| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "method_verifier-inl.h" |
| |
| #include <iostream> |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/aborting.h" |
| #include "base/enums.h" |
| #include "base/leb128.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/mutex-inl.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "class_linker.h" |
| #include "compiler_callbacks.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_exception_helpers.h" |
| #include "dex/dex_instruction-inl.h" |
| #include "dex/dex_instruction_utils.h" |
| #include "experimental_flags.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "handle_scope-inl.h" |
| #include "indenter.h" |
| #include "intern_table.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/method_type.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/var_handle.h" |
| #include "reg_type-inl.h" |
| #include "register_line-inl.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "utils.h" |
| #include "verifier_compiler_binding.h" |
| #include "verifier_deps.h" |
| |
| namespace art { |
| namespace verifier { |
| |
| using android::base::StringPrintf; |
| |
| static constexpr bool kTimeVerifyMethod = !kIsDebugBuild; |
| |
| // On VLOG(verifier), should we dump the whole state when we run into a hard failure? |
| static constexpr bool kDumpRegLinesOnHardFailureIfVLOG = true; |
| |
| // We print a warning blurb about "dx --no-optimize" when we find monitor-locking issues. Make |
| // sure we only print this once. |
| static bool gPrintedDxMonitorText = false; |
| |
| PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator) |
| : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {} |
| |
| void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags, |
| uint32_t insns_size, uint16_t registers_size, |
| MethodVerifier* verifier) { |
| DCHECK_GT(insns_size, 0U); |
| register_lines_.resize(insns_size); |
| for (uint32_t i = 0; i < insns_size; i++) { |
| bool interesting = false; |
| switch (mode) { |
| case kTrackRegsAll: |
| interesting = flags[i].IsOpcode(); |
| break; |
| case kTrackCompilerInterestPoints: |
| interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget(); |
| break; |
| case kTrackRegsBranches: |
| interesting = flags[i].IsBranchTarget(); |
| break; |
| default: |
| break; |
| } |
| if (interesting) { |
| register_lines_[i].reset(RegisterLine::Create(registers_size, verifier)); |
| } |
| } |
| } |
| |
| PcToRegisterLineTable::~PcToRegisterLineTable() {} |
| |
| // Note: returns true on failure. |
| ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition, |
| const char* error_msg, uint32_t work_insn_idx) { |
| if (kIsDebugBuild) { |
| // In a debug build, abort if the error condition is wrong. Only warn if |
| // we are already aborting (as this verification is likely run to print |
| // lock information). |
| if (LIKELY(gAborting == 0)) { |
| DCHECK(condition) << error_msg << work_insn_idx; |
| } else { |
| if (!condition) { |
| LOG(ERROR) << error_msg << work_insn_idx; |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx; |
| return true; |
| } |
| } |
| } else { |
| // In a non-debug build, just fail the class. |
| if (!condition) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) { |
| if (verifier->IsInstanceConstructor()) { |
| // Before we mark all regs as conflicts, check that we don't have an uninitialized this. |
| reg_line->CheckConstructorReturn(verifier); |
| } |
| reg_line->MarkAllRegistersAsConflicts(verifier); |
| } |
| |
| FailureKind MethodVerifier::VerifyClass(Thread* self, |
| mirror::Class* klass, |
| CompilerCallbacks* callbacks, |
| bool allow_soft_failures, |
| HardFailLogMode log_level, |
| std::string* error) { |
| if (klass->IsVerified()) { |
| return FailureKind::kNoFailure; |
| } |
| bool early_failure = false; |
| std::string failure_message; |
| const DexFile& dex_file = klass->GetDexFile(); |
| const DexFile::ClassDef* class_def = klass->GetClassDef(); |
| mirror::Class* super = klass->GetSuperClass(); |
| std::string temp; |
| if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) { |
| early_failure = true; |
| failure_message = " that has no super class"; |
| } else if (super != nullptr && super->IsFinal()) { |
| early_failure = true; |
| failure_message = " that attempts to sub-class final class " + super->PrettyDescriptor(); |
| } else if (class_def == nullptr) { |
| early_failure = true; |
| failure_message = " that isn't present in dex file " + dex_file.GetLocation(); |
| } |
| if (early_failure) { |
| *error = "Verifier rejected class " + klass->PrettyDescriptor() + failure_message; |
| if (callbacks != nullptr) { |
| ClassReference ref(&dex_file, klass->GetDexClassDefIndex()); |
| callbacks->ClassRejected(ref); |
| } |
| return FailureKind::kHardFailure; |
| } |
| StackHandleScope<2> hs(self); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); |
| return VerifyClass(self, |
| &dex_file, |
| dex_cache, |
| class_loader, |
| *class_def, |
| callbacks, |
| allow_soft_failures, |
| log_level, |
| error); |
| } |
| |
| template <bool kDirect> |
| static bool HasNextMethod(ClassDataItemIterator* it) { |
| return kDirect ? it->HasNextDirectMethod() : it->HasNextVirtualMethod(); |
| } |
| |
| static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) { |
| static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure |
| && FailureKind::kSoftFailure < FailureKind::kHardFailure, |
| "Unexpected FailureKind order"); |
| return std::max(fk1, fk2); |
| } |
| |
| void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) { |
| kind = FailureKindMax(kind, fd.kind); |
| types |= fd.types; |
| } |
| |
| template <bool kDirect> |
| MethodVerifier::FailureData MethodVerifier::VerifyMethods(Thread* self, |
| ClassLinker* linker, |
| const DexFile* dex_file, |
| const DexFile::ClassDef& class_def, |
| ClassDataItemIterator* it, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| CompilerCallbacks* callbacks, |
| bool allow_soft_failures, |
| HardFailLogMode log_level, |
| bool need_precise_constants, |
| std::string* error_string) { |
| DCHECK(it != nullptr); |
| |
| MethodVerifier::FailureData failure_data; |
| |
| int64_t previous_method_idx = -1; |
| while (HasNextMethod<kDirect>(it)) { |
| self->AllowThreadSuspension(); |
| uint32_t method_idx = it->GetMemberIndex(); |
| if (method_idx == previous_method_idx) { |
| // smali can create dex files with two encoded_methods sharing the same method_idx |
| // http://code.google.com/p/smali/issues/detail?id=119 |
| it->Next(); |
| continue; |
| } |
| previous_method_idx = method_idx; |
| InvokeType type = it->GetMethodInvokeType(class_def); |
| ArtMethod* method = linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>( |
| method_idx, dex_cache, class_loader, /* referrer */ nullptr, type); |
| if (method == nullptr) { |
| DCHECK(self->IsExceptionPending()); |
| // We couldn't resolve the method, but continue regardless. |
| self->ClearException(); |
| } else { |
| DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type; |
| } |
| StackHandleScope<1> hs(self); |
| std::string hard_failure_msg; |
| MethodVerifier::FailureData result = VerifyMethod(self, |
| method_idx, |
| dex_file, |
| dex_cache, |
| class_loader, |
| class_def, |
| it->GetMethodCodeItem(), |
| method, |
| it->GetMethodAccessFlags(), |
| callbacks, |
| allow_soft_failures, |
| log_level, |
| need_precise_constants, |
| &hard_failure_msg); |
| if (result.kind == FailureKind::kHardFailure) { |
| if (failure_data.kind == FailureKind::kHardFailure) { |
| // If we logged an error before, we need a newline. |
| *error_string += "\n"; |
| } else { |
| // If we didn't log a hard failure before, print the header of the message. |
| *error_string += "Verifier rejected class "; |
| *error_string += PrettyDescriptor(dex_file->GetClassDescriptor(class_def)); |
| *error_string += ":"; |
| } |
| *error_string += " "; |
| *error_string += hard_failure_msg; |
| } |
| failure_data.Merge(result); |
| it->Next(); |
| } |
| |
| return failure_data; |
| } |
| |
| FailureKind MethodVerifier::VerifyClass(Thread* self, |
| const DexFile* dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile::ClassDef& class_def, |
| CompilerCallbacks* callbacks, |
| bool allow_soft_failures, |
| HardFailLogMode log_level, |
| std::string* error) { |
| SCOPED_TRACE << "VerifyClass " << PrettyDescriptor(dex_file->GetClassDescriptor(class_def)); |
| |
| // A class must not be abstract and final. |
| if ((class_def.access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) { |
| *error = "Verifier rejected class "; |
| *error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def)); |
| *error += ": class is abstract and final."; |
| return FailureKind::kHardFailure; |
| } |
| |
| const uint8_t* class_data = dex_file->GetClassData(class_def); |
| if (class_data == nullptr) { |
| // empty class, probably a marker interface |
| return FailureKind::kNoFailure; |
| } |
| ClassDataItemIterator it(*dex_file, class_data); |
| it.SkipAllFields(); |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| // Direct methods. |
| MethodVerifier::FailureData data1 = VerifyMethods<true>(self, |
| linker, |
| dex_file, |
| class_def, |
| &it, |
| dex_cache, |
| class_loader, |
| callbacks, |
| allow_soft_failures, |
| log_level, |
| false /* need precise constants */, |
| error); |
| // Virtual methods. |
| MethodVerifier::FailureData data2 = VerifyMethods<false>(self, |
| linker, |
| dex_file, |
| class_def, |
| &it, |
| dex_cache, |
| class_loader, |
| callbacks, |
| allow_soft_failures, |
| log_level, |
| false /* need precise constants */, |
| error); |
| |
| data1.Merge(data2); |
| |
| if (data1.kind == FailureKind::kNoFailure) { |
| return FailureKind::kNoFailure; |
| } else { |
