ERROR) << "Verifier rejected class " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| return false; |
| } |
| } |
| for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) { |
| Method* method = klass->GetVirtualMethod(i); |
| if (!VerifyMethod(method)) { |
| LOG(ERROR) << "Verifier rejected class " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyMethod(Method* method) { |
| const DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const DexFile& dex_file = class_linker->FindDexFile(dex_cache); |
| const DexFile::CodeItem* code_item = |
| dex_file.GetCodeItem(method->GetCodeItemOffset()); |
| |
| /* |
| * Construct the verifier state container object. |
| */ |
| VerifierData vdata(method, &dex_file, code_item); |
| |
| /* |
| * If there aren't any instructions, make sure that's expected, then |
| * exit successfully. |
| */ |
| if (code_item == NULL) { |
| if (!method->IsNative() && !method->IsAbstract()) { |
| LOG(ERROR) << "VFY: zero-length code in concrete non-native method"; |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Sanity-check the register counts. ins + locals = registers, so make |
| * sure that ins <= registers. |
| */ |
| if (code_item->ins_size_ > code_item->registers_size_) { |
| LOG(ERROR) << "VFY: bad register counts (ins=" << code_item->ins_size_ |
| << " regs=" << code_item->registers_size_; |
| return false; |
| } |
| |
| /* |
| * Allocate and initialize an array to hold instruction data. |
| */ |
| vdata.insn_flags_.reset(new InsnFlags[code_item->insns_size_]()); |
| |
| /* |
| * Run through the instructions and see if the width checks out. |
| */ |
| if (!ComputeWidthsAndCountOps(&vdata)) { |
| return false; |
| } |
| |
| /* |
| * Flag instructions guarded by a "try" block and check exception handlers. |
| */ |
| if (!ScanTryCatchBlocks(&vdata)) { |
| return false; |
| } |
| |
| /* |
| * Perform static instruction verification. |
| */ |
| if (!VerifyInstructions(&vdata)) { |
| return false; |
| } |
| |
| /* |
| * Perform code flow analysis. |
| */ |
| if (!VerifyCodeFlow(&vdata)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::VerifyInstructions(VerifierData* vdata) { |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| const byte* ptr = reinterpret_cast<const byte*>(code_item->insns_); |
| const Instruction* inst = Instruction::At(ptr); |
| |
| /* Flag the start of the method as a branch target. */ |
| InsnSetBranchTarget(insn_flags, 0); |
| |
| uint32_t width = 0; |
| uint32_t insns_size = code_item->insns_size_; |
| |
| while (width < insns_size) { |
| if (!VerifyInstruction(vdata, inst, width)) { |
| LOG(ERROR) << "VFY: rejecting opcode 0x" << std::hex |
| << (int) inst->Opcode() << " at 0x" << width << std::dec; |
| return false; |
| } |
| |
| /* Flag instructions that are garbage collection points */ |
| if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow() || |
| inst->IsReturn()) { |
| InsnSetGcPoint(insn_flags, width); |
| } |
| |
| width += inst->Size(); |
| inst = inst->Next(); |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyInstruction(VerifierData* vdata, |
| const Instruction* inst, uint32_t code_offset) { |
| const DexFile* dex_file = vdata->dex_file_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| Instruction::DecodedInstruction dec_insn(inst); |
| bool result = true; |
| |
| int argumentA = inst->GetVerifyTypeArgumentA(); |
| int argumentB = inst->GetVerifyTypeArgumentB(); |
| int argumentC = inst->GetVerifyTypeArgumentC(); |
| int extra_flags = inst->GetVerifyExtraFlags(); |
| |
| switch (argumentA) { |
| case Instruction::kVerifyRegA: |
| result &= CheckRegisterIndex(code_item, dec_insn.vA_); |
| break; |
| case Instruction::kVerifyRegAWide: |
| result &= CheckWideRegisterIndex(code_item, dec_insn.vA_); |
| break; |
| } |
| |
| switch (argumentB) { |
| case Instruction::kVerifyRegB: |
| result &= CheckRegisterIndex(code_item, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBField: |
| result &= CheckFieldIndex(dex_file, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBMethod: |
| result &= CheckMethodIndex(dex_file, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBNewInstance: |
| result &= CheckNewInstance(dex_file, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBString: |
| result &= CheckStringIndex(dex_file, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBType: |
| result &= CheckTypeIndex(dex_file, dec_insn.vB_); |
| break; |
| case Instruction::kVerifyRegBWide: |
| result &= CheckWideRegisterIndex(code_item, dec_insn.vB_); |
| break; |
| } |
| |
| switch (argumentC) { |
| case Instruction::kVerifyRegC: |
| result &= CheckRegisterIndex(code_item, dec_insn.vC_); |
| break; |
| case Instruction::kVerifyRegCField: |
| result &= CheckFieldIndex(dex_file, dec_insn.vC_); |
| break; |
| case Instruction::kVerifyRegCNewArray: |
| result &= CheckNewArray(dex_file, dec_insn.vC_); |
| break; |
| case Instruction::kVerifyRegCType: |
| result &= CheckTypeIndex(dex_file, dec_insn.vC_); |
| break; |
| case Instruction::kVerifyRegCWide: |
| result &= CheckWideRegisterIndex(code_item, dec_insn.vC_); |
| break; |
| } |
| |
| switch (extra_flags) { |
| case Instruction::kVerifyArrayData: |
| result &= CheckArrayData(code_item, code_offset); |
| break; |
| case Instruction::kVerifyBranchTarget: |
| result &= CheckBranchTarget(code_item, insn_flags, code_offset); |
| break; |
| case Instruction::kVerifySwitchTargets: |
| result &= CheckSwitchTargets(code_item, insn_flags, code_offset); |
| break; |
| case Instruction::kVerifyVarArg: |
| result &= CheckVarArgRegs(code_item, dec_insn.vA_, dec_insn.arg_); |
| break; |
| case Instruction::kVerifyVarArgRange: |
| result &= CheckVarArgRangeRegs(code_item, dec_insn.vA_, dec_insn.vC_); |
| break; |
| case Instruction::kVerifyError: |
| LOG(ERROR) << "VFY: unexpected opcode " << std::hex |
| << (int) dec_insn.opcode_ << std::dec; |
| result = false; |
| break; |
| } |
| |
| return result; |
| } |
| |
| bool DexVerifier::VerifyCodeFlow(VerifierData* vdata) { |
| Method* method = vdata->method_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| uint16_t registers_size = code_item->registers_size_; |
| uint32_t insns_size = code_item->insns_size_; |
| RegisterTable reg_table; |
| |
| if (registers_size * insns_size > 4*1024*1024) { |
| LOG(ERROR) << "VFY: warning: method is huge (regs=" << registers_size |
| << " insns_size=" << insns_size << ")"; |
| } |
| |
| /* Create and initialize register lists. */ |
| if (!InitRegisterTable(vdata, ®_table, kTrackRegsGcPoints)) { |
| return false; |
| } |
| |
| vdata->register_lines_ = reg_table.register_lines_.get(); |
| |
| /* Allocate a map to hold the classes of uninitialized instances. */ |
| vdata->uninit_map_.reset(CreateUninitInstanceMap(vdata)); |
| |
| /* Initialize register types of method arguments. */ |
| if (!SetTypesFromSignature(vdata, reg_table.register_lines_[0].reg_types_.get())) { |
| LOG(ERROR) << "VFY: bad signature '" |
| << method->GetSignature()->ToModifiedUtf8() << "' for " |
| << method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << method->GetName()->ToModifiedUtf8(); |
| return false; |
| } |
| |
| /* Perform code flow verification. */ |
| if (!CodeFlowVerifyMethod(vdata, ®_table)) { |
| return false; |
| } |
| |
| /* Generate a register map and add it to the method. */ |
| UniquePtr<RegisterMap> map(GenerateRegisterMapV(vdata)); |
| ByteArray* header = ByteArray::Alloc(sizeof(RegisterMapHeader)); |
| ByteArray* data = ByteArray::Alloc(ComputeRegisterMapSize(map.get())); |
| |
| memcpy(header->GetData(), map.get()->header_, sizeof(RegisterMapHeader)); |
| memcpy(data->GetData(), map.get()->data_, ComputeRegisterMapSize(map.get())); |
| |
| method->SetRegisterMapHeader(header); |
| method->SetRegisterMapData(data); |
| |
| return true; |
| } |
| |
| bool DexVerifier::ComputeWidthsAndCountOps(VerifierData* vdata) { |
| const uint16_t* insns = vdata->code_item_->insns_; |
| uint32_t insns_size = vdata->code_item_->insns_size_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| const byte* ptr = reinterpret_cast<const byte*>(insns); |
| const Instruction* inst = Instruction::At(ptr); |
| size_t new_instance_count = 0; |
| size_t monitor_enter_count = 0; |
| size_t width = 0; |
| |
| while (width < insns_size) { |
| Instruction::Code opcode = inst->Opcode(); |
| if (opcode == Instruction::NEW_INSTANCE) { |
| new_instance_count++; |
| } else if (opcode == Instruction::MONITOR_ENTER) { |
| monitor_enter_count++; |
| } |
| |
| insn_flags[width] |= inst->Size(); |
| width += inst->Size(); |
| inst = inst->Next(); |
| } |
| |
| if (width != insns_size) { |
| LOG(ERROR) << "VFY: code did not end where expected (" << width << " vs. " |
| << insns_size << ")"; |
| return false; |
| } |
| |
| vdata->new_instance_count_ = new_instance_count; |
| vdata->monitor_enter_count_ = monitor_enter_count; |
| return true; |
| } |
| |
| bool DexVerifier::ScanTryCatchBlocks(VerifierData* vdata) { |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| uint32_t insns_size = code_item->insns_size_; |
| uint32_t tries_size = code_item->tries_size_; |
| |
| if (tries_size == 0) { |
| return true; |
| } |
| |
| const DexFile::TryItem* tries = DexFile::dexGetTryItems(*code_item, 0); |
| |
| for (uint32_t idx = 0; idx < tries_size; idx++) { |
| const DexFile::TryItem* try_item = &tries[idx]; |
| uint32_t start = try_item->start_addr_; |
| uint32_t end = start + try_item->insn_count_; |
| |
| if ((start >= end) || (start >= insns_size) || (end > insns_size)) { |
| LOG(ERROR) << "VFY: bad exception entry: startAddr=" << start |
| << " endAddr=" << end << " (size=" << insns_size << ")"; |
| return false; |
| } |
| |
| if (InsnGetWidth(insn_flags, start) == 0) { |
| LOG(ERROR) << "VFY: 'try' block starts inside an instruction (" |
| << start << ")"; |
| return false; |
| } |
| |
| uint32_t addr; |
| for (addr = start; addr < end; addr += InsnGetWidth(insn_flags, addr)) { |
| InsnSetInTry(insn_flags, addr); |
| } |
| } |
| |
| /* Iterate over each of the handlers to verify target addresses. */ |
| const byte* handlers_ptr = DexFile::dexGetCatchHandlerData(*code_item, 0); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t idx = 0; idx < handlers_size; idx++) { |
| DexFile::CatchHandlerIterator iterator(handlers_ptr); |
| |
| for (; !iterator.HasNext(); iterator.Next()) { |
| uint32_t addr = iterator.Get().address_; |
| if (InsnGetWidth(insn_flags, addr) == 0) { |
| LOG(ERROR) << "VFY: exception handler starts at bad address (" |
| << addr << ")"; |
| return false; |
| } |
| |
| InsnSetBranchTarget(insn_flags, addr); |
| } |
| |
| handlers_ptr = iterator.GetData(); |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::GetBranchOffset(const DexFile::CodeItem* code_item, |
| const InsnFlags insn_flags[], uint32_t cur_offset, int32_t* pOffset, |
| bool* pConditional, bool* selfOkay) { |
| const uint16_t* insns = code_item->insns_ + cur_offset; |
| |
| switch (*insns & 0xff) { |
| case Instruction::GOTO: |
| *pOffset = ((int16_t) *insns) >> 8; |
| *pConditional = false; |
| *selfOkay = false; |
| break; |
| case Instruction::GOTO_32: |
| *pOffset = insns[1] | (((uint32_t) insns[2]) << 16); |
| *pConditional = false; |
| *selfOkay = true; |
| break; |
| case Instruction::GOTO_16: |
| *pOffset = (int16_t) insns[1]; |
| *pConditional = false; |
| *selfOkay = false; |
| break; |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| *pOffset = (int16_t) insns[1]; |
| *pConditional = true; |
| *selfOkay = false; |
| break; |
| default: |
| return false; |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckArrayData(const DexFile::CodeItem* code_item, |
| uint32_t cur_offset) { |
| const uint32_t insn_count = code_item->insns_size_; |
| const uint16_t* insns = code_item->insns_ + cur_offset; |
| const uint16_t* array_data; |
| int32_t array_data_offset; |
| |
| assert(cur_offset < insn_count); |
| |
| /* make sure the start of the array data table is in range */ |
| array_data_offset = insns[1] | (((int32_t) insns[2]) << 16); |
| if ((int32_t) cur_offset + array_data_offset < 0 || |
| cur_offset + array_data_offset + 2 >= insn_count) |
| { |
| LOG(ERROR) << "VFY: invalid array data start: at " << cur_offset |
| << ", data offset " << array_data_offset << ", count " |
| << insn_count; |
| return false; |
| } |
| |
| /* offset to array data table is a relative branch-style offset */ |
| array_data = insns + array_data_offset; |
| |
| /* make sure the table is 32-bit aligned */ |
| if ((((uint32_t) array_data) & 0x03) != 0) { |
| LOG(ERROR) << "VFY: unaligned array data table: at " << cur_offset |
| << ", data offset " << array_data_offset; |
| return false; |
| } |
| |
| uint32_t value_width = array_data[1]; |
| uint32_t value_count = *(uint32_t*) (&array_data[2]); |
| uint32_t table_size = 4 + (value_width * value_count + 1) / 2; |
| |
| /* make sure the end of the switch is in range */ |
| if (cur_offset + array_data_offset + table_size > insn_count) { |
| LOG(ERROR) << "VFY: invalid array data end: at " << cur_offset |
| << ", data offset " << array_data_offset << ", end " |
| << cur_offset + array_data_offset + table_size << ", count " |
| << insn_count; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckNewInstance(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().type_ids_size_) { |
| LOG(ERROR) << "VFY: bad type index " << idx << " (max " |
| << dex_file->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| |
| const char* descriptor = dex_file->dexStringByTypeIdx(idx); |
| if (descriptor[0] != 'L') { |
| LOG(ERROR) << "VFY: can't call new-instance on type '" |
| << descriptor << "'"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckNewArray(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().type_ids_size_) { |
| LOG(ERROR) << "VFY: bad type index " << idx << " (max " |
| << dex_file->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| |
| int bracket_count = 0; |
| const char* descriptor = dex_file->dexStringByTypeIdx(idx); |
| const char* cp = descriptor; |
| while (*cp++ == '[') |
| bracket_count++; |
| |
| if (bracket_count == 0) { |
| /* The given class must be an array type. */ |
| LOG(ERROR) << "VFY: can't new-array class '" << descriptor |
| << "' (not an array)"; |
| return false; |
| } else if (bracket_count > 255) { |
| /* It is illegal to create an array of more than 255 dimensions. */ |
| LOG(ERROR) << "VFY: can't new-array class '" << descriptor |
| << "' (exceeds limit)"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckTypeIndex(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().type_ids_size_) { |
| LOG(ERROR) << "VFY: bad type index " << idx << " (max " |
| << dex_file->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckFieldIndex(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().field_ids_size_) { |
| LOG(ERROR) << "VFY: bad field index " << idx << " (max " |
| << dex_file->GetHeader().field_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckMethodIndex(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().method_ids_size_) { |
| LOG(ERROR) << "VFY: bad method index " << idx << " (max " |
| << dex_file->GetHeader().method_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckStringIndex(const DexFile* dex_file, uint32_t idx) { |
| if (idx >= dex_file->GetHeader().string_ids_size_) { |
| LOG(ERROR) << "VFY: bad string index " << idx << " (max " |
| << dex_file->GetHeader().string_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckRegisterIndex(const DexFile::CodeItem* code_item, |
| uint32_t idx) { |
| if (idx >= code_item->registers_size_) { |
| LOG(ERROR) << "VFY: register index out of range (" << idx << " >= " |
| << code_item->registers_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckWideRegisterIndex(const DexFile::CodeItem* code_item, |
| uint32_t idx) { |
| if (idx + 1 >= code_item->registers_size_) { |
| LOG(ERROR) << "VFY: wide register index out of range (" << idx |
| << "+1 >= " << code_item->registers_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckVarArgRegs(const DexFile::CodeItem* code_item, |
| uint32_t vA, uint32_t arg[]) { |
| uint16_t registers_size = code_item->registers_size_; |
| uint32_t idx; |
| |
| if (vA > 5) { |
| LOG(ERROR) << "VFY: invalid arg count (" << vA << ") in non-range invoke)"; |
| return false; |
| } |
| |
| for (idx = 0; idx < vA; idx++) { |
| if (arg[idx] > registers_size) { |
| LOG(ERROR) << "VFY: invalid reg index (" << arg[idx] |
| << ") in non-range invoke (> " << registers_size << ")"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckVarArgRangeRegs(const DexFile::CodeItem* code_item, |
| uint32_t vA, uint32_t vC) { |
| uint16_t registers_size = code_item->registers_size_; |
| |
| /* |
| * vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, |
| * so there's no risk of integer overflow when adding them here. |
| */ |
| if (vA + vC > registers_size) { |
| LOG(ERROR) << "VFY: invalid reg index " << vA << "+" << vC |
| << " in range invoke (> " << registers_size << ")"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckSwitchTargets(const DexFile::CodeItem* code_item, |
| InsnFlags insn_flags[], uint32_t cur_offset) { |
| const uint32_t insn_count = code_item->insns_size_; |
| const uint16_t* insns = code_item->insns_ + cur_offset; |
| const uint16_t* switch_insns; |
| uint16_t expected_signature; |
| uint32_t switch_count, table_size; |
| int32_t switch_offset, keys_offset, targets_offset; |
| int32_t offset, abs_offset; |
| uint32_t targ; |
| |
| /* make sure the start of the switch is in range */ |
| switch_offset = insns[1] | ((int32_t) insns[2]) << 16; |
| if ((int32_t) cur_offset + switch_offset < 0 || |
| cur_offset + switch_offset + 2 >= insn_count) { |
| LOG(ERROR) << "VFY: invalid switch start: at " << cur_offset |
| << ", switch offset " << switch_offset << ", count " |
| << insn_count; |
| return false; |
| } |
| |
| /* offset to switch table is a relative branch-style offset */ |
| switch_insns = insns + switch_offset; |
| |
| /* make sure the table is 32-bit aligned */ |
| if ((((uint32_t) switch_insns) & 0x03) != 0) { |
| LOG(ERROR) << "VFY: unaligned switch table: at " << cur_offset |
| << ", switch offset " << switch_offset; |
| return false; |
| } |
| |
| switch_count = switch_insns[1]; |
| |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| targets_offset = 4; |
| keys_offset = -1; |
| expected_signature = Instruction::kPackedSwitchSignature; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| keys_offset = 2; |
| targets_offset = 2 + 2 * switch_count; |
| expected_signature = Instruction::kSparseSwitchSignature; |
| } |
| table_size = targets_offset + switch_count * 2; |
| |
| if (switch_insns[0] != expected_signature) { |
| LOG(ERROR) << "VFY: wrong signature for switch table (0x" << std::hex |
| << switch_insns[0] << ", wanted 0x" << expected_signature << ")" |
| << std::dec; |
| return false; |
| } |
| |
| /* make sure the end of the switch is in range */ |
| if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) { |
| LOG(ERROR) << "VFY: invalid switch end: at " << cur_offset |
| << ", switch offset " << switch_offset << ", end " |
| << cur_offset + switch_offset + table_size << ", count " |
| << insn_count; |
| return false; |
| } |
| |
| /* for a sparse switch, verify the keys are in ascending order */ |
| if (keys_offset > 0 && switch_count > 1) { |
| int32_t last_key; |
| |
| last_key = switch_insns[keys_offset] | |
| (switch_insns[keys_offset + 1] << 16); |
| for (targ = 1; targ < switch_count; targ++) { |
| int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] | |
| (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16); |
| if (key <= last_key) { |
| LOG(ERROR) << "VFY: invalid packed switch: last key=" << last_key |
| << ", this=" << key; |
| return false; |
| } |
| |
| last_key = key; |
| } |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switch_count; targ++) { |
| offset = (int32_t) switch_insns[targets_offset + targ * 2] | |
| (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16); |
| abs_offset = cur_offset + offset; |
| |
| if (abs_offset < 0 || abs_offset >= (int32_t) insn_count || |
| !InsnIsOpcode(insn_flags, abs_offset)) { |
| LOG(ERROR) << "VFY: invalid switch target " << offset << " (-> " |
| << std::hex << abs_offset << ") at " << cur_offset << std::dec |
| << "[" << targ << "]"; |
| return false; |
| } |
| InsnSetBranchTarget(insn_flags, abs_offset); |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckBranchTarget(const DexFile::CodeItem* code_item, |
| InsnFlags insn_flags[], uint32_t cur_offset) { |
| const uint32_t insn_count = code_item->insns_size_; |
| int32_t offset, abs_offset; |
| bool isConditional, selfOkay; |
| |
| if (!GetBranchOffset(code_item, insn_flags, cur_offset, &offset, |
| &isConditional, &selfOkay)) |
| return false; |
| |
| if (!selfOkay && offset == 0) { |
| LOG(ERROR) << "VFY: branch offset of zero not allowed at" << std::hex |
| << cur_offset << std::dec; |
| return false; |
| } |
| |
| /* |
| * Check for 32-bit overflow. This isn't strictly necessary if we can |
| * depend on the VM to have identical "wrap-around" behavior, but |
| * it's unwise to depend on that. |
| */ |
| if (((int64_t) cur_offset + (int64_t) offset) != |
| (int64_t) (cur_offset + offset)) { |
| LOG(ERROR) << "VFY: branch target overflow " << std::hex << cur_offset |
| << std::dec << " +" << offset; |
| return false; |
| } |
| abs_offset = cur_offset + offset; |
| if (abs_offset < 0 || (uint32_t) abs_offset >= insn_count || |
| !InsnIsOpcode(insn_flags, abs_offset)) |
| { |
| LOG(ERROR) << "VFY: invalid branch target " << offset << " (-> " |
| << std::hex << abs_offset << ") at " << cur_offset << std::dec; |
| return false; |
| } |
| InsnSetBranchTarget(insn_flags, abs_offset); |
| |
| return true; |
| } |
| |
| bool DexVerifier::InitRegisterTable(VerifierData* vdata, |
| RegisterTable* reg_table, RegisterTrackingMode track_regs_for) { |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| uint16_t registers_size = code_item->registers_size_; |
| uint32_t insns_size = code_item->insns_size_; |
| uint32_t i; |
| |
| /* |
| * Every address gets a RegisterLine struct. This is wasteful, but |
| * not so much that it's worth chasing through an extra level of |
| * indirection. |
| */ |
| reg_table->insn_reg_count_plus_ = registers_size + kExtraRegs; |
| reg_table->register_lines_.reset(new RegisterLine[insns_size]()); |
| |
| assert(insns_size > 0); |
| |
| bool track_monitors; |
| //if (gDvm.monitorVerification) { |
| //track_monitors = (vdata->monitor_enter_count_ != 0); |
| //} else { |
| track_monitors = false; |
| //} |
| |
| /* |
| * Allocate entries in the sparse register line table. |
| * |
| * There is a RegisterLine associated with every address, but not |
| * every RegisterLine has non-NULL pointers to storage for its fields. |
| */ |
| for (i = 0; i < insns_size; i++) { |
| bool interesting; |
| |
| switch (track_regs_for) { |
| case kTrackRegsAll: |
| interesting = InsnIsOpcode(insn_flags, i); |
| break; |
| case kTrackRegsGcPoints: |
| interesting = InsnIsGcPoint(insn_flags, i) || |
| InsnIsBranchTarget(insn_flags, i); |
