| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_HEAP_H_ |
| #define ART_RUNTIME_GC_HEAP_H_ |
| |
| #include <iosfwd> |
| #include <string> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include <android-base/logging.h> |
| |
| #include "allocator_type.h" |
| #include "base/atomic.h" |
| #include "base/histogram.h" |
| #include "base/macros.h" |
| #include "base/mutex.h" |
| #include "base/runtime_debug.h" |
| #include "base/safe_map.h" |
| #include "base/time_utils.h" |
| #include "gc/collector/gc_type.h" |
| #include "gc/collector/iteration.h" |
| #include "gc/collector_type.h" |
| #include "gc/gc_cause.h" |
| #include "gc/space/large_object_space.h" |
| #include "handle.h" |
| #include "obj_ptr.h" |
| #include "offsets.h" |
| #include "process_state.h" |
| #include "read_barrier_config.h" |
| #include "runtime_globals.h" |
| #include "verify_object.h" |
| |
| namespace art { |
| |
| class ConditionVariable; |
| enum class InstructionSet; |
| class IsMarkedVisitor; |
| class Mutex; |
| class ReflectiveValueVisitor; |
| class RootVisitor; |
| class StackVisitor; |
| class Thread; |
| class ThreadPool; |
| class TimingLogger; |
| class VariableSizedHandleScope; |
| |
| namespace mirror { |
| class Class; |
| class Object; |
| } // namespace mirror |
| |
| namespace gc { |
| |
| class AllocationListener; |
| class AllocRecordObjectMap; |
| class GcPauseListener; |
| class HeapTask; |
| class ReferenceProcessor; |
| class TaskProcessor; |
| class Verification; |
| |
| namespace accounting { |
| template <typename T> class AtomicStack; |
| typedef AtomicStack<mirror::Object> ObjectStack; |
| class CardTable; |
| class HeapBitmap; |
| class ModUnionTable; |
| class ReadBarrierTable; |
| class RememberedSet; |
| } // namespace accounting |
| |
| namespace collector { |
| class ConcurrentCopying; |
| class GarbageCollector; |
| class MarkSweep; |
| class SemiSpace; |
| } // namespace collector |
| |
| namespace allocator { |
| class RosAlloc; |
| } // namespace allocator |
| |
| namespace space { |
| class AllocSpace; |
| class BumpPointerSpace; |
| class ContinuousMemMapAllocSpace; |
| class DiscontinuousSpace; |
| class DlMallocSpace; |
| class ImageSpace; |
| class LargeObjectSpace; |
| class MallocSpace; |
| class RegionSpace; |
| class RosAllocSpace; |
| class Space; |
| class ZygoteSpace; |
| } // namespace space |
| |
| enum HomogeneousSpaceCompactResult { |
| // Success. |
| kSuccess, |
| // Reject due to disabled moving GC. |
| kErrorReject, |
| // Unsupported due to the current configuration. |
| kErrorUnsupported, |
| // System is shutting down. |
| kErrorVMShuttingDown, |
| }; |
| |
| // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace |
| static constexpr bool kUseRosAlloc = true; |
| |
| // If true, use thread-local allocation stack. |
| static constexpr bool kUseThreadLocalAllocationStack = true; |
| |
| class Heap { |
| public: |
| // How much we grow the TLAB if we can do it. |
| static constexpr size_t kPartialTlabSize = 16 * KB; |
| static constexpr bool kUsePartialTlabs = true; |
| |
| static constexpr size_t kDefaultStartingSize = kPageSize; |
| static constexpr size_t kDefaultInitialSize = 2 * MB; |
| static constexpr size_t kDefaultMaximumSize = 256 * MB; |
| static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; |
| static constexpr size_t kDefaultMaxFree = 2 * MB; |
| static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; |
| static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); |
| static constexpr size_t kDefaultLongPauseLogThresholdGcStress = MsToNs(50); |
| static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); |
| static constexpr size_t kDefaultLongGCLogThresholdGcStress = MsToNs(1000); |
| static constexpr size_t kDefaultTLABSize = 32 * KB; |
| static constexpr double kDefaultTargetUtilization = 0.75; |
| static constexpr double kDefaultHeapGrowthMultiplier = 2.0; |
| // Primitive arrays larger than this size are put in the large object space. |
| static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize; |
| static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; |
| // Whether or not parallel GC is enabled. If not, then we never create the thread pool. |
| static constexpr bool kDefaultEnableParallelGC = false; |
| static uint8_t* const kPreferredAllocSpaceBegin; |
| |
| // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR |
| // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. |
| static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = |
| USE_ART_LOW_4G_ALLOCATOR ? |
| space::LargeObjectSpaceType::kFreeList |
| : space::LargeObjectSpaceType::kMap; |
| |
| // Used so that we don't overflow the allocation time atomic integer. |
| static constexpr size_t kTimeAdjust = 1024; |
| |
| // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations. |
| // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order |
| // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec |
| // on Android. |
| #ifdef __ANDROID__ |
| static constexpr uint32_t kNotifyNativeInterval = 32; |
| #else |
| // Some host mallinfo() implementations are slow. And memory is less scarce. |
| static constexpr uint32_t kNotifyNativeInterval = 384; |
| #endif |
| |
| // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the |
| // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to |
| // make it safe to allocate that many bytes between checks. |
| static constexpr size_t kCheckImmediatelyThreshold = 300000; |
| |
| // How often we allow heap trimming to happen (nanoseconds). |
| static constexpr uint64_t kHeapTrimWait = MsToNs(5000); |
| // How long we wait after a transition request to perform a collector transition (nanoseconds). |
| static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); |
| // Whether the transition-wait applies or not. Zero wait will stress the |
| // transition code and collector, but increases jank probability. |
| DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition); |
| |
| // Create a heap with the requested sizes. The possible empty |
| // image_file_names names specify Spaces to load based on |
| // ImageWriter output. |
| Heap(size_t initial_size, |
| size_t growth_limit, |
| size_t min_free, |
| size_t max_free, |
| double target_utilization, |
| double foreground_heap_growth_multiplier, |
| size_t stop_for_native_allocs, |
| size_t capacity, |
| size_t non_moving_space_capacity, |
| const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::vector<int>& boot_class_path_fds, |
| const std::vector<std::string>& image_file_names, |
| InstructionSet image_instruction_set, |
| CollectorType foreground_collector_type, |
| CollectorType background_collector_type, |
| space::LargeObjectSpaceType large_object_space_type, |
| size_t large_object_threshold, |
| size_t parallel_gc_threads, |
| size_t conc_gc_threads, |
| bool low_memory_mode, |
| size_t long_pause_threshold, |
| size_t long_gc_threshold, |
| bool ignore_target_footprint, |
| bool always_log_explicit_gcs, |
| bool use_tlab, |
| bool verify_pre_gc_heap, |
| bool verify_pre_sweeping_heap, |
| bool verify_post_gc_heap, |
| bool verify_pre_gc_rosalloc, |
| bool verify_pre_sweeping_rosalloc, |
| bool verify_post_gc_rosalloc, |
| bool gc_stress_mode, |
| bool measure_gc_performance, |
| bool use_homogeneous_space_compaction, |
| bool use_generational_cc, |
| uint64_t min_interval_homogeneous_space_compaction_by_oom, |
| bool dump_region_info_before_gc, |
| bool dump_region_info_after_gc); |
| |
| ~Heap(); |
| |
| // Allocates and initializes storage for an object instance. |
| template <bool kInstrumented = true, typename PreFenceVisitor> |
| mirror::Object* AllocObject(Thread* self, |
| ObjPtr<mirror::Class> klass, |
| size_t num_bytes, |
| const PreFenceVisitor& pre_fence_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, |
| !*pending_task_lock_, |
| !*backtrace_lock_, |
| !process_state_update_lock_, |
| !Roles::uninterruptible_) { |
| return AllocObjectWithAllocator<kInstrumented>(self, |
| klass, |
| num_bytes, |
| GetCurrentAllocator(), |