| if ((data1.types & VERIFY_ERROR_LOCKING) != 0) { |
| // Print a warning about expected slow-down. Use a string temporary to print one contiguous |
| // warning. |
| std::string tmp = |
| StringPrintf("Class %s failed lock verification and will run slower.", |
| PrettyDescriptor(dex_file->GetClassDescriptor(class_def)).c_str()); |
| if (!gPrintedDxMonitorText) { |
| tmp = tmp + "\nCommon causes for lock verification issues are non-optimized dex code\n" |
| "and incorrect proguard optimizations."; |
| gPrintedDxMonitorText = true; |
| } |
| LOG(WARNING) << tmp; |
| } |
| return data1.kind; |
| } |
| } |
| |
| static bool IsLargeMethod(const CodeItemDataAccessor& accessor) { |
| if (!accessor.HasCodeItem()) { |
| return false; |
| } |
| |
| uint16_t registers_size = accessor.RegistersSize(); |
| uint32_t insns_size = accessor.InsnsSizeInCodeUnits(); |
| |
| return registers_size * insns_size > 4*1024*1024; |
| } |
| |
| MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self, |
| uint32_t method_idx, |
| const DexFile* dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile::ClassDef& class_def, |
| const DexFile::CodeItem* code_item, |
| ArtMethod* method, |
| uint32_t method_access_flags, |
| CompilerCallbacks* callbacks, |
| bool allow_soft_failures, |
| HardFailLogMode log_level, |
| bool need_precise_constants, |
| std::string* hard_failure_msg) { |
| MethodVerifier::FailureData result; |
| uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0; |
| |
| MethodVerifier verifier(self, |
| dex_file, |
| dex_cache, |
| class_loader, |
| class_def, |
| code_item, |
| method_idx, |
| method, |
| method_access_flags, |
| true /* can_load_classes */, |
| allow_soft_failures, |
| need_precise_constants, |
| false /* verify to dump */, |
| true /* allow_thread_suspension */); |
| if (verifier.Verify()) { |
| // Verification completed, however failures may be pending that didn't cause the verification |
| // to hard fail. |
| CHECK(!verifier.have_pending_hard_failure_); |
| |
| if (code_item != nullptr && callbacks != nullptr) { |
| // Let the interested party know that the method was verified. |
| callbacks->MethodVerified(&verifier); |
| } |
| |
| if (verifier.failures_.size() != 0) { |
| if (VLOG_IS_ON(verifier)) { |
| verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in " |
| << dex_file->PrettyMethod(method_idx) << "\n"); |
| } |
| if (VLOG_IS_ON(verifier_debug)) { |
| std::cout << "\n" << verifier.info_messages_.str(); |
| verifier.Dump(std::cout); |
| } |
| result.kind = FailureKind::kSoftFailure; |
| if (method != nullptr && |
| !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) { |
| method->SetDontCompile(); |
| } |
| } |
| if (method != nullptr) { |
| if (verifier.HasInstructionThatWillThrow()) { |
| method->SetDontCompile(); |
| if (Runtime::Current()->IsAotCompiler() && |
| (callbacks != nullptr) && !callbacks->IsBootImage()) { |
| // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger |
| // re-verification at runtime. |
| // The dead code after the throw is not verified and might be invalid. This may cause |
| // the JIT compiler to crash since it assumes that all the code is valid. |
| // |
| // There's a strong assumption that the entire boot image is verified and all its dex |
| // code is valid (even the dead and unverified one). As such this is done only for apps. |
| // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are |
| // fully verified). |
| result.kind = FailureKind::kSoftFailure; |
| } |
| } |
| if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) { |
| method->SetMustCountLocks(); |
| } |
| } |
| } else { |
| // Bad method data. |
| CHECK_NE(verifier.failures_.size(), 0U); |
| |
| if (UNLIKELY(verifier.have_pending_experimental_failure_)) { |
| // Failed due to being forced into interpreter. This is ok because |
| // we just want to skip verification. |
| result.kind = FailureKind::kSoftFailure; |
| } else { |
| CHECK(verifier.have_pending_hard_failure_); |
| if (VLOG_IS_ON(verifier)) { |
| log_level = std::max(HardFailLogMode::kLogVerbose, log_level); |
| } |
| if (log_level >= HardFailLogMode::kLogVerbose) { |
| LogSeverity severity; |
| switch (log_level) { |
| case HardFailLogMode::kLogVerbose: |
| severity = LogSeverity::VERBOSE; |
| break; |
| case HardFailLogMode::kLogWarning: |
| severity = LogSeverity::WARNING; |
| break; |
| case HardFailLogMode::kLogInternalFatal: |
| severity = LogSeverity::FATAL_WITHOUT_ABORT; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level); |
| UNREACHABLE(); |
| } |
| verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in " |
| << dex_file->PrettyMethod(method_idx) |
| << "\n"); |
| } |
| if (hard_failure_msg != nullptr) { |
| CHECK(!verifier.failure_messages_.empty()); |
| *hard_failure_msg = |
| verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str(); |
| } |
| result.kind = FailureKind::kHardFailure; |
| |
| if (callbacks != nullptr) { |
| // Let the interested party know that we failed the class. |
| ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def)); |
| callbacks->ClassRejected(ref); |
| } |
| } |
| if (VLOG_IS_ON(verifier) || VLOG_IS_ON(verifier_debug)) { |
| std::cout << "\n" << verifier.info_messages_.str(); |
| verifier.Dump(std::cout); |
| } |
| } |
| if (kTimeVerifyMethod) { |
| uint64_t duration_ns = NanoTime() - start_ns; |
| if (duration_ns > MsToNs(100)) { |
| LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx) |
| << " took " << PrettyDuration(duration_ns) |
| << (IsLargeMethod(verifier.CodeItem()) ? " (large method)" : ""); |
| } |
| } |
| result.types = verifier.encountered_failure_types_; |
| return result; |
| } |
| |
| MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, |
| VariableIndentationOutputStream* vios, |
| uint32_t dex_method_idx, |
| const DexFile* dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile::ClassDef& class_def, |
| const DexFile::CodeItem* code_item, |
| ArtMethod* method, |
| uint32_t method_access_flags) { |
| MethodVerifier* verifier = new MethodVerifier(self, |
| dex_file, |
| dex_cache, |
| class_loader, |
| class_def, |
| code_item, |
| dex_method_idx, |
| method, |
| method_access_flags, |
| true /* can_load_classes */, |
| true /* allow_soft_failures */, |
| true /* need_precise_constants */, |
| true /* verify_to_dump */, |
| true /* allow_thread_suspension */); |
| verifier->Verify(); |
| verifier->DumpFailures(vios->Stream()); |
| vios->Stream() << verifier->info_messages_.str(); |
| // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized |
| // and querying any info is dangerous/can abort. |
| if (verifier->have_pending_hard_failure_) { |
| delete verifier; |
| return nullptr; |
| } else { |
| verifier->Dump(vios); |
| return verifier; |
| } |
| } |
| |
| MethodVerifier::MethodVerifier(Thread* self, |
| const DexFile* dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile::ClassDef& class_def, |
| const DexFile::CodeItem* code_item, |
| uint32_t dex_method_idx, |
| ArtMethod* method, |
| uint32_t method_access_flags, |
| bool can_load_classes, |
| bool allow_soft_failures, |
| bool need_precise_constants, |
| bool verify_to_dump, |
| bool allow_thread_suspension) |
| : self_(self), |
| arena_stack_(Runtime::Current()->GetArenaPool()), |
| allocator_(&arena_stack_), |
| reg_types_(can_load_classes, allocator_, allow_thread_suspension), |
| reg_table_(allocator_), |
| work_insn_idx_(dex::kDexNoIndex), |
| dex_method_idx_(dex_method_idx), |
| mirror_method_(method), |
| method_access_flags_(method_access_flags), |
| return_type_(nullptr), |
| dex_file_(dex_file), |
| dex_cache_(dex_cache), |
| class_loader_(class_loader), |
| class_def_(class_def), |
| code_item_accessor_(*dex_file, code_item), |
| declaring_class_(nullptr), |
| interesting_dex_pc_(-1), |
| monitor_enter_dex_pcs_(nullptr), |
| have_pending_hard_failure_(false), |
| have_pending_runtime_throw_failure_(false), |
| have_pending_experimental_failure_(false), |
| have_any_pending_runtime_throw_failure_(false), |
| new_instance_count_(0), |
| monitor_enter_count_(0), |
| encountered_failure_types_(0), |
| can_load_classes_(can_load_classes), |
| allow_soft_failures_(allow_soft_failures), |
| need_precise_constants_(need_precise_constants), |
| has_check_casts_(false), |
| has_virtual_or_interface_invokes_(false), |
| verify_to_dump_(verify_to_dump), |
| allow_thread_suspension_(allow_thread_suspension), |
| is_constructor_(false), |
| link_(nullptr) { |
| self->PushVerifier(this); |
| } |
| |
| MethodVerifier::~MethodVerifier() { |
| Thread::Current()->PopVerifier(this); |
| STLDeleteElements(&failure_messages_); |
| } |
| |
| void MethodVerifier::FindLocksAtDexPc( |
| ArtMethod* m, |
| uint32_t dex_pc, |
| std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs) { |
| StackHandleScope<2> hs(Thread::Current()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); |
| MethodVerifier verifier(hs.Self(), |
| m->GetDexFile(), |
| dex_cache, |
| class_loader, |
| m->GetClassDef(), |
| m->GetCodeItem(), |
| m->GetDexMethodIndex(), |
| m, |
| m->GetAccessFlags(), |
| false /* can_load_classes */, |
| true /* allow_soft_failures */, |
| false /* need_precise_constants */, |
| false /* verify_to_dump */, |
| false /* allow_thread_suspension */); |
| verifier.interesting_dex_pc_ = dex_pc; |
| verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs; |
| verifier.FindLocksAtDexPc(); |
| } |
| |
| void MethodVerifier::FindLocksAtDexPc() { |
| CHECK(monitor_enter_dex_pcs_ != nullptr); |
| CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code. |
| |
| // Quick check whether there are any monitor_enter instructions before verifying. |
| for (const DexInstructionPcPair& inst : code_item_accessor_) { |
| if (inst->Opcode() == Instruction::MONITOR_ENTER) { |