| break; |
| case kTrackRegsBranches: |
| interesting = InsnIsBranchTarget(insn_flags, i); |
| break; |
| default: |
| return false; |
| } |
| |
| if (interesting) { |
| reg_table->register_lines_[i].Alloc(reg_table->insn_reg_count_plus_, |
| track_monitors); |
| } |
| } |
| |
| /* |
| * Allocate space for our "temporary" register lines. |
| */ |
| reg_table->work_line_.Alloc(reg_table->insn_reg_count_plus_, track_monitors); |
| reg_table->saved_line_.Alloc(reg_table->insn_reg_count_plus_, track_monitors); |
| |
| return true; |
| } |
| |
| DexVerifier::UninitInstanceMap* DexVerifier::CreateUninitInstanceMap( |
| VerifierData* vdata) { |
| Method* method = vdata->method_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| size_t new_instance_count = vdata->new_instance_count_; |
| |
| if (IsInitMethod(method)) { |
| new_instance_count++; |
| } |
| |
| /* |
| * Allocate the header and map as a single unit. |
| * |
| * TODO: consider having a static instance so we can avoid allocations. |
| * I don't think the verifier is guaranteed to be single-threaded when |
| * running in the VM (rather than dexopt), so that must be taken into |
| * account. |
| */ |
| UninitInstanceMap* uninit_map = new UninitInstanceMap(new_instance_count); |
| |
| size_t idx = 0; |
| if (IsInitMethod(method)) { |
| uninit_map->map_[idx++].addr_ = kUninitThisArgAddr; |
| } |
| |
| /* |
| * Run through and find the new-instance instructions. |
| */ |
| uint32_t addr = 0; |
| uint32_t insns_size = code_item->insns_size_; |
| const byte* ptr = reinterpret_cast<const byte*>(code_item->insns_); |
| const Instruction* inst = Instruction::At(ptr); |
| while (addr < insns_size) { |
| Instruction::Code opcode = inst->Opcode(); |
| if (opcode == Instruction::NEW_INSTANCE) { |
| uninit_map->map_[idx++].addr_ = addr; |
| } |
| |
| addr += inst->Size(); |
| inst = inst->Next(); |
| } |
| |
| assert(idx == new_instance_count); |
| return uninit_map; |
| } |
| |
| bool DexVerifier::IsInitMethod(const Method* method) { |
| return (method->GetName()->Equals("<init>")); |
| } |
| |
| Class* DexVerifier::LookupClassByDescriptor(const Method* method, |
| const char* descriptor, VerifyError* failure) { |
| /* |
| * The compiler occasionally puts references to nonexistent classes in |
| * signatures. For example, if you have a non-static inner class with no |
| * constructor, the compiler provides a private <init> for you. |
| * Constructing the class requires <init>(parent), but the outer class can't |
| * call that because the method is private. So the compiler generates a |
| * package-scope <init>(parent,bogus) method that just calls the regular |
| * <init> (the "bogus" part being necessary to distinguish the signature of |
| * the synthetic method). Treating the bogus class as an instance of |
| * java.lang.Object allows the verifier to process the class successfully. |
| */ |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const ClassLoader* class_loader = |
| method->GetDeclaringClass()->GetClassLoader(); |
| Class* klass = class_linker->FindClass(descriptor, class_loader); |
| |
| if (klass == NULL) { |
| Thread::Current()->ClearException(); |
| if (strchr(descriptor, '$') != NULL) { |
| LOG(INFO) << "VFY: unable to find class referenced in signature (" |
| << descriptor << ")"; |
| } else { |
| LOG(ERROR) << "VFY: unable to find class referenced in signature (" |
| << descriptor << ")"; |
| } |
| |
| /* Check if the descriptor is an array. */ |
| if (descriptor[0] == '[') { |
| /* |
| * There should never be a problem loading primitive arrays. |
| */ |
| if (descriptor[1] != 'L' && descriptor[1] != '[') { |
| LOG(ERROR) << "VFY: invalid char in signature in '" << descriptor |
| << "'"; |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| |
| /* |
| * Try to continue with base array type. This will let us pass basic |
| * stuff (e.g. get array len) that wouldn't fly with an Object. This |
| * is NOT correct if the missing type is a primitive array, but we |
| * should never have a problem loading those. (I'm not convinced this |
| * is correct or even useful. Just use Object here?) |
| */ |
| klass = class_linker->FindClass("[Ljava/lang/Object;", class_loader); |
| } else if (descriptor[0] == 'L') { |
| /* |
| * We are looking at a non-array reference descriptor; |
| * try to continue with base reference type. |
| */ |
| klass = class_linker->FindSystemClass("Ljava/lang/Object;"); |
| } else { |
| /* We are looking at a primitive type. */ |
| LOG(ERROR) << "VFY: invalid char in signature in '" << descriptor << "'"; |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| |
| if (klass == NULL) { |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| |
| if (klass->IsPrimitive()) { |
| LOG(ERROR) << "VFY: invalid use of primitive type '" << descriptor << "'"; |
| *failure = VERIFY_ERROR_GENERIC; |
| klass = NULL; |
| } |
| |
| return klass; |
| } |
| |
| Class* DexVerifier::LookupSignatureClass(const Method* method, std::string sig, |
| VerifyError* failure) { |
| assert(sig[0] == 'L'); |
| size_t end = sig.find(';'); |
| |
| if (end == std::string::npos) { |
| LOG(ERROR) << "VFY: bad signature component '" << sig << "' (missing ';')"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| return LookupClassByDescriptor(method, sig.substr(0, end + 1).c_str(), |
| failure); |
| } |
| |
| Class* DexVerifier::LookupSignatureArrayClass(const Method* method, |
| std::string sig, VerifyError* failure) { |
| assert(sig[0] == '['); |
| size_t end = 0; |
| |
| while (sig[end] == '[') |
| end++; |
| |
| if (sig[end] == 'L') { |
| end = sig.find(';'); |
| if (end == std::string::npos) { |
| LOG(ERROR) << "VFY: bad signature component '" << sig |
| << "' (missing ';')"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| } |
| |
| return LookupClassByDescriptor(method, sig.substr(0, end + 1).c_str(), |
| failure); |
| } |
| |
| bool DexVerifier::SetTypesFromSignature(VerifierData* vdata, RegType* reg_types) |
| { |
| Method* method = vdata->method_; |
| const DexFile* dex_file = vdata->dex_file_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| UninitInstanceMap* uninit_map = vdata->uninit_map_.get(); |
| |
| int arg_start = code_item->registers_size_ - code_item->ins_size_; |
| int expected_args = code_item->ins_size_; /* long/double count as two */ |
| int actual_args = 0; |
| |
| assert(arg_start >= 0); /* should have been verified earlier */ |
| |
| /* |
| * Include the "this" pointer. |
| */ |
| if (!method->IsStatic()) { |
| /* |
| * If this is a constructor for a class other than java.lang.Object, |
| * mark the first ("this") argument as uninitialized. This restricts |
| * field access until the superclass constructor is called. |
| */ |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Class* klass_object = class_linker->FindSystemClass("Ljava/lang/Object;"); |
| if (IsInitMethod(method) && method->GetDeclaringClass() != klass_object) { |
| int idx = SetUninitInstance(uninit_map, kUninitThisArgAddr, |
| method->GetDeclaringClass()); |
| assert(idx == 0); |
| reg_types[arg_start + actual_args] = RegTypeFromUninitIndex(idx); |
| } else { |
| reg_types[arg_start + actual_args] = |
| RegTypeFromClass(method->GetDeclaringClass()); |
| } |
| actual_args++; |
| } |
| |
| const DexFile::ProtoId& proto_id = |
| dex_file->GetProtoId(method->GetProtoIdx()); |
| DexFile::ParameterIterator iterator(*dex_file, proto_id); |
| VerifyError failure = VERIFY_ERROR_NONE; |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| const char* descriptor = iterator.GetDescriptor(); |
| |
| if (descriptor == NULL) { |
| break; |
| } |
| |
| if (actual_args >= expected_args) { |
| LOG(ERROR) << "VFY: expected " << expected_args << " args, found more (" |
| << descriptor << ")"; |
| return false; |
| } |
| |
| switch (*descriptor) { |
| case 'L': |
| case '[': |
| /* |
| * We assume that reference arguments are initialized. The only way |
| * it could be otherwise (assuming the caller was verified) is if |
| * the current method is <init>, but in that case it's effectively |
| * considered initialized the instant we reach here (in the sense |
| * that we can return without doing anything or call virtual methods). |
| */ |
| { |
| Class* klass = |
| LookupClassByDescriptor(method, descriptor, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| return false; |
| reg_types[arg_start + actual_args] = RegTypeFromClass(klass); |
| } |
| actual_args++; |
| break; |
| case 'Z': |
| reg_types[arg_start + actual_args] = kRegTypeBoolean; |
| actual_args++; |
| break; |
| case 'C': |
| reg_types[arg_start + actual_args] = kRegTypeChar; |
| actual_args++; |
| break; |
| case 'B': |
| reg_types[arg_start + actual_args] = kRegTypeByte; |
| actual_args++; |
| break; |
| case 'I': |
| reg_types[arg_start + actual_args] = kRegTypeInteger; |
| actual_args++; |
| break; |
| case 'S': |
| reg_types[arg_start + actual_args] = kRegTypeShort; |
| actual_args++; |
| break; |
| case 'F': |
| reg_types[arg_start + actual_args] = kRegTypeFloat; |
| actual_args++; |
| break; |
| case 'D': |
| reg_types[arg_start + actual_args] = kRegTypeDoubleLo; |
| reg_types[arg_start + actual_args +1] = kRegTypeDoubleHi; |
| actual_args += 2; |
| break; |
| case 'J': |
| reg_types[arg_start + actual_args] = kRegTypeLongLo; |
| reg_types[arg_start + actual_args +1] = kRegTypeLongHi; |
| actual_args += 2; |
| break; |
| default: |
| LOG(ERROR) << "VFY: unexpected signature type char '" << descriptor |
| << "'"; |
| return false; |
| } |
| } |
| |
| if (actual_args != expected_args) { |
| LOG(ERROR) << "VFY: expected " << expected_args << " args, found " |
| << actual_args; |
| return false; |
| } |
| |
| const char* descriptor = dex_file->GetReturnTypeDescriptor(proto_id); |
| |
| /* |
| * Validate return type. We don't do the type lookup; just want to make |
| * sure that it has the right format. Only major difference from the |
| * method argument format is that 'V' is supported. |
| */ |
| switch (*descriptor) { |
| case 'I': |
| case 'C': |
| case 'S': |
| case 'B': |
| case 'Z': |
| case 'V': |
| case 'F': |
| case 'D': |
| case 'J': |
| if (*(descriptor + 1) != '\0') |
| return false; |
| break; |
| case '[': |
| /* single/multi, object/primitive */ |
| while (*++descriptor == '[') |
| ; |
| if (*descriptor == 'L') { |
| while (*++descriptor != ';' && *descriptor != '\0') |
| ; |
| if (*descriptor != ';') |
| return false; |
| } else { |
| if (*(descriptor+1) != '\0') |
| return false; |
| } |
| break; |
| case 'L': |
| /* could be more thorough here, but shouldn't be required */ |
| while (*++descriptor != ';' && *descriptor != '\0') |
| ; |
| if (*descriptor != ';') |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int DexVerifier::SetUninitInstance(UninitInstanceMap* uninit_map, int addr, |
| Class* klass) { |
| int idx; |
| assert(klass != NULL); |
| |
| /* TODO: binary search when num_entries > 8 */ |
| for (idx = uninit_map->num_entries_ - 1; idx >= 0; idx--) { |
| if (uninit_map->map_[idx].addr_ == addr) { |
| if (uninit_map->map_[idx].klass_ != NULL && |
| uninit_map->map_[idx].klass_ != klass) { |
| LOG(ERROR) << "VFY: addr " << addr << " already set to " |
| << (int) uninit_map->map_[idx].klass_ << ", not setting to " |
| << (int) klass; |
| return -1; // already set to something else?? |
| } |
| uninit_map->map_[idx].klass_ = klass; |
| return idx; |
| } |
| } |
| |
| LOG(ERROR) << "VFY: addr " << addr << " not found in uninit map"; |
| assert(false); // shouldn't happen |
| return -1; |
| } |
| |
| bool DexVerifier::CodeFlowVerifyMethod(VerifierData* vdata, |
| RegisterTable* reg_table) { |
| const Method* method = vdata->method_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| const uint16_t* insns = code_item->insns_; |
| uint32_t insns_size = code_item->insns_size_; |
| size_t insn_idx, start_guess; |
| |
| /* Begin by marking the first instruction as "changed". */ |
| InsnSetChanged(insn_flags, 0, true); |
| |
| start_guess = 0; |
| |
| /* Continue until no instructions are marked "changed". */ |
| while (true) { |
| /* |
| * Find the first marked one. Use "start_guess" as a way to find |
| * one quickly. |
| */ |
| for (insn_idx = start_guess; insn_idx < insns_size; insn_idx++) { |
| if (InsnIsChanged(insn_flags, insn_idx)) |
| break; |
| } |
| |
| if (insn_idx == insns_size) { |
| if (start_guess != 0) { |
| /* try again, starting from the top */ |
| start_guess = 0; |
| continue; |
| } else { |
| /* all flags are clear */ |
| break; |
| } |
| } |
| |
| /* |
| * We carry the working set of registers from instruction to instruction. |
| * If this address can be the target of a branch (or throw) instruction, |
| * or if we're skipping around chasing "changed" flags, we need to load |
| * the set of registers from the table. |
| * |
| * Because we always prefer to continue on to the next instruction, we |
| * should never have a situation where we have a stray "changed" flag set |
| * on an instruction that isn't a branch target. |
| */ |
| if (InsnIsBranchTarget(insn_flags, insn_idx)) { |
| RegisterLine* work_line = ®_table->work_line_; |
| CopyLineFromTable(work_line, reg_table, insn_idx); |
| } else { |
| #ifndef NDEBUG |
| /* |
| * Sanity check: retrieve the stored register line (assuming |
| * a full table) and make sure it actually matches. |
| */ |
| RegisterLine* register_line = GetRegisterLine(reg_table, insn_idx); |
| if (register_line->reg_types_.get() != NULL && CompareLineToTable(reg_table, |
| insn_idx, ®_table->work_line_) != 0) { |
| Class* klass = method->GetDeclaringClass(); |
| LOG(ERROR) << "HUH? work_line diverged in " |
| << klass->GetDescriptor()->ToModifiedUtf8() << "." |
| << method->GetName()->ToModifiedUtf8() << " " |
| << method->GetSignature()->ToModifiedUtf8(); |
| } |
| #endif |
| } |
| |
| if (!CodeFlowVerifyInstruction(vdata, reg_table, insn_idx, &start_guess)) { |
| Class* klass = method->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: failure to verify " |
| << klass->GetDescriptor()->ToModifiedUtf8() << "." |
| << method->GetName()->ToModifiedUtf8() << " " |
| << method->GetSignature()->ToModifiedUtf8(); |
| return false; |
| } |
| |
| /* Clear "changed" and mark as visited. */ |
| InsnSetVisited(insn_flags, insn_idx, true); |
| InsnSetChanged(insn_flags, insn_idx, false); |
| } |
| |
| if (DEAD_CODE_SCAN && ((method->GetAccessFlags() & kAccWritable) == 0)) { |
| /* |
| * Scan for dead code. There's nothing "evil" about dead code |
| * (besides the wasted space), but it indicates a flaw somewhere |
| * down the line, possibly in the verifier. |
| * |
| * If we've substituted "always throw" instructions into the stream, |
| * we are almost certainly going to have some dead code. |
| */ |
| int dead_start = -1; |
| for (insn_idx = 0; insn_idx < insns_size; |
| insn_idx += InsnGetWidth(insn_flags, insn_idx)) { |
| /* |
| * Switch-statement data doesn't get "visited" by scanner. It |
| * may or may not be preceded by a padding NOP (for alignment). |
| */ |
| if (insns[insn_idx] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx] == Instruction::kArrayDataSignature || |
| (insns[insn_idx] == Instruction::NOP && |
| (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kArrayDataSignature))) { |
| InsnSetVisited(insn_flags, insn_idx, true); |
| } |
| |
| if (!InsnIsVisited(insn_flags, insn_idx)) { |
| if (dead_start < 0) |
| dead_start = insn_idx; |
| } else if (dead_start >= 0) { |
| Class* klass = method->GetDeclaringClass(); |
| LOG(INFO) << "VFY: dead code 0x" << std::hex << dead_start << "-" |
| << insn_idx - 1 << std::dec << " in " |
| << klass->GetDescriptor()->ToModifiedUtf8() << "." |
| << method->GetName()->ToModifiedUtf8() << " " |
| << method->GetSignature()->ToModifiedUtf8(); |
| dead_start = -1; |
| } |
| } |
| if (dead_start >= 0) { |
| Class* klass = method->GetDeclaringClass(); |
| LOG(INFO) << "VFY: dead code 0x" << std::hex << dead_start << "-" |
| << insn_idx - 1 << std::dec << " in " |
| << klass->GetDescriptor()->ToModifiedUtf8() << "." |
| << method->GetName()->ToModifiedUtf8() << " " |
| << method->GetSignature()->ToModifiedUtf8(); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CodeFlowVerifyInstruction(VerifierData* vdata, |
| RegisterTable* reg_table, uint32_t insn_idx, size_t* start_guess) { |
| const Method* method = vdata->method_; |
| Class* klass = method->GetDeclaringClass(); |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| InsnFlags* insn_flags = vdata->insn_flags_.get(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| UninitInstanceMap* uninit_map = vdata->uninit_map_.get(); |
| const uint16_t* insns = code_item->insns_ + insn_idx; |
| uint32_t insns_size = code_item->insns_size_; |
| uint32_t registers_size = code_item->registers_size_; |
| |
| #ifdef VERIFIER_STATS |
| if (InsnIsVisited(insn_flags, insn_idx)) { |
| gDvm.verifierStats.instrsReexamined++; |
| } else { |
| gDvm.verifierStats.instrsExamined++; |
| } |
| #endif |
| |
| /* |
| * Once we finish decoding the instruction, we need to figure out where |
| * we can go from here. There are three possible ways to transfer |
| * control to another statement: |
| * |
| * (1) Continue to the next instruction. Applies to all but |
| * unconditional branches, method returns, and exception throws. |
| * (2) Branch to one or more possible locations. Applies to branches |
| * and switch statements. |
| * (3) Exception handlers. Applies to any instruction that can |
| * throw an exception that is handled by an encompassing "try" |
| * block. |
| * |
| * We can also return, in which case there is no successor instruction |
| * from this point. |
| * |
| * The behavior can be determined from the OpcodeFlags. |
| */ |
| RegisterLine* work_line = ®_table->work_line_; |
| const DexFile* dex_file = vdata->dex_file_; |
| const byte* ptr = reinterpret_cast<const byte*>(insns); |
| const Instruction* inst = Instruction::At(ptr); |
| Instruction::DecodedInstruction dec_insn(inst); |
| int opcode_flag = inst->Flag(); |
| |
| Class* res_class; |
| int32_t branch_target = 0; |
| RegType tmp_type; |
| bool just_set_result = false; |
| VerifyError failure = VERIFY_ERROR_NONE; |
| |
| /* |
| * Make a copy of the previous register state. If the instruction |
| * can throw an exception, we will copy/merge this into the "catch" |
| * address rather than work_line, because we don't want the result |
| * from the "successful" code path (e.g. a check-cast that "improves" |
| * a type) to be visible to the exception handler. |
| */ |
| if ((opcode_flag & Instruction::kThrow) != 0 && |
| InsnIsInTry(insn_flags, insn_idx)) { |
| CopyRegisterLine(®_table->saved_line_, work_line, |
| reg_table->insn_reg_count_plus_); |
| } else { |
| #ifndef NDEBUG |
| memset(reg_table->saved_line_.reg_types_.get(), 0xdd, |
| reg_table->insn_reg_count_plus_ * sizeof(RegType)); |
| #endif |
| } |
| |
| switch (dec_insn.opcode_) { |
| case Instruction::NOP: |
| /* |
| * A "pure" NOP has no effect on anything. Data tables start with |
| * a signature that looks like a NOP; if we see one of these in |
| * the course of executing code then we have a problem. |
| */ |
| if (dec_insn.vA_ != 0) { |
| LOG(ERROR) << "VFY: encountered data table in instruction stream"; |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| break; |
| |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: |
| CopyRegister1(work_line, dec_insn.vA_, dec_insn.vB_, kTypeCategory1nr, |
| &failure); |
| break; |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: |
| CopyRegister2(work_line, dec_insn.vA_, dec_insn.vB_, &failure); |
| break; |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_FROM16: |
| case Instruction::MOVE_OBJECT_16: |
| CopyRegister1(work_line, dec_insn.vA_, dec_insn.vB_, kTypeCategoryRef, |
| &failure); |
| break; |
| |
| /* |
| * The move-result instructions copy data out of a "pseudo-register" |
| * with the results from the last method invocation. In practice we |
| * might want to hold the result in an actual CPU register, so the |
| * Dalvik spec requires that these only appear immediately after an |
| * invoke or filled-new-array. |
| * |
| * These calls invalidate the "result" register. (This is now |
| * redundant with the reset done below, but it can make the debug info |
| * easier to read in some cases.) |
| */ |
| case Instruction::MOVE_RESULT: |
| CopyResultRegister1(work_line, registers_size, dec_insn.vA_, |
| kTypeCategory1nr, &failure); |
| break; |
| case Instruction::MOVE_RESULT_WIDE: |
| CopyResultRegister2(work_line, registers_size, dec_insn.vA_, &failure); |
| break; |
| case Instruction::MOVE_RESULT_OBJECT: |
| CopyResultRegister1(work_line, registers_size, dec_insn.vA_, |
| kTypeCategoryRef, &failure); |
| break; |
| |
| case Instruction::MOVE_EXCEPTION: |
| /* |
| * This statement can only appear as the first instruction in an |
| * exception handler (though not all exception handlers need to |
| * have one of these). We verify that as part of extracting the |
| * exception type from the catch block list. |
| * |
| * "res_class" will hold the closest common superclass of all |
| * exceptions that can be handled here. |
| */ |
| res_class = GetCaughtExceptionType(vdata, insn_idx, &failure); |
| if (res_class == NULL) { |
| assert(failure != VERIFY_ERROR_NONE); |
| } else { |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass(res_class)); |
| } |
| break; |
| |
| case Instruction::RETURN_VOID: |
| if (!CheckConstructorReturn(method, work_line, registers_size)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else if (GetMethodReturnType(dex_file, method) != kRegTypeUnknown) { |
| LOG(ERROR) << "VFY: return-void not expected"; |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| break; |
| case Instruction::RETURN: |
| if (!CheckConstructorReturn(method, work_line, registers_size)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| /* check the method signature */ |
| RegType return_type = GetMethodReturnType(dex_file, method); |
| CheckTypeCategory(return_type, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| LOG(ERROR) << "VFY: return-1nr not expected"; |
| |
| /* |
| * compiler may generate synthetic functions that write byte |
| * values into boolean fields. Also, it may use integer values |
| * for boolean, byte, short, and character return types. |
| */ |
| RegType src_type = GetRegisterType(work_line, dec_insn.vA_); |
| if ((return_type == kRegTypeBoolean && src_type == kRegTypeByte) || |
| ((return_type == kRegTypeBoolean || return_type == kRegTypeByte || |
| return_type == kRegTypeShort || return_type == kRegTypeChar) && |
| src_type == kRegTypeInteger)) |
| return_type = src_type; |
| |
| /* check the register contents */ |
| VerifyRegisterType(work_line, dec_insn.vA_, return_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: return-1nr on invalid register v" << dec_insn.vA_; |
| } |
| } |
| break; |
| case Instruction::RETURN_WIDE: |
| if (!CheckConstructorReturn(method, work_line, registers_size)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| RegType return_type; |
| |
| /* check the method signature */ |