| pre_fence_visitor); |
| } |
| |
| template <bool kInstrumented = true, typename PreFenceVisitor> |
| mirror::Object* AllocNonMovableObject(Thread* self, |
| ObjPtr<mirror::Class> klass, |
| size_t num_bytes, |
| const PreFenceVisitor& pre_fence_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, |
| !*pending_task_lock_, |
| !*backtrace_lock_, |
| !process_state_update_lock_, |
| !Roles::uninterruptible_) { |
| mirror::Object* obj = AllocObjectWithAllocator<kInstrumented>(self, |
| klass, |
| num_bytes, |
| GetCurrentNonMovingAllocator(), |
| pre_fence_visitor); |
| // Java Heap Profiler check and sample allocation. |
| JHPCheckNonTlabSampleAllocation(self, obj, num_bytes); |
| return obj; |
| } |
| |
| template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor> |
| ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, |
| ObjPtr<mirror::Class> klass, |
| size_t byte_count, |
| AllocatorType allocator, |
| const PreFenceVisitor& pre_fence_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, |
| !*pending_task_lock_, |
| !*backtrace_lock_, |
| !process_state_update_lock_, |
| !Roles::uninterruptible_); |
| |
| AllocatorType GetCurrentAllocator() const { |
| return current_allocator_; |
| } |
| |
| AllocatorType GetCurrentNonMovingAllocator() const { |
| return current_non_moving_allocator_; |
| } |
| |
| AllocatorType GetUpdatedAllocator(AllocatorType old_allocator) { |
| return (old_allocator == kAllocatorTypeNonMoving) ? |
| GetCurrentNonMovingAllocator() : GetCurrentAllocator(); |
| } |
| |
| // Visit all of the live objects in the heap. |
| template <typename Visitor> |
| ALWAYS_INLINE void VisitObjects(Visitor&& visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| template <typename Visitor> |
| ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) |
| REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| |
| void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) |
| REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| |
| void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Inform the garbage collector of a non-malloc allocated native memory that might become |
| // reclaimable in the future as a result of Java garbage collection. |
| void RegisterNativeAllocation(JNIEnv* env, size_t bytes) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| void RegisterNativeFree(JNIEnv* env, size_t bytes); |
| |
| // Notify the garbage collector of malloc allocations that might be reclaimable |
| // as a result of Java garbage collection. Each such call represents approximately |
| // kNotifyNativeInterval such allocations. |
| void NotifyNativeAllocations(JNIEnv* env) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| |
| uint32_t GetNotifyNativeInterval() { |
| return kNotifyNativeInterval; |
| } |
| |
| // Change the allocator, updates entrypoints. |
| void ChangeAllocator(AllocatorType allocator) |
| REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); |
| |
| // Change the collector to be one of the possible options (MS, CMS, SS). |
| void ChangeCollector(CollectorType collector_type) |
| REQUIRES(Locks::mutator_lock_); |
| |
| // The given reference is believed to be to an object in the Java heap, check the soundness of it. |
| // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a |
| // proper lock ordering for it. |
| void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Consistency check of all live references. |
| void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); |
| // Returns how many failures occured. |
| size_t VerifyHeapReferences(bool verify_referents = true) |
| REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); |
| bool VerifyMissingCardMarks() |
| REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| |
| // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, |
| // and doesn't abort on error, allowing the caller to report more |
| // meaningful diagnostics. |
| bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Faster alternative to IsHeapAddress since finding if an object is in the large object space is |
| // very slow. |
| bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). |
| // Requires the heap lock to be held. |
| bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, |
| bool search_allocation_stack = true, |
| bool search_live_stack = true, |
| bool sorted = false) |
| REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); |
| |
| // Returns true if there is any chance that the object (obj) will move. |
| bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Enables us to compacting GC until objects are released. |
| void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); |
| void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); |
| |
| // Temporarily disable thread flip for JNI critical calls. |
| void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); |
| void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); |
| void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); |
| void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); |
| |
| // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. |
| // Mutator lock is required for GetContinuousSpaces. |
| void ClearMarkedObjects() |
| REQUIRES(Locks::heap_bitmap_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Initiates an explicit garbage collection. Guarantees that a GC started after this call has |
| // completed. |
| void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| |
| // Does a concurrent GC, provided the GC numbered requested_gc_num has not already been |
| // completed. Should only be called by the GC daemon thread through runtime. |
| void ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) |
| REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, |
| !*pending_task_lock_, !process_state_update_lock_); |
| |
| // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. |
| // The boolean decides whether to use IsAssignableFrom or == when comparing classes. |
| void CountInstances(const std::vector<Handle<mirror::Class>>& classes, |
| bool use_is_assignable_from, |
| uint64_t* counts) |
| REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to |
| // implement dalvik.system.VMRuntime.clearGrowthLimit. |
| void ClearGrowthLimit(); |
| |
| // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces |
| // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. |
| void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); |
| |
| // Target ideal heap utilization ratio, implements |
| // dalvik.system.VMRuntime.getTargetHeapUtilization. |
| double GetTargetHeapUtilization() const { |
| return target_utilization_; |
| } |
| |
| // Data structure memory usage tracking. |
| void RegisterGCAllocation(size_t bytes); |
| void RegisterGCDeAllocation(size_t bytes); |
| |
| // Set the heap's private space pointers to be the same as the space based on it's type. Public |
| // due to usage by tests. |
| void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) |
| REQUIRES(!Locks::heap_bitmap_lock_); |
| void AddSpace(space::Space* space) |
| REQUIRES(!Locks::heap_bitmap_lock_) |
| REQUIRES(Locks::mutator_lock_); |
| void RemoveSpace(space::Space* space) |
| REQUIRES(!Locks::heap_bitmap_lock_) |
| REQUIRES(Locks::mutator_lock_); |
| |
| double GetPreGcWeightedAllocatedBytes() const { |
| return pre_gc_weighted_allocated_bytes_; |
| } |
| |
| double GetPostGcWeightedAllocatedBytes() const { |
| return post_gc_weighted_allocated_bytes_; |
| } |
| |
| void CalculatePreGcWeightedAllocatedBytes(); |
| void CalculatePostGcWeightedAllocatedBytes(); |
| uint64_t GetTotalGcCpuTime(); |
| |
| uint64_t GetProcessCpuStartTime() const { |
| return process_cpu_start_time_ns_; |
| } |
| |
| uint64_t GetPostGCLastProcessCpuTime() const { |
| return post_gc_last_process_cpu_time_ns_; |
| } |
| |
| // Set target ideal heap utilization ratio, implements |
| // dalvik.system.VMRuntime.setTargetHeapUtilization. |
| void SetTargetHeapUtilization(float target); |
| |
| // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate |
| // from the system. Doesn't allow the space to exceed its growth limit. |
| void SetIdealFootprint(size_t max_allowed_footprint); |
| |
| // Blocks the caller until the garbage collector becomes idle and returns the type of GC we |
| // waited for. Only waits for running collections, ignoring a requested but unstarted GC. Only |
| // heuristic, since a new GC may have started by the time we return. |
| collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_); |
| |
| // Update the heap's process state to a new value, may cause compaction to occur. |
| void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) |
| REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); |
| |
| bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { |
| // No lock since vector empty is thread safe. |
| return !continuous_spaces_.empty(); |
| } |
| |
| const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return continuous_spaces_; |
| } |
| |
| const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { |
| return discontinuous_spaces_; |
| } |
| |
| const collector::Iteration* GetCurrentGcIteration() const { |
| return ¤t_gc_iteration_; |
| } |
| collector::Iteration* GetCurrentGcIteration() { |
| return ¤t_gc_iteration_; |
| } |
| |
| // Enable verification of object references when the runtime is sufficiently initialized. |
| void EnableObjectValidation() { |
| verify_object_mode_ = kVerifyObjectSupport; |
| if (verify_object_mode_ > kVerifyObjectModeDisabled) { |
| VerifyHeap(); |
| } |
| } |
| |
| // Disable object reference verification for image writing. |
| void DisableObjectValidation() { |
| verify_object_mode_ = kVerifyObjectModeDisabled; |
| } |
| |
| // Other checks may be performed if we know the heap should be in a healthy state. |
| bool IsObjectValidationEnabled() const { |
| return verify_object_mode_ > kVerifyObjectModeDisabled; |
| } |
| |
| // Returns true if low memory mode is enabled. |
| bool IsLowMemoryMode() const { |
| return low_memory_mode_; |
| } |
| |
| // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. |
| // Scales heap growth, min free, and max free. |
| double HeapGrowthMultiplier() const; |
| |
| // Freed bytes can be negative in cases where we copy objects from a compacted space to a |
| // free-list backed space. |
| void RecordFree(uint64_t freed_objects, int64_t freed_bytes); |
| |
| // Record the bytes freed by thread-local buffer revoke. |
| void RecordFreeRevoke(); |
| |
| accounting::CardTable* GetCardTable() const { |
| return card_table_.get(); |
| } |
| |
| accounting::ReadBarrierTable* GetReadBarrierTable() const { |
| return rb_table_.get(); |
| } |
| |
| void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); |
| |
| // Returns the number of bytes currently allocated. |
| // The result should be treated as an approximation, if it is being concurrently updated. |
| size_t GetBytesAllocated() const { |
| return num_bytes_allocated_.load(std::memory_order_relaxed); |
| } |
| |
| bool GetUseGenerationalCC() const { |
| return use_generational_cc_; |
| } |
| |
| // Returns the number of objects currently allocated. |
| size_t GetObjectsAllocated() const |
| REQUIRES(!Locks::heap_bitmap_lock_); |
| |
| // Returns the total number of objects allocated since the heap was created. |
| uint64_t GetObjectsAllocatedEver() const; |
| |
| // Returns the total number of bytes allocated since the heap was created. |
| uint64_t GetBytesAllocatedEver() const; |
| |
| // Returns the total number of objects freed since the heap was created. |
| // With default memory order, this should be viewed only as a hint. |
| uint64_t GetObjectsFreedEver(std::memory_order mo = std::memory_order_relaxed) const { |
| return total_objects_freed_ever_.load(mo); |
| } |
| |
| // Returns the total number of bytes freed since the heap was created. |
| // With default memory order, this should be viewed only as a hint. |
| uint64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const { |
| return total_bytes_freed_ever_.load(mo); |
| } |
| |
| space::RegionSpace* GetRegionSpace() const { |
| return region_space_; |
| } |
| |
| // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can |
| // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx |
| // were specified. Android apps start with a growth limit (small heap size) which is |
| // cleared/extended for large apps. |
| size_t GetMaxMemory() const { |
| // There are some race conditions in the allocation code that can cause bytes allocated to |
| // become larger than growth_limit_ in rare cases. |
| return std::max(GetBytesAllocated(), growth_limit_); |
| } |
| |
| // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently |
| // consumed by an application. |
| size_t GetTotalMemory() const; |
| |
| // Returns approximately how much free memory we have until the next GC happens. |
| size_t GetFreeMemoryUntilGC() const { |
| return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), |
| GetBytesAllocated()); |
| } |
| |
| // Returns approximately how much free memory we have until the next OOME happens. |
| size_t GetFreeMemoryUntilOOME() const { |
| return UnsignedDifference(growth_limit_, GetBytesAllocated()); |
| } |
| |
| // Returns how much free memory we have until we need to grow the heap to perform an allocation. |
| // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. |
| size_t GetFreeMemory() const { |
| return UnsignedDifference(GetTotalMemory(), |
| num_bytes_allocated_.load(std::memory_order_relaxed)); |
| } |
| |
| // Get the space that corresponds to an object's address. Current implementation searches all |
| // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. |
| // TODO: consider using faster data structure like binary tree. |
| space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, |
| bool fail_ok) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| space::Space* FindSpaceFromAddress(const void* ptr) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| std::string DumpSpaceNameFromAddress(const void* addr) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); |
| |
| // Do a pending collector transition. |
| void DoPendingCollectorTransition() |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| |
| // Deflate monitors, ... and trim the spaces. |
| void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); |
| |
| void RevokeThreadLocalBuffers(Thread* thread); |
| void RevokeRosAllocThreadLocalBuffers(Thread* thread); |
| void RevokeAllThreadLocalBuffers(); |
| void AssertThreadLocalBuffersAreRevoked(Thread* thread); |
| void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); |
| void RosAllocVerification(TimingLogger* timings, const char* name) |
| REQUIRES(Locks::mutator_lock_); |
| |
| accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { |
| return live_bitmap_.get(); |
| } |
| |
| accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { |
| return mark_bitmap_.get(); |
| } |
| |
| accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { |
| return live_stack_.get(); |
| } |
| |
| void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Mark and empty stack. |
| void FlushAllocStack() |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(Locks::heap_bitmap_lock_); |
| |
| // Revoke all the thread-local allocation stacks. |
| void RevokeAllThreadLocalAllocationStacks(Thread* self) |
| REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); |
| |
| // Mark all the objects in the allocation stack in the specified bitmap. |
| // TODO: Refactor? |
| void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, |
| accounting::SpaceBitmap<kObjectAlignment>* bitmap2, |
| accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, |
| accounting::ObjectStack* stack) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(Locks::heap_bitmap_lock_); |
| |
| // Mark the specified allocation stack as live. |
| void MarkAllocStackAsLive(accounting::ObjectStack* stack) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(Locks::heap_bitmap_lock_); |
| |
| // Unbind any bound bitmaps. |
| void UnBindBitmaps() |