| // Strictly speaking, we ought to be able to get away with doing a subset of the full method |
| // verification. In practice, the phase we want relies on data structures set up by all the |
| // earlier passes, so we just run the full method verification and bail out early when we've |
| // got what we wanted. |
| Verify(); |
| return; |
| } |
| } |
| } |
| |
| ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) { |
| StackHandleScope<2> hs(Thread::Current()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); |
| MethodVerifier verifier(hs.Self(), |
| m->GetDexFile(), |
| dex_cache, |
| class_loader, |
| m->GetClassDef(), |
| m->GetCodeItem(), |
| m->GetDexMethodIndex(), |
| m, |
| m->GetAccessFlags(), |
| true /* can_load_classes */, |
| true /* allow_soft_failures */, |
| false /* need_precise_constants */, |
| false /* verify_to_dump */, |
| true /* allow_thread_suspension */); |
| return verifier.FindAccessedFieldAtDexPc(dex_pc); |
| } |
| |
| ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) { |
| CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code. |
| |
| // Strictly speaking, we ought to be able to get away with doing a subset of the full method |
| // verification. In practice, the phase we want relies on data structures set up by all the |
| // earlier passes, so we just run the full method verification and bail out early when we've |
| // got what we wanted. |
| bool success = Verify(); |
| if (!success) { |
| return nullptr; |
| } |
| RegisterLine* register_line = reg_table_.GetLine(dex_pc); |
| if (register_line == nullptr) { |
| return nullptr; |
| } |
| const Instruction* inst = &code_item_accessor_.InstructionAt(dex_pc); |
| return GetQuickFieldAccess(inst, register_line); |
| } |
| |
| ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) { |
| StackHandleScope<2> hs(Thread::Current()); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); |
| MethodVerifier verifier(hs.Self(), |
| m->GetDexFile(), |
| dex_cache, |
| class_loader, |
| m->GetClassDef(), |
| m->GetCodeItem(), |
| m->GetDexMethodIndex(), |
| m, |
| m->GetAccessFlags(), |
| true /* can_load_classes */, |
| true /* allow_soft_failures */, |
| false /* need_precise_constants */, |
| false /* verify_to_dump */, |
| true /* allow_thread_suspension */); |
| return verifier.FindInvokedMethodAtDexPc(dex_pc); |
| } |
| |
| ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) { |
| CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code. |
| |
| // Strictly speaking, we ought to be able to get away with doing a subset of the full method |
| // verification. In practice, the phase we want relies on data structures set up by all the |
| // earlier passes, so we just run the full method verification and bail out early when we've |
| // got what we wanted. |
| bool success = Verify(); |
| if (!success) { |
| return nullptr; |
| } |
| RegisterLine* register_line = reg_table_.GetLine(dex_pc); |
| if (register_line == nullptr) { |
| return nullptr; |
| } |
| const Instruction* inst = &code_item_accessor_.InstructionAt(dex_pc); |
| const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK); |
| return GetQuickInvokedMethod(inst, register_line, is_range, false); |
| } |
| |
| bool MethodVerifier::Verify() { |
| // Some older code doesn't correctly mark constructors as such. Test for this case by looking at |
| // the name. |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_); |
| const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_); |
| bool instance_constructor_by_name = strcmp("<init>", method_name) == 0; |
| bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0; |
| bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name; |
| // Check that only constructors are tagged, and check for bad code that doesn't tag constructors. |
| if ((method_access_flags_ & kAccConstructor) != 0) { |
| if (!constructor_by_name) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "method is marked as constructor, but not named accordingly"; |
| return false; |
| } |
| is_constructor_ = true; |
| } else if (constructor_by_name) { |
| LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_) |
| << " not marked as constructor."; |
| is_constructor_ = true; |
| } |
| // If it's a constructor, check whether IsStatic() matches the name. |
| // This should have been rejected by the dex file verifier. Only do in debug build. |
| if (kIsDebugBuild) { |
| if (IsConstructor()) { |
| if (IsStatic() ^ static_constructor_by_name) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "constructor name doesn't match static flag"; |
| return false; |
| } |
| } |
| } |
| |
| // Methods may only have one of public/protected/private. |
| // This should have been rejected by the dex file verifier. Only do in debug build. |
| if (kIsDebugBuild) { |
| size_t access_mod_count = |
| (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) + |
| (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) + |
| (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1); |
| if (access_mod_count > 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private"; |
| return false; |
| } |
| } |
| |
| // If there aren't any instructions, make sure that's expected, then exit successfully. |
| if (!code_item_accessor_.HasCodeItem()) { |
| // Only native or abstract methods may not have code. |
| if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method"; |
| return false; |
| } |
| |
| // This should have been rejected by the dex file verifier. Only do in debug build. |
| // Note: the above will also be rejected in the dex file verifier, starting in dex version 37. |
| if (kIsDebugBuild) { |
| if ((method_access_flags_ & kAccAbstract) != 0) { |
| // Abstract methods are not allowed to have the following flags. |
| static constexpr uint32_t kForbidden = |
| kAccPrivate | |
| kAccStatic | |
| kAccFinal | |
| kAccNative | |
| kAccStrict | |
| kAccSynchronized; |
| if ((method_access_flags_ & kForbidden) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "method can't be abstract and private/static/final/native/strict/synchronized"; |
| return false; |
| } |
| } |
| if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) { |
| // Interface methods must be public and abstract (if default methods are disabled). |
| uint32_t kRequired = kAccPublic; |
| if ((method_access_flags_ & kRequired) != kRequired) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public"; |
| return false; |
| } |
| // In addition to the above, interface methods must not be protected. |
| static constexpr uint32_t kForbidden = kAccProtected; |
| if ((method_access_flags_ & kForbidden) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected"; |
| return false; |
| } |
| } |
| // We also don't allow constructors to be abstract or native. |
| if (IsConstructor()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // This should have been rejected by the dex file verifier. Only do in debug build. |
| if (kIsDebugBuild) { |
| // When there's code, the method must not be native or abstract. |
| if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method"; |
| return false; |
| } |
| |
| if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) { |
| // Interfaces may always have static initializers for their fields. If we are running with |
| // default methods enabled we also allow other public, static, non-final methods to have code. |
| // Otherwise that is the only type of method allowed. |
| if (!(IsConstructor() && IsStatic())) { |
| if (IsInstanceConstructor()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor"; |
| return false; |
| } else if (method_access_flags_ & kAccFinal) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods"; |
| return false; |
| } else { |
| uint32_t access_flag_options = kAccPublic; |
| if (dex_file_->SupportsDefaultMethods()) { |
| access_flag_options |= kAccPrivate; |
| } |
| if (!(method_access_flags_ & access_flag_options)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "interfaces may not have protected or package-private members"; |
| return false; |
| } |
| } |
| } |
| } |
| |
| // Instance constructors must not be synchronized. |
| if (IsInstanceConstructor()) { |
| static constexpr uint32_t kForbidden = kAccSynchronized; |
| if ((method_access_flags_ & kForbidden) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized"; |
| return false; |
| } |
| } |
| } |
| |
| // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers. |
| if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" |
| << code_item_accessor_.InsSize() |
| << " regs=" << code_item_accessor_.RegistersSize(); |
| return false; |
| } |
| |
| // Allocate and initialize an array to hold instruction data. |
| insn_flags_.reset(allocator_.AllocArray<InstructionFlags>( |
| code_item_accessor_.InsnsSizeInCodeUnits())); |
| DCHECK(insn_flags_ != nullptr); |
| std::uninitialized_fill_n(insn_flags_.get(), |
| code_item_accessor_.InsnsSizeInCodeUnits(), |
| InstructionFlags()); |
| // Run through the instructions and see if the width checks out. |
| bool result = ComputeWidthsAndCountOps(); |
| bool allow_runtime_only_instructions = !Runtime::Current()->IsAotCompiler() || verify_to_dump_; |
| // Flag instructions guarded by a "try" block and check exception handlers. |
| result = result && ScanTryCatchBlocks(); |
| // Perform static instruction verification. |
| result = result && (allow_runtime_only_instructions |
| ? VerifyInstructions<true>() |
| : VerifyInstructions<false>()); |
| // Perform code-flow analysis and return. |
| result = result && VerifyCodeFlow(); |
| |
| return result; |
| } |
| |
| std::ostream& MethodVerifier::Fail(VerifyError error) { |
| // Mark the error type as encountered. |