| return_type = GetMethodReturnType(dex_file, method); |
| CheckTypeCategory(return_type, kTypeCategory2, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| LOG(ERROR) << "VFY: return-wide not expected"; |
| |
| /* check the register contents */ |
| VerifyRegisterType(work_line, dec_insn.vA_, return_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: return-wide on invalid register pair v" |
| << dec_insn.vA_; |
| } |
| } |
| break; |
| case Instruction::RETURN_OBJECT: |
| if (!CheckConstructorReturn(method, work_line, registers_size)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| RegType return_type = GetMethodReturnType(dex_file, method); |
| CheckTypeCategory(return_type, kTypeCategoryRef, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: return-object not expected"; |
| break; |
| } |
| |
| /* return_type is the *expected* return type, not register value */ |
| assert(return_type != kRegTypeZero); |
| assert(!RegTypeIsUninitReference(return_type)); |
| |
| /* |
| * Verify that the reference in vAA is an instance of the type |
| * in "return_type". The Zero type is allowed here. If the |
| * method is declared to return an interface, then any |
| * initialized reference is acceptable. |
| * |
| * Note GetClassFromRegister fails if the register holds an |
| * uninitialized reference, so we do not allow them to be |
| * returned. |
| */ |
| Class* decl_class = RegTypeInitializedReferenceToClass(return_type); |
| res_class = GetClassFromRegister(work_line, dec_insn.vA_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| if (!decl_class->IsInterface() && |
| !decl_class->IsAssignableFrom(res_class)) { |
| LOG(ERROR) << "VFY: returning " << std::hex |
| << res_class->GetDescriptor()->ToModifiedUtf8() |
| << " (cl=0x" << (int) res_class->GetClassLoader() |
| << "), declared " |
| << decl_class->GetDescriptor()->ToModifiedUtf8() |
| << " (cl=0x" << (int) decl_class->GetClassLoader() |
| << ")" << std::dec; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| /* could be boolean, int, float, or a null reference */ |
| SetRegisterType(work_line, dec_insn.vA_, |
| DetermineCat1Const((int32_t) dec_insn.vB_)); |
| break; |
| case Instruction::CONST_HIGH16: |
| /* could be boolean, int, float, or a null reference */ |
| SetRegisterType(work_line, dec_insn.vA_, |
| DetermineCat1Const((int32_t) dec_insn.vB_ << 16)); |
| break; |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| case Instruction::CONST_WIDE: |
| case Instruction::CONST_WIDE_HIGH16: |
| /* could be long or double; resolved upon use */ |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeConstLo); |
| break; |
| case Instruction::CONST_STRING: |
| case Instruction::CONST_STRING_JUMBO: |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass( |
| class_linker->FindSystemClass("Ljava/lang/String;"))); |
| break; |
| case Instruction::CONST_CLASS: |
| /* make sure we can resolve the class; access check is important */ |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vB_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vB_); |
| LOG(ERROR) << "VFY: unable to resolve const-class " << dec_insn.vB_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass( |
| class_linker->FindSystemClass("Ljava/lang/Class;"))); |
| } |
| break; |
| |
| case Instruction::MONITOR_ENTER: |
| HandleMonitorEnter(work_line, dec_insn.vA_, insn_idx, &failure); |
| break; |
| case Instruction::MONITOR_EXIT: |
| /* |
| * monitor-exit instructions are odd. They can throw exceptions, |
| * but when they do they act as if they succeeded and the PC is |
| * pointing to the following instruction. (This behavior goes back |
| * to the need to handle asynchronous exceptions, a now-deprecated |
| * feature that Dalvik doesn't support.) |
| * |
| * In practice we don't need to worry about this. The only |
| * exceptions that can be thrown from monitor-exit are for a |
| * null reference and -exit without a matching -enter. If the |
| * structured locking checks are working, the former would have |
| * failed on the -enter instruction, and the latter is impossible. |
| * |
| * This is fortunate, because issue 3221411 prevents us from |
| * chasing the "can throw" path when monitor verification is |
| * enabled. If we can fully verify the locking we can ignore |
| * some catch blocks (which will show up as "dead" code when |
| * we skip them here); if we can't, then the code path could be |
| * "live" so we still need to check it. |
| */ |
| if (work_line->monitor_entries_.get() != NULL) |
| opcode_flag &= ~Instruction::kThrow; |
| HandleMonitorExit(work_line, dec_insn.vA_, insn_idx, &failure); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| /* |
| * If this instruction succeeds, we will promote register vA to |
| * the type in vB. (This could be a demotion -- not expected, so |
| * we don't try to address it.) |
| * |
| * If it fails, an exception is thrown, which we deal with later |
| * by ignoring the update to dec_insn.vA_ when branching to a handler. |
| */ |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vB_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vB_); |
| LOG(ERROR) << "VFY: unable to resolve check-cast " << dec_insn.vB_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| RegType orig_type; |
| |
| orig_type = GetRegisterType(work_line, dec_insn.vA_); |
| if (!RegTypeIsReference(orig_type)) { |
| LOG(ERROR) << "VFY: check-cast on non-reference in v" << dec_insn.vA_; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass(res_class)); |
| } |
| break; |
| case Instruction::INSTANCE_OF: |
| /* make sure we're checking a reference type */ |
| tmp_type = GetRegisterType(work_line, dec_insn.vB_); |
| if (!RegTypeIsReference(tmp_type)) { |
| LOG(ERROR) << "VFY: vB not a reference (" << tmp_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* make sure we can resolve the class; access check is important */ |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vC_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vC_); |
| LOG(ERROR) << "VFY: unable to resolve instanceof " << dec_insn.vC_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| /* result is boolean */ |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeBoolean); |
| } |
| break; |
| |
| case Instruction::ARRAY_LENGTH: |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL && !res_class->IsArrayClass()) { |
| LOG(ERROR) << "VFY: array-length on non-array"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeInteger); |
| break; |
| |
| case Instruction::NEW_INSTANCE: |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vB_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vB_); |
| LOG(ERROR) << "VFY: unable to resolve new-instance " << dec_insn.vB_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| RegType uninit_type; |
| |
| /* can't create an instance of an interface or abstract class */ |
| if (res_class->IsAbstract() || res_class->IsInterface()) { |
| LOG(ERROR) << "VFY: new-instance on interface or abstract class" |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_INSTANTIATION; |
| break; |
| } |
| |
| /* add resolved class to uninit map if not already there */ |
| int uidx = SetUninitInstance(uninit_map, insn_idx, res_class); |
| assert(uidx >= 0); |
| uninit_type = RegTypeFromUninitIndex(uidx); |
| |
| /* |
| * Any registers holding previous allocations from this address |
| * that have not yet been initialized must be marked invalid. |
| */ |
| MarkUninitRefsAsInvalid(work_line, registers_size, uninit_map, |
| uninit_type); |
| |
| /* add the new uninitialized reference to the register ste */ |
| SetRegisterType(work_line, dec_insn.vA_, uninit_type); |
| } |
| break; |
| case Instruction::NEW_ARRAY: |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vC_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vC_); |
| LOG(ERROR) << "VFY: unable to resolve new-array " << dec_insn.vC_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else if (!res_class->IsArrayClass()) { |
| LOG(ERROR) << "VFY: new-array on non-array class"; |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| /* make sure "size" register is valid type */ |
| VerifyRegisterType(work_line, dec_insn.vB_, kRegTypeInteger, &failure); |
| /* set register type to array class */ |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass(res_class)); |
| } |
| break; |
| case Instruction::FILLED_NEW_ARRAY: |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| res_class = ResolveClassAndCheckAccess(dex_file, dec_insn.vB_, klass, &failure); |
| if (res_class == NULL) { |
| const char* bad_class_desc = dex_file->dexStringByTypeIdx(dec_insn.vB_); |
| LOG(ERROR) << "VFY: unable to resolve filled-array " << dec_insn.vB_ |
| << " (" << bad_class_desc << ") in " |
| << klass->GetDescriptor()->ToModifiedUtf8(); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else if (!res_class->IsArrayClass()) { |
| LOG(ERROR) << "VFY: filled-new-array on non-array class"; |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| bool is_range = (dec_insn.opcode_ == |
| Instruction::FILLED_NEW_ARRAY_RANGE); |
| |
| /* check the arguments to the instruction */ |
| VerifyFilledNewArrayRegs(method, work_line, &dec_insn, res_class, |
| is_range, &failure); |
| /* filled-array result goes into "result" register */ |
| SetResultRegisterType(work_line, registers_size, |
| RegTypeFromClass(res_class)); |
| just_set_result = true; |
| } |
| break; |
| |
| case Instruction::CMPL_FLOAT: |
| case Instruction::CMPG_FLOAT: |
| VerifyRegisterType(work_line, dec_insn.vB_, kRegTypeFloat, &failure); |
| VerifyRegisterType(work_line, dec_insn.vC_, kRegTypeFloat, &failure); |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeBoolean); |
| break; |
| case Instruction::CMPL_DOUBLE: |
| case Instruction::CMPG_DOUBLE: |
| VerifyRegisterType(work_line, dec_insn.vB_, kRegTypeDoubleLo, &failure); |
| VerifyRegisterType(work_line, dec_insn.vC_, kRegTypeDoubleLo, &failure); |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeBoolean); |
| break; |
| case Instruction::CMP_LONG: |
| VerifyRegisterType(work_line, dec_insn.vB_, kRegTypeLongLo, &failure); |
| VerifyRegisterType(work_line, dec_insn.vC_, kRegTypeLongLo, &failure); |
| SetRegisterType(work_line, dec_insn.vA_, kRegTypeBoolean); |
| break; |
| |
| case Instruction::THROW: |
| res_class = GetClassFromRegister(work_line, dec_insn.vA_, &failure); |
| if (failure == VERIFY_ERROR_NONE && res_class != NULL) { |
| Class* throwable_class = |
| class_linker->FindSystemClass("Ljava/lang/Throwable;"); |
| if (!throwable_class->IsAssignableFrom(res_class)) { |
| LOG(ERROR) << "VFY: thrown class " |
| << res_class->GetDescriptor()->ToModifiedUtf8() |
| << " not instanceof Throwable", |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| break; |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| /* no effect on or use of registers */ |
| break; |
| |
| case Instruction::PACKED_SWITCH: |
| case Instruction::SPARSE_SWITCH: |
| /* verify that vAA is an integer, or can be converted to one */ |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeInteger, &failure); |
| break; |
| |
| case Instruction::FILL_ARRAY_DATA: |
| { |
| RegType value_type; |
| const uint16_t *array_data; |
| uint16_t elem_width; |
| |
| /* Similar to the verification done for APUT */ |
| res_class = GetClassFromRegister(work_line, dec_insn.vA_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* res_class can be null if the reg type is Zero */ |
| if (res_class == NULL) |
| break; |
| |
| Class::PrimitiveType prim_type = |
| res_class->GetComponentType()->GetPrimitiveType(); |
| if (!res_class->IsArrayClass() || res_class->GetArrayRank() != 1 || |
| prim_type == Class::kPrimNot || prim_type == Class::kPrimVoid) { |
| LOG(ERROR) << "VFY: invalid fill-array-data on " << |
| res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| value_type = PrimitiveTypeToRegType(prim_type); |
| assert(value_type != kRegTypeUnknown); |
| |
| /* |
| * Now verify if the element width in the table matches the element |
| * width declared in the array |
| */ |
| array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16)); |
| if (array_data[0] != Instruction::kArrayDataSignature) { |
| LOG(ERROR) << "VFY: invalid magic for array-data"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| switch (prim_type) { |
| case Class::kPrimBoolean: |
| case Class::kPrimByte: |
| elem_width = 1; |
| break; |
| case Class::kPrimChar: |
| case Class::kPrimShort: |
| elem_width = 2; |
| break; |
| case Class::kPrimFloat: |
| case Class::kPrimInt: |
| elem_width = 4; |
| break; |
| case Class::kPrimDouble: |
| case Class::kPrimLong: |
| elem_width = 8; |
| break; |
| default: |
| elem_width = 0; |
| break; |
| } |
| |
| /* |
| * Since we don't compress the data in Dex, expect to see equal |
| * width of data stored in the table and expected from the array |
| * class. |
| */ |
| if (array_data[1] != elem_width) { |
| LOG(ERROR) << "VFY: array-data size mismatch (" << array_data[1] |
| << " vs " << elem_width << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| break; |
| |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| { |
| RegType type1, type2; |
| |
| type1 = GetRegisterType(work_line, dec_insn.vA_); |
| type2 = GetRegisterType(work_line, dec_insn.vB_); |
| |
| /* both references? */ |
| if (RegTypeIsReference(type1) && RegTypeIsReference(type2)) |
| break; |
| |
| /* both category-1nr? */ |
| CheckTypeCategory(type1, kTypeCategory1nr, &failure); |
| CheckTypeCategory(type2, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: args to if-eq/if-ne must both be refs or cat1"; |
| break; |
| } |
| } |
| break; |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| tmp_type = GetRegisterType(work_line, dec_insn.vA_); |
| CheckTypeCategory(tmp_type, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: args to 'if' must be cat-1nr"; |
| break; |
| } |
| tmp_type = GetRegisterType(work_line, dec_insn.vB_); |
| CheckTypeCategory(tmp_type, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: args to 'if' must be cat-1nr"; |
| break; |
| } |
| break; |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| tmp_type = GetRegisterType(work_line, dec_insn.vA_); |
| if (RegTypeIsReference(tmp_type)) |
| break; |
| CheckTypeCategory(tmp_type, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| LOG(ERROR) << "VFY: expected cat-1 arg to if"; |
| break; |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| tmp_type = GetRegisterType(work_line, dec_insn.vA_); |
| CheckTypeCategory(tmp_type, kTypeCategory1nr, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| LOG(ERROR) << "VFY: expected cat-1 arg to if"; |
| break; |
| |
| case Instruction::AGET: |
| tmp_type = kRegTypeConstInteger; |
| goto aget_1nr_common; |
| case Instruction::AGET_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto aget_1nr_common; |
| case Instruction::AGET_BYTE: |
| tmp_type = kRegTypeByte; |
| goto aget_1nr_common; |
| case Instruction::AGET_CHAR: |
| tmp_type = kRegTypeChar; |
| goto aget_1nr_common; |
| case Instruction::AGET_SHORT: |
| tmp_type = kRegTypeShort; |
| goto aget_1nr_common; |
| aget_1nr_common: |
| { |
| RegType src_type, index_type; |
| |
| index_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, index_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| /* verify the class */ |
| Class::PrimitiveType prim_type = |
| res_class->GetComponentType()->GetPrimitiveType(); |
| if (!res_class->IsArrayClass() || res_class->GetArrayRank() != 1 || |
| prim_type == Class::kPrimNot) { |
| LOG(ERROR) << "VFY: invalid aget-1nr target " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* make sure array type matches instruction */ |
| src_type = PrimitiveTypeToRegType(prim_type); |
| |
| /* differentiate between float and int */ |
| if (src_type == kRegTypeFloat || src_type == kRegTypeInteger) |
| tmp_type = src_type; |
| |
| if (tmp_type != src_type) { |
| LOG(ERROR) << "VFY: invalid aget-1nr, array type=" << src_type |
| << " with inst type=" << tmp_type << " (on " |
| << res_class->GetDescriptor()->ToModifiedUtf8() << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| } |
| SetRegisterType(work_line, dec_insn.vA_, tmp_type); |
| } |
| break; |
| |
| case Instruction::AGET_WIDE: |
| { |
| RegType dst_type, index_type; |
| |
| index_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, index_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| /* verify the class */ |
| Class::PrimitiveType prim_type = |
| res_class->GetComponentType()->GetPrimitiveType(); |
| if (!res_class->IsArrayClass() || res_class->GetArrayRank() != 1 || |
| prim_type == Class::kPrimNot) { |
| LOG(ERROR) << "VFY: invalid aget-wide target " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* try to refine "dst_type" */ |
| switch (prim_type) { |
| case Class::kPrimLong: |
| dst_type = kRegTypeLongLo; |
| break; |
| case Class::kPrimDouble: |
| dst_type = kRegTypeDoubleLo; |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid aget-wide on " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| dst_type = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } else { |
| /* |
| * Null array ref; this code path will fail at runtime. We |
| * know this is either long or double, so label it const. |
| */ |
| dst_type = kRegTypeConstLo; |
| } |
| SetRegisterType(work_line, dec_insn.vA_, dst_type); |
| } |
| break; |
| |
| case Instruction::AGET_OBJECT: |
| { |
| RegType dst_type, index_type; |
| |
| index_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, index_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* get the class of the array we're pulling an object from */ |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| Class* element_class; |
| |
| assert(res_class != NULL); |
| if (!res_class->IsArrayClass()) { |
| LOG(ERROR) << "VFY: aget-object on non-array class"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| assert(res_class->GetComponentType() != NULL); |
| |
| /* |
| * Find the element class. res_class->GetComponentType() indicates |
| * the basic type, which won't be what we want for a |
| * multi-dimensional array. |
| */ |
| if (res_class->GetDescriptor()->CharAt(1) == '[') { |
| assert(res_class->GetArrayRank() > 1); |
| std::string descriptor = |
| res_class->GetDescriptor()->ToModifiedUtf8(); |
| element_class = class_linker->FindClass(descriptor.c_str() + 1, |
| res_class->GetClassLoader()); |
| } else if (res_class->GetDescriptor()->CharAt(1) == 'L') { |
| assert(res_class->GetArrayRank() == 1); |
| element_class = res_class->GetComponentType(); |
| } else { |
| LOG(ERROR) << "VFY: aget-object on non-ref array class (" |
| << res_class->GetDescriptor()->ToModifiedUtf8() << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| dst_type = RegTypeFromClass(element_class); |
| } else { |
| /* |
| * The array reference is NULL, so the current code path will |
| * throw an exception. For proper merging with later code |
| * paths, and correct handling of "if-eqz" tests on the |
| * result of the array get, we want to treat this as a null |
| * reference. |
| */ |
| dst_type = kRegTypeZero; |
| } |
| SetRegisterType(work_line, dec_insn.vA_, dst_type); |
| } |
| break; |
| case Instruction::APUT: |
| tmp_type = kRegTypeInteger; |
| goto aput_1nr_common; |
| case Instruction::APUT_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto aput_1nr_common; |
| case Instruction::APUT_BYTE: |
| tmp_type = kRegTypeByte; |
| goto aput_1nr_common; |
| case Instruction::APUT_CHAR: |
| tmp_type = kRegTypeChar; |
| goto aput_1nr_common; |
| case Instruction::APUT_SHORT: |
| tmp_type = kRegTypeShort; |
| goto aput_1nr_common; |
| aput_1nr_common: |
| { |
| RegType src_type, dst_type, index_type; |
| |
| index_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, index_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* res_class can be null if the reg type is Zero */ |
| if (res_class == NULL) |
| break; |
| |
| Class::PrimitiveType prim_type = |
| res_class->GetComponentType()->GetPrimitiveType(); |
| if (!res_class->IsArrayClass() || res_class->GetArrayRank() != 1 || |
| prim_type == Class::kPrimNot) { |
| LOG(ERROR) << "VFY: invalid aput-1nr on " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* verify that instruction matches array */ |
| dst_type = PrimitiveTypeToRegType(prim_type); |
| |
| /* correct if float */ |
| if (dst_type == kRegTypeFloat) |
| tmp_type = kRegTypeFloat; |
| |
| /* make sure the source register has the correct type */ |
| src_type = GetRegisterType(work_line, dec_insn.vA_); |
| if (!CanConvertTo1nr(src_type, tmp_type)) { |
| LOG(ERROR) << "VFY: invalid reg type " << src_type |
| << " on aput instr (need " << tmp_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| VerifyRegisterType(work_line, dec_insn.vA_, dst_type, &failure); |
| |
| if (failure != VERIFY_ERROR_NONE || dst_type == kRegTypeUnknown || |
| tmp_type != dst_type) { |
| LOG(ERROR) << "VFY: invalid aput-1nr on " |
| << res_class->GetDescriptor()->ToModifiedUtf8() |
| << " (inst=" << tmp_type << " dst=" << dst_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case Instruction::APUT_WIDE: |
| tmp_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, tmp_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| res_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| Class::PrimitiveType prim_type = |
| res_class->GetComponentType()->GetPrimitiveType(); |
| /* verify the class and try to refine "dst_type" */ |
| if (!res_class->IsArrayClass() || res_class->GetArrayRank() != 1 || |
| prim_type == Class::kPrimNot) |
| { |
| LOG(ERROR) << "VFY: invalid aput-wide on " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| switch (prim_type) { |
| case Class::kPrimLong: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeLongLo, |
| &failure); |
| break; |
| case Class::kPrimDouble: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeDoubleLo, |
| &failure); |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid aput-wide on " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case Instruction::APUT_OBJECT: |
| tmp_type = GetRegisterType(work_line, dec_insn.vC_); |
| CheckArrayIndexType(method, tmp_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* get the ref we're storing; Zero is okay, Uninit is not */ |
| res_class = GetClassFromRegister(work_line, dec_insn.vA_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| if (res_class != NULL) { |
| Class* array_class; |
| Class* element_class; |
| |
| /* |
| * Get the array class. If the array ref is null, we won't |
| * have type information (and we'll crash at runtime with a |
| * null pointer exception). |
| */ |
| array_class = GetClassFromRegister(work_line, dec_insn.vB_, &failure); |
| |
| if (array_class != NULL) { |
| /* see if the array holds a compatible type */ |
| if (!array_class->IsArrayClass()) { |
| LOG(ERROR) << "VFY: invalid aput-object on " |
| << array_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Find the element class. res_class->GetComponentType() indicates |
| * the basic type, which won't be what we want for a |
| * multi-dimensional array. |
| * |
| * All we want to check here is that the element type is a |