| REQUIRES(Locks::heap_bitmap_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Returns the boot image spaces. There may be multiple boot image spaces. |
| const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { |
| return boot_image_spaces_; |
| } |
| |
| bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool IsInBootImageOatFile(const void* p) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Get the start address of the boot images if any; otherwise returns 0. |
| uint32_t GetBootImagesStartAddress() const { |
| return boot_images_start_address_; |
| } |
| |
| // Get the size of all boot images, including the heap and oat areas. |
| uint32_t GetBootImagesSize() const { |
| return boot_images_size_; |
| } |
| |
| // Check if a pointer points to a boot image. |
| bool IsBootImageAddress(const void* p) const { |
| return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_; |
| } |
| |
| space::DlMallocSpace* GetDlMallocSpace() const { |
| return dlmalloc_space_; |
| } |
| |
| space::RosAllocSpace* GetRosAllocSpace() const { |
| return rosalloc_space_; |
| } |
| |
| // Return the corresponding rosalloc space. |
| space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| space::MallocSpace* GetNonMovingSpace() const { |
| return non_moving_space_; |
| } |
| |
| space::LargeObjectSpace* GetLargeObjectsSpace() const { |
| return large_object_space_; |
| } |
| |
| // Returns the free list space that may contain movable objects (the |
| // one that's not the non-moving space), either rosalloc_space_ or |
| // dlmalloc_space_. |
| space::MallocSpace* GetPrimaryFreeListSpace() { |
| if (kUseRosAlloc) { |
| DCHECK(rosalloc_space_ != nullptr); |
| // reinterpret_cast is necessary as the space class hierarchy |
| // isn't known (#included) yet here. |
| return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); |
| } else { |
| DCHECK(dlmalloc_space_ != nullptr); |
| return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); |
| } |
| } |
| |
| void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); |
| std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // GC performance measuring |
| void DumpGcPerformanceInfo(std::ostream& os) |
| REQUIRES(!*gc_complete_lock_); |
| void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); |
| |
| // Thread pool. |
| void CreateThreadPool(); |
| void DeleteThreadPool(); |
| ThreadPool* GetThreadPool() { |
| return thread_pool_.get(); |
| } |
| size_t GetParallelGCThreadCount() const { |
| return parallel_gc_threads_; |
| } |
| size_t GetConcGCThreadCount() const { |
| return conc_gc_threads_; |
| } |
| accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); |
| void AddModUnionTable(accounting::ModUnionTable* mod_union_table); |
| |
| accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); |
| void AddRememberedSet(accounting::RememberedSet* remembered_set); |
| // Also deletes the remebered set. |
| void RemoveRememberedSet(space::Space* space); |
| |
| bool IsCompilingBoot() const; |
| bool HasBootImageSpace() const { |
| return !boot_image_spaces_.empty(); |
| } |
| |
| ReferenceProcessor* GetReferenceProcessor() { |
| return reference_processor_.get(); |
| } |
| TaskProcessor* GetTaskProcessor() { |
| return task_processor_.get(); |
| } |
| |
| bool HasZygoteSpace() const { |
| return zygote_space_ != nullptr; |
| } |
| |
| // Returns the active concurrent copying collector. |
| collector::ConcurrentCopying* ConcurrentCopyingCollector() { |
| collector::ConcurrentCopying* active_collector = |
| active_concurrent_copying_collector_.load(std::memory_order_relaxed); |
| if (use_generational_cc_) { |
| DCHECK((active_collector == concurrent_copying_collector_) || |
| (active_collector == young_concurrent_copying_collector_)) |
| << "active_concurrent_copying_collector: " << active_collector |
| << " young_concurrent_copying_collector: " << young_concurrent_copying_collector_ |
| << " concurrent_copying_collector: " << concurrent_copying_collector_; |
| } else { |
| DCHECK_EQ(active_collector, concurrent_copying_collector_); |
| } |
| return active_collector; |
| } |
| |
| CollectorType CurrentCollectorType() { |
| return collector_type_; |
| } |
| |
| bool IsGcConcurrentAndMoving() const { |
| if (IsGcConcurrent() && IsMovingGc(collector_type_)) { |
| // Assume no transition when a concurrent moving collector is used. |
| DCHECK_EQ(collector_type_, foreground_collector_type_); |
| return true; |
| } |
| return false; |
| } |
| |
| bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { |
| MutexLock mu(self, *gc_complete_lock_); |
| return disable_moving_gc_count_ > 0; |
| } |
| |
| // Request an asynchronous trim. |
| void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); |
| |
| // Retrieve the current GC number, i.e. the number n such that we completed n GCs so far. |
| // Provides acquire ordering, so that if we read this first, and then check whether a GC is |
| // required, we know that the GC number read actually preceded the test. |
| uint32_t GetCurrentGcNum() { |
| return gcs_completed_.load(std::memory_order_acquire); |
| } |
| |
| // Request asynchronous GC. Observed_gc_num is the value of GetCurrentGcNum() when we started to |
| // evaluate the GC triggering condition. If a GC has been completed since then, we consider our |
| // job done. If we return true, then we ensured that gcs_completed_ will eventually be |
| // incremented beyond observed_gc_num. We return false only in corner cases in which we cannot |
| // ensure that. |
| bool RequestConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t observed_gc_num) |
| REQUIRES(!*pending_task_lock_); |
| |
| // Whether or not we may use a garbage collector, used so that we only create collectors we need. |
| bool MayUseCollector(CollectorType type) const; |
| |
| // Used by tests to reduce timinig-dependent flakiness in OOME behavior. |
| void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { |
| min_interval_homogeneous_space_compaction_by_oom_ = interval; |
| } |
| |
| // Helpers for android.os.Debug.getRuntimeStat(). |
| uint64_t GetGcCount() const; |
| uint64_t GetGcTime() const; |
| uint64_t GetBlockingGcCount() const; |
| uint64_t GetBlockingGcTime() const; |
| void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); |
| void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); |
| uint64_t GetTotalTimeWaitingForGC() const { |
| return total_wait_time_; |
| } |
| |
| // Perfetto Art Heap Profiler Support. |
| HeapSampler& GetHeapSampler() { |
| return heap_sampler_; |
| } |
| |
| void InitPerfettoJavaHeapProf(); |
| int CheckPerfettoJHPEnabled(); |
| // In NonTlab case: Check whether we should report a sample allocation and if so report it. |
| // Also update state (bytes_until_sample). |
| // By calling JHPCheckNonTlabSampleAllocation from different functions for Large allocations and |
| // non-moving allocations we are able to use the stack to identify these allocations separately. |
| void JHPCheckNonTlabSampleAllocation(Thread* self, |
| mirror::Object* ret, |
| size_t alloc_size); |
| // In Tlab case: Calculate the next tlab size (location of next sample point) and whether |
| // a sample should be taken. |
| size_t JHPCalculateNextTlabSize(Thread* self, |
| size_t jhp_def_tlab_size, |
| size_t alloc_size, |
| bool* take_sample, |
| size_t* bytes_until_sample); |
| // Reduce the number of bytes to the next sample position by this adjustment. |
| void AdjustSampleOffset(size_t adjustment); |
| |
| // Allocation tracking support |
| // Callers to this function use double-checked locking to ensure safety on allocation_records_ |
| bool IsAllocTrackingEnabled() const { |
| return alloc_tracking_enabled_.load(std::memory_order_relaxed); |
| } |
| |
| void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { |
| alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed); |
| } |
| |
| // Return the current stack depth of allocation records. |
| size_t GetAllocTrackerStackDepth() const { |
| return alloc_record_depth_; |
| } |
| |
| // Return the current stack depth of allocation records. |