| encountered_failure_types_ |= static_cast<uint32_t>(error); |
| |
| switch (error) { |
| case VERIFY_ERROR_NO_CLASS: |
| case VERIFY_ERROR_NO_FIELD: |
| case VERIFY_ERROR_NO_METHOD: |
| case VERIFY_ERROR_ACCESS_CLASS: |
| case VERIFY_ERROR_ACCESS_FIELD: |
| case VERIFY_ERROR_ACCESS_METHOD: |
| case VERIFY_ERROR_INSTANTIATION: |
| case VERIFY_ERROR_CLASS_CHANGE: |
| case VERIFY_ERROR_FORCE_INTERPRETER: |
| case VERIFY_ERROR_LOCKING: |
| if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) { |
| // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx, |
| // class change and instantiation errors into soft verification errors so that we re-verify |
| // at runtime. We may fail to find or to agree on access because of not yet available class |
| // loaders, or class loaders that will differ at runtime. In these cases, we don't want to |
| // affect the soundness of the code being compiled. Instead, the generated code runs "slow |
| // paths" that dynamically perform the verification and cause the behavior to be that akin |
| // to an interpreter. |
| error = VERIFY_ERROR_BAD_CLASS_SOFT; |
| } else { |
| // If we fail again at runtime, mark that this instruction would throw and force this |
| // method to be executed using the interpreter with checks. |
| have_pending_runtime_throw_failure_ = true; |
| |
| // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll |
| // try to merge garbage. |
| // Note: this assumes that Fail is called before we do any work_line modifications. |
| // Note: this can fail before we touch any instruction, for the signature of a method. So |
| // add a check. |
| if (work_insn_idx_ < dex::kDexNoIndex) { |
| const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_); |
| int opcode_flags = Instruction::FlagsOf(inst.Opcode()); |
| |
| if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) { |
| saved_line_->CopyFromLine(work_line_.get()); |
| } |
| } |
| } |
| break; |
| |
| // Indication that verification should be retried at runtime. |
| case VERIFY_ERROR_BAD_CLASS_SOFT: |
| if (!allow_soft_failures_) { |
| have_pending_hard_failure_ = true; |
| } |
| break; |
| |
| // Hard verification failures at compile time will still fail at runtime, so the class is |
| // marked as rejected to prevent it from being compiled. |
| case VERIFY_ERROR_BAD_CLASS_HARD: { |
| have_pending_hard_failure_ = true; |
| if (VLOG_IS_ON(verifier) && kDumpRegLinesOnHardFailureIfVLOG) { |
| ScopedObjectAccess soa(Thread::Current()); |
| std::ostringstream oss; |
| Dump(oss); |
| LOG(ERROR) << oss.str(); |
| } |
| break; |
| } |
| } |
| failures_.push_back(error); |
| std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(), |
| work_insn_idx_)); |
| std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate); |
| failure_messages_.push_back(failure_message); |
| return *failure_message; |
| } |
| |
| std::ostream& MethodVerifier::LogVerifyInfo() { |
| return info_messages_ << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_) |
| << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : "; |
| } |
| |
| void MethodVerifier::PrependToLastFailMessage(std::string prepend) { |
| size_t failure_num = failure_messages_.size(); |
| DCHECK_NE(failure_num, 0U); |
| std::ostringstream* last_fail_message = failure_messages_[failure_num - 1]; |
| prepend += last_fail_message->str(); |
| failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate); |
| delete last_fail_message; |
| } |
| |
| void MethodVerifier::AppendToLastFailMessage(const std::string& append) { |
| size_t failure_num = failure_messages_.size(); |
| DCHECK_NE(failure_num, 0U); |
| std::ostringstream* last_fail_message = failure_messages_[failure_num - 1]; |
| (*last_fail_message) << append; |
| } |
| |
| bool MethodVerifier::ComputeWidthsAndCountOps() { |
| size_t new_instance_count = 0; |
| size_t monitor_enter_count = 0; |
| |
| // We can't assume the instruction is well formed, handle the case where calculating the size |
| // goes past the end of the code item. |
| SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end()); |
| for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) { |
| // In case the instruction goes past the end of the code item, make sure to not process it. |
| SafeDexInstructionIterator next = it; |
| ++next; |
| if (next.IsErrorState()) { |
| break; |
| } |
| Instruction::Code opcode = it->Opcode(); |
| switch (opcode) { |
| case Instruction::APUT_OBJECT: |
| case Instruction::CHECK_CAST: |
| has_check_casts_ = true; |
| break; |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| has_virtual_or_interface_invokes_ = true; |
| break; |
| case Instruction::MONITOR_ENTER: |
| monitor_enter_count++; |
| break; |
| case Instruction::NEW_INSTANCE: |
| new_instance_count++; |
| break; |
| default: |
| break; |
| } |
| GetInstructionFlags(it.DexPc()).SetIsOpcode(); |
| } |
| |
| if (it != code_item_accessor_.end()) { |
| const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits(); |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected (" |
| << it.DexPc() << " vs. " << insns_size << ")"; |
| return false; |
| } |
| |
| new_instance_count_ = new_instance_count; |
| monitor_enter_count_ = monitor_enter_count; |
| return true; |
| } |
| |
| bool MethodVerifier::ScanTryCatchBlocks() { |
| const uint32_t tries_size = code_item_accessor_.TriesSize(); |
| if (tries_size == 0) { |
| return true; |
| } |
| const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits(); |
| for (const DexFile::TryItem& try_item : code_item_accessor_.TryItems()) { |
| const uint32_t start = try_item.start_addr_; |
| const uint32_t end = start + try_item.insn_count_; |
| if ((start >= end) || (start >= insns_size) || (end > insns_size)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start |
| << " endAddr=" << end << " (size=" << insns_size << ")"; |
| return false; |
| } |
| if (!GetInstructionFlags(start).IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "'try' block starts inside an instruction (" << start << ")"; |
| return false; |
| } |
| DexInstructionIterator end_it(code_item_accessor_.Insns(), end); |
| for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) { |
| GetInstructionFlags(it.DexPc()).SetInTry(); |
| } |
| } |
| // Iterate over each of the handlers to verify target addresses. |
| const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); |
| const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| for (uint32_t idx = 0; idx < handlers_size; idx++) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| uint32_t dex_pc = iterator.GetHandlerAddress(); |
| if (!GetInstructionFlags(dex_pc).IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "exception handler starts at bad address (" << dex_pc << ")"; |
| return false; |
| } |
| if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "exception handler begins with move-result* (" << dex_pc << ")"; |
| return false; |
| } |
| GetInstructionFlags(dex_pc).SetBranchTarget(); |
| // Ensure exception types are resolved so that they don't need resolution to be delivered, |
| // unresolved exception types will be ignored by exception delivery |
| if (iterator.GetHandlerTypeIndex().IsValid()) { |
| ObjPtr<mirror::Class> exception_type = |
| linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_); |
| if (exception_type == nullptr) { |
| DCHECK(self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| return true; |
| } |
| |
| template <bool kAllowRuntimeOnlyInstructions> |
| bool MethodVerifier::VerifyInstructions() { |
| /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */ |
| GetInstructionFlags(0).SetBranchTarget(); |
| GetInstructionFlags(0).SetCompileTimeInfoPoint(); |
| for (const DexInstructionPcPair& inst : code_item_accessor_) { |
| const uint32_t dex_pc = inst.DexPc(); |
| if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) { |
| DCHECK_NE(failures_.size(), 0U); |
| return false; |
| } |
| /* Flag instructions that are garbage collection points */ |
| // All invoke points are marked as "Throw" points already. |
| // We are relying on this to also count all the invokes as interesting. |
| if (inst->IsBranch()) { |
| GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint(); |
| // The compiler also needs safepoints for fall-through to loop heads. |
| // Such a loop head must be a target of a branch. |
| int32_t offset = 0; |
| bool cond, self_ok; |
| bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok); |
| DCHECK(target_ok); |
| GetInstructionFlags(dex_pc + offset).SetCompileTimeInfoPoint(); |
| } else if (inst->IsSwitch() || inst->IsThrow()) { |
| GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint(); |
| } else if (inst->IsReturn()) { |
| GetInstructionFlags(dex_pc).SetCompileTimeInfoPointAndReturn(); |
| } |
| } |
| return true; |
| } |
| |
| template <bool kAllowRuntimeOnlyInstructions> |
| bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) { |
| if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) { |
| // Experimental instructions don't yet have verifier support implementation. |
| // While it is possible to use them by themselves, when we try to use stable instructions |
| // with a virtual register that was created by an experimental instruction, |
| // the data flow analysis will fail. |
| Fail(VERIFY_ERROR_FORCE_INTERPRETER) |
| << "experimental instruction is not supported by verifier; skipping verification"; |
| have_pending_experimental_failure_ = true; |
| return false; |
| } |
| |
| bool result = true; |
| switch (inst->GetVerifyTypeArgumentA()) { |
| case Instruction::kVerifyRegA: |
| result = result && CheckRegisterIndex(inst->VRegA()); |
| break; |
| case Instruction::kVerifyRegAWide: |
| result = result && CheckWideRegisterIndex(inst->VRegA()); |
| break; |
| } |
| switch (inst->GetVerifyTypeArgumentB()) { |