| * reference class. We *don't* check instanceof here, because |
| * you can still put a String into a String[] after the latter |
| * has been cast to an Object[]. |
| */ |
| if (array_class->GetDescriptor()->CharAt(1) == '[') { |
| assert(array_class->GetArrayRank() > 1); |
| std::string descriptor = |
| array_class->GetDescriptor()->ToModifiedUtf8(); |
| element_class = class_linker->FindClass(descriptor.c_str() + 1, |
| array_class->GetClassLoader()); |
| } else { |
| assert(array_class->GetArrayRank() == 1); |
| element_class = array_class->GetComponentType(); |
| } |
| if (element_class->GetPrimitiveType() != Class::kPrimNot) { |
| LOG(ERROR) << "VFY: invalid aput-object of " |
| << res_class->GetDescriptor()->ToModifiedUtf8() |
| << " into " |
| << array_class->GetDescriptor()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::IGET: |
| tmp_type = kRegTypeInteger; |
| goto iget_1nr_common; |
| case Instruction::IGET_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto iget_1nr_common; |
| case Instruction::IGET_BYTE: |
| tmp_type = kRegTypeByte; |
| goto iget_1nr_common; |
| case Instruction::IGET_CHAR: |
| tmp_type = kRegTypeChar; |
| goto iget_1nr_common; |
| case Instruction::IGET_SHORT: |
| tmp_type = kRegTypeShort; |
| goto iget_1nr_common; |
| iget_1nr_common: |
| { |
| Field* inst_field; |
| RegType obj_type, field_type; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* make sure the field's type is compatible with expectation */ |
| field_type = |
| PrimitiveTypeToRegType(inst_field->GetType()->GetPrimitiveType()); |
| |
| /* correct if float */ |
| if (field_type == kRegTypeFloat) |
| tmp_type = kRegTypeFloat; |
| |
| if (field_type == kRegTypeUnknown || tmp_type != field_type) { |
| Class* inst_field_class = inst_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: invalid iget-1nr of " |
| << inst_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << inst_field->GetName()->ToModifiedUtf8() |
| << " (inst=" << tmp_type << " field=" << field_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| SetRegisterType(work_line, dec_insn.vA_, tmp_type); |
| } |
| break; |
| case Instruction::IGET_WIDE: |
| { |
| RegType dst_type; |
| Field* inst_field; |
| RegType obj_type; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| Class* inst_field_class = inst_field->GetDeclaringClass(); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| /* check the type, which should be prim */ |
| switch (inst_field->GetType()->GetPrimitiveType()) { |
| case Class::kPrimDouble: |
| dst_type = kRegTypeDoubleLo; |
| break; |
| case Class::kPrimLong: |
| dst_type = kRegTypeLongLo; |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid iget-wide of " |
| << inst_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << inst_field->GetName()->ToModifiedUtf8(); |
| dst_type = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (failure == VERIFY_ERROR_NONE) { |
| SetRegisterType(work_line, dec_insn.vA_, dst_type); |
| } |
| } |
| break; |
| case Instruction::IGET_OBJECT: |
| { |
| Class* field_class; |
| Field* inst_field; |
| RegType obj_type; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| field_class = inst_field->GetType(); |
| if (field_class == NULL) { |
| /* class not found or primitive type */ |
| LOG(ERROR) << "VFY: unable to recover field class from " |
| << inst_field->GetName()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (failure == VERIFY_ERROR_NONE) { |
| assert(!field_class->IsPrimitive()); |
| SetRegisterType(work_line, dec_insn.vA_, |
| RegTypeFromClass(field_class)); |
| } |
| } |
| break; |
| case Instruction::IPUT: |
| tmp_type = kRegTypeInteger; |
| goto iput_1nr_common; |
| case Instruction::IPUT_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto iput_1nr_common; |
| case Instruction::IPUT_BYTE: |
| tmp_type = kRegTypeByte; |
| goto iput_1nr_common; |
| case Instruction::IPUT_CHAR: |
| tmp_type = kRegTypeChar; |
| goto iput_1nr_common; |
| case Instruction::IPUT_SHORT: |
| tmp_type = kRegTypeShort; |
| goto iput_1nr_common; |
| iput_1nr_common: |
| { |
| RegType src_type, field_type, obj_type; |
| Field* inst_field; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, inst_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* get type of field we're storing into */ |
| field_type = |
| PrimitiveTypeToRegType(inst_field->GetType()->GetPrimitiveType()); |
| src_type = GetRegisterType(work_line, dec_insn.vA_); |
| |
| /* correct if float */ |
| if (field_type == kRegTypeFloat) |
| tmp_type = kRegTypeFloat; |
| |
| /* |
| * compiler can generate synthetic functions that write byte values |
| * into boolean fields. |
| */ |
| if (tmp_type == kRegTypeBoolean && src_type == kRegTypeByte) |
| tmp_type = kRegTypeByte; |
| if (field_type == kRegTypeBoolean && src_type == kRegTypeByte) |
| field_type = kRegTypeByte; |
| |
| /* make sure the source register has the correct type */ |
| if (!CanConvertTo1nr(src_type, tmp_type)) { |
| LOG(ERROR) << "VFY: invalid reg type " << src_type |
| << " on iput instr (need " << tmp_type << ")", |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| VerifyRegisterType(work_line, dec_insn.vA_, field_type, &failure); |
| |
| if (failure != VERIFY_ERROR_NONE || field_type == kRegTypeUnknown || |
| tmp_type != field_type) { |
| Class* inst_field_class = inst_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: invalid iput-1nr of " |
| << inst_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << inst_field->GetName()->ToModifiedUtf8() |
| << " (inst=" << tmp_type << " field=" << field_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case Instruction::IPUT_WIDE: |
| Field* inst_field; |
| RegType obj_type; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, inst_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* check the type, which should be prim */ |
| switch (inst_field->GetType()->GetPrimitiveType()) { |
| case Class::kPrimDouble: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Class::kPrimLong: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeLongLo, &failure); |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid iput-wide of " |
| << inst_field->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << inst_field->GetName()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case Instruction::IPUT_OBJECT: |
| { |
| Class* field_class; |
| Class* value_class; |
| Field* inst_field; |
| RegType obj_type, value_type; |
| |
| obj_type = GetRegisterType(work_line, dec_insn.vB_); |
| inst_field = GetInstField(vdata, obj_type, dec_insn.vC_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, inst_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| field_class = inst_field->GetType(); |
| if (field_class == NULL) { |
| LOG(ERROR) << "VFY: unable to recover field class from '" |
| << inst_field->GetName()->ToModifiedUtf8() << "'"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| value_type = GetRegisterType(work_line, dec_insn.vA_); |
| if (!RegTypeIsReference(value_type)) { |
| LOG(ERROR) << "VFY: storing non-ref v" << dec_insn.vA_ |
| << " into ref field '" |
| << inst_field->GetName()->ToModifiedUtf8() << "' (" |
| << field_class->GetDescriptor()->ToModifiedUtf8() << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (value_type != kRegTypeZero) { |
| value_class = RegTypeInitializedReferenceToClass(value_type); |
| if (value_class == NULL) { |
| LOG(ERROR) << "VFY: storing uninit ref v" << dec_insn.vA_ |
| << " into ref field"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* allow if field is any interface or field is base class */ |
| if (!field_class->IsInterface() && |
| !field_class->IsAssignableFrom(value_class)) { |
| Class* inst_field_class = inst_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: storing type '" |
| << value_class->GetDescriptor()->ToModifiedUtf8() |
| << "' into field type '" |
| << field_class->GetDescriptor()->ToModifiedUtf8() |
| << "' (" |
| << inst_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << inst_field->GetName()->ToModifiedUtf8() << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::SGET: |
| tmp_type = kRegTypeInteger; |
| goto sget_1nr_common; |
| case Instruction::SGET_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto sget_1nr_common; |
| case Instruction::SGET_BYTE: |
| tmp_type = kRegTypeByte; |
| goto sget_1nr_common; |
| case Instruction::SGET_CHAR: |
| tmp_type = kRegTypeChar; |
| goto sget_1nr_common; |
| case Instruction::SGET_SHORT: |
| tmp_type = kRegTypeShort; |
| goto sget_1nr_common; |
| sget_1nr_common: |
| { |
| Field* static_field; |
| RegType field_type; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* |
| * Make sure the field's type is compatible with expectation. |
| * We can get ourselves into trouble if we mix & match loads |
| * and stores with different widths, so rather than just checking |
| * "CanConvertTo1nr" we require that the field types have equal |
| * widths. |
| */ |
| field_type = |
| PrimitiveTypeToRegType(static_field->GetType()->GetPrimitiveType()); |
| |
| /* correct if float */ |
| if (field_type == kRegTypeFloat) |
| tmp_type = kRegTypeFloat; |
| |
| if (tmp_type != field_type) { |
| Class* static_field_class = static_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: invalid sget-1nr of " |
| << static_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << static_field->GetName()->ToModifiedUtf8() |
| << " (inst=" << tmp_type << " actual=" << field_type |
| << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| SetRegisterType(work_line, dec_insn.vA_, tmp_type); |
| } |
| break; |
| case Instruction::SGET_WIDE: |
| { |
| Field* static_field; |
| RegType dst_type; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| Class* static_field_class = static_field->GetDeclaringClass(); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| /* check the type, which should be prim */ |
| switch (static_field->GetType()->GetPrimitiveType()) { |
| case Class::kPrimDouble: |
| dst_type = kRegTypeDoubleLo; |
| break; |
| case Class::kPrimLong: |
| dst_type = kRegTypeLongLo; |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid sget-wide of " |
| << static_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << static_field->GetName()->ToModifiedUtf8(); |
| dst_type = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (failure == VERIFY_ERROR_NONE) { |
| SetRegisterType(work_line, dec_insn.vA_, dst_type); |
| } |
| } |
| break; |
| case Instruction::SGET_OBJECT: |
| { |
| Field* static_field; |
| Class* field_class; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| field_class = static_field->GetType(); |
| if (field_class == NULL) { |
| LOG(ERROR) << "VFY: unable to recover field class from '" |
| << static_field->GetName()->ToModifiedUtf8() << "'"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (field_class->IsPrimitive()) { |
| LOG(ERROR) << "VFY: attempt to get prim field with sget-object"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| SetRegisterType(work_line, dec_insn.vA_, RegTypeFromClass(field_class)); |
| } |
| break; |
| case Instruction::SPUT: |
| tmp_type = kRegTypeInteger; |
| goto sput_1nr_common; |
| case Instruction::SPUT_BOOLEAN: |
| tmp_type = kRegTypeBoolean; |
| goto sput_1nr_common; |
| case Instruction::SPUT_BYTE: |
| tmp_type = kRegTypeByte; |
| goto sput_1nr_common; |
| case Instruction::SPUT_CHAR: |
| tmp_type = kRegTypeChar; |
| goto sput_1nr_common; |
| case Instruction::SPUT_SHORT: |
| tmp_type = kRegTypeShort; |
| goto sput_1nr_common; |
| sput_1nr_common: |
| { |
| RegType src_type, field_type; |
| Field* static_field; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, static_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* |
| * Get type of field we're storing into. We know that the |
| * contents of the register match the instruction, but we also |
| * need to ensure that the instruction matches the field type. |
| * Using e.g. sput-short to write into a 32-bit integer field |
| * can lead to trouble if we do 16-bit writes. |
| */ |
| field_type = |
| PrimitiveTypeToRegType(static_field->GetType()->GetPrimitiveType()); |
| src_type = GetRegisterType(work_line, dec_insn.vA_); |
| |
| /* correct if float */ |
| if (field_type == kRegTypeFloat) |
| tmp_type = kRegTypeFloat; |
| |
| /* |
| * compiler can generate synthetic functions that write byte values |
| * into boolean fields. |
| */ |
| if (tmp_type == kRegTypeBoolean && src_type == kRegTypeByte) |
| tmp_type = kRegTypeByte; |
| if (field_type == kRegTypeBoolean && src_type == kRegTypeByte) |
| field_type = kRegTypeByte; |
| |
| /* make sure the source register has the correct type */ |
| if (!CanConvertTo1nr(src_type, tmp_type)) { |
| LOG(ERROR) << "VFY: invalid reg type " << src_type |
| << " on sput instr (need " << tmp_type << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| VerifyRegisterType(work_line, dec_insn.vA_, field_type, &failure); |
| |
| if (failure != VERIFY_ERROR_NONE || field_type == kRegTypeUnknown || |
| tmp_type != field_type) { |
| Class* static_field_class = static_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: invalid sput-1nr of " |
| << static_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << static_field->GetName()->ToModifiedUtf8() |
| << " (inst=" << tmp_type << " actual=" << field_type |
| << ")"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case Instruction::SPUT_WIDE: |
| Field* static_field; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, static_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* check the type, which should be prim */ |
| switch (static_field->GetType()->GetPrimitiveType()) { |
| case Class::kPrimDouble: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Class::kPrimLong: |
| VerifyRegisterType(work_line, dec_insn.vA_, kRegTypeLongLo, &failure); |
| break; |
| default: |
| LOG(ERROR) << "VFY: invalid sput-wide of " |
| << static_field->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << static_field->GetName()->ToModifiedUtf8(); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case Instruction::SPUT_OBJECT: |
| { |
| Class* field_class; |
| Class* value_class; |
| Field* static_field; |
| RegType value_type; |
| |
| static_field = GetStaticField(vdata, dec_insn.vB_, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| CheckFinalFieldAccess(method, static_field, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| field_class = static_field->GetType(); |
| if (field_class == NULL) { |
| LOG(ERROR) << "VFY: unable to recover field class from '" |
| << static_field->GetName()->ToModifiedUtf8() << "'"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| value_type = GetRegisterType(work_line, dec_insn.vA_); |
| if (!RegTypeIsReference(value_type)) { |
| LOG(ERROR) << "VFY: storing non-ref v" << dec_insn.vA_ |
| << " into ref field '" |
| << static_field->GetName()->ToModifiedUtf8() << "' (" |
| << field_class->GetDescriptor()->ToModifiedUtf8() << ")", |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (value_type != kRegTypeZero) { |
| value_class = RegTypeInitializedReferenceToClass(value_type); |
| if (value_class == NULL) { |
| LOG(ERROR) << "VFY: storing uninit ref v" << dec_insn.vA_ |
| << " into ref field"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* allow if field is any interface or field is base class */ |
| if (!field_class->IsInterface() && |
| !field_class->IsAssignableFrom(value_class)) { |
| Class* static_field_class = static_field->GetDeclaringClass(); |
| LOG(ERROR) << "VFY: storing type '" |
| << value_class->GetDescriptor()->ToModifiedUtf8() |
| << "' into field type '" |
| << field_class->GetDescriptor()->ToModifiedUtf8() |
| << "' (" |
| << static_field_class->GetDescriptor()->ToModifiedUtf8() |
| << "." << static_field->GetName()->ToModifiedUtf8() |
| << ")", |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_SUPER_RANGE: |
| { |
| Method* called_method; |
| RegType return_type; |
| bool is_range; |
| bool is_super; |
| |
| is_range = (dec_insn.opcode_ == Instruction::INVOKE_VIRTUAL_RANGE || |
| dec_insn.opcode_ == Instruction::INVOKE_SUPER_RANGE); |
| is_super = (dec_insn.opcode_ == Instruction::INVOKE_SUPER || |
| dec_insn.opcode_ == Instruction::INVOKE_SUPER_RANGE); |
| |
| called_method = VerifyInvocationArgs(vdata, work_line, registers_size, |
| &dec_insn, METHOD_VIRTUAL, is_range, is_super, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| return_type = GetMethodReturnType(dex_file, called_method); |
| SetResultRegisterType(work_line, registers_size, return_type); |
| just_set_result = true; |
| } |
| break; |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| { |
| RegType return_type; |
| Method* called_method; |
| bool is_range; |
| |
| is_range = (dec_insn.opcode_ == Instruction::INVOKE_DIRECT_RANGE); |
| called_method = VerifyInvocationArgs(vdata, work_line, registers_size, |
| &dec_insn, METHOD_DIRECT, is_range, false, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* |
| * Some additional checks when calling <init>. We know from |
| * the invocation arg check that the "this" argument is an |
| * instance of called_method->klass. Now we further restrict |
| * that to require that called_method->klass is the same as |
| * this->klass or this->super, allowing the latter only if |
| * the "this" argument is the same as the "this" argument to |
| * this method (which implies that we're in <init> ourselves). |
| */ |
| if (IsInitMethod(called_method)) { |
| RegType this_type; |
| this_type = GetInvocationThis(work_line, &dec_insn, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| /* no null refs allowed (?) */ |
| if (this_type == kRegTypeZero) { |
| LOG(ERROR) << "VFY: unable to initialize null ref"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| Class* this_class; |
| |
| this_class = RegTypeReferenceToClass(this_type, uninit_map); |
| assert(this_class != NULL); |
| |
| /* must be in same class or in superclass */ |
| if (called_method->GetDeclaringClass() == this_class->GetSuperClass()) |
| { |
| if (this_class != method->GetDeclaringClass()) { |
| LOG(ERROR) << "VFY: invoke-direct <init> on super only " |
| << "allowed for 'this' in <init>"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } else if (called_method->GetDeclaringClass() != this_class) { |
| LOG(ERROR) << "VFY: invoke-direct <init> must be on current " |
| << "class or super"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* arg must be an uninitialized reference */ |
| if (!RegTypeIsUninitReference(this_type)) { |
| LOG(ERROR) << "VFY: can only initialize the uninitialized"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Replace the uninitialized reference with an initialized |
| * one, and clear the entry in the uninit map. We need to |
| * do this for all registers that have the same object |
| * instance in them, not just the "this" register. |
| */ |
| MarkRefsAsInitialized(work_line, registers_size, uninit_map, |
| this_type, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| } |
| return_type = GetMethodReturnType(dex_file, called_method); |
| SetResultRegisterType(work_line, registers_size, return_type); |
| just_set_result = true; |
| } |
| break; |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| { |
| RegType return_type; |
| Method* called_method; |
| bool is_range; |
| |
| is_range = (dec_insn.opcode_ == Instruction::INVOKE_STATIC_RANGE); |
| called_method = VerifyInvocationArgs(vdata, work_line, registers_size, |
| &dec_insn, METHOD_STATIC, is_range, false, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| return_type = GetMethodReturnType(dex_file, called_method); |
| SetResultRegisterType(work_line, registers_size, return_type); |
| just_set_result = true; |
| } |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| { |
| RegType /*this_type,*/ return_type; |
| Method* abs_method; |
| bool is_range; |
| |
| is_range = (dec_insn.opcode_ == Instruction::INVOKE_INTERFACE_RANGE); |
| abs_method = VerifyInvocationArgs(vdata, work_line, registers_size, |
| &dec_insn, METHOD_INTERFACE, is_range, false, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| #if 0 /* can't do this here, fails on dalvik test 052-verifier-fun */ |
| /* |
| * Get the type of the "this" arg, which should always be an |
| * interface class. Because we don't do a full merge on |
| * interface classes, this might have reduced to Object. |
| */ |
| this_type = GetInvocationThis(work_line, &dec_insn, &failure); |
| if (failure != VERIFY_ERROR_NONE) |
| break; |
| |
| if (this_type == kRegTypeZero) { |
| /* null pointer always passes (and always fails at runtime) */ |
| } else { |
| Class* this_class; |
| |
| this_class = RegTypeInitializedReferenceToClass(this_type); |
| if (this_class == NULL) { |
| LOG(ERROR) << "VFY: interface call on uninitialized"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Either "this_class" needs to be the interface class that |
| * defined abs_method, or abs_method's class needs to be one |
| * of the interfaces implemented by "this_class". (Or, if |
| * we couldn't complete the merge, this will be Object.) |
| */ |
| if (this_class != abs_method->GetDeclaringClass() && |
| this_class != class_linker->FindSystemClass("Ljava/lang/Object;") && |
| !this_class->Implements(abs_method->GetDeclaringClass())) { |
| LOG(ERROR) << "VFY: unable to match abs_method '" |
| << abs_method->GetName()->ToModifiedUtf8() << "' with " |
| << this_class->GetDescriptor()->ToModifiedUtf8() |
| << " interfaces"; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * We don't have an object instance, so we can't find the |
| * concrete method. However, all of the type information is |
| * in the abstract method, so we're good. |
| */ |
| return_type = GetMethodReturnType(dex_file, abs_method); |
| SetResultRegisterType(work_line, registers_size, return_type); |
| just_set_result = true; |
| } |
| break; |
| |
| case Instruction::NEG_INT: |
| case Instruction::NOT_INT: |
| CheckUnop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| &failure); |
| break; |
| case Instruction::NEG_LONG: |
| case Instruction::NOT_LONG: |
| CheckUnop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeLongLo, &failure); |
| break; |
| case Instruction::NEG_FLOAT: |
| CheckUnop(work_line, &dec_insn, kRegTypeFloat, kRegTypeFloat, &failure); |
| break; |
| case Instruction::NEG_DOUBLE: |
| CheckUnop(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Instruction::INT_TO_LONG: |
| CheckUnop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeInteger, |
| &failure); |
| break; |
| case Instruction::INT_TO_FLOAT: |
| CheckUnop(work_line, &dec_insn, kRegTypeFloat, kRegTypeInteger, &failure); |
| break; |
| case Instruction::INT_TO_DOUBLE: |
| CheckUnop(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeInteger, |
| &failure); |
| break; |
| case Instruction::LONG_TO_INT: |
| CheckUnop(work_line, &dec_insn, kRegTypeInteger, kRegTypeLongLo, |
| &failure); |
| break; |
| case Instruction::LONG_TO_FLOAT: |
| CheckUnop(work_line, &dec_insn, kRegTypeFloat, kRegTypeLongLo, &failure); |
| break; |
| case Instruction::LONG_TO_DOUBLE: |
| CheckUnop(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeLongLo, |