| void SetAllocTrackerStackDepth(size_t alloc_record_depth) { |
| alloc_record_depth_ = alloc_record_depth; |
| } |
| |
| AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) { |
| return allocation_records_.get(); |
| } |
| |
| void SetAllocationRecords(AllocRecordObjectMap* records) |
| REQUIRES(Locks::alloc_tracker_lock_); |
| |
| void VisitAllocationRecords(RootVisitor* visitor) const |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::alloc_tracker_lock_); |
| |
| void SweepAllocationRecords(IsMarkedVisitor* visitor) const |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::alloc_tracker_lock_); |
| |
| void DisallowNewAllocationRecords() const |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::alloc_tracker_lock_); |
| |
| void AllowNewAllocationRecords() const |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::alloc_tracker_lock_); |
| |
| void BroadcastForNewAllocationRecords() const |
| REQUIRES(!Locks::alloc_tracker_lock_); |
| |
| void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); |
| |
| // Create a new alloc space and compact default alloc space to it. |
| HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() |
| REQUIRES(!*gc_complete_lock_, !process_state_update_lock_); |
| bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; |
| |
| // Install an allocation listener. |
| void SetAllocationListener(AllocationListener* l); |
| // Remove an allocation listener. Note: the listener must not be deleted, as for performance |
| // reasons, we assume it stays valid when we read it (so that we don't require a lock). |
| void RemoveAllocationListener(); |
| |
| // Install a gc pause listener. |
| void SetGcPauseListener(GcPauseListener* l); |
| // Get the currently installed gc pause listener, or null. |
| GcPauseListener* GetGcPauseListener() { |
| return gc_pause_listener_.load(std::memory_order_acquire); |
| } |
| // Remove a gc pause listener. Note: the listener must not be deleted, as for performance |
| // reasons, we assume it stays valid when we read it (so that we don't require a lock). |
| void RemoveGcPauseListener(); |
| |
| const Verification* GetVerification() const; |
| |
| void PostForkChildAction(Thread* self); |
| |
| void TraceHeapSize(size_t heap_size); |
| |
| bool AddHeapTask(gc::HeapTask* task); |
| |
| private: |
| class ConcurrentGCTask; |
| class CollectorTransitionTask; |
| class HeapTrimTask; |
| class TriggerPostForkCCGcTask; |
| |
| // Compact source space to target space. Returns the collector used. |
| collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, |
| space::ContinuousMemMapAllocSpace* source_space, |
| GcCause gc_cause) |
| REQUIRES(Locks::mutator_lock_); |
| |
| void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); |
| void StartGC(Thread* self, GcCause cause, CollectorType collector_type) |
| REQUIRES(!*gc_complete_lock_); |
| void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); |
| |
| double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, |
| uint64_t current_process_cpu_time) const; |
| |
| // Create a mem map with a preferred base address. |
| static MemMap MapAnonymousPreferredAddress(const char* name, |
| uint8_t* request_begin, |
| size_t capacity, |
| std::string* out_error_str); |
| |
| bool SupportHSpaceCompaction() const { |
| // Returns true if we can do hspace compaction |
| return main_space_backup_ != nullptr; |
| } |
| |
| // Size_t saturating arithmetic |
| static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) { |
| return x > y ? x - y : 0; |
| } |
| static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) { |
| return x + y >= x ? x + y : std::numeric_limits<size_t>::max(); |
| } |
| |
| static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { |
| return |
| allocator_type != kAllocatorTypeRegionTLAB && |
| allocator_type != kAllocatorTypeBumpPointer && |
| allocator_type != kAllocatorTypeTLAB && |
| allocator_type != kAllocatorTypeRegion; |
| } |
| static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { |
| if (kUseReadBarrier) { |
| // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up. |
| return true; |
| } |
| return |
| allocator_type != kAllocatorTypeTLAB && |
| allocator_type != kAllocatorTypeBumpPointer; |
| } |
| static bool IsMovingGc(CollectorType collector_type) { |
| return |
| collector_type == kCollectorTypeCC || |
| collector_type == kCollectorTypeSS || |
| collector_type == kCollectorTypeCCBackground || |
| collector_type == kCollectorTypeHomogeneousSpaceCompact; |
| } |
| bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Checks whether we should garbage collect: |
| ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated); |
| float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent); |
| void CheckGCForNative(Thread* self) |
| REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); |
| |
| accounting::ObjectStack* GetMarkStack() { |
| return mark_stack_.get(); |
| } |
| |
| // We don't force this to be inlined since it is a slow path. |
| template <bool kInstrumented, typename PreFenceVisitor> |
| mirror::Object* AllocLargeObject(Thread* self, |
| ObjPtr<mirror::Class>* klass, |
| size_t byte_count, |
| const PreFenceVisitor& pre_fence_visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, |
| !*backtrace_lock_, !process_state_update_lock_); |
| |
| // Handles Allocate()'s slow allocation path with GC involved after an initial allocation |
| // attempt failed. |
| // Called with thread suspension disallowed, but re-enables it, and may suspend, internally. |
| // Returns null if instrumentation or the allocator changed. |
| mirror::Object* AllocateInternalWithGc(Thread* self, |
| AllocatorType allocator, |
| bool instrumented, |
| size_t num_bytes, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated, |
| ObjPtr<mirror::Class>* klass) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) |
| REQUIRES(Roles::uninterruptible_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Allocate into a specific space. |
| mirror::Object* AllocateInto(Thread* self, |
| space::AllocSpace* space, |
| ObjPtr<mirror::Class> c, |
| size_t bytes) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the |
| // wrong space. |
| void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); |
| |
| // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so |
| // that the switch statement is constant optimized in the entrypoints. |
| template <const bool kInstrumented, const bool kGrow> |
| ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, |
| AllocatorType allocator_type, |
| size_t alloc_size, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| mirror::Object* AllocWithNewTLAB(Thread* self, |
| AllocatorType allocator_type, |
| size_t alloc_size, |
| bool grow, |
| size_t* bytes_allocated, |
| size_t* usable_size, |
| size_t* bytes_tl_bulk_allocated) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Are we out of memory, and thus should force a GC or fail? |
| // For concurrent collectors, out of memory is defined by growth_limit_. |
| // For nonconcurrent collectors it is defined by target_footprint_ unless grow is |
| // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_ |
| // to accomodate the allocation. |
| ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, |
| size_t alloc_size, |
| bool grow); |
| |
| // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. |
| void RunFinalization(JNIEnv* env, uint64_t timeout); |
| |
| // Blocks the caller until the garbage collector becomes idle and returns the type of GC we |
| // waited for. |
| collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) |
| REQUIRES(gc_complete_lock_); |
| |
| void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) |
| REQUIRES(!*pending_task_lock_); |
| |
| void RequestConcurrentGCAndSaveObject(Thread* self, |
| bool force_full, |
| uint32_t observed_gc_num, |
| ObjPtr<mirror::Object>* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*pending_task_lock_); |
| |
| static constexpr uint32_t GC_NUM_ANY = std::numeric_limits<uint32_t>::max(); |