| case Instruction::kVerifyRegB: |
| result = result && CheckRegisterIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBField: |
| result = result && CheckFieldIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBMethod: |
| result = result && CheckMethodIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBNewInstance: |
| result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB())); |
| break; |
| case Instruction::kVerifyRegBString: |
| result = result && CheckStringIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBType: |
| result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB())); |
| break; |
| case Instruction::kVerifyRegBWide: |
| result = result && CheckWideRegisterIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBCallSite: |
| result = result && CheckCallSiteIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBMethodHandle: |
| result = result && CheckMethodHandleIndex(inst->VRegB()); |
| break; |
| case Instruction::kVerifyRegBPrototype: |
| result = result && CheckPrototypeIndex(inst->VRegB()); |
| break; |
| } |
| switch (inst->GetVerifyTypeArgumentC()) { |
| case Instruction::kVerifyRegC: |
| result = result && CheckRegisterIndex(inst->VRegC()); |
| break; |
| case Instruction::kVerifyRegCField: |
| result = result && CheckFieldIndex(inst->VRegC()); |
| break; |
| case Instruction::kVerifyRegCNewArray: |
| result = result && CheckNewArray(dex::TypeIndex(inst->VRegC())); |
| break; |
| case Instruction::kVerifyRegCType: |
| result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC())); |
| break; |
| case Instruction::kVerifyRegCWide: |
| result = result && CheckWideRegisterIndex(inst->VRegC()); |
| break; |
| } |
| switch (inst->GetVerifyTypeArgumentH()) { |
| case Instruction::kVerifyRegHPrototype: |
| result = result && CheckPrototypeIndex(inst->VRegH()); |
| break; |
| } |
| switch (inst->GetVerifyExtraFlags()) { |
| case Instruction::kVerifyArrayData: |
| result = result && CheckArrayData(code_offset); |
| break; |
| case Instruction::kVerifyBranchTarget: |
| result = result && CheckBranchTarget(code_offset); |
| break; |
| case Instruction::kVerifySwitchTargets: |
| result = result && CheckSwitchTargets(code_offset); |
| break; |
| case Instruction::kVerifyVarArgNonZero: |
| // Fall-through. |
| case Instruction::kVerifyVarArg: { |
| // Instructions that can actually return a negative value shouldn't have this flag. |
| uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA()); |
| if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) || |
| v_a > Instruction::kMaxVarArgRegs) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in " |
| "non-range invoke"; |
| return false; |
| } |
| |
| uint32_t args[Instruction::kMaxVarArgRegs]; |
| inst->GetVarArgs(args); |
| result = result && CheckVarArgRegs(v_a, args); |
| break; |
| } |
| case Instruction::kVerifyVarArgRangeNonZero: |
| // Fall-through. |
| case Instruction::kVerifyVarArgRange: |
| if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero && |
| inst->VRegA() <= 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in " |
| "range invoke"; |
| return false; |
| } |
| result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC()); |
| break; |
| case Instruction::kVerifyError: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name(); |
| result = false; |
| break; |
| } |
| if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name(); |
| result = false; |
| } |
| return result; |
| } |
| |
| inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) { |
| if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= " |
| << code_item_accessor_.RegistersSize() << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) { |
| if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx |
| << "+1 >= " << code_item_accessor_.RegistersSize() << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckCallSiteIndex(uint32_t idx) { |
| uint32_t limit = dex_file_->NumCallSiteIds(); |
| if (UNLIKELY(idx >= limit)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max " |
| << limit << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) { |
| if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max " |
| << dex_file_->GetHeader().field_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) { |
| if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max " |
| << dex_file_->GetHeader().method_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckMethodHandleIndex(uint32_t idx) { |
| uint32_t limit = dex_file_->NumMethodHandles(); |
| if (UNLIKELY(idx >= limit)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max " |
| << limit << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckNewInstance(dex::TypeIndex idx) { |
| if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| // We don't need the actual class, just a pointer to the class name. |
| const char* descriptor = dex_file_->StringByTypeIdx(idx); |
| if (UNLIKELY(descriptor[0] != 'L')) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'"; |
| return false; |
| } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) { |
| // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an |
| // exception is thrown when this statement is executed (compiled code would not do that). |
| Fail(VERIFY_ERROR_INSTANTIATION); |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckPrototypeIndex(uint32_t idx) { |
| if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max " |
| << dex_file_->GetHeader().proto_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckStringIndex(uint32_t idx) { |
| if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max " |
| << dex_file_->GetHeader().string_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| inline bool MethodVerifier::CheckTypeIndex(dex::TypeIndex idx) { |
| if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckNewArray(dex::TypeIndex idx) { |
| if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| int bracket_count = 0; |
| const char* descriptor = dex_file_->StringByTypeIdx(idx); |
| const char* cp = descriptor; |
| while (*cp++ == '[') { |
| bracket_count++; |
| } |
| if (UNLIKELY(bracket_count == 0)) { |
| /* The given class must be an array type. */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "can't new-array class '" << descriptor << "' (not an array)"; |
| return false; |
| } else if (UNLIKELY(bracket_count > 255)) { |
| /* It is illegal to create an array of more than 255 dimensions. */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "can't new-array class '" << descriptor << "' (exceeds limit)"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckArrayData(uint32_t cur_offset) { |
| const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits(); |
| const uint16_t* insns = code_item_accessor_.Insns() + cur_offset; |
| const uint16_t* array_data; |
| int32_t array_data_offset; |
| |
| DCHECK_LT(cur_offset, insn_count); |
| /* make sure the start of the array data table is in range */ |
| array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); |
| if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 || |
| cur_offset + array_data_offset + 2 >= insn_count)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset |
| << ", data offset " << array_data_offset |
| << ", count " << insn_count; |
| return false; |
| } |
| /* offset to array data table is a relative branch-style offset */ |
| array_data = insns + array_data_offset; |
| // Make sure the table is at an even dex pc, that is, 32-bit aligned. |
| if (UNLIKELY(!IsAligned<4>(array_data))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset |
| << ", data offset " << array_data_offset; |
| return false; |
| } |
| // Make sure the array-data is marked as an opcode. This ensures that it was reached when |
| // traversing the code item linearly. It is an approximation for a by-spec padding value. |
| if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset |
| << ", data offset " << array_data_offset |
| << " not correctly visited, probably bad padding."; |
| return false; |
| } |
| |
| uint32_t value_width = array_data[1]; |
| uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]); |
| uint32_t table_size = 4 + (value_width * value_count + 1) / 2; |
| /* make sure the end of the switch is in range */ |
| if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset |
| << ", data offset " << array_data_offset << ", end " |
| << cur_offset + array_data_offset + table_size |
| << ", count " << insn_count; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) { |
| int32_t offset; |
| bool isConditional, selfOkay; |
| if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) { |
| return false; |
| } |
| if (UNLIKELY(!selfOkay && offset == 0)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at" |
| << reinterpret_cast<void*>(cur_offset); |
| return false; |
| } |
| // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime |
| // to have identical "wrap-around" behavior, but it's unwise to depend on that. |
| if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow " |
| << reinterpret_cast<void*>(cur_offset) << " +" << offset; |
| return false; |
| } |
| int32_t abs_offset = cur_offset + offset; |
| if (UNLIKELY(abs_offset < 0 || |
| (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits() || |
| !GetInstructionFlags(abs_offset).IsOpcode())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> " |
| << reinterpret_cast<void*>(abs_offset) << ") at " |
| << reinterpret_cast<void*>(cur_offset); |
| return false; |
| } |
| GetInstructionFlags(abs_offset).SetBranchTarget(); |
| return true; |
| } |
| |
| bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional, |
| bool* selfOkay) { |
| const uint16_t* insns = code_item_accessor_.Insns() + cur_offset; |
| *pConditional = false; |