| &failure); |
| break; |
| case Instruction::FLOAT_TO_INT: |
| CheckUnop(work_line, &dec_insn, kRegTypeInteger, kRegTypeFloat, &failure); |
| break; |
| case Instruction::FLOAT_TO_LONG: |
| CheckUnop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeFloat, &failure); |
| break; |
| case Instruction::FLOAT_TO_DOUBLE: |
| CheckUnop(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeFloat, |
| &failure); |
| break; |
| case Instruction::DOUBLE_TO_INT: |
| CheckUnop(work_line, &dec_insn, kRegTypeInteger, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Instruction::DOUBLE_TO_LONG: |
| CheckUnop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Instruction::DOUBLE_TO_FLOAT: |
| CheckUnop(work_line, &dec_insn, kRegTypeFloat, kRegTypeDoubleLo, |
| &failure); |
| break; |
| case Instruction::INT_TO_BYTE: |
| CheckUnop(work_line, &dec_insn, kRegTypeByte, kRegTypeInteger, &failure); |
| break; |
| case Instruction::INT_TO_CHAR: |
| CheckUnop(work_line, &dec_insn, kRegTypeChar, kRegTypeInteger, &failure); |
| break; |
| case Instruction::INT_TO_SHORT: |
| CheckUnop(work_line, &dec_insn, kRegTypeShort, kRegTypeInteger, &failure); |
| break; |
| |
| case Instruction::ADD_INT: |
| case Instruction::SUB_INT: |
| case Instruction::MUL_INT: |
| case Instruction::REM_INT: |
| case Instruction::DIV_INT: |
| case Instruction::SHL_INT: |
| case Instruction::SHR_INT: |
| case Instruction::USHR_INT: |
| CheckBinop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| kRegTypeInteger, false, &failure); |
| break; |
| case Instruction::AND_INT: |
| case Instruction::OR_INT: |
| case Instruction::XOR_INT: |
| CheckBinop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| kRegTypeInteger, true, &failure); |
| break; |
| case Instruction::ADD_LONG: |
| case Instruction::SUB_LONG: |
| case Instruction::MUL_LONG: |
| case Instruction::DIV_LONG: |
| case Instruction::REM_LONG: |
| case Instruction::AND_LONG: |
| case Instruction::OR_LONG: |
| case Instruction::XOR_LONG: |
| CheckBinop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeLongLo, |
| kRegTypeLongLo, false, &failure); |
| break; |
| case Instruction::SHL_LONG: |
| case Instruction::SHR_LONG: |
| case Instruction::USHR_LONG: |
| /* shift distance is Int, making these different from other binops */ |
| CheckBinop(work_line, &dec_insn, kRegTypeLongLo, kRegTypeLongLo, |
| kRegTypeInteger, false, &failure); |
| break; |
| case Instruction::ADD_FLOAT: |
| case Instruction::SUB_FLOAT: |
| case Instruction::MUL_FLOAT: |
| case Instruction::DIV_FLOAT: |
| case Instruction::REM_FLOAT: |
| CheckBinop(work_line, &dec_insn, kRegTypeFloat, kRegTypeFloat, |
| kRegTypeFloat, false, &failure); |
| break; |
| case Instruction::ADD_DOUBLE: |
| case Instruction::SUB_DOUBLE: |
| case Instruction::MUL_DOUBLE: |
| case Instruction::DIV_DOUBLE: |
| case Instruction::REM_DOUBLE: |
| CheckBinop(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeDoubleLo, |
| kRegTypeDoubleLo, false, &failure); |
| break; |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::SUB_INT_2ADDR: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::SHL_INT_2ADDR: |
| case Instruction::SHR_INT_2ADDR: |
| case Instruction::USHR_INT_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| kRegTypeInteger, false, &failure); |
| break; |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::XOR_INT_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| kRegTypeInteger, true, &failure); |
| break; |
| case Instruction::DIV_INT_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, |
| kRegTypeInteger, false, &failure); |
| break; |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::MUL_LONG_2ADDR: |
| case Instruction::DIV_LONG_2ADDR: |
| case Instruction::REM_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeLongLo, kRegTypeLongLo, |
| kRegTypeLongLo, false, &failure); |
| break; |
| case Instruction::SHL_LONG_2ADDR: |
| case Instruction::SHR_LONG_2ADDR: |
| case Instruction::USHR_LONG_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeLongLo, kRegTypeLongLo, |
| kRegTypeInteger, false, &failure); |
| break; |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeFloat, kRegTypeFloat, |
| kRegTypeFloat, false, &failure); |
| break; |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE_2ADDR: |
| CheckBinop2addr(work_line, &dec_insn, kRegTypeDoubleLo, kRegTypeDoubleLo, |
| kRegTypeDoubleLo, false, &failure); |
| break; |
| case Instruction::ADD_INT_LIT16: |
| case Instruction::RSUB_INT: |
| case Instruction::MUL_INT_LIT16: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT_LIT16: |
| CheckLitop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, false, |
| &failure); |
| break; |
| case Instruction::AND_INT_LIT16: |
| case Instruction::OR_INT_LIT16: |
| case Instruction::XOR_INT_LIT16: |
| CheckLitop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, true, |
| &failure); |
| break; |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::SHL_INT_LIT8: |
| CheckLitop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, false, |
| &failure); |
| break; |
| case Instruction::SHR_INT_LIT8: |
| tmp_type = AdjustForRightShift(work_line, dec_insn.vB_, dec_insn.vC_, |
| false, &failure); |
| CheckLitop(work_line, &dec_insn, tmp_type, kRegTypeInteger, false, |
| &failure); |
| break; |
| case Instruction::USHR_INT_LIT8: |
| tmp_type = AdjustForRightShift(work_line, dec_insn.vB_, dec_insn.vC_, |
| true, &failure); |
| CheckLitop(work_line, &dec_insn, tmp_type, kRegTypeInteger, false, |
| &failure); |
| break; |
| case Instruction::AND_INT_LIT8: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::XOR_INT_LIT8: |
| CheckLitop(work_line, &dec_insn, kRegTypeInteger, kRegTypeInteger, true, |
| &failure); |
| break; |
| |
| /* |
| * This falls into the general category of "optimized" instructions, |
| * which don't generally appear during verification. Because it's |
| * inserted in the course of verification, we can expect to see it here. |
| */ |
| //case Instruction::THROW_VERIFICATION_ERROR: |
| case Instruction::UNUSED_ED: |
| break; |
| |
| /* |
| * Verifying "quickened" instructions is tricky, because we have |
| * discarded the original field/method information. The byte offsets |
| * and vtable indices only have meaning in the context of an object |
| * instance. |
| * |
| * If a piece of code declares a local reference variable, assigns |
| * null to it, and then issues a virtual method call on it, we |
| * cannot evaluate the method call during verification. This situation |
| * isn't hard to handle, since we know the call will always result in an |
| * NPE, and the arguments and return value don't matter. Any code that |
| * depends on the result of the method call is inaccessible, so the |
| * fact that we can't fully verify anything that comes after the bad |
| * call is not a problem. |
| * |
| * We must also consider the case of multiple code paths, only some of |
| * which involve a null reference. We can completely verify the method |
| * if we sidestep the results of executing with a null reference. |
| * For example, if on the first pass through the code we try to do a |
| * virtual method invocation through a null ref, we have to skip the |
| * method checks and have the method return a "wildcard" type (which |
| * merges with anything to become that other thing). The move-result |
| * will tell us if it's a reference, single-word numeric, or double-word |
| * value. We continue to perform the verification, and at the end of |
| * the function any invocations that were never fully exercised are |
| * marked as null-only. |
| * |
| * We would do something similar for the field accesses. The field's |
| * type, once known, can be used to recover the width of short integers. |
| * If the object reference was null, the field-get returns the "wildcard" |
| * type, which is acceptable for any operation. |
| */ |
| case Instruction::UNUSED_EE: |
| case Instruction::UNUSED_EF: |
| case Instruction::UNUSED_F2: |
| case Instruction::UNUSED_F3: |
| case Instruction::UNUSED_F4: |
| case Instruction::UNUSED_F5: |
| case Instruction::UNUSED_F6: |
| case Instruction::UNUSED_F7: |
| case Instruction::UNUSED_F8: |
| case Instruction::UNUSED_F9: |
| case Instruction::UNUSED_FA: |
| case Instruction::UNUSED_FB: |
| //case Instruction::EXECUTE_INLINE: |
| //case Instruction::EXECUTE_INLINE_RANGE: |
| //case Instruction::IGET_QUICK: |
| //case Instruction::IGET_WIDE_QUICK: |
| //case Instruction::IGET_OBJECT_QUICK: |
| //case Instruction::IPUT_QUICK: |
| //case Instruction::IPUT_WIDE_QUICK: |
| //case Instruction::IPUT_OBJECT_QUICK: |
| //case Instruction::INVOKE_VIRTUAL_QUICK: |
| //case Instruction::INVOKE_VIRTUAL_QUICK_RANGE: |
| //case Instruction::INVOKE_SUPER_QUICK: |
| //case Instruction::INVOKE_SUPER_QUICK_RANGE: |
| /* fall through to failure */ |
| |
| /* |
| * These instructions are equivalent (from the verifier's point of view) |
| * to the original form. The change was made for correctness rather |
| * than improved performance (except for invoke-object-init, which |
| * provides both). The substitution takes place after verification |
| * completes, though, so we don't expect to see them here. |
| */ |
| case Instruction::UNUSED_F0: |
| case Instruction::UNUSED_F1: |
| case Instruction::UNUSED_E3: |
| case Instruction::UNUSED_E8: |
| case Instruction::UNUSED_E7: |
| case Instruction::UNUSED_E4: |
| case Instruction::UNUSED_E9: |
| case Instruction::UNUSED_FC: |
| case Instruction::UNUSED_E5: |
| case Instruction::UNUSED_EA: |
| case Instruction::UNUSED_FD: |
| case Instruction::UNUSED_E6: |
| case Instruction::UNUSED_EB: |
| case Instruction::UNUSED_FE: |
| //case Instruction::INVOKE_OBJECT_INIT_RANGE: |
| //case Instruction::RETURN_VOID_BARRIER: |
| //case Instruction::IGET_VOLATILE: |
| //case Instruction::IGET_WIDE_VOLATILE: |
| //case Instruction::IGET_OBJECT_VOLATILE: |
| //case Instruction::IPUT_VOLATILE: |
| //case Instruction::IPUT_WIDE_VOLATILE: |
| //case Instruction::IPUT_OBJECT_VOLATILE: |
| //case Instruction::SGET_VOLATILE: |
| //case Instruction::SGET_WIDE_VOLATILE: |
| //case Instruction::SGET_OBJECT_VOLATILE: |
| //case Instruction::SPUT_VOLATILE: |
| //case Instruction::SPUT_WIDE_VOLATILE: |
| //case Instruction::SPUT_OBJECT_VOLATILE: |
| /* fall through to failure */ |
| |
| /* These should never appear during verification. */ |
| case Instruction::UNUSED_3E: |
| case Instruction::UNUSED_3F: |
| case Instruction::UNUSED_40: |
| case Instruction::UNUSED_41: |
| case Instruction::UNUSED_42: |
| case Instruction::UNUSED_43: |
| case Instruction::UNUSED_73: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| case Instruction::UNUSED_EC: |
| case Instruction::UNUSED_FF: |
| //case Instruction::BREAKPOINT: |
| //case Instruction::DISPATCH_FF: |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| |
| /* |
| * DO NOT add a "default" clause here. Without it the compiler will |
| * complain if an instruction is missing (which is desirable). |
| */ |
| } |
| |
| if (failure != VERIFY_ERROR_NONE) { |
| if (failure == VERIFY_ERROR_GENERIC) { |
| /* immediate failure, reject class */ |
| LOG(ERROR) << "VFY: rejecting opcode 0x" << std::hex |
| << (int) dec_insn.opcode_ << " at 0x" << insn_idx << std::dec; |
| return false; |
| } else { |
| // TODO: CHECK IF THIS WILL WORK! |
| /* ignore the failure and move on */ |
| LOG(ERROR) << "VFY: failing opcode 0x" << std::hex |
| << (int) dec_insn.opcode_ << " at 0x" << insn_idx << std::dec; |
| failure = VERIFY_ERROR_NONE; |
| #if 0 |
| /* replace opcode and continue on */ |
| LOG(ERROR) << "VFY: replacing opcode 0x" << std::hex |
| << (int) dec_insn.opcode_ << " at 0x" << insn_idx << std::dec; |
| if (!ReplaceFailingInstruction(code_item, insn_flags, insn_idx, failure)) |
| { |
| LOG(ERROR) << "VFY: rejecting opcode 0x" << std::hex |
| << (int) dec_insn.opcode_ << " at 0x" << insn_idx |
| << std::dec; |
| return false; |
| } |
| /* IMPORTANT: method->insns may have been changed */ |
| insns = code_item->insns_ + insn_idx; |
| |
| /* continue on as if we just handled a throw-verification-error */ |
| failure = VERIFY_ERROR_NONE; |
| opcode_flag = Instruction::kThrow; |
| #endif |
| } |
| } |
| |
| /* |
| * If we didn't just set the result register, clear it out. This |
| * ensures that you can only use "move-result" immediately after the |
| * result is set. (We could check this statically, but it's not |
| * expensive and it makes our debugging output cleaner.) |
| */ |
| if (!just_set_result) { |
| int reg = RESULT_REGISTER(registers_size); |
| SetRegisterType(work_line, reg, kRegTypeUnknown); |
| SetRegisterType(work_line, reg + 1, kRegTypeUnknown); |
| } |
| |
| /* Handle "continue". Tag the next consecutive instruction. */ |
| if ((opcode_flag & Instruction::kContinue) != 0) { |
| size_t insn_width = InsnGetWidth(insn_flags, insn_idx); |
| if (insn_idx + insn_width >= insns_size) { |
| LOG(ERROR) << "VFY: execution can walk off end of code area (from 0x" |
| << std::hex << insn_idx << std::dec << ")"; |
| return false; |
| } |
| |
| /* |
| * The only way to get to a move-exception instruction is to get |
| * thrown there. Make sure the next instruction isn't one. |
| */ |
| if (!CheckMoveException(code_item->insns_, insn_idx + insn_width)) |
| return false; |
| |
| if (GetRegisterLine(reg_table, insn_idx + insn_width)->reg_types_.get() != NULL) { |
| /* |
| * Merge registers into what we have for the next instruction, |
| * and set the "changed" flag if needed. |
| */ |
| if (!UpdateRegisters(insn_flags, reg_table, insn_idx + insn_width, |
| work_line)) |
| return false; |
| } else { |
| /* |
| * We're not recording register data for the next instruction, |
| * so we don't know what the prior state was. We have to |
| * assume that something has changed and re-evaluate it. |
| */ |
| InsnSetChanged(insn_flags, insn_idx + insn_width, true); |
| } |
| } |
| |
| /* |
| * Handle "branch". Tag the branch target. |
| * |
| * NOTE: instructions like Instruction::EQZ provide information about the |
| * state of the register when the branch is taken or not taken. For example, |
| * somebody could get a reference field, check it for zero, and if the |
| * branch is taken immediately store that register in a boolean field |
| * since the value is known to be zero. We do not currently account for |
| * that, and will reject the code. |
| * |
| * TODO: avoid re-fetching the branch target |
| */ |
| if ((opcode_flag & Instruction::kBranch) != 0) { |
| bool isConditional, selfOkay; |
| |
| if (!GetBranchOffset(code_item, insn_flags, insn_idx, &branch_target, |
| &isConditional, &selfOkay)) { |
| /* should never happen after static verification */ |
| LOG(ERROR) << "VFY: bad branch at 0x" << std::hex << insn_idx << std::dec; |
| return false; |
| } |
| assert(isConditional || (opcode_flag & Instruction::kContinue) == 0); |
| assert(!isConditional || (opcode_flag & Instruction::kContinue) != 0); |
| |
| if (!CheckMoveException(code_item->insns_, insn_idx + branch_target)) |
| return false; |
| |
| /* update branch target, set "changed" if appropriate */ |
| if (!UpdateRegisters(insn_flags, reg_table, insn_idx + branch_target, |
| work_line)) |
| return false; |
| } |
| |
| /* |
| * Handle "switch". Tag all possible branch targets. |
| * |
| * We've already verified that the table is structurally sound, so we |
| * just need to walk through and tag the targets. |
| */ |
| if ((opcode_flag & Instruction::kSwitch) != 0) { |
| int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16); |
| const uint16_t* switch_insns = insns + offset_to_switch; |
| int switch_count = switch_insns[1]; |
| int offset_to_targets, targ; |
| |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0 = sig, 1 = count, 2/3 = first key */ |
| offset_to_targets = 4; |
| } else { |
| /* 0 = sig, 1 = count, 2..count * 2 = keys */ |
| assert((*insns & 0xff) == Instruction::SPARSE_SWITCH); |
| offset_to_targets = 2 + 2 * switch_count; |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switch_count; targ++) { |
| int offset; |
| uint32_t abs_offset; |
| |
| /* offsets are 32-bit, and only partly endian-swapped */ |
| offset = switch_insns[offset_to_targets + targ * 2] | |
| (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16); |
| abs_offset = insn_idx + offset; |
| |
| assert(abs_offset < insns_size); |
| |
| if (!CheckMoveException(code_item->insns_, abs_offset)) |
| return false; |
| |
| if (!UpdateRegisters(insn_flags, reg_table, abs_offset, work_line)) |
| return false; |
| } |
| } |
| |
| /* |
| * Handle instructions that can throw and that are sitting in a |
| * "try" block. (If they're not in a "try" block when they throw, |
| * control transfers out of the method.) |
| */ |
| if ((opcode_flag & Instruction::kThrow) != 0 && |
| InsnIsInTry(insn_flags, insn_idx)) { |
| bool has_catch_all = false; |
| DexFile::CatchHandlerIterator iterator = DexFile::dexFindCatchHandler( |
| *code_item, insn_idx); |
| |
| for (; !iterator.HasNext(); iterator.Next()) { |
| if (iterator.Get().type_idx_ == DexFile::kDexNoIndex) |
| has_catch_all = true; |
| |
| /* |
| * Merge registers into the "catch" block. We want to use the |
| * "savedRegs" rather than "work_regs", because at runtime the |
| * exception will be thrown before the instruction modifies any |
| * registers. |
| */ |
| if (!UpdateRegisters(insn_flags, reg_table, iterator.Get().address_, |
| ®_table->saved_line_)) |
| return false; |
| } |
| |
| /* |
| * If the monitor stack depth is nonzero, there must be a "catch all" |
| * handler for this instruction. This does apply to monitor-exit |
| * because of async exception handling. |
| */ |
| if (work_line->monitor_stack_top_ != 0 && !has_catch_all) { |
| /* |
| * The state in work_line reflects the post-execution state. |
| * If the current instruction is a monitor-enter and the monitor |
| * stack was empty, we don't need a catch-all (if it throws, |
| * it will do so before grabbing the lock). |
| */ |
| if (!(dec_insn.opcode_ == Instruction::MONITOR_ENTER && |
| work_line->monitor_stack_top_ == 1)) |
| { |
| LOG(ERROR) << "VFY: no catch-all for instruction at 0x" << std::hex |
| << insn_idx << std::dec; |
| return false; |
| } |
| } |
| } |
| |
| /* If we're returning from the method, make sure monitor stack is empty. */ |
| if ((opcode_flag & Instruction::kReturn) != 0 && |
| work_line->monitor_stack_top_ != 0) { |
| LOG(ERROR) << "VFY: return with stack depth=" |
| << work_line->monitor_stack_top_ << " at 0x" << std::hex |
| << insn_idx << std::dec; |
| return false; |
| } |
| |
| /* |
| * Update start_guess. Advance to the next instruction of that's |
| * possible, otherwise use the branch target if one was found. If |
| * neither of those exists we're in a return or throw; leave start_guess |
| * alone and let the caller sort it out. |
| */ |
| if ((opcode_flag & Instruction::kContinue) != 0) { |
| *start_guess = insn_idx + InsnGetWidth(insn_flags, insn_idx); |
| } else if ((opcode_flag & Instruction::kBranch) != 0) { |
| /* we're still okay if branch_target is zero */ |
| *start_guess = insn_idx + branch_target; |
| } |
| |
| assert(*start_guess < insns_size && |
| InsnGetWidth(insn_flags, *start_guess) != 0); |
| |
| return true; |
| } |
| |
| bool DexVerifier::ReplaceFailingInstruction(const DexFile::CodeItem* code_item, |
| InsnFlags* insn_flags, int insn_idx, VerifyError failure) { |
| const uint16_t* insns = code_item->insns_ + insn_idx; |
| const byte* ptr = reinterpret_cast<const byte*>(insns); |
| const Instruction* inst = Instruction::At(ptr); |
| Instruction::Code opcode = inst->Opcode(); |
| VerifyErrorRefType ref_type; |
| |
| /* |
| * Generate the new instruction out of the old. |
| * |
| * First, make sure this is an instruction we're expecting to stomp on. |
| */ |
| switch (opcode) { |
| case Instruction::CONST_CLASS: // insn[1] == class ref, 2 bytes |
| case Instruction::CHECK_CAST: |
| case Instruction::INSTANCE_OF: |
| case Instruction::NEW_INSTANCE: |
| case Instruction::NEW_ARRAY: |
| case Instruction::FILLED_NEW_ARRAY: // insn[1] == class ref, 3 bytes |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| ref_type = VERIFY_ERROR_REF_CLASS; |
| break; |
| |
| case Instruction::IGET: // insn[1] == field ref, 2 bytes |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_SHORT: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IPUT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::SGET: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SPUT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| ref_type = VERIFY_ERROR_REF_FIELD; |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: // insn[1] == method ref, 3 bytes |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| ref_type = VERIFY_ERROR_REF_METHOD; |
| break; |
| |
| default: |
| /* could handle this in a generic way, but this is probably safer */ |
| LOG(ERROR) << "GLITCH: verifier asked to replace opcode 0x" << std::hex |
| << (int) opcode << std::dec; |
| return false; |
| } |
| |
| assert(inst->IsThrow()); |
| |
| /* write a NOP over the third code unit, if necessary */ |
| int width = InsnGetWidth(insn_flags, insn_idx); |
| switch (width) { |
| case 2: |
| /* nothing to do */ |
| break; |
| case 3: |
| // TODO: Add this functionality |
| //UpdateCodeUnit(method, insns + 2, Instruction::NOP); |
| break; |
| default: |
| /* whoops */ |
| LOG(FATAL) << "ERROR: stomped a " << width |
| << "-unit instruction with a verifier error"; |
| } |
| |
| /* encode the opcode, with the failure code in the high byte */ |
| // TODO: REPLACE FAILING OPCODES |
| //assert(width == 2 || width == 3); |
| //uint16_t new_val = Instruction::THROW_VERIFICATION_ERROR | |
| //uint16_t new_val = Instruction::UNUSED_ED | |
| //(failure << 8) | (ref_type << (8 + kVerifyErrorRefTypeShift)); |
| //UpdateCodeUnit(method, insns, new_val); |
| |
| return true; |
| } |
| |
| /* Handle a monitor-enter instruction. */ |
| void DexVerifier::HandleMonitorEnter(RegisterLine* work_line, uint32_t reg_idx, |
| uint32_t insn_idx, VerifyError* failure) { |
| if (!RegTypeIsReference(GetRegisterType(work_line, reg_idx))) { |
| LOG(ERROR) << "VFY: monitor-enter on non-object"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| if (work_line->monitor_entries_.get() == NULL) { |
| return; |
| } |
| |
| if (work_line->monitor_stack_top_ == kMaxMonitorStackDepth) { |
| LOG(ERROR) << "VFY: monitor-enter stack overflow (" << kMaxMonitorStackDepth |
| << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| /* |
| * Push an entry on the stack, and set a bit in the register flags to |
| * indicate that it's associated with this register. |
| */ |
| work_line->monitor_entries_[reg_idx] |= 1 << work_line->monitor_stack_top_; |
| work_line->monitor_stack_[work_line->monitor_stack_top_++] = insn_idx; |
| } |
| |
| /* Handle a monitor-exit instruction. */ |
| void DexVerifier::HandleMonitorExit(RegisterLine* work_line, uint32_t reg_idx, |
| uint32_t insn_idx, VerifyError* failure) { |
| if (!RegTypeIsReference(GetRegisterType(work_line, reg_idx))) { |