| |
| // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns |
| // which type of Gc was actually run. |
| // We pass in the intended GC sequence number to ensure that multiple approximately concurrent |
| // requests result in a single GC; clearly redundant request will be pruned. A requested_gc_num |
| // of GC_NUM_ANY indicates that we should not prune redundant requests. (In the unlikely case |
| // that gcs_completed_ gets this big, we just accept a potential extra GC or two.) |
| collector::GcType CollectGarbageInternal(collector::GcType gc_plan, |
| GcCause gc_cause, |
| bool clear_soft_references, |
| uint32_t requested_gc_num) |
| REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, |
| !*pending_task_lock_, !process_state_update_lock_); |
| |
| void PreGcVerification(collector::GarbageCollector* gc) |
| REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); |
| void PreGcVerificationPaused(collector::GarbageCollector* gc) |
| REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); |
| void PrePauseRosAllocVerification(collector::GarbageCollector* gc) |
| REQUIRES(Locks::mutator_lock_); |
| void PreSweepingGcVerification(collector::GarbageCollector* gc) |
| REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| void PostGcVerification(collector::GarbageCollector* gc) |
| REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); |
| void PostGcVerificationPaused(collector::GarbageCollector* gc) |
| REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); |
| |
| // Find a collector based on GC type. |
| collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); |
| |
| // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. |
| void CreateMainMallocSpace(MemMap&& mem_map, |
| size_t initial_size, |
| size_t growth_limit, |
| size_t capacity); |
| |
| // Create a malloc space based on a mem map. Does not set the space as default. |
| space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map, |
| size_t initial_size, |
| size_t growth_limit, |
| size_t capacity, |
| const char* name, |
| bool can_move_objects); |
| |
| // Given the current contents of the alloc space, increase the allowed heap footprint to match |
| // the target utilization ratio. This should only be called immediately after a full garbage |
| // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which |
| // the GC was run. |
| void GrowForUtilization(collector::GarbageCollector* collector_ran, |
| size_t bytes_allocated_before_gc = 0) |
| REQUIRES(!process_state_update_lock_); |
| |
| size_t GetPercentFree(); |
| |
| // Swap the allocation stack with the live stack. |
| void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Clear cards and update the mod union table. When process_alloc_space_cards is true, |
| // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do |
| // not process the alloc space if process_alloc_space_cards is false. |
| void ProcessCards(TimingLogger* timings, |
| bool use_rem_sets, |
| bool process_alloc_space_cards, |
| bool clear_alloc_space_cards) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Push an object onto the allocation stack. |
| void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); |
| |
| void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); |
| void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); |
| |
| // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark |
| // sweep GC, false for other GC types. |
| bool IsGcConcurrent() const ALWAYS_INLINE { |
| return collector_type_ == kCollectorTypeCC || |
| collector_type_ == kCollectorTypeCMS || |
| collector_type_ == kCollectorTypeCCBackground; |
| } |
| |
| // Trim the managed and native spaces by releasing unused memory back to the OS. |
| void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); |
| |
| // Trim 0 pages at the end of reference tables. |
| void TrimIndirectReferenceTables(Thread* self); |
| |
| template <typename Visitor> |
| ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| template <typename Visitor> |
| ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) |
| REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); |
| |
| void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); |
| |
| // GC stress mode attempts to do one GC per unique backtrace. |
| void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, |
| !*backtrace_lock_, !process_state_update_lock_); |
| |
| collector::GcType NonStickyGcType() const { |
| return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; |
| } |
| |
| // Return the amount of space we allow for native memory when deciding whether to |
| // collect. We collect when a weighted sum of Java memory plus native memory exceeds |
| // the similarly weighted sum of the Java heap size target and this value. |
| ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { |
| // We keep the traditional limit of max_free_ in place for small heaps, |
| // but allow it to be adjusted upward for large heaps to limit GC overhead. |
| return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_; |
| } |
| |
| ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke); |
| |
| // On switching app from background to foreground, grow the heap size |
| // to incorporate foreground heap growth multiplier. |
| void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_); |
| |
| // Update *_freed_ever_ counters to reflect current GC values. |
| void IncrementFreedEver(); |
| |
| // Remove a vlog code from heap-inl.h which is transitively included in half the world. |
| static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size); |
| |
| // Return our best approximation of the number of bytes of native memory that |
| // are currently in use, and could possibly be reclaimed as an indirect result |
| // of a garbage collection. |
| size_t GetNativeBytes(); |
| |
| // All-known continuous spaces, where objects lie within fixed bounds. |
| std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); |
| |
| // All-known discontinuous spaces, where objects may be placed throughout virtual memory. |
| std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); |
| |
| // All-known alloc spaces, where objects may be or have been allocated. |
| std::vector<space::AllocSpace*> alloc_spaces_; |
| |
| // A space where non-movable objects are allocated, when compaction is enabled it contains |
| // Classes, ArtMethods, ArtFields, and non moving objects. |
| space::MallocSpace* non_moving_space_; |
| |
| // Space which we use for the kAllocatorTypeROSAlloc. |
| space::RosAllocSpace* rosalloc_space_; |
| |
| // Space which we use for the kAllocatorTypeDlMalloc. |
| space::DlMallocSpace* dlmalloc_space_; |
| |
| // The main space is the space which the GC copies to and from on process state updates. This |
| // space is typically either the dlmalloc_space_ or the rosalloc_space_. |
| space::MallocSpace* main_space_; |
| |
| // The large object space we are currently allocating into. |
| space::LargeObjectSpace* large_object_space_; |
| |
| // The card table, dirtied by the write barrier. |
| std::unique_ptr<accounting::CardTable> card_table_; |
| |
| std::unique_ptr<accounting::ReadBarrierTable> rb_table_; |
| |
| // A mod-union table remembers all of the references from the it's space to other spaces. |
| AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> |
| mod_union_tables_; |
| |
| // A remembered set remembers all of the references from the it's space to the target space. |
| AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> |
| remembered_sets_; |
| |
| // The current collector type. |
| CollectorType collector_type_; |
| // Which collector we use when the app is in the foreground. |
| CollectorType foreground_collector_type_; |
| // Which collector we will use when the app is notified of a transition to background. |
| CollectorType background_collector_type_; |
| // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. |
| CollectorType desired_collector_type_; |
| |
| // Lock which guards pending tasks. |
| Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| |
| // How many GC threads we may use for paused parts of garbage collection. |
| const size_t parallel_gc_threads_; |
| |
| // How many GC threads we may use for unpaused parts of garbage collection. |
| const size_t conc_gc_threads_; |
| |
| // Boolean for if we are in low memory mode. |
| const bool low_memory_mode_; |
| |
| // If we get a pause longer than long pause log threshold, then we print out the GC after it |
| // finishes. |
| const size_t long_pause_log_threshold_; |
| |
| // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. |
| const size_t long_gc_log_threshold_; |
| |
| // Starting time of the new process; meant to be used for measuring total process CPU time. |
| uint64_t process_cpu_start_time_ns_; |
| |
| // Last time (before and after) GC started; meant to be used to measure the |
| // duration between two GCs. |
| uint64_t pre_gc_last_process_cpu_time_ns_; |
| uint64_t post_gc_last_process_cpu_time_ns_; |
| |
| // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time) |
| double pre_gc_weighted_allocated_bytes_; |
| double post_gc_weighted_allocated_bytes_; |
| |
| // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this |
| // is useful for benchmarking since it reduces time spent in GC to a low %. |
| const bool ignore_target_footprint_; |
| |
| // If we are running tests or some other configurations we might not actually |
| // want logs for explicit gcs since they can get spammy. |
| const bool always_log_explicit_gcs_; |
| |
| // Lock which guards zygote space creation. |
| Mutex zygote_creation_lock_; |
| |
| // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before |
| // zygote space creation. |
| space::ZygoteSpace* zygote_space_; |
| |
| // Minimum allocation size of large object. |
| size_t large_object_threshold_; |
| |
| // Guards access to the state of GC, associated conditional variable is used to signal when a GC |
| // completes. |
| Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); |
| |
| // Used to synchronize between JNI critical calls and the thread flip of the CC collector. |
| Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); |
| // This counter keeps track of how many threads are currently in a JNI critical section. This is |
| // incremented once per thread even with nested enters. |
| size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); |
| bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); |
| |
| // Reference processor; |
| std::unique_ptr<ReferenceProcessor> reference_processor_; |
| |
| // Task processor, proxies heap trim requests to the daemon threads. |
| std::unique_ptr<TaskProcessor> task_processor_; |
| |
| // Collector type of the running GC. |
| volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); |
| |
| // Cause of the last running GC. |
| volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); |
| |
| // The thread currently running the GC. |
| volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); |
| |
| // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. |
| volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); |
| collector::GcType next_gc_type_; |
| |
| // Maximum size that the heap can reach. |
| size_t capacity_; |
| |
| // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap |
| // programs it is "cleared" making it the same as capacity. |
| // Only weakly enforced for simultaneous allocations. |
| size_t growth_limit_; |
| |
| // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for |
| // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the |
| // concurrent GC case. |
| Atomic<size_t> target_footprint_; |
| |
| // Computed with foreground-multiplier in GrowForUtilization() when run in |
| // jank non-perceptible state. On update to process state from background to |
| // foreground we set target_footprint_ to this value. |
| Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_); |
| |
| // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that |
| // it completes ahead of an allocation failing. |
| // A multiple of this is also used to determine when to trigger a GC in response to native |
| // allocation. |
| size_t concurrent_start_bytes_; |
| |
| // Since the heap was created, how many bytes have been freed. |
| std::atomic<uint64_t> total_bytes_freed_ever_; |
| |
| // Since the heap was created, how many objects have been freed. |
| std::atomic<uint64_t> total_objects_freed_ever_; |
| |
| // Number of bytes currently allocated and not yet reclaimed. Includes active |
| // TLABS in their entirety, even if they have not yet been parceled out. |
| Atomic<size_t> num_bytes_allocated_; |
| |
| // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and |
| // RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should |
| // not include bytes allocated through the system malloc, since those are implicitly included. |
| Atomic<size_t> native_bytes_registered_; |
| |
| // Approximately the smallest value of GetNativeBytes() we've seen since the last GC. |
| Atomic<size_t> old_native_bytes_allocated_; |
| |
| // Total number of native objects of which we were notified since the beginning of time, mod 2^32. |
| // Allows us to check for GC only roughly every kNotifyNativeInterval allocations. |
| Atomic<uint32_t> native_objects_notified_; |
| |
| // Number of bytes freed by thread local buffer revokes. This will |
| // cancel out the ahead-of-time bulk counting of bytes allocated in |
| // rosalloc thread-local buffers. It is temporarily accumulated |
| // here to be subtracted from num_bytes_allocated_ later at the next |
| // GC. |
| Atomic<size_t> num_bytes_freed_revoke_; |
| |
| // Info related to the current or previous GC iteration. |
| collector::Iteration current_gc_iteration_; |
| |
| // Heap verification flags. |
| const bool verify_missing_card_marks_; |
| const bool verify_system_weaks_; |
| const bool verify_pre_gc_heap_; |
| const bool verify_pre_sweeping_heap_; |
| const bool verify_post_gc_heap_; |
| const bool verify_mod_union_table_; |
| bool verify_pre_gc_rosalloc_; |
| bool verify_pre_sweeping_rosalloc_; |
| bool verify_post_gc_rosalloc_; |
| const bool gc_stress_mode_; |
| |
| // RAII that temporarily disables the rosalloc verification during |
| // the zygote fork. |
| class ScopedDisableRosAllocVerification { |
| private: |
| Heap* const heap_; |
| const bool orig_verify_pre_gc_; |
| const bool orig_verify_pre_sweeping_; |
| const bool orig_verify_post_gc_; |
| |
| public: |
| explicit ScopedDisableRosAllocVerification(Heap* heap) |
| : heap_(heap), |
| orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), |
| orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), |
| orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { |
| heap_->verify_pre_gc_rosalloc_ = false; |
| heap_->verify_pre_sweeping_rosalloc_ = false; |
| heap_->verify_post_gc_rosalloc_ = false; |
| } |
| ~ScopedDisableRosAllocVerification() { |
| heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; |
| heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; |
| heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; |
| } |
| }; |
| |
| // Parallel GC data structures. |
| std::unique_ptr<ThreadPool> thread_pool_; |
| |
| // A bitmap that is set corresponding to the known live objects since the last GC cycle. |
| std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); |
| // A bitmap that is set corresponding to the marked objects in the current GC cycle. |
| std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); |
| |
| // Mark stack that we reuse to avoid re-allocating the mark stack. |
| std::unique_ptr<accounting::ObjectStack> mark_stack_; |
| |
| // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us |
| // to use the live bitmap as the old mark bitmap. |
| const size_t max_allocation_stack_size_; |
| std::unique_ptr<accounting::ObjectStack> allocation_stack_; |
| |
| // Second allocation stack so that we can process allocation with the heap unlocked. |
| std::unique_ptr<accounting::ObjectStack> live_stack_; |
| |