| *selfOkay = false; |
| switch (*insns & 0xff) { |
| case Instruction::GOTO: |
| *pOffset = ((int16_t) *insns) >> 8; |
| break; |
| case Instruction::GOTO_32: |
| *pOffset = insns[1] | (((uint32_t) insns[2]) << 16); |
| *selfOkay = true; |
| break; |
| case Instruction::GOTO_16: |
| *pOffset = (int16_t) insns[1]; |
| break; |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| *pOffset = (int16_t) insns[1]; |
| *pConditional = true; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) { |
| const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits(); |
| DCHECK_LT(cur_offset, insn_count); |
| const uint16_t* insns = code_item_accessor_.Insns() + cur_offset; |
| /* make sure the start of the switch is in range */ |
| int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); |
| if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 || |
| cur_offset + switch_offset + 2 > insn_count)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset |
| << ", switch offset " << switch_offset |
| << ", count " << insn_count; |
| return false; |
| } |
| /* offset to switch table is a relative branch-style offset */ |
| const uint16_t* switch_insns = insns + switch_offset; |
| // Make sure the table is at an even dex pc, that is, 32-bit aligned. |
| if (UNLIKELY(!IsAligned<4>(switch_insns))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset |
| << ", switch offset " << switch_offset; |
| return false; |
| } |
| // Make sure the switch data is marked as an opcode. This ensures that it was reached when |
| // traversing the code item linearly. It is an approximation for a by-spec padding value. |
| if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset |
| << ", switch offset " << switch_offset |
| << " not correctly visited, probably bad padding."; |
| return false; |
| } |
| |
| bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH; |
| |
| uint32_t switch_count = switch_insns[1]; |
| int32_t targets_offset; |
| uint16_t expected_signature; |
| if (is_packed_switch) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| targets_offset = 4; |
| expected_signature = Instruction::kPackedSwitchSignature; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| targets_offset = 2 + 2 * switch_count; |
| expected_signature = Instruction::kSparseSwitchSignature; |
| } |
| uint32_t table_size = targets_offset + switch_count * 2; |
| if (UNLIKELY(switch_insns[0] != expected_signature)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << StringPrintf("wrong signature for switch table (%x, wanted %x)", |
| switch_insns[0], expected_signature); |
| return false; |
| } |
| /* make sure the end of the switch is in range */ |
| if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset |
| << ", switch offset " << switch_offset |
| << ", end " << (cur_offset + switch_offset + table_size) |
| << ", count " << insn_count; |
| return false; |
| } |
| |
| constexpr int32_t keys_offset = 2; |
| if (switch_count > 1) { |
| if (is_packed_switch) { |
| /* for a packed switch, verify that keys do not overflow int32 */ |
| int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16); |
| int32_t max_first_key = |
| std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1); |
| if (UNLIKELY(first_key > max_first_key)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key |
| << ", switch_count=" << switch_count; |
| return false; |
| } |
| } else { |
| /* for a sparse switch, verify the keys are in ascending order */ |
| int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16); |
| for (uint32_t targ = 1; targ < switch_count; targ++) { |
| int32_t key = |
| static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) | |
| static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16); |
| if (UNLIKELY(key <= last_key)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key |
| << ", this=" << key; |
| return false; |
| } |
| last_key = key; |
| } |
| } |
| } |
| /* verify each switch target */ |
| for (uint32_t targ = 0; targ < switch_count; targ++) { |
| int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) | |
| static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16); |
| int32_t abs_offset = cur_offset + offset; |
| if (UNLIKELY(abs_offset < 0 || |
| abs_offset >= static_cast<int32_t>(insn_count) || |
| !GetInstructionFlags(abs_offset).IsOpcode())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset |
| << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at " |
| << reinterpret_cast<void*>(cur_offset) |
| << "[" << targ << "]"; |
| return false; |
| } |
| GetInstructionFlags(abs_offset).SetBranchTarget(); |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) { |
| uint16_t registers_size = code_item_accessor_.RegistersSize(); |
| for (uint32_t idx = 0; idx < vA; idx++) { |
| if (UNLIKELY(arg[idx] >= registers_size)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx] |
| << ") in non-range invoke (>= " << registers_size << ")"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) { |
| uint16_t registers_size = code_item_accessor_.RegistersSize(); |
| // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of |
| // integer overflow when adding them here. |
| if (UNLIKELY(vA + vC > registers_size)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC |
| << " in range invoke (> " << registers_size << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::VerifyCodeFlow() { |
| const uint16_t registers_size = code_item_accessor_.RegistersSize(); |
| |
| /* Create and initialize table holding register status */ |
| reg_table_.Init(kTrackCompilerInterestPoints, |
| insn_flags_.get(), |
| code_item_accessor_.InsnsSizeInCodeUnits(), |
| registers_size, |
| this); |
| |
| work_line_.reset(RegisterLine::Create(registers_size, this)); |
| saved_line_.reset(RegisterLine::Create(registers_size, this)); |
| |
| /* Initialize register types of method arguments. */ |
| if (!SetTypesFromSignature()) { |
| DCHECK_NE(failures_.size(), 0U); |
| std::string prepend("Bad signature in "); |
| prepend += dex_file_->PrettyMethod(dex_method_idx_); |
| PrependToLastFailMessage(prepend); |
| return false; |
| } |
| // We may have a runtime failure here, clear. |
| have_pending_runtime_throw_failure_ = false; |
| |
| /* Perform code flow verification. */ |
| if (!CodeFlowVerifyMethod()) { |
| DCHECK_NE(failures_.size(), 0U); |
| return false; |
| } |
| return true; |
| } |
| |
| std::ostream& MethodVerifier::DumpFailures(std::ostream& os) { |
| DCHECK_EQ(failures_.size(), failure_messages_.size()); |
| for (size_t i = 0; i < failures_.size(); ++i) { |
| os << failure_messages_[i]->str() << "\n"; |
| } |
| return os; |
| } |
| |
| void MethodVerifier::Dump(std::ostream& os) { |
| VariableIndentationOutputStream vios(&os); |
| Dump(&vios); |
| } |
| |
| void MethodVerifier::Dump(VariableIndentationOutputStream* vios) { |
| if (!code_item_accessor_.HasCodeItem()) { |
| vios->Stream() << "Native method\n"; |
| return; |
| } |
| { |
| vios->Stream() << "Register Types:\n"; |
| ScopedIndentation indent1(vios); |
| reg_types_.Dump(vios->Stream()); |
| } |
| vios->Stream() << "Dumping instructions and register lines:\n"; |
| ScopedIndentation indent1(vios); |
| |
| for (const DexInstructionPcPair& inst : code_item_accessor_) { |
| const size_t dex_pc = inst.DexPc(); |
| |
| // Might be asked to dump before the table is initialized. |
| if (reg_table_.IsInitialized()) { |
| RegisterLine* reg_line = reg_table_.GetLine(dex_pc); |
| if (reg_line != nullptr) { |
| vios->Stream() << reg_line->Dump(this) << "\n"; |
| } |
| } |
| |
| vios->Stream() |
| << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " "; |
| const bool kDumpHexOfInstruction = false; |
| if (kDumpHexOfInstruction) { |
| vios->Stream() << inst->DumpHex(5) << " "; |
| } |
| vios->Stream() << inst->DumpString(dex_file_) << "\n"; |
| } |
| } |
| |
| static bool IsPrimitiveDescriptor(char descriptor) { |
| switch (descriptor) { |
| case 'I': |
| case 'C': |
| case 'S': |
| case 'B': |
| case 'Z': |
| case 'F': |
| case 'D': |
| case 'J': |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool MethodVerifier::SetTypesFromSignature() { |
| RegisterLine* reg_line = reg_table_.GetLine(0); |
| |
| // Should have been verified earlier. |
| DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize()); |
| |
| uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize(); |
| size_t expected_args = code_item_accessor_.InsSize(); /* long/double count as two */ |
| |
| // Include the "this" pointer. |
| size_t cur_arg = 0; |
| if (!IsStatic()) { |
| if (expected_args == 0) { |
| // Expect at least a receiver. |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static"; |
| return false; |
| } |
| |
| // If this is a constructor for a class other than java.lang.Object, mark the first ("this") |
| // argument as uninitialized. This restricts field access until the superclass constructor is |
| // called. |
| const RegType& declaring_class = GetDeclaringClass(); |
| if (IsConstructor()) { |
| if (declaring_class.IsJavaLangObject()) { |
| // "this" is implicitly initialized. |
| reg_line->SetThisInitialized(); |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class); |
| } else { |
| reg_line->SetRegisterType<LockOp::kClear>( |
| this, |
| arg_start + cur_arg, |
| reg_types_.UninitializedThisArgument(declaring_class)); |
| } |
| } else { |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class); |
| } |
| cur_arg++; |
| } |
| |
| const DexFile::ProtoId& proto_id = |
| dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_)); |
| DexFileParameterIterator iterator(*dex_file_, proto_id); |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| const char* descriptor = iterator.GetDescriptor(); |
| if (descriptor == nullptr) { |
| LOG(FATAL) << "Null descriptor"; |