| LOG(ERROR) << "VFY: monitor-exit on non-object"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| if (work_line->monitor_entries_.get() == NULL) { |
| return; |
| } |
| |
| if (work_line->monitor_stack_top_ == 0) { |
| LOG(ERROR) << "VFY: monitor-exit stack underflow"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| /* |
| * Confirm that the entry at the top of the stack is associated with |
| * the register. Pop the top entry off. |
| */ |
| work_line->monitor_stack_top_--; |
| #ifdef BUG_3215458_FIXED |
| /* |
| * TODO: This code can safely be enabled if know we are working on |
| * a dex file of format version 036 or later. (That is, we'll need to |
| * add a check for the version number.) |
| */ |
| if ((work_line->monitor_entries_[reg_idx] & |
| (1 << work_line->monitor_stack_top_)) == 0) { |
| LOG(ERROR) << "VFY: monitor-exit bit " << work_line->monitor_stack_top_ |
| << " not set: addr=0x" << std::hex << insn_idx << std::dec |
| << " (bits[" << reg_idx << "]=" << std::hex |
| << work_line->monitor_entries_[reg_idx] << std::dec << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| #endif |
| work_line->monitor_stack_[work_line->monitor_stack_top_] = 0; |
| |
| /* Clear the bit from the register flags. */ |
| work_line->monitor_entries_[reg_idx] &= ~(1 << work_line->monitor_stack_top_); |
| } |
| |
| Field* DexVerifier::GetInstField(VerifierData* vdata, RegType obj_type, |
| int field_idx, VerifyError* failure) { |
| Method* method = vdata->method_; |
| const DexFile* dex_file = vdata->dex_file_; |
| UninitInstanceMap* uninit_map = vdata->uninit_map_.get(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); |
| const ClassLoader* class_loader = |
| method->GetDeclaringClass()->GetClassLoader(); |
| Field* field = NULL; |
| Class* obj_class; |
| bool must_be_local = false; |
| |
| if (!RegTypeIsReference(obj_type)) { |
| LOG(ERROR) << "VFY: attempt to access field in non-reference type " |
| << obj_type; |
| *failure = VERIFY_ERROR_GENERIC; |
| return field; |
| } |
| |
| field = class_linker->ResolveField(*dex_file, field_idx, dex_cache, |
| class_loader, false); |
| if (field == NULL) { |
| LOG(ERROR) << "VFY: unable to resolve instance field " << field_idx; |
| return field; |
| } |
| |
| if (obj_type == kRegTypeZero) |
| return field; |
| |
| /* |
| * Access to fields in uninitialized objects is allowed if this is |
| * the <init> method for the object and the field in question is |
| * declared by this class. |
| */ |
| obj_class = RegTypeReferenceToClass(obj_type, uninit_map); |
| assert(obj_class != NULL); |
| if (RegTypeIsUninitReference(obj_type)) { |
| if (!IsInitMethod(method) || method->GetDeclaringClass() != obj_class) { |
| LOG(ERROR) << "VFY: attempt to access field via uninitialized ref"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return field; |
| } |
| must_be_local = true; |
| } |
| |
| if (!field->GetDeclaringClass()->IsAssignableFrom(obj_class)) { |
| LOG(ERROR) << "VFY: invalid field access (field " |
| << field->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << field->GetName()->ToModifiedUtf8() << ", through " |
| << obj_class->GetDescriptor()->ToModifiedUtf8() << " ref)"; |
| *failure = VERIFY_ERROR_NO_FIELD; |
| return field; |
| } |
| |
| if (must_be_local) { |
| bool found = false; |
| /* for uninit ref, make sure it's defined by this class, not super */ |
| for (uint32_t i = 0; i < obj_class->NumInstanceFields(); i++) { |
| found |= (field == obj_class->GetInstanceField(i)); |
| } |
| if (!found) { |
| LOG(ERROR) << "VFY: invalid constructor field access (field " |
| << field->GetName()->ToModifiedUtf8() << " in " |
| << obj_class->GetDescriptor()->ToModifiedUtf8() << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return field; |
| } |
| } |
| |
| return field; |
| } |
| |
| Field* DexVerifier::GetStaticField(VerifierData* vdata, int field_idx, |
| VerifyError* failure) { |
| Method* method = vdata->method_; |
| const DexFile* dex_file = vdata->dex_file_; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); |
| const ClassLoader* class_loader = |
| method->GetDeclaringClass()->GetClassLoader(); |
| Field* field; |
| |
| field = class_linker->ResolveField(*dex_file, field_idx, dex_cache, |
| class_loader, true); |
| if (field == NULL) { |
| //const DexFile::FieldId field_id = dex_file->GetFieldId(field_idx); |
| |
| //LOG(ERROR) << "VFY: unable to resolve static field " << field_idx << " (" |
| //<< dex_file->GetFieldName(field_id) << ") in " |
| //<< dex_file->GetFieldClassDescriptor(field_id); |
| LOG(ERROR) << "VFY: unable to resolve static field"; |
| } |
| |
| return field; |
| } |
| |
| Class* DexVerifier::GetCaughtExceptionType(VerifierData* vdata, int insn_idx, |
| VerifyError* failure) { |
| const DexFile* dex_file = vdata->dex_file_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| Method* method = vdata->method_; |
| Class* common_super = NULL; |
| uint32_t handlers_size; |
| const byte* handlers_ptr = DexFile::dexGetCatchHandlerData(*code_item, 0); |
| |
| if (code_item->tries_size_ != 0) { |
| handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| } else { |
| handlers_size = 0; |
| } |
| |
| for (uint32_t i = 0; i < handlers_size; i++) { |
| DexFile::CatchHandlerIterator iterator(handlers_ptr); |
| |
| for (; !iterator.HasNext(); iterator.Next()) { |
| DexFile::CatchHandlerItem handler = iterator.Get(); |
| if (handler.address_ == (uint32_t) insn_idx) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Class* klass; |
| |
| if (handler.type_idx_ == DexFile::kDexNoIndex) { |
| klass = class_linker->FindSystemClass("Ljava/lang/Throwable;"); |
| } else { |
| klass = ResolveClassAndCheckAccess(dex_file, handler.type_idx_, |
| method->GetDeclaringClass(), failure); |
| } |
| |
| if (klass == NULL) { |
| LOG(ERROR) << "VFY: unable to resolve exception class " |
| << handler.type_idx_ << " (" |
| << dex_file->dexStringByTypeIdx(handler.type_idx_) << ")"; |
| /* TODO: do we want to keep going? If we don't fail this we run |
| * the risk of having a non-Throwable introduced at runtime. |
| * However, that won't pass an instanceof test, so is essentially |
| * harmless. |
| */ |
| } else { |
| if (common_super == NULL) |
| common_super = klass; |
| else |
| common_super = FindCommonSuperclass(klass, common_super); |
| } |
| } |
| } |
| |
| handlers_ptr = iterator.GetData(); |
| } |
| |
| if (common_super == NULL) { |
| /* no catch blocks, or no catches with classes we can find */ |
| LOG(ERROR) << "VFY: unable to find exception handler at addr 0x" << std::hex |
| << insn_idx << std::dec; |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| |
| return common_super; |
| } |
| |
| DexVerifier::RegType DexVerifier::GetMethodReturnType(const DexFile* dex_file, |
| const Method* method) { |
| Class* klass = method->GetReturnType(); |
| if (klass->IsPrimitive()) |
| return PrimitiveTypeToRegType(klass->GetPrimitiveType()); |
| else |
| return RegTypeFromClass(klass); |
| } |
| |
| Class* DexVerifier::GetClassFromRegister(const RegisterLine* register_line, |
| uint32_t vsrc, VerifyError* failure) { |
| /* get the element type of the array held in vsrc */ |
| RegType type = GetRegisterType(register_line, vsrc); |
| |
| /* if "always zero", we allow it to fail at runtime */ |
| if (type == kRegTypeZero) |
| return NULL; |
| |
| if (!RegTypeIsReference(type)) { |
| LOG(ERROR) << "VFY: tried to get class from non-ref register v" << vsrc |
| << " (type=" << type << ")", |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| if (RegTypeIsUninitReference(type)) { |
| LOG(ERROR) << "VFY: register " << vsrc << " holds uninitialized reference"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| return RegTypeInitializedReferenceToClass(type); |
| } |
| |
| DexVerifier::RegType DexVerifier::GetInvocationThis( |
| const RegisterLine* register_line, |
| const Instruction::DecodedInstruction* dec_insn, VerifyError* failure) { |
| if (dec_insn->vA_ < 1) { |
| LOG(ERROR) << "VFY: invoke lacks 'this'"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return kRegTypeUnknown; |
| } |
| |
| /* get the element type of the array held in vsrc */ |
| RegType this_type = GetRegisterType(register_line, dec_insn->vC_); |
| if (!RegTypeIsReference(this_type)) { |
| LOG(ERROR) << "VFY: tried to get class from non-ref register v" |
| << dec_insn->vC_ << " (type=" << this_type << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return kRegTypeUnknown; |
| } |
| |
| return this_type; |
| } |
| |
| void DexVerifier::SetRegisterType(RegisterLine* register_line, uint32_t vdst, |
| RegType new_type) { |
| RegType* insn_regs = register_line->reg_types_.get(); |
| |
| switch (new_type) { |
| case kRegTypeUnknown: |
| case kRegTypeBoolean: |
| case kRegTypeOne: |
| case kRegTypeConstByte: |
| case kRegTypeConstPosByte: |
| case kRegTypeConstShort: |
| case kRegTypeConstPosShort: |
| case kRegTypeConstChar: |
| case kRegTypeConstInteger: |
| case kRegTypeByte: |
| case kRegTypePosByte: |
| case kRegTypeShort: |
| case kRegTypePosShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| case kRegTypeFloat: |
| case kRegTypeZero: |
| case kRegTypeUninit: |
| insn_regs[vdst] = new_type; |
| break; |
| case kRegTypeConstLo: |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| insn_regs[vdst] = new_type; |
| insn_regs[vdst + 1] = new_type + 1; |
| break; |
| case kRegTypeConstHi: |
| case kRegTypeLongHi: |
| case kRegTypeDoubleHi: |
| /* should never set these explicitly */ |
| LOG(FATAL) << "BUG: explicit set of high register type"; |
| break; |
| |
| default: |
| /* can't switch for ref types, so we check explicitly */ |
| if (RegTypeIsReference(new_type)) { |
| insn_regs[vdst] = new_type; |
| |
| /* |
| * In most circumstances we won't see a reference to a primitive |
| * class here (e.g. "D"), since that would mean the object in the |
| * register is actually a primitive type. It can happen as the |
| * result of an assumed-successful check-cast instruction in |
| * which the second argument refers to a primitive class. (In |
| * practice, such an instruction will always throw an exception.) |
| * |
| * This is not an issue for instructions like const-class, where |
| * the object in the register is a java.lang.Class instance. |
| */ |
| break; |
| } |
| /* bad type - fall through */ |
| |
| case kRegTypeConflict: // should only be set during a merge |
| LOG(FATAL) << "BUG: set register to unknown type " << new_type; |
| break; |
| } |
| |
| /* |
| * Clear the monitor entry bits for this register. |
| */ |
| if (register_line->monitor_entries_.get() != NULL) |
| register_line->monitor_entries_[vdst] = 0; |
| } |
| |
| void DexVerifier::VerifyRegisterType(RegisterLine* register_line, uint32_t vsrc, |
| RegType check_type, VerifyError* failure) { |
| const RegType* insn_regs = register_line->reg_types_.get(); |
| RegType src_type = insn_regs[vsrc]; |
| |
| switch (check_type) { |
| case kRegTypeFloat: |
| case kRegTypeBoolean: |
| case kRegTypePosByte: |
| case kRegTypeByte: |
| case kRegTypePosShort: |
| case kRegTypeShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| if (!CanConvertTo1nr(src_type, check_type)) { |
| LOG(ERROR) << "VFY: register1 v" << vsrc << " type " << src_type |
| << ", wanted " << check_type; |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| /* Update type if result is float */ |
| if (check_type == kRegTypeFloat) { |
| SetRegisterType(register_line, vsrc, check_type); |
| } else { |
| /* Update const type to actual type after use */ |
| SetRegisterType(register_line, vsrc, ConstTypeToRegType(src_type)); |
| } |
| break; |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| if (insn_regs[vsrc + 1] != src_type + 1) { |
| LOG(ERROR) << "VFY: register2 v" << vsrc << "-" << vsrc + 1 |
| << " values " << insn_regs[vsrc] << "," |
| << insn_regs[vsrc + 1]; |
| *failure = VERIFY_ERROR_GENERIC; |
| } else if (!CanConvertTo2(src_type, check_type)) { |
| LOG(ERROR) << "VFY: register2 v" << vsrc << " type " << src_type |
| << ", wanted " << check_type; |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| /* Update type if source is from const */ |
| if (src_type == kRegTypeConstLo) { |
| SetRegisterType(register_line, vsrc, check_type); |
| } |
| break; |
| case kRegTypeConstLo: |
| case kRegTypeConstHi: |
| case kRegTypeLongHi: |
| case kRegTypeDoubleHi: |
| case kRegTypeZero: |
| case kRegTypeOne: |
| case kRegTypeUnknown: |
| case kRegTypeConflict: |
| /* should never be checking for these explicitly */ |
| assert(false); |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| case kRegTypeUninit: |
| default: |
| /* make sure check_type is initialized reference */ |
| if (!RegTypeIsReference(check_type)) { |
| LOG(ERROR) << "VFY: unexpected check type " << check_type; |
| assert(false); |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (RegTypeIsUninitReference(check_type)) { |
| LOG(ERROR) << "VFY: uninitialized ref not expected as reg check"; |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* make sure src_type is initialized reference or always-NULL */ |
| if (!RegTypeIsReference(src_type)) { |
| LOG(ERROR) << "VFY: register1 v" << vsrc << " type " << src_type |
| << ", wanted ref"; |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (RegTypeIsUninitReference(src_type)) { |
| LOG(ERROR) << "VFY: register1 v" << vsrc << " holds uninitialized ref"; |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* if the register isn't Zero, make sure it's an instance of check */ |
| if (src_type != kRegTypeZero) { |
| Class* src_class = RegTypeInitializedReferenceToClass(src_type); |
| Class* check_class = RegTypeInitializedReferenceToClass(check_type); |
| assert(src_class != NULL); |
| assert(check_class != NULL); |
| |
| if (!check_class->IsAssignableFrom(src_class)) { |
| LOG(ERROR) << "VFY: " << src_class->GetDescriptor()->ToModifiedUtf8() |
| << " is not instance of " |
| << check_class->GetDescriptor()->ToModifiedUtf8(); |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| break; |
| } |
| } |
| |
| void DexVerifier::SetResultRegisterType(RegisterLine* register_line, |
| const int insn_reg_count, RegType new_type) { |
| SetRegisterType(register_line, RESULT_REGISTER(insn_reg_count), new_type); |
| } |
| |
| void DexVerifier::MarkRefsAsInitialized(RegisterLine* register_line, |
| int insn_reg_count, UninitInstanceMap* uninit_map, RegType uninit_type, |
| VerifyError* failure) { |
| RegType* insn_regs = register_line->reg_types_.get(); |
| Class* klass = GetUninitInstance(uninit_map, |
| RegTypeToUninitIndex(uninit_type)); |
| |
| if (klass == NULL) { |
| LOG(ERROR) << "VFY: unable to find type=" << std::hex << uninit_type |
| << std::dec << " (idx=" << RegTypeToUninitIndex(uninit_type) |
| << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| RegType init_type = RegTypeFromClass(klass); |
| int changed = 0; |
| for (int i = 0; i < insn_reg_count; i++) { |
| if (insn_regs[i] == uninit_type) { |
| insn_regs[i] = init_type; |
| changed++; |
| } |
| } |
| assert(changed > 0); |
| |
| return; |
| } |
| |
| void DexVerifier::MarkUninitRefsAsInvalid(RegisterLine* register_line, |
| int insn_reg_count, UninitInstanceMap* uninit_map, RegType uninit_type) { |
| RegType* insn_regs = register_line->reg_types_.get(); |
| |
| for (int i = 0; i < insn_reg_count; i++) { |
| if (insn_regs[i] == uninit_type) { |
| insn_regs[i] = kRegTypeConflict; |
| if (register_line->monitor_entries_.get() != NULL) |
| register_line->monitor_entries_[i] = 0; |
| } |
| } |
| } |
| |
| void DexVerifier::CopyRegister1(RegisterLine* register_line, uint32_t vdst, |
| uint32_t vsrc, TypeCategory cat, VerifyError* failure) { |
| assert(cat == kTypeCategory1nr || cat == kTypeCategoryRef); |
| RegType type = GetRegisterType(register_line, vsrc); |
| CheckTypeCategory(type, cat, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: copy1 v" << vdst << "<-v" << vsrc << " type=" << type |
| << " cat=" << (int) cat; |
| } else { |
| SetRegisterType(register_line, vdst, type); |
| if (cat == kTypeCategoryRef && register_line->monitor_entries_.get() != NULL) { |
| register_line->monitor_entries_[vdst] = |
| register_line->monitor_entries_[vsrc]; |
| } |
| } |
| } |
| |
| void DexVerifier::CopyRegister2(RegisterLine* register_line, uint32_t vdst, |
| uint32_t vsrc, VerifyError* failure) { |
| RegType type_l = GetRegisterType(register_line, vsrc); |
| RegType type_h = GetRegisterType(register_line, vsrc + 1); |
| |
| CheckTypeCategory(type_l, kTypeCategory2, failure); |
| CheckWidePair(type_l, type_h, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: copy2 v" << vdst << "<-v" << vsrc << " type=" << type_l |
| << "/" << type_h; |
| } else { |
| SetRegisterType(register_line, vdst, type_l); |
| } |
| } |
| |
| void DexVerifier::CopyResultRegister1(RegisterLine* register_line, |
| const int insn_reg_count, uint32_t vdst, TypeCategory cat, |
| VerifyError* failure) { |
| assert(vdst < (uint32_t) insn_reg_count); |
| |
| uint32_t vsrc = RESULT_REGISTER(insn_reg_count); |
| RegType type = GetRegisterType(register_line, vsrc); |
| CheckTypeCategory(type, cat, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: copyRes1 v" << vdst << "<-v" << vsrc << " cat=" |
| << (int) cat << " type=" << type; |
| } else { |
| SetRegisterType(register_line, vdst, type); |
| SetRegisterType(register_line, vsrc, kRegTypeUnknown); |
| } |
| } |
| |
| /* |
| * Implement "move-result-wide". Copy the category-2 value from the result |
| * register to another register, and reset the result register. |
| */ |
| void DexVerifier::CopyResultRegister2(RegisterLine* register_line, |
| const int insn_reg_count, uint32_t vdst, VerifyError* failure) { |
| assert(vdst < (uint32_t) insn_reg_count); |
| |
| uint32_t vsrc = RESULT_REGISTER(insn_reg_count); |
| RegType type_l = GetRegisterType(register_line, vsrc); |
| RegType type_h = GetRegisterType(register_line, vsrc + 1); |
| CheckTypeCategory(type_l, kTypeCategory2, failure); |
| CheckWidePair(type_l, type_h, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: copyRes2 v" << vdst << "<-v" << vsrc << " type=" |
| << type_l << "/" << type_h; |
| } else { |
| SetRegisterType(register_line, vdst, type_l); |
| SetRegisterType(register_line, vsrc, kRegTypeUnknown); |
| SetRegisterType(register_line, vsrc + 1, kRegTypeUnknown); |
| } |
| } |
| |
| int DexVerifier::GetClassDepth(Class* klass) { |
| int depth = 0; |
| while (klass->GetSuperClass() != NULL) { |
| klass = klass->GetSuperClass(); |
| depth++; |
| } |
| return depth; |
| } |
| |
| Class* DexVerifier::DigForSuperclass(Class* c1, Class* c2) { |
| int depth1, depth2; |
| |
| depth1 = GetClassDepth(c1); |
| depth2 = GetClassDepth(c2); |
| |
| /* pull the deepest one up */ |
| if (depth1 > depth2) { |
| while (depth1 > depth2) { |
| c1 = c1->GetSuperClass(); |
| depth1--; |
| } |
| } else { |
| while (depth2 > depth1) { |
| c2 = c2->GetSuperClass(); |
| depth2--; |
| } |
| } |
| |
| /* walk up in lock-step */ |
| while (c1 != c2) { |
| c1 = c1->GetSuperClass(); |
| c2 = c2->GetSuperClass(); |
| |
| assert(c1 != NULL && c2 != NULL); |
| } |
| |
| return c1; |
| } |
| |
| Class* DexVerifier::FindCommonArraySuperclass(Class* c1, Class* c2) { |
| Class* array_class = NULL; |
| Class* common_elem; |
| int array_dim1, array_dim2; |
| int i, num_dims; |
| bool has_primitive = false; |
| |
| array_dim1 = c1->GetArrayRank(); |
| array_dim2 = c2->GetArrayRank(); |
| assert(c1->GetArrayRank() > 0); |
| assert(c2->GetArrayRank() > 0); |
| |
| if (c1->GetComponentType()->IsPrimitive()) { |
| array_dim1--; |
| has_primitive = true; |
| } |
| if (c2->GetComponentType()->IsPrimitive()) { |
| array_dim2--; |
| has_primitive = true; |
| } |
| |
| if (!has_primitive && array_dim1 == array_dim2) { |
| /* |
| * Two arrays of reference types with equal dimensions. Try to |
| * find a good match. |
| */ |
| common_elem = FindCommonSuperclass(c1->GetComponentType(), |
| c2->GetComponentType()); |
| num_dims = array_dim1; |
| } else { |
| /* |
| * Mismatched array depths and/or array(s) of primitives. We want |
| * Object, or an Object array with appropriate dimensions. |
| * |
| * We initialize array_class to Object here, because it's possible |
| * for us to set num_dims=0. |
| */ |
| if (array_dim1 < array_dim2) |
| num_dims = array_dim1; |
| else |
| num_dims = array_dim2; |
| array_class = common_elem = c1->GetSuperClass(); // == java.lang.Object |
| } |
| |
| /* |
| * Find an appropriately-dimensioned array class. This is easiest |
| * to do iteratively, using the array class found by the current round |
| * as the element type for the next round. |
| */ |
| for (i = 0; i < num_dims; i++) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const ClassLoader* class_loader = c1->GetClassLoader(); |
| std::string descriptor = "[" + |
| common_elem->GetDescriptor()->ToModifiedUtf8(); |
| array_class = class_linker->FindClass(descriptor.c_str(), class_loader); |
| common_elem = array_class; |
| } |
| assert(array_class != NULL); |
| |
| return array_class; |
| } |
| |
| Class* DexVerifier::FindCommonSuperclass(Class* c1, Class* c2) { |
| assert(!c1->IsPrimitive() && !c2->IsPrimitive()); |
| |
| if (c1 == c2) |
| return c1; |
| |
| if (c1->IsInterface() && c1->IsAssignableFrom(c2)) { |
| return c1; |
| } |
| if (c2->IsInterface() && c2->IsAssignableFrom(c1)) { |
| return c2; |
| } |
| if (c1->IsArrayClass() && c2->IsArrayClass()) { |
| return FindCommonArraySuperclass(c1, c2); |
| } |
| |
| return DigForSuperclass(c1, c2); |
| } |
| |
| Class* DexVerifier::ResolveClassAndCheckAccess(const DexFile* dex_file, |
| uint32_t class_idx, const Class* referrer, VerifyError* failure) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Class* res_class = class_linker->ResolveType(*dex_file, class_idx, referrer); |
| |
| if (res_class == NULL) { |
| *failure = VERIFY_ERROR_NO_CLASS; |
| return NULL; |
| } |
| |
| /* Check if access is allowed. */ |
| if (!referrer->CanAccess(res_class)) { |
| LOG(ERROR) << "VFY: illegal class access: " |
| << referrer->GetDescriptor()->ToModifiedUtf8() << " -> " |
| << res_class->GetDescriptor()->ToModifiedUtf8(); |
| *failure = VERIFY_ERROR_ACCESS_CLASS; |
| return NULL; |
| } |
| |
| return res_class; |
| } |
| |
| DexVerifier::RegType DexVerifier::MergeTypes(RegType type1, RegType type2, |
| bool* changed) { |
| RegType result; |
| |
| /* Check for trivial case so we don't have to hit memory. */ |
| if (type1 == type2) |
| return type1; |
| |
| /* |
| * Use the table if we can, and reject any attempts to merge something |
| * from the table with a reference type. |
| * |
| * Uninitialized references are composed of the enum ORed with an |
| * index value. The uninitialized table entry at index zero *will* |
| * show up as a simple kRegTypeUninit value. Since this cannot be |
| * merged with anything but itself, the rules do the right thing. |
| */ |
| if (type1 < kRegTypeMAX) { |
| if (type2 < kRegTypeMAX) { |
| result = merge_table_[type1][type2]; |
| } else { |
| /* simple + reference == conflict, usually */ |
| if (type1 == kRegTypeZero) |
| result = type2; |
| else |
| result = kRegTypeConflict; |
| } |
| } else { |
| if (type2 < kRegTypeMAX) { |