| // Allocator type. |
| AllocatorType current_allocator_; |
| const AllocatorType current_non_moving_allocator_; |
| |
| // Which GCs we run in order when an allocation fails. |
| std::vector<collector::GcType> gc_plan_; |
| |
| // Bump pointer spaces. |
| space::BumpPointerSpace* bump_pointer_space_; |
| // Temp space is the space which the semispace collector copies to. |
| space::BumpPointerSpace* temp_space_; |
| |
| // Region space, used by the concurrent collector. |
| space::RegionSpace* region_space_; |
| |
| // Minimum free guarantees that you always have at least min_free_ free bytes after growing for |
| // utilization, regardless of target utilization ratio. |
| const size_t min_free_; |
| |
| // The ideal maximum free size, when we grow the heap for utilization. |
| const size_t max_free_; |
| |
| // Target ideal heap utilization ratio. |
| double target_utilization_; |
| |
| // How much more we grow the heap when we are a foreground app instead of background. |
| double foreground_heap_growth_multiplier_; |
| |
| // The amount of native memory allocation since the last GC required to cause us to wait for a |
| // collection as a result of native allocation. Very large values can cause the device to run |
| // out of memory, due to lack of finalization to reclaim native memory. Making it too small can |
| // cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid |
| // succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number. |
| const size_t stop_for_native_allocs_; |
| |
| // Total time which mutators are paused or waiting for GC to complete. |
| uint64_t total_wait_time_; |
| |
| // The current state of heap verification, may be enabled or disabled. |
| VerifyObjectMode verify_object_mode_; |
| |
| // Compacting GC disable count, prevents compacting GC from running iff > 0. |
| size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); |
| |
| std::vector<collector::GarbageCollector*> garbage_collectors_; |
| collector::SemiSpace* semi_space_collector_; |
| Atomic<collector::ConcurrentCopying*> active_concurrent_copying_collector_; |
| collector::ConcurrentCopying* young_concurrent_copying_collector_; |
| collector::ConcurrentCopying* concurrent_copying_collector_; |
| |
| const bool is_running_on_memory_tool_; |
| const bool use_tlab_; |
| |
| // Pointer to the space which becomes the new main space when we do homogeneous space compaction. |
| // Use unique_ptr since the space is only added during the homogeneous compaction phase. |
| std::unique_ptr<space::MallocSpace> main_space_backup_; |
| |
| // Minimal interval allowed between two homogeneous space compactions caused by OOM. |
| uint64_t min_interval_homogeneous_space_compaction_by_oom_; |
| |
| // Times of the last homogeneous space compaction caused by OOM. |
| uint64_t last_time_homogeneous_space_compaction_by_oom_; |
| |
| // Saved OOMs by homogeneous space compaction. |
| Atomic<size_t> count_delayed_oom_; |
| |
| // Count for requested homogeneous space compaction. |
| Atomic<size_t> count_requested_homogeneous_space_compaction_; |
| |
| // Count for ignored homogeneous space compaction. |
| Atomic<size_t> count_ignored_homogeneous_space_compaction_; |
| |
| // Count for performed homogeneous space compaction. |
| Atomic<size_t> count_performed_homogeneous_space_compaction_; |
| |
| // The number of garbage collections (either young or full, not trims or the like) we have |
| // completed since heap creation. We include requests that turned out to be impossible |
| // because they were disabled. We guard against wrapping, though that's unlikely. |
| // Increment is guarded by gc_complete_lock_. |
| Atomic<uint32_t> gcs_completed_; |
| |
| // The number of the last garbage collection that has been requested. A value of gcs_completed |
| // + 1 indicates that another collection is needed or in progress. A value of gcs_completed_ or |
| // (logically) less means that no new GC has been requested. |
| Atomic<uint32_t> max_gc_requested_; |
| |
| // Active tasks which we can modify (change target time, desired collector type, etc..). |
| CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); |
| HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); |
| |
| // Whether or not we use homogeneous space compaction to avoid OOM errors. |
| bool use_homogeneous_space_compaction_for_oom_; |
| |
| // If true, enable generational collection when using the Concurrent Copying |
| // (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC |
| // for major collections. Set in Heap constructor. |
| const bool use_generational_cc_; |
| |
| // True if the currently running collection has made some thread wait. |
| bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); |
| // The number of blocking GC runs. |
| uint64_t blocking_gc_count_; |
| // The total duration of blocking GC runs. |
| uint64_t blocking_gc_time_; |
| // The duration of the window for the GC count rate histograms. |
| static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. |
| // Maximum number of missed histogram windows for which statistics will be collected. |
| static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100; |
| // The last time when the GC count rate histograms were updated. |
| // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). |
| uint64_t last_update_time_gc_count_rate_histograms_; |
| // The running count of GC runs in the last window. |
| uint64_t gc_count_last_window_; |
| // The running count of blocking GC runs in the last window. |
| uint64_t blocking_gc_count_last_window_; |
| // The maximum number of buckets in the GC count rate histograms. |
| static constexpr size_t kGcCountRateMaxBucketCount = 200; |
| // The histogram of the number of GC invocations per window duration. |
| Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); |
| // The histogram of the number of blocking GC invocations per window duration. |
| Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); |
| |
| // Allocation tracking support |
| Atomic<bool> alloc_tracking_enabled_; |
| std::unique_ptr<AllocRecordObjectMap> allocation_records_; |
| size_t alloc_record_depth_; |
| |
| // Perfetto Java Heap Profiler support. |
| HeapSampler heap_sampler_; |
| |
| // GC stress related data structures. |
| Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| // Debugging variables, seen backtraces vs unique backtraces. |
| Atomic<uint64_t> seen_backtrace_count_; |
| Atomic<uint64_t> unique_backtrace_count_; |
| // Stack trace hashes that we already saw, |
| std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); |
| |
| // We disable GC when we are shutting down the runtime in case there are daemon threads still |
| // allocating. |
| bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); |
| |
| // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to |
| // emit region info before and after each GC cycle. |
| bool dump_region_info_before_gc_; |
| bool dump_region_info_after_gc_; |
| |
| // Boot image spaces. |
| std::vector<space::ImageSpace*> boot_image_spaces_; |
| |
| // Boot image address range. Includes images and oat files. |
| uint32_t boot_images_start_address_; |
| uint32_t boot_images_size_; |
| |
| // An installed allocation listener. |
| Atomic<AllocationListener*> alloc_listener_; |
| // An installed GC Pause listener. |
| Atomic<GcPauseListener*> gc_pause_listener_; |
| |
| std::unique_ptr<Verification> verification_; |
| |
| friend class CollectorTransitionTask; |
| friend class collector::GarbageCollector; |
| friend class collector::ConcurrentCopying; |
| friend class collector::MarkSweep; |
| friend class collector::SemiSpace; |
| friend class GCCriticalSection; |
| friend class ReferenceQueue; |
| friend class ScopedGCCriticalSection; |
| friend class ScopedInterruptibleGCCriticalSection; |
| friend class VerifyReferenceCardVisitor; |
| friend class VerifyReferenceVisitor; |
| friend class VerifyObjectVisitor; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); |
| }; |
| |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_HEAP_H_ |