| } |
| if (cur_arg >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args |
| << " args, found more (" << descriptor << ")"; |
| return false; |
| } |
| switch (descriptor[0]) { |
| case 'L': |
| case '[': |
| // We assume that reference arguments are initialized. The only way it could be otherwise |
| // (assuming the caller was verified) is if the current method is <init>, but in that case |
| // it's effectively considered initialized the instant we reach here (in the sense that we |
| // can return without doing anything or call virtual methods). |
| { |
| // Note: don't check access. No error would be thrown for declaring or passing an |
| // inaccessible class. Only actual accesses to fields or methods will. |
| const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx()); |
| if (!reg_type.IsNonZeroReferenceTypes()) { |
| DCHECK(HasFailures()); |
| return false; |
| } |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type); |
| } |
| break; |
| case 'Z': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean()); |
| break; |
| case 'C': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char()); |
| break; |
| case 'B': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte()); |
| break; |
| case 'I': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer()); |
| break; |
| case 'S': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short()); |
| break; |
| case 'F': |
| reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float()); |
| break; |
| case 'J': |
| case 'D': { |
| if (cur_arg + 1 >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args |
| << " args, found more (" << descriptor << ")"; |
| return false; |
| } |
| |
| const RegType* lo_half; |
| const RegType* hi_half; |
| if (descriptor[0] == 'J') { |
| lo_half = ®_types_.LongLo(); |
| hi_half = ®_types_.LongHi(); |
| } else { |
| lo_half = ®_types_.DoubleLo(); |
| hi_half = ®_types_.DoubleHi(); |
| } |
| reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half); |
| cur_arg++; |
| break; |
| } |
| default: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '" |
| << descriptor << "'"; |
| return false; |
| } |
| cur_arg++; |
| } |
| if (cur_arg != expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args |
| << " arguments, found " << cur_arg; |
| return false; |
| } |
| const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id); |
| // Validate return type. We don't do the type lookup; just want to make sure that it has the right |
| // format. Only major difference from the method argument format is that 'V' is supported. |
| bool result; |
| if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') { |
| result = descriptor[1] == '\0'; |
| } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive |
| size_t i = 0; |
| do { |
| i++; |
| } while (descriptor[i] == '['); // process leading [ |
| if (descriptor[i] == 'L') { // object array |
| do { |
| i++; // find closing ; |
| } while (descriptor[i] != ';' && descriptor[i] != '\0'); |
| result = descriptor[i] == ';'; |
| } else { // primitive array |
| result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0'; |
| } |
| } else if (descriptor[0] == 'L') { |
| // could be more thorough here, but shouldn't be required |
| size_t i = 0; |
| do { |
| i++; |
| } while (descriptor[i] != ';' && descriptor[i] != '\0'); |
| result = descriptor[i] == ';'; |
| } else { |
| result = false; |
| } |
| if (!result) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '" |
| << descriptor << "'"; |
| } |
| return result; |
| } |
| |
| bool MethodVerifier::CodeFlowVerifyMethod() { |
| const uint16_t* insns = code_item_accessor_.Insns(); |
| const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits(); |
| |
| /* Begin by marking the first instruction as "changed". */ |
| GetInstructionFlags(0).SetChanged(); |
| uint32_t start_guess = 0; |
| |
| /* Continue until no instructions are marked "changed". */ |
| while (true) { |
| if (allow_thread_suspension_) { |
| self_->AllowThreadSuspension(); |
| } |
| // Find the first marked one. Use "start_guess" as a way to find one quickly. |
| uint32_t insn_idx = start_guess; |
| for (; insn_idx < insns_size; insn_idx++) { |
| if (GetInstructionFlags(insn_idx).IsChanged()) |
| break; |
| } |
| if (insn_idx == insns_size) { |
| if (start_guess != 0) { |
| /* try again, starting from the top */ |
| start_guess = 0; |
| continue; |
| } else { |
| /* all flags are clear */ |
| break; |
| } |
| } |
| // We carry the working set of registers from instruction to instruction. If this address can |
| // be the target of a branch (or throw) instruction, or if we're skipping around chasing |
| // "changed" flags, we need to load the set of registers from the table. |
| // Because we always prefer to continue on to the next instruction, we should never have a |
| // situation where we have a stray "changed" flag set on an instruction that isn't a branch |
| // target. |
| work_insn_idx_ = insn_idx; |
| if (GetInstructionFlags(insn_idx).IsBranchTarget()) { |
| work_line_->CopyFromLine(reg_table_.GetLine(insn_idx)); |
| } else if (kIsDebugBuild) { |
| /* |
| * Sanity check: retrieve the stored register line (assuming |
| * a full table) and make sure it actually matches. |
| */ |
| RegisterLine* register_line = reg_table_.GetLine(insn_idx); |
| if (register_line != nullptr) { |
| if (work_line_->CompareLine(register_line) != 0) { |
| Dump(std::cout); |
| std::cout << info_messages_.str(); |
| LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_) |
| << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n" |
| << " work_line=" << work_line_->Dump(this) << "\n" |
| << " expected=" << register_line->Dump(this); |
| } |
| } |
| } |
| if (!CodeFlowVerifyInstruction(&start_guess)) { |
| std::string prepend(dex_file_->PrettyMethod(dex_method_idx_)); |
| prepend += " failed to verify: "; |
| PrependToLastFailMessage(prepend); |
| return false; |
| } |
| /* Clear "changed" and mark as visited. */ |
| GetInstructionFlags(insn_idx).SetVisited(); |
| GetInstructionFlags(insn_idx).ClearChanged(); |
| } |
| |
| if (UNLIKELY(VLOG_IS_ON(verifier_debug))) { |
| /* |
| * Scan for dead code. There's nothing "evil" about dead code |
| * (besides the wasted space), but it indicates a flaw somewhere |
| * down the line, possibly in the verifier. |
| * |
| * If we've substituted "always throw" instructions into the stream, |
| * we are almost certainly going to have some dead code. |
| */ |
| int dead_start = -1; |
| |
| for (const DexInstructionPcPair& inst : code_item_accessor_) { |
| const uint32_t insn_idx = inst.DexPc(); |
| /* |
| * Switch-statement data doesn't get "visited" by scanner. It |
| * may or may not be preceded by a padding NOP (for alignment). |
| */ |
| if (insns[insn_idx] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx] == Instruction::kArrayDataSignature || |
| (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) && |
| (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kArrayDataSignature))) { |
| GetInstructionFlags(insn_idx).SetVisited(); |
| } |
| |
| if (!GetInstructionFlags(insn_idx).IsVisited()) { |
| if (dead_start < 0) { |
| dead_start = insn_idx; |
| } |
| } else if (dead_start >= 0) { |
| LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) |
| << "-" << reinterpret_cast<void*>(insn_idx - 1); |
| dead_start = -1; |
| } |
| } |
| if (dead_start >= 0) { |
| LogVerifyInfo() |
| << "dead code " << reinterpret_cast<void*>(dead_start) |
| << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1); |
| } |
| // To dump the state of the verify after a method, do something like: |
| // if (dex_file_->PrettyMethod(dex_method_idx_) == |
| // "boolean java.lang.String.equals(java.lang.Object)") { |
| // LOG(INFO) << info_messages_.str(); |
| // } |
| } |
| return true; |
| } |
| |
| // Returns the index of the first final instance field of the given class, or kDexNoIndex if there |
| // is no such field. |
| static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) { |
| const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx); |
| DCHECK(class_def != nullptr); |
| const uint8_t* class_data = dex_file.GetClassData(*class_def); |
| DCHECK(class_data != nullptr); |
| ClassDataItemIterator it(dex_file, class_data); |
| it.SkipStaticFields(); |
| while (it.HasNextInstanceField()) { |
| if ((it.GetFieldAccessFlags() & kAccFinal) != 0) { |
| return it.GetMemberIndex(); |
| } |
| it.Next(); |
| } |
| return dex::kDexNoIndex; |
| } |
| |
| // Setup a register line for the given return instruction. |
| static void AdjustReturnLine(MethodVerifier* verifier, |
| const Instruction* ret_inst, |
| RegisterLine* line) { |
| Instruction::Code opcode = ret_inst->Opcode(); |
| |
| switch (opcode) { |
| case Instruction::RETURN_VOID: |
| case Instruction::RETURN_VOID_NO_BARRIER: |
| SafelyMarkAllRegistersAsConflicts(verifier, line); |
| break; |
| |
| case Instruction::RETURN: |
| case Instruction::RETURN_OBJECT: |
| line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x()); |
| break; |
| |
| case Instruction::RETURN_WIDE: |
| line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return opcode " << opcode; |
| UNREACHABLE(); |
| } |
| } |
| |
| bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) { |
| // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about. |
| // We want the state _before_ the instruction, for the case where the dex pc we're |
| // interested in is itself a monitor-enter instruction (which is a likely place |
| // for a thread to be suspended). |
| if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) { |
| monitor_enter_dex_pcs_->clear(); // The new work line is more accurate than the previous one. |
| |
| std::map<uint32_t, DexLockInfo> depth_to_lock_info; |