| /* reference + simple == conflict, usually */ |
| if (type2 == kRegTypeZero) |
| result = type1; |
| else |
| result = kRegTypeConflict; |
| } else { |
| /* merging two references */ |
| if (RegTypeIsUninitReference(type1) || |
| RegTypeIsUninitReference(type2)) |
| { |
| /* can't merge uninit with anything but self */ |
| result = kRegTypeConflict; |
| } else { |
| Class* klass1 = RegTypeInitializedReferenceToClass(type1); |
| Class* klass2 = RegTypeInitializedReferenceToClass(type2); |
| Class* merged_class = FindCommonSuperclass(klass1, klass2); |
| assert(merged_class != NULL); |
| result = RegTypeFromClass(merged_class); |
| } |
| } |
| } |
| |
| if (result != type1) |
| *changed = true; |
| return result; |
| } |
| |
| DexVerifier::MonitorEntries DexVerifier::MergeMonitorEntries( |
| MonitorEntries ents1, MonitorEntries ents2, bool* changed) { |
| MonitorEntries result = ents1 & ents2; |
| if (result != ents1) |
| *changed = true; |
| return result; |
| } |
| |
| bool DexVerifier::UpdateRegisters(InsnFlags* insn_flags, |
| RegisterTable* reg_table, int next_insn, const RegisterLine* work_line) { |
| const size_t insn_reg_count_plus = reg_table->insn_reg_count_plus_; |
| assert(work_line != NULL); |
| const RegType* work_regs = work_line->reg_types_.get(); |
| |
| if (!InsnIsVisitedOrChanged(insn_flags, next_insn)) { |
| /* |
| * We haven't processed this instruction before, and we haven't |
| * touched the registers here, so there's nothing to "merge". Copy |
| * the registers over and mark it as changed. (This is the only |
| * way a register can transition out of "unknown", so this is not |
| * just an optimization.) |
| */ |
| CopyLineToTable(reg_table, next_insn, work_line); |
| InsnSetChanged(insn_flags, next_insn, true); |
| } else { |
| /* Merge registers, set Changed only if different */ |
| RegisterLine* target_line = GetRegisterLine(reg_table, next_insn); |
| RegType* target_regs = target_line->reg_types_.get(); |
| MonitorEntries* work_mon_ents = work_line->monitor_entries_.get(); |
| MonitorEntries* target_mon_ents = target_line->monitor_entries_.get(); |
| bool changed = false; |
| unsigned int idx; |
| |
| assert(target_regs != NULL); |
| if (target_mon_ents != NULL) { |
| /* Monitor stacks must be identical. */ |
| if (target_line->monitor_stack_top_ != work_line->monitor_stack_top_) { |
| LOG(ERROR) << "VFY: mismatched stack depth " |
| << target_line->monitor_stack_top_ << " vs. " |
| << work_line->monitor_stack_top_ << " at 0x" |
| << std::hex << next_insn << std::dec; |
| return false; |
| } |
| if (memcmp(target_line->monitor_stack_.get(), work_line->monitor_stack_.get(), |
| target_line->monitor_stack_top_ * sizeof(uint32_t)) != 0) { |
| LOG(ERROR) << "VFY: mismatched monitor stacks at 0x" << std::hex |
| << next_insn << std::dec; |
| return false; |
| } |
| } |
| |
| for (idx = 0; idx < insn_reg_count_plus; idx++) { |
| target_regs[idx] = MergeTypes(target_regs[idx], work_regs[idx], &changed); |
| |
| if (target_mon_ents != NULL) { |
| target_mon_ents[idx] = MergeMonitorEntries(target_mon_ents[idx], |
| work_mon_ents[idx], &changed); |
| } |
| } |
| |
| if (changed) { |
| InsnSetChanged(insn_flags, next_insn, true); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CanConvertTo1nr(RegType src_type, RegType check_type) { |
| static const char conv_tab[kRegType1nrEND - kRegType1nrSTART + 1] |
| [kRegType1nrEND - kRegType1nrSTART + 1] = |
| { |
| /* chk: 0 1 Z y Y h H c i b B s S C I F */ |
| { /*0*/ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*1*/ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*Z*/ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 }, |
| { /*y*/ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*Y*/ 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 }, |
| { /*h*/ 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1 }, |
| { /*H*/ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1 }, |
| { /*c*/ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1 }, |
| { /*i*/ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }, |
| { /*b*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0 }, |
| { /*B*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0 }, |
| { /*s*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }, |
| { /*S*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 }, |
| { /*C*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 }, |
| { /*I*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 }, |
| { /*F*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, |
| }; |
| |
| assert(check_type >= kRegType1nrSTART && check_type <= kRegType1nrEND); |
| |
| if (src_type >= kRegType1nrSTART && src_type <= kRegType1nrEND) |
| return (bool) conv_tab[src_type - kRegType1nrSTART] |
| [check_type - kRegType1nrSTART]; |
| |
| return false; |
| } |
| |
| bool DexVerifier::CanConvertTo2(RegType src_type, RegType check_type) { |
| return ((src_type == kRegTypeConstLo || src_type == check_type) && |
| (check_type == kRegTypeLongLo || check_type == kRegTypeDoubleLo)); |
| } |
| |
| DexVerifier::RegType DexVerifier::PrimitiveTypeToRegType( |
| Class::PrimitiveType prim_type) { |
| switch (prim_type) { |
| case Class::kPrimBoolean: return kRegTypeBoolean; |
| case Class::kPrimByte: return kRegTypeByte; |
| case Class::kPrimShort: return kRegTypeShort; |
| case Class::kPrimChar: return kRegTypeChar; |
| case Class::kPrimInt: return kRegTypeInteger; |
| case Class::kPrimLong: return kRegTypeLongLo; |
| case Class::kPrimFloat: return kRegTypeFloat; |
| case Class::kPrimDouble: return kRegTypeDoubleLo; |
| case Class::kPrimVoid: |
| default: { |
| return kRegTypeUnknown; |
| } |
| } |
| } |
| |
| DexVerifier::RegType DexVerifier::ConstTypeToRegType(RegType const_type) { |
| switch (const_type) { |
| case kRegTypeConstPosByte: return kRegTypePosByte; |
| case kRegTypeConstByte: return kRegTypeByte; |
| case kRegTypeConstPosShort: return kRegTypePosShort; |
| case kRegTypeConstShort: return kRegTypeShort; |
| case kRegTypeConstChar: return kRegTypeChar; |
| case kRegTypeConstInteger: return kRegTypeInteger; |
| default: { |
| return const_type; |
| } |
| } |
| } |
| |
| char DexVerifier::DetermineCat1Const(int32_t value) { |
| if (value < -32768) |
| return kRegTypeConstInteger; |
| else if (value < -128) |
| return kRegTypeConstShort; |
| else if (value < 0) |
| return kRegTypeConstByte; |
| else if (value == 0) |
| return kRegTypeZero; |
| else if (value == 1) |
| return kRegTypeOne; |
| else if (value < 128) |
| return kRegTypeConstPosByte; |
| else if (value < 32768) |
| return kRegTypeConstPosShort; |
| else if (value < 65536) |
| return kRegTypeConstChar; |
| else |
| return kRegTypeConstInteger; |
| } |
| |
| void DexVerifier::CheckFinalFieldAccess(const Method* method, |
| const Field* field, VerifyError* failure) { |
| if (!field->IsFinal()) |
| return; |
| |
| /* make sure we're in the same class */ |
| if (method->GetDeclaringClass() != field->GetDeclaringClass()) { |
| LOG(ERROR) << "VFY: can't modify final field " |
| << field->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << field->GetName()->ToModifiedUtf8(); |
| *failure = VERIFY_ERROR_ACCESS_FIELD; |
| return; |
| } |
| } |
| |
| void DexVerifier::CheckArrayIndexType(const Method* method, RegType reg_type, |
| VerifyError* failure) { |
| if (*failure == VERIFY_ERROR_NONE) { |
| /* |
| * The 1nr types are interchangeable at this level. We could |
| * do something special if we can definitively identify it as a |
| * float, but there's no real value in doing so. |
| */ |
| CheckTypeCategory(reg_type, kTypeCategory1nr, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "Invalid reg type for array index (" << reg_type << ")"; |
| } |
| } |
| } |
| |
| bool DexVerifier::CheckConstructorReturn(const Method* method, |
| const RegisterLine* register_line, const int insn_reg_count) { |
| const RegType* insn_regs = register_line->reg_types_.get(); |
| |
| if (!IsInitMethod(method)) |
| return true; |
| |
| RegType uninit_this = RegTypeFromUninitIndex(kUninitThisArgSlot); |
| |
| for (int i = 0; i < insn_reg_count; i++) { |
| if (insn_regs[i] == uninit_this) { |
| LOG(ERROR) << "VFY: <init> returning without calling superclass init"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckMoveException(const uint16_t* insns, int insn_idx) { |
| if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) { |
| LOG(ERROR) << "VFY: invalid use of move-exception"; |
| return false; |
| } |
| return true; |
| } |
| |
| void DexVerifier::CheckTypeCategory(RegType type, TypeCategory cat, |
| VerifyError* failure) { |
| switch (cat) { |
| case kTypeCategory1nr: |
| switch (type) { |
| case kRegTypeZero: |
| case kRegTypeOne: |
| case kRegTypeBoolean: |
| case kRegTypeConstPosByte: |
| case kRegTypeConstByte: |
| case kRegTypeConstPosShort: |
| case kRegTypeConstShort: |
| case kRegTypeConstChar: |
| case kRegTypeConstInteger: |
| case kRegTypePosByte: |
| case kRegTypeByte: |
| case kRegTypePosShort: |
| case kRegTypeShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| case kRegTypeFloat: |
| break; |
| default: |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case kTypeCategory2: |
| switch (type) { |
| case kRegTypeConstLo: |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| break; |
| default: |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case kTypeCategoryRef: |
| if (type != kRegTypeZero && !RegTypeIsReference(type)) |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| default: |
| assert(false); |
| *failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| |
| void DexVerifier::CheckWidePair(RegType type_l, RegType type_h, |
| VerifyError* failure) { |
| if ((type_h != type_l + 1)) |
| *failure = VERIFY_ERROR_GENERIC; |
| } |
| |
| void DexVerifier::CheckUnop(RegisterLine* register_line, |
| Instruction::DecodedInstruction* dec_insn, RegType dst_type, |
| RegType src_type, VerifyError* failure) { |
| VerifyRegisterType(register_line, dec_insn->vB_, src_type, failure); |
| SetRegisterType(register_line, dec_insn->vA_, dst_type); |
| } |
| |
| bool DexVerifier::UpcastBooleanOp(RegisterLine* register_line, uint32_t reg1, |
| uint32_t reg2) { |
| RegType type1, type2; |
| |
| type1 = GetRegisterType(register_line, reg1); |
| type2 = GetRegisterType(register_line, reg2); |
| |
| if ((type1 == kRegTypeBoolean || type1 == kRegTypeZero || type1 == kRegTypeOne) && |
| (type2 == kRegTypeBoolean || type2 == kRegTypeZero || type2 == kRegTypeOne)) { |
| return true; |
| } |
| return false; |
| } |
| |
| void DexVerifier::CheckLitop(RegisterLine* register_line, |
| Instruction::DecodedInstruction* dec_insn, RegType dst_type, |
| RegType src_type, bool check_boolean_op, VerifyError* failure) { |
| VerifyRegisterType(register_line, dec_insn->vB_, src_type, failure); |
| |
| if ((*failure == VERIFY_ERROR_NONE) && check_boolean_op) { |
| assert(dst_type == kRegTypeInteger); |
| |
| /* check vB with the call, then check the constant manually */ |
| if (UpcastBooleanOp(register_line, dec_insn->vB_, dec_insn->vB_) |
| && (dec_insn->vC_ == 0 || dec_insn->vC_ == 1)) { |
| dst_type = kRegTypeBoolean; |
| } |
| } |
| |
| SetRegisterType(register_line, dec_insn->vA_, dst_type); |
| } |
| |
| void DexVerifier::CheckBinop(RegisterLine* register_line, |
| Instruction::DecodedInstruction* dec_insn, RegType dst_type, |
| RegType src_type1, RegType src_type2, bool check_boolean_op, |
| VerifyError* failure) { |
| VerifyRegisterType(register_line, dec_insn->vB_, src_type1, failure); |
| VerifyRegisterType(register_line, dec_insn->vC_, src_type2, failure); |
| |
| if ((*failure == VERIFY_ERROR_NONE) && check_boolean_op) { |
| assert(dst_type == kRegTypeInteger); |
| if (UpcastBooleanOp(register_line, dec_insn->vB_, dec_insn->vC_)) |
| dst_type = kRegTypeBoolean; |
| } |
| |
| SetRegisterType(register_line, dec_insn->vA_, dst_type); |
| } |
| |
| void DexVerifier::CheckBinop2addr(RegisterLine* register_line, |
| Instruction::DecodedInstruction* dec_insn, RegType dst_type, |
| RegType src_type1, RegType src_type2, bool check_boolean_op, |
| VerifyError* failure) { |
| VerifyRegisterType(register_line, dec_insn->vA_, src_type1, failure); |
| VerifyRegisterType(register_line, dec_insn->vB_, src_type2, failure); |
| |
| if ((*failure == VERIFY_ERROR_NONE) && check_boolean_op) { |
| assert(dst_type == kRegTypeInteger); |
| if (UpcastBooleanOp(register_line, dec_insn->vA_, dec_insn->vB_)) |
| dst_type = kRegTypeBoolean; |
| } |
| |
| SetRegisterType(register_line, dec_insn->vA_, dst_type); |
| } |
| |
| DexVerifier::RegType DexVerifier::AdjustForRightShift( |
| RegisterLine* register_line, int reg, unsigned int shift_count, |
| bool is_unsigned_shift, VerifyError* failure) { |
| RegType src_type = GetRegisterType(register_line, reg); |
| RegType new_type; |
| |
| /* convert const derived types to their actual types */ |
| src_type = ConstTypeToRegType(src_type); |
| |
| /* no-op */ |
| if (shift_count == 0) |
| return src_type; |
| |
| /* safe defaults */ |
| if (is_unsigned_shift) |
| new_type = kRegTypeInteger; |
| else |
| new_type = src_type; |
| |
| if (shift_count >= 32) { |
| LOG(ERROR) << "Got unexpectedly large shift count " << shift_count; |
| /* fail? */ |
| return new_type; |
| } |
| |
| switch (src_type) { |
| case kRegTypeInteger: /* 32-bit signed value */ |
| if (is_unsigned_shift) { |
| if (shift_count > 24) |
| new_type = kRegTypePosByte; |
| else if (shift_count >= 16) |
| new_type = kRegTypeChar; |
| } else { |
| if (shift_count >= 24) |
| new_type = kRegTypeByte; |
| else if (shift_count >= 16) |
| new_type = kRegTypeShort; |
| } |
| break; |
| case kRegTypeShort: /* 16-bit signed value */ |
| if (is_unsigned_shift) { |
| /* default (kRegTypeInteger) is correct */ |
| } else { |
| if (shift_count >= 8) |
| new_type = kRegTypeByte; |
| } |
| break; |
| case kRegTypePosShort: /* 15-bit unsigned value */ |
| if (shift_count >= 8) |
| new_type = kRegTypePosByte; |
| break; |
| case kRegTypeChar: /* 16-bit unsigned value */ |
| if (shift_count > 8) |
| new_type = kRegTypePosByte; |
| break; |
| case kRegTypeByte: /* 8-bit signed value */ |
| /* defaults (u=kRegTypeInteger / s=src_type) are correct */ |
| break; |
| case kRegTypePosByte: /* 7-bit unsigned value */ |
| /* always use new_type=src_type */ |
| new_type = src_type; |
| break; |
| case kRegTypeZero: /* 1-bit unsigned value */ |
| case kRegTypeOne: |
| case kRegTypeBoolean: |
| /* unnecessary? */ |
| new_type = kRegTypeZero; |
| break; |
| default: |
| /* long, double, references; shouldn't be here! */ |
| assert(false); |
| break; |
| } |
| |
| return new_type; |
| } |
| |
| void DexVerifier::VerifyFilledNewArrayRegs(const Method* method, |
| RegisterLine* register_line, |
| const Instruction::DecodedInstruction* dec_insn, Class* res_class, |
| bool is_range, VerifyError* failure) { |
| uint32_t arg_count = dec_insn->vA_; |
| RegType expected_type; |
| Class::PrimitiveType elem_type; |
| unsigned int ui; |
| |
| assert(res_class->IsArrayClass()); |
| elem_type = res_class->GetComponentType()->GetPrimitiveType(); |
| if (elem_type == Class::kPrimNot) { |
| expected_type = RegTypeFromClass(res_class->GetComponentType()); |
| } else { |
| expected_type = PrimitiveTypeToRegType(elem_type); |
| } |
| |
| /* |
| * Verify each register. If "arg_count" is bad, VerifyRegisterType() |
| * will run off the end of the list and fail. It's legal, if silly, |
| * for arg_count to be zero. |
| */ |
| for (ui = 0; ui < arg_count; ui++) { |
| uint32_t get_reg; |
| |
| if (is_range) |
| get_reg = dec_insn->vC_ + ui; |
| else |
| get_reg = dec_insn->arg_[ui]; |
| |
| VerifyRegisterType(register_line, get_reg, expected_type, failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: filled-new-array arg " << ui << "(" << get_reg |
| << ") not valid"; |
| return; |
| } |
| } |
| } |
| |
| bool DexVerifier::IsCorrectInvokeKind(MethodType method_type, |
| Method* res_method) { |
| switch (method_type) { |
| case METHOD_DIRECT: |
| return res_method->IsDirect(); |
| case METHOD_STATIC: |
| return res_method->IsStatic(); |
| case METHOD_VIRTUAL: |
| case METHOD_INTERFACE: |
| return !res_method->IsDirect(); |
| default: |
| return false; |
| } |
| } |
| |
| Method* DexVerifier::VerifyInvocationArgs(VerifierData* vdata, |
| RegisterLine* register_line, const int insn_reg_count, |
| const Instruction::DecodedInstruction* dec_insn, MethodType method_type, |
| bool is_range, bool is_super, VerifyError* failure) { |
| Method* method = vdata->method_; |
| const DexFile* dex_file = vdata->dex_file_; |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| UninitInstanceMap* uninit_map = vdata->uninit_map_.get(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); |
| const ClassLoader* class_loader = |
| method->GetDeclaringClass()->GetClassLoader(); |
| |
| Method* res_method; |
| std::string sig; |
| size_t sig_offset; |
| int expected_args; |
| int actual_args; |
| |
| /* |
| * Resolve the method. This could be an abstract or concrete method |
| * depending on what sort of call we're making. |
| */ |
| res_method = class_linker->ResolveMethod(*dex_file, dec_insn->vB_, dex_cache, |
| class_loader, (method_type == METHOD_DIRECT || method_type == METHOD_STATIC)); |
| |
| if (res_method == NULL) { |
| const DexFile::MethodId& method_id = dex_file->GetMethodId(dec_insn->vB_); |
| const char* method_name = dex_file->GetMethodName(method_id); |
| const char* method_proto = dex_file->GetMethodPrototype(method_id); |
| const char* class_descriptor = dex_file->GetMethodClassDescriptor(method_id); |
| |
| LOG(ERROR) << "VFY: unable to resolve method " << dec_insn->vB_ << ": " |
| << class_descriptor << "." << method_name << " " << method_proto; |
| *failure = VERIFY_ERROR_NO_METHOD; |
| return NULL; |
| } |
| |
| /* |
| * Only time you can explicitly call a method starting with '<' is when |
| * making a "direct" invocation on "<init>". There are additional |
| * restrictions but we don't enforce them here. |
| */ |
| if (res_method->GetName()->Equals("<init>")) { |
| if (method_type != METHOD_DIRECT || !IsInitMethod(res_method)) { |
| LOG(ERROR) << "VFY: invalid call to " |
| << res_method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << res_method->GetName(); |
| goto bad_sig; |
| } |
| } |
| |
| /* |
| * See if the method type implied by the invoke instruction matches the |
| * access flags for the target method. |
| */ |
| if (!IsCorrectInvokeKind(method_type, res_method)) { |
| LOG(ERROR) << "VFY: invoke type does not match method type of " |
| << res_method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << res_method->GetName()->ToModifiedUtf8(); |
| |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| /* |
| * If we're using invoke-super(method), make sure that the executing |
| * method's class' superclass has a vtable entry for the target method. |
| */ |
| if (is_super) { |
| assert(method_type == METHOD_VIRTUAL); |
| Class* super = method->GetDeclaringClass()->GetSuperClass(); |
| if (super == NULL || res_method->GetMethodIndex() > super->GetVTable()->GetLength()) { |
| if (super == NULL) { |
| LOG(ERROR) << "VFY: invalid invoke-super from " |
| << method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << method->GetName()->ToModifiedUtf8() << " to super -." |
| << res_method->GetName()->ToModifiedUtf8() |
| << " " << res_method->GetSignature()->ToModifiedUtf8(); |
| } else { |
| LOG(ERROR) << "VFY: invalid invoke-super from " |
| << method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << method->GetName()->ToModifiedUtf8() << " to super " |
| << super->GetDescriptor()->ToModifiedUtf8() |
| << "." << res_method->GetName()->ToModifiedUtf8() |
| << " " << res_method->GetSignature()->ToModifiedUtf8(); |
| } |
| *failure = VERIFY_ERROR_NO_METHOD; |
| return NULL; |
| } |
| } |
| |
| /* |
| * We use vAA as our expected arg count, rather than res_method->insSize, |
| * because we need to match the call to the signature. Also, we might |
| * might be calling through an abstract method definition (which doesn't |
| * have register count values). |
| */ |
| expected_args = dec_insn->vA_; |
| actual_args = 0; |
| |
| /* caught by static verifier */ |
| assert(is_range || expected_args <= 5); |
| |
| if (expected_args > code_item->outs_size_) { |
| LOG(ERROR) << "VFY: invalid arg count (" << expected_args |
| << ") exceeds outsSize (" << code_item->outs_size_ << ")"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| sig = res_method->GetSignature()->ToModifiedUtf8(); |
| if (sig[0] != '(') { |
| LOG(ERROR) << "VFY: descriptor doesn't start with '(': " << sig; |
| goto bad_sig; |
| } |
| |
| /* |
| * Check the "this" argument, which must be an instance of the class |
| * that declared the method. For an interface class, we don't do the |
| * full interface merge, so we can't do a rigorous check here (which |
| * is okay since we have to do it at runtime). |
| */ |
| if (!res_method->IsStatic()) { |
| Class* actual_this_ref; |
| RegType actual_arg_type; |
| |
| actual_arg_type = GetInvocationThis(register_line, dec_insn, failure); |
| if (*failure != VERIFY_ERROR_NONE) |
| return NULL; |
| |
| if (RegTypeIsUninitReference(actual_arg_type) && |
| !res_method->GetName()->Equals("<init>")) { |
| LOG(ERROR) << "VFY: 'this' arg must be initialized"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| if (method_type != METHOD_INTERFACE && actual_arg_type != kRegTypeZero) { |
| actual_this_ref = RegTypeReferenceToClass(actual_arg_type, uninit_map); |
| if (!res_method->GetDeclaringClass()->IsAssignableFrom(actual_this_ref)) { |
| LOG(ERROR) << "VFY: 'this' arg '" |
| << actual_this_ref->GetDescriptor()->ToModifiedUtf8() |
| << "' not instance of '" |
| << res_method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "'"; |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| } |
| actual_args++; |
| } |
| |
| /* |
| * Process the target method's signature. This signature may or may not |
| * have been verified, so we can't assume it's properly formed. |
| */ |
| for (sig_offset = 1; sig_offset < sig.size(); sig_offset++) { |
| if (sig[sig_offset] == ')') |
| break; |
| |
| if (actual_args >= expected_args) { |
| LOG(ERROR) << "VFY: expected " << expected_args << " args, found more (" |
| << sig.substr(sig_offset) << ")"; |
| goto bad_sig; |
| } |
| |
| uint32_t get_reg; |
| if (is_range) |
| get_reg = dec_insn->vC_ + actual_args; |
| else |
| get_reg = dec_insn->arg_[actual_args]; |
| |
| switch (sig[sig_offset]) { |
| case 'L': |
| { |
| Class* klass = LookupSignatureClass(method, sig.substr(sig_offset), |
| failure); |
| if (*failure != VERIFY_ERROR_NONE) |
| goto bad_sig; |
| VerifyRegisterType(register_line, get_reg, RegTypeFromClass(klass), |
| failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: bad arg " << actual_args << " (into " |
| << klass->GetDescriptor()->ToModifiedUtf8() << ")"; |
| goto bad_sig; |
| } |
| sig_offset += sig.substr(sig_offset).find(';'); |
| } |
| actual_args++; |
| break; |
| case '[': |
| { |
| Class* klass = LookupSignatureArrayClass(method, |
| sig.substr(sig_offset), failure); |
| if (*failure != VERIFY_ERROR_NONE) |
| goto bad_sig; |
| VerifyRegisterType(register_line, get_reg, RegTypeFromClass(klass), |
| failure); |
| if (*failure != VERIFY_ERROR_NONE) { |
| LOG(ERROR) << "VFY: bad arg " << actual_args << " (into " |
| << klass->GetDescriptor()->ToModifiedUtf8() << ")"; |
| goto bad_sig; |
| } |
| while (sig[sig_offset] == '[') |
| sig_offset++; |
| if (sig[sig_offset] == 'L') |
| sig_offset += sig.substr(sig_offset).find(';'); |
| } |
| actual_args++; |
| break; |
| case 'Z': |
| VerifyRegisterType(register_line, get_reg, kRegTypeBoolean, failure); |
| actual_args++; |
| break; |
| case 'C': |
| VerifyRegisterType(register_line, get_reg, kRegTypeChar, failure); |
| actual_args++; |
| break; |
| case 'B': |
| VerifyRegisterType(register_line, get_reg, kRegTypeByte, failure); |
| actual_args++; |
| break; |
| case 'I': |
| VerifyRegisterType(register_line, get_reg, kRegTypeInteger, failure); |
| actual_args++; |
| break; |
| case 'S': |
| VerifyRegisterType(register_line, get_reg, kRegTypeShort, failure); |
| actual_args++; |
| break; |
| case 'F': |
| VerifyRegisterType(register_line, get_reg, kRegTypeFloat, failure); |
| actual_args++; |
| break; |
| case 'D': |
| VerifyRegisterType(register_line, get_reg, kRegTypeDoubleLo, failure); |
| actual_args += 2; |
| break; |
| case 'J': |
| VerifyRegisterType(register_line, get_reg, kRegTypeLongLo, failure); |
| actual_args += 2; |
| break; |
| default: |
| LOG(ERROR) << "VFY: invocation target: bad signature type char '" |
| << sig << "'"; |
| goto bad_sig; |
| } |
| } |
| if (sig[sig_offset] != ')') { |
| LOG(ERROR) << "VFY: invocation target: bad signature '" |
| << res_method->GetSignature()->ToModifiedUtf8() << "'"; |
| goto bad_sig; |
| } |
| |
| if (actual_args != expected_args) { |
| LOG(ERROR) << "VFY: expected " << expected_args << " args, found " |
| << actual_args; |
| goto bad_sig; |
| } |
| |
| return res_method; |
| |
| bad_sig: |
| if (res_method != NULL) { |
| LOG(ERROR) << "VFY: rejecting call to " |
| << res_method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << res_method->GetName()->ToModifiedUtf8() << " " |
| << res_method->GetSignature()->ToModifiedUtf8(); |
| } |
| |
| if (*failure == VERIFY_ERROR_NONE) |
| *failure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| DexVerifier::RegisterMap* DexVerifier::GenerateRegisterMapV(VerifierData* vdata) |
| { |
| const DexFile::CodeItem* code_item = vdata->code_item_; |
| int i, bytes_for_addr, gc_point_count; |
| |
| if (code_item->registers_size_ >= 2048) { |
| LOG(ERROR) << "ERROR: register map can't handle " |
| << code_item->registers_size_ << " registers"; |
| return NULL; |
| } |
| uint8_t reg_width = (code_item->registers_size_ + 7) / 8; |
| |
| /* |
| * Decide if we need 8 or 16 bits to hold the address. Strictly speaking |
| * we only need 16 bits if we actually encode an address >= 256 -- if |
| * the method has a section at the end without GC points (e.g. array |
| * data) we don't need to count it. The situation is unusual, and |
| * detecting it requires scanning the entire method, so we don't bother. |
| */ |
| RegisterMapFormat format; |
| if (code_item->insns_size_ < 256) { |
| format = kRegMapFormatCompact8; |
| bytes_for_addr = 1; |
| } else { |
| format = kRegMapFormatCompact16; |
| bytes_for_addr = 2; |
| } |
| |
| /* |
| * Count up the number of GC point instructions. |
| * |
| * NOTE: this does not automatically include the first instruction, |
| * since we don't count method entry as a GC point. |
| */ |
| gc_point_count = 0; |
| for (i = 0; i < (int) code_item->insns_size_; i++) { |
| if (InsnIsGcPoint(vdata->insn_flags_.get(), i)) |
| gc_point_count++; |
| } |
| if (gc_point_count >= 65536) { |
| /* We could handle this, but in practice we don't get near this. */ |
| LOG(ERROR) << "ERROR: register map can't handle " << gc_point_count |
| << " gc points in one method"; |
| return NULL; |
| } |
| |
| /* Calculate size of buffer to hold the map data. */ |
| uint32_t data_size = gc_point_count * (bytes_for_addr + reg_width); |
| |
| RegisterMap* map = new RegisterMap(format, reg_width, gc_point_count, |
| data_size); |
| |
| /* Populate it. */ |
| uint8_t* map_data = map->data_; |
| for (i = 0; i < (int) vdata->code_item_->insns_size_; i++) { |
| if (InsnIsGcPoint(vdata->insn_flags_.get(), i)) { |
| assert(vdata->register_lines_[i].reg_types_.get() != NULL); |
| if (format == kRegMapFormatCompact8) { |
| *map_data++ = i; |
| } else /*kRegMapFormatCompact16*/ { |
| *map_data++ = i & 0xff; |
| *map_data++ = i >> 8; |
| } |
| OutputTypeVector(vdata->register_lines_[i].reg_types_.get(), |
| code_item->registers_size_, map_data); |
| map_data += reg_width; |
| } |
| } |
| |
| assert((uint32_t) map_data - (uint32_t) map->data_ == data_size); |
| |
| // TODO: Remove this check when it's really running... |
| #if 1 |
| if (!VerifyMap(vdata, map)) { |
| LOG(ERROR) << "Map failed to verify"; |
| return NULL; |
| } |
| #endif |
| |
| /* Try to compress the map. */ |
| RegisterMap* compress_map = CompressMapDifferential(map); |
| if (compress_map != NULL) { |
| // TODO: Remove this check when it's really running... |
| #if 1 |
| /* |
| * Expand the compressed map we just created, and compare it |
| * to the original. Abort the VM if it doesn't match up. |
| */ |
| UniquePtr<RegisterMap> uncompressed_map(UncompressMapDifferential(compress_map)); |
| if (uncompressed_map.get() == NULL) { |
| LOG(ERROR) << "Map failed to uncompress - " |
| << vdata->method_->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << vdata->method_->GetName()->ToModifiedUtf8(); |
| delete map; |
| delete compress_map; |
| /* bad - compression is broken or we're out of memory */ |
| return NULL; |
| } else { |
| if (!CompareMaps(map, uncompressed_map.get())) { |
| LOG(ERROR) << "Map comparison failed - " |
| << vdata->method_->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << vdata->method_->GetName()->ToModifiedUtf8(); |
| delete map; |
| delete compress_map; |
| /* bad - compression is broken */ |
| return NULL; |
| } |
| } |
| #endif |
| delete map; |
| map = compress_map; |
| } |
| |
| return map; |
| } |
| |
| DexVerifier::RegisterMap* DexVerifier::GetExpandedRegisterMapHelper( |
| Method* method, RegisterMap* map) { |
| RegisterMap* new_map; |
| |
| if (map == NULL) |
| return NULL; |
| |
| /* TODO: sanity check to ensure this isn't called w/o external locking */ |
| |
| uint8_t format = map->header_->format_; |
| switch (format) { |
| case kRegMapFormatCompact8: |
| case kRegMapFormatCompact16: |
| /* already expanded */ |
| return map; |
| case kRegMapFormatDifferential: |
| new_map = UncompressMapDifferential(map); |
| break; |
| default: |
| LOG(ERROR) << "Unknown format " << format |
| << " in dvmGetExpandedRegisterMap"; |
| return NULL; |
| } |
| |
| if (new_map == NULL) { |
| LOG(ERROR) << "Map failed to uncompress (fmt=" << format << ") " |
| << method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8() |
| << "." << method->GetName(); |
| return NULL; |
| } |
| |
| /* Update method, and free compressed map if it was sitting on the heap. */ |
| ByteArray* header = ByteArray::Alloc(sizeof(RegisterMapHeader)); |
| ByteArray* data = ByteArray::Alloc(ComputeRegisterMapSize(map)); |
| |
| memcpy(header->GetData(), map->header_, sizeof(RegisterMapHeader)); |
| memcpy(data->GetData(), map->data_, ComputeRegisterMapSize(map)); |
| |
| method->SetRegisterMapHeader(header); |
| method->SetRegisterMapData(data); |
| |
| delete map; |
| return new_map; |
| } |
| |
| const uint8_t* DexVerifier::RegisterMapGetLine(const RegisterMap* map, int addr) { |
| int addr_width, line_width; |
| uint8_t format = map->header_->format_; |
| uint16_t num_entries = map->header_->num_entries_; |
| |
| assert(num_entries > 0); |
| |
| switch (format) { |
| case kRegMapFormatNone: |
| return NULL; |
| case kRegMapFormatCompact8: |
| addr_width = 1; |
| break; |
| case kRegMapFormatCompact16: |
| addr_width = 2; |
| break; |
| default: |
| LOG(ERROR) << "Unknown format " << format; |
| return NULL; |
| } |
| |
| line_width = addr_width + map->header_->reg_width_; |
| |
| /* |
| * Find the appropriate entry. Many maps are very small, some are very large. |
| */ |
| static const int kSearchThreshold = 8; |
| const uint8_t* data = NULL; |
| int line_addr; |
| |
| if (num_entries < kSearchThreshold) { |
| int i; |
| data = map->data_; |
| for (i = num_entries; i > 0; i--) { |
| line_addr = data[0]; |
| if (addr_width > 1) |
| line_addr |= data[1] << 8; |
| if (line_addr == addr) |
| return data + addr_width; |
| |
| data += line_width; |
| } |
| assert(data == map->data_ + line_width * num_entries); |
| } else { |
| int hi, lo, mid; |
| |
| lo = 0; |
| hi = num_entries -1; |
| |
| while (hi >= lo) { |
| mid = (hi + lo) / 2; |
| data = map->data_ + line_width * mid; |
| |
| line_addr = data[0]; |
| if (addr_width > 1) |
| line_addr |= data[1] << 8; |
| |
| if (addr > line_addr) { |
| lo = mid + 1; |
| } else if (addr < line_addr) { |
| hi = mid - 1; |
| } else { |
| return data + addr_width; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void DexVerifier::OutputTypeVector(const RegType* regs, int insn_reg_count, |
| uint8_t* data) { |
| uint8_t val = 0; |
| int i; |
| |
| for (i = 0; i < insn_reg_count; i++) { |
| RegType type = *regs++; |
| val >>= 1; |
| if (IsReferenceType(type)) |
| val |= 0x80; /* set hi bit */ |
| |
| if ((i & 0x07) == 7) |
| *data++ = val; |
| } |
| if ((i & 0x07) != 0) { |
| /* Flush bits from last byte. */ |
| val >>= 8 - (i & 0x07); |
| *data++ = val; |
| } |
| } |
| |
| bool DexVerifier::VerifyMap(VerifierData* vdata, const RegisterMap* map) { |
| const uint8_t* raw_map = map->data_; |
| uint8_t format = map->header_->format_; |
| const int num_entries = map->header_->num_entries_; |
| int ent; |
| |
| if ((vdata->code_item_->registers_size_ + 7) / 8 != map->header_->reg_width_) { |
| LOG(ERROR) << "GLITCH: registersSize=" << vdata->code_item_->registers_size_ |
| << ", reg_width=" << map->header_->reg_width_; |
| return false; |
| } |
| |
| for (ent = 0; ent < num_entries; ent++) { |
| int addr; |
| |
| switch (format) { |
| case kRegMapFormatCompact8: |
| addr = *raw_map++; |
| break; |
| case kRegMapFormatCompact16: |
| addr = *raw_map++; |
| addr |= (*raw_map++) << 8; |
| break; |
| default: |
| LOG(FATAL) << "GLITCH: bad format (" << format << ")"; |
| return false; |
| } |
| |
| const RegType* regs = vdata->register_lines_[addr].reg_types_.get(); |
| if (regs == NULL) { |
| LOG(ERROR) << "GLITCH: addr " << addr << " has no data"; |
| return false; |
| } |
| |
| uint8_t val = 0; |
| int i; |
| |
| for (i = 0; i < vdata->code_item_->registers_size_; i++) { |
| bool bit_is_ref, reg_is_ref; |
| |
| val >>= 1; |
| if ((i & 0x07) == 0) { |
| /* Load next byte of data. */ |
| val = *raw_map++; |
| } |
| |
| bit_is_ref = val & 0x01; |
| |
| RegType type = regs[i]; |
| reg_is_ref = IsReferenceType(type); |
| |
| if (bit_is_ref != reg_is_ref) { |
| LOG(ERROR) << "GLITCH: addr " << addr << " reg " << i << ": bit=" |
| << bit_is_ref << " reg=" << reg_is_ref << "(" << type << ")"; |
| return false; |
| } |
| } |
| /* Raw_map now points to the address field of the next entry. */ |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CompareMaps(const RegisterMap* map1, const RegisterMap* map2) |
| { |
| size_t size1, size2; |
| |
| size1 = ComputeRegisterMapSize(map1); |
| size2 = ComputeRegisterMapSize(map2); |
| if (size1 != size2) { |
| LOG(ERROR) << "CompareMaps: size mismatch (" << size1 << " vs " << size2 |
| << ")"; |
| return false; |
| } |
| |
| if (map1->header_->format_ != map2->header_->format_ || |
| map1->header_->reg_width_ != map2->header_->reg_width_ || |
| map1->header_->num_entries_ != map2->header_->num_entries_) { |
| LOG(ERROR) << "CompareMaps: fields mismatch"; |
| } |
| if (memcmp(map1->data_, map2->data_, size1) != 0) { |
| LOG(ERROR) << "CompareMaps: data mismatch"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| size_t DexVerifier::ComputeRegisterMapSize(const RegisterMap* map) { |
| uint8_t format = map->header_->format_; |
| uint16_t num_entries = map->header_->num_entries_; |
| |
| assert(map != NULL); |
| |
| switch (format) { |
| case kRegMapFormatNone: |
| return 1; |
| case kRegMapFormatCompact8: |
| return (1 + map->header_->reg_width_) * num_entries; |
| case kRegMapFormatCompact16: |
| return (2 + map->header_->reg_width_) * num_entries; |
| case kRegMapFormatDifferential: |
| { |
| /* Decoded ULEB128 length. */ |
| const uint8_t* ptr = map->data_; |
| return DecodeUnsignedLeb128(&ptr); |
| } |
| default: |
| LOG(FATAL) << "Bad register map format " << format; |
| return 0; |
| } |
| } |
| |
| int DexVerifier::ComputeBitDiff(const uint8_t* bits1, const uint8_t* bits2, |
| int byte_width, int* first_bit_changed_ptr, int* num_bits_changed_ptr, |
| uint8_t* leb_out_buf) { |
| int num_bits_changed = 0; |
| int first_bit_changed = -1; |
| int leb_size = 0; |
| int byte_num; |
| |
| /* |
| * Run through the vectors, first comparing them at the byte level. This |
| * will yield a fairly quick result if nothing has changed between them. |
| */ |
| for (byte_num = 0; byte_num < byte_width; byte_num++) { |
| uint8_t byte1 = *bits1++; |
| uint8_t byte2 = *bits2++; |
| if (byte1 != byte2) { |
| /* Walk through the byte, identifying the changed bits. */ |
| int bit_num; |
| for (bit_num = 0; bit_num < 8; bit_num++) { |
| if (((byte1 >> bit_num) & 0x01) != ((byte2 >> bit_num) & 0x01)) { |
| int bit_offset = (byte_num << 3) + bit_num; |
| |
| if (first_bit_changed < 0) |
| first_bit_changed = bit_offset; |
| num_bits_changed++; |
| |
| if (leb_out_buf == NULL) { |
| leb_size += UnsignedLeb128Size(bit_offset); |
| } else { |
| uint8_t* cur_buf = leb_out_buf; |
| leb_out_buf = WriteUnsignedLeb128(leb_out_buf, bit_offset); |
| leb_size += leb_out_buf - cur_buf; |
| } |
| } |
| } |
| } |
| } |
| |
| if (num_bits_changed > 0) |
| assert(first_bit_changed >= 0); |
| |
| if (first_bit_changed_ptr != NULL) |
| *first_bit_changed_ptr = first_bit_changed; |
| if (num_bits_changed_ptr != NULL) |
| *num_bits_changed_ptr = num_bits_changed; |
| |
| return leb_size; |
| } |
| |
| DexVerifier::RegisterMap* DexVerifier::CompressMapDifferential( |
| const RegisterMap* map) { |
| int orig_size = ComputeRegisterMapSize(map); |
| uint8_t* tmp_ptr; |
| int addr_width; |
| |
| uint8_t format = map->header_->format_; |
| switch (format) { |
| case kRegMapFormatCompact8: |
| addr_width = 1; |
| break; |
| case kRegMapFormatCompact16: |
| addr_width = 2; |
| break; |
| default: |
| LOG(ERROR) << "ERROR: can't compress map with format=" << format; |
| return NULL; |
| } |
| |
| int reg_width = map->header_->reg_width_; |
| int num_entries = map->header_->num_entries_; |
| |
| if (num_entries <= 1) { |
| return NULL; |
| } |
| |
| /* |
| * We don't know how large the compressed data will be. It's possible |
| * for it to expand and become larger than the original. The header |
| * itself is variable-sized, so we generate everything into a temporary |
| * buffer and then copy it to form-fitting storage once we know how big |
| * it will be (and that it's smaller than the original). |
| * |
| * If we use a size that is equal to the size of the input map plus |
| * a value longer than a single entry can possibly expand to, we need |
| * only check for overflow at the end of each entry. The worst case |
| * for a single line is (1 + <ULEB8 address> + <full copy of vector>). |
| * Addresses are 16 bits, so that's (1 + 3 + reg_width). |
| * |
| * The initial address offset and bit vector will take up less than |
| * or equal to the amount of space required when uncompressed -- large |
| * initial offsets are rejected. |
| */ |
| UniquePtr<uint8_t[]> tmp_buf(new uint8_t[orig_size + (1 + 3 + reg_width)]); |
| |
| tmp_ptr = tmp_buf.get(); |
| |
| const uint8_t* map_data = map->data_; |
| const uint8_t* prev_bits; |
| uint16_t addr, prev_addr; |
| |
| addr = *map_data++; |
| if (addr_width > 1) |
| addr |= (*map_data++) << 8; |
| |
| if (addr >= 128) { |
| LOG(ERROR) << "Can't compress map with starting address >= 128"; |
| return NULL; |
| } |
| |
| /* |
| * Start by writing the initial address and bit vector data. The high |
| * bit of the initial address is used to indicate the required address |
| * width (which the decoder can't otherwise determine without parsing |
| * the compressed data). |
| */ |
| *tmp_ptr++ = addr | (addr_width > 1 ? 0x80 : 0x00); |
| memcpy(tmp_ptr, map_data, reg_width); |
| |
| prev_bits = map_data; |
| prev_addr = addr; |
| |
| tmp_ptr += reg_width; |
| map_data += reg_width; |
| |
| /* Loop over all following entries. */ |
| for (int entry = 1; entry < num_entries; entry++) { |
| int addr_diff; |
| uint8_t key; |
| |
| /* Pull out the address and figure out how to encode it. */ |
| addr = *map_data++; |
| if (addr_width > 1) |
| addr |= (*map_data++) << 8; |
| |
| addr_diff = addr - prev_addr; |
| assert(addr_diff > 0); |
| if (addr_diff < 8) { |
| /* Small difference, encode in 3 bits. */ |
| key = addr_diff -1; /* set 00000AAA */ |
| } else { |
| /* Large difference, output escape code. */ |
| key = 0x07; /* escape code for AAA */ |
| } |
| |
| int num_bits_changed, first_bit_changed, leb_size; |
| |
| leb_size = ComputeBitDiff(prev_bits, map_data, reg_width, |
| &first_bit_changed, &num_bits_changed, NULL); |
| |
| if (num_bits_changed == 0) { |
| /* set B to 1 and CCCC to zero to indicate no bits were changed */ |
| key |= 0x08; |
| } else if (num_bits_changed == 1 && first_bit_changed < 16) { |
| /* set B to 0 and CCCC to the index of the changed bit */ |
| key |= first_bit_changed << 4; |
| } else if (num_bits_changed < 15 && leb_size < reg_width) { |
| /* set B to 1 and CCCC to the number of bits */ |
| key |= 0x08 | (num_bits_changed << 4); |
| } else { |
| /* set B to 1 and CCCC to 0x0f so we store the entire vector */ |
| key |= 0x08 | 0xf0; |
| } |
| |
| /* |
| * Encode output. Start with the key, follow with the address |
| * diff (if it didn't fit in 3 bits), then the changed bit info. |
| */ |
| *tmp_ptr++ = key; |
| if ((key & 0x07) == 0x07) |
| tmp_ptr = WriteUnsignedLeb128(tmp_ptr, addr_diff); |
| |
| if ((key & 0x08) != 0) { |
| int bit_count = key >> 4; |
| if (bit_count == 0) { |
| /* nothing changed, no additional output required */ |
| } else if (bit_count == 15) { |
| /* full vector is most compact representation */ |
| memcpy(tmp_ptr, map_data, reg_width); |
| tmp_ptr += reg_width; |
| } else { |
| /* write bit indices in ULEB128 format */ |
| (void) ComputeBitDiff(prev_bits, map_data, reg_width, |
| NULL, NULL, tmp_ptr); |
| tmp_ptr += leb_size; |
| } |
| } else { |
| /* single-bit changed, value encoded in key byte */ |
| } |
| |
| prev_bits = map_data; |
| prev_addr = addr; |
| map_data += reg_width; |
| |
| /* See if we've run past the original size. */ |
| if (tmp_ptr - tmp_buf.get() >= orig_size) { |
| return NULL; |
| } |
| } |
| |
| /* |
| * Create a RegisterMap with the contents. |
| * |
| * TODO: consider using a threshold other than merely ">=". We would |
| * get poorer compression but potentially use less native heap space. |
| */ |
| int new_data_size = tmp_ptr - tmp_buf.get(); |
| int new_map_size = new_data_size + UnsignedLeb128Size(new_data_size); |
| |
| if (new_map_size >= orig_size) { |
| return NULL; |
| } |
| |
| RegisterMap* new_map = new RegisterMap(kRegMapFormatDifferential, reg_width, |
| num_entries, new_map_size); |
| |
| tmp_ptr = new_map->data_; |
| tmp_ptr = WriteUnsignedLeb128(tmp_ptr, new_data_size); |
| memcpy(tmp_ptr, tmp_buf.get(), new_data_size); |
| |
| return new_map; |
| } |
| |
| DexVerifier::RegisterMap* DexVerifier::UncompressMapDifferential( |
| const RegisterMap* map) { |
| uint8_t format = map->header_->format_; |
| RegisterMapFormat new_format; |
| int reg_width, num_entries, new_addr_width, new_data_size; |
| |
| if (format != kRegMapFormatDifferential) { |
| LOG(ERROR) << "Not differential (" << format << ")"; |
| return NULL; |
| } |
| |
| reg_width = map->header_->reg_width_; |
| num_entries = map->header_->num_entries_; |
| |
| /* Get the data size; we can check this at the end. */ |
| const uint8_t* src_ptr = map->data_; |
| int expected_src_len = DecodeUnsignedLeb128(&src_ptr); |
| const uint8_t* src_start = src_ptr; |
| |
| /* Get the initial address and the 16-bit address flag. */ |
| int addr = *src_ptr & 0x7f; |
| if ((*src_ptr & 0x80) == 0) { |
| new_format = kRegMapFormatCompact8; |
| new_addr_width = 1; |
| } else { |
| new_format = kRegMapFormatCompact16; |
| new_addr_width = 2; |
| } |
| src_ptr++; |
| |
| /* Now we know enough to allocate the new map. */ |
| new_data_size = (new_addr_width + reg_width) * num_entries; |
| RegisterMap* new_map = new RegisterMap(new_format, reg_width, num_entries, |
| new_data_size); |
| |
| /* Write the start address and initial bits to the new map. */ |
| uint8_t* dst_ptr = new_map->data_; |
| |
| *dst_ptr++ = addr & 0xff; |
| if (new_addr_width > 1) |
| *dst_ptr++ = (uint8_t) (addr >> 8); |
| |
| memcpy(dst_ptr, src_ptr, reg_width); |
| |
| int prev_addr = addr; |
| const uint8_t* prev_bits = dst_ptr; /* point at uncompressed data */ |
| |
| dst_ptr += reg_width; |
| src_ptr += reg_width; |
| |
| /* Walk through, uncompressing one line at a time. */ |
| int entry; |
| for (entry = 1; entry < num_entries; entry++) { |
| int addr_diff; |
| uint8_t key; |
| |
| key = *src_ptr++; |
| |
| /* Get the address. */ |
| if ((key & 0x07) == 7) { |
| /* Address diff follows in ULEB128. */ |
| addr_diff = DecodeUnsignedLeb128(&src_ptr); |
| } else { |
| addr_diff = (key & 0x07) +1; |
| } |
| |
| addr = prev_addr + addr_diff; |
| *dst_ptr++ = addr & 0xff; |
| if (new_addr_width > 1) |
| *dst_ptr++ = (uint8_t) (addr >> 8); |
| |
| /* Unpack the bits. */ |
| if ((key & 0x08) != 0) { |
| int bit_count = (key >> 4); |
| if (bit_count == 0) { |
| /* No bits changed, just copy previous. */ |
| memcpy(dst_ptr, prev_bits, reg_width); |
| } else if (bit_count == 15) { |
| /* Full copy of bit vector is present; ignore prev_bits. */ |
| memcpy(dst_ptr, src_ptr, reg_width); |
| src_ptr += reg_width; |
| } else { |
| /* Copy previous bits and modify listed indices. */ |
| memcpy(dst_ptr, prev_bits, reg_width); |
| while (bit_count--) { |
| int bit_index = DecodeUnsignedLeb128(&src_ptr); |
| ToggleBit(dst_ptr, bit_index); |
| } |
| } |
| } else { |
| /* Copy previous bits and modify the specified one. */ |
| memcpy(dst_ptr, prev_bits, reg_width); |
| |
| /* One bit, from 0-15 inclusive, was changed. */ |
| ToggleBit(dst_ptr, key >> 4); |
| } |
| |
| prev_addr = addr; |
| prev_bits = dst_ptr; |
| dst_ptr += reg_width; |
| } |
| |
| if (dst_ptr - new_map->data_ != new_data_size) { |
| LOG(ERROR) << "ERROR: output " << dst_ptr - new_map->data_ |
| << " bytes, expected " << new_data_size; |
| free(new_map); |
| return NULL; |
| } |
| |
| if (src_ptr - src_start != expected_src_len) { |
| LOG(ERROR) << "ERROR: consumed " << src_ptr - src_start |
| << " bytes, expected " << expected_src_len; |
| free(new_map); |
| return NULL; |
| } |
| |
| return new_map; |
| } |
| |
| } // namespace art |