| auto collector = [&](uint32_t dex_reg, uint32_t depth) { |
| auto insert_pair = depth_to_lock_info.emplace(depth, DexLockInfo(depth)); |
| auto it = insert_pair.first; |
| auto set_insert_pair = it->second.dex_registers.insert(dex_reg); |
| DCHECK(set_insert_pair.second); |
| }; |
| work_line_->IterateRegToLockDepths(collector); |
| for (auto& pair : depth_to_lock_info) { |
| monitor_enter_dex_pcs_->push_back(pair.second); |
| // Map depth to dex PC. |
| (*monitor_enter_dex_pcs_)[monitor_enter_dex_pcs_->size() - 1].dex_pc = |
| work_line_->GetMonitorEnterDexPc(pair.second.dex_pc); |
| } |
| } |
| |
| /* |
| * Once we finish decoding the instruction, we need to figure out where |
| * we can go from here. There are three possible ways to transfer |
| * control to another statement: |
| * |
| * (1) Continue to the next instruction. Applies to all but |
| * unconditional branches, method returns, and exception throws. |
| * (2) Branch to one or more possible locations. Applies to branches |
| * and switch statements. |
| * (3) Exception handlers. Applies to any instruction that can |
| * throw an exception that is handled by an encompassing "try" |
| * block. |
| * |
| * We can also return, in which case there is no successor instruction |
| * from this point. |
| * |
| * The behavior can be determined from the opcode flags. |
| */ |
| const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_; |
| const Instruction* inst = Instruction::At(insns); |
| int opcode_flags = Instruction::FlagsOf(inst->Opcode()); |
| |
| int32_t branch_target = 0; |
| bool just_set_result = false; |
| if (UNLIKELY(VLOG_IS_ON(verifier_debug))) { |
| // Generate processing back trace to debug verifier |
| LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n" |
| << work_line_->Dump(this) << "\n"; |
| } |
| |
| /* |
| * Make a copy of the previous register state. If the instruction |
| * can throw an exception, we will copy/merge this into the "catch" |
| * address rather than work_line, because we don't want the result |
| * from the "successful" code path (e.g. a check-cast that "improves" |
| * a type) to be visible to the exception handler. |
| */ |
| if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) { |
| saved_line_->CopyFromLine(work_line_.get()); |
| } else if (kIsDebugBuild) { |
| saved_line_->FillWithGarbage(); |
| } |
| DCHECK(!have_pending_runtime_throw_failure_); // Per-instruction flag, should not be set here. |
| |
| |
| // We need to ensure the work line is consistent while performing validation. When we spot a |
| // peephole pattern we compute a new line for either the fallthrough instruction or the |
| // branch target. |
| RegisterLineArenaUniquePtr branch_line; |
| RegisterLineArenaUniquePtr fallthrough_line; |
| |
| switch (inst->Opcode()) { |
| case Instruction::NOP: |
| /* |
| * A "pure" NOP has no effect on anything. Data tables start with |
| * a signature that looks like a NOP; if we see one of these in |
| * the course of executing code then we have a problem. |
| */ |
| if (inst->VRegA_10x() != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream"; |
| } |
| break; |
| |
| case Instruction::MOVE: |
| work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr); |
| break; |
| case Instruction::MOVE_FROM16: |
| work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr); |
| break; |
| case Instruction::MOVE_16: |
| work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr); |
| break; |
| case Instruction::MOVE_WIDE: |
| work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x()); |
| break; |
| case Instruction::MOVE_WIDE_FROM16: |
| work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x()); |
| break; |
| case Instruction::MOVE_WIDE_16: |
| work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x()); |
| break; |
| case Instruction::MOVE_OBJECT: |
| work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef); |
| break; |
| case Instruction::MOVE_OBJECT_FROM16: |
| work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef); |
| break; |
| case Instruction::MOVE_OBJECT_16: |
| work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef); |
| break; |
| |
| /* |
| * The move-result instructions copy data out of a "pseudo-register" |
| * with the results from the last method invocation. In practice we |
| * might want to hold the result in an actual CPU register, so the |
| * Dalvik spec requires that these only appear immediately after an |
| * invoke or filled-new-array. |
| * |
| * These calls invalidate the "result" register. (This is now |
| * redundant with the reset done below, but it can make the debug info |
| * easier to read in some cases.) |
| */ |
| case Instruction::MOVE_RESULT: |
| work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false); |
| break; |
| case Instruction::MOVE_RESULT_WIDE: |
| work_line_->CopyResultRegister2(this, inst->VRegA_11x()); |
| break; |
| case Instruction::MOVE_RESULT_OBJECT: |
| work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true); |
| break; |
| |
| case Instruction::MOVE_EXCEPTION: { |
| // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case |
| // where one entrypoint to the catch block is not actually an exception path. |
| if (work_insn_idx_ == 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0"; |
| break; |
| } |
| /* |
| * This statement can only appear as the first instruction in an exception handler. We verify |
| * that as part of extracting the exception type from the catch block list. |
| */ |
| const RegType& res_type = GetCaughtExceptionType(); |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), res_type); |
| break; |
| } |
| case Instruction::RETURN_VOID: |
| if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) { |
| if (!GetMethodReturnType().IsConflict()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected"; |
| } |
| } |
| break; |
| case Instruction::RETURN: |
| if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) { |
| /* check the method signature */ |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsCategory1Types()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type " |
| << return_type; |
| } else { |
| // Compilers may generate synthetic functions that write byte values into boolean fields. |
| // Also, it may use integer values for boolean, byte, short, and character return types. |
| const uint32_t vregA = inst->VRegA_11x(); |
| const RegType& src_type = work_line_->GetRegisterType(this, vregA); |
| bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) || |
| ((return_type.IsBoolean() || return_type.IsByte() || |
| return_type.IsShort() || return_type.IsChar()) && |
| src_type.IsInteger())); |
| /* check the register contents */ |
| bool success = |
| work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type); |
| if (!success) { |
| AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA)); |
| } |
| } |
| } |
| break; |
| case Instruction::RETURN_WIDE: |
| if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) { |
| /* check the method signature */ |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsCategory2Types()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected"; |
| } else { |
| /* check the register contents */ |
| const uint32_t vregA = inst->VRegA_11x(); |
| bool success = work_line_->VerifyRegisterType(this, vregA, return_type); |
| if (!success) { |
| AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA)); |
| } |
| } |
| } |
| break; |
| case Instruction::RETURN_OBJECT: |
| if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) { |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected"; |
| } else { |
| /* return_type is the *expected* return type, not register value */ |
| DCHECK(!return_type.IsZeroOrNull()); |
| DCHECK(!return_type.IsUninitializedReference()); |
| const uint32_t vregA = inst->VRegA_11x(); |
| const RegType& reg_type = work_line_->GetRegisterType(this, vregA); |
| // Disallow returning undefined, conflict & uninitialized values and verify that the |
| // reference in vAA is an instance of the "return_type." |
| if (reg_type.IsUndefined()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register"; |
| } else if (reg_type.IsConflict()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict"; |
| } else if (reg_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '" |
| << reg_type << "'"; |
| } else if (!reg_type.IsReferenceTypes()) { |
| // We really do expect a reference here. |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type " |
| << reg_type; |
| } else if (!return_type.IsAssignableFrom(reg_type, this)) { |
| if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) { |
| Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type |
| << "' or '" << reg_type << "'"; |
| } else { |
| bool soft_error = false; |
| // Check whether arrays are involved. They will show a valid class status, even |
| // if their components are erroneous. |
| if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) { |
| return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error); |
| if (soft_error) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: " |
| << reg_type << " vs " << return_type; |
| } |
| } |
| |
| if (!soft_error) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type |
| << "', but expected from declaration '" << return_type << "'"; |
| } |
| } |
| } |
| } |
| } |
| break; |
| |
| /* could be boolean, int, float, or a null reference */ |
| case Instruction::CONST_4: { |
| int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28; |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_)); |
| break; |
| } |
| case Instruction::CONST_16: { |
| int16_t val = static_cast<int16_t>(inst->VRegB_21s()); |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_)); |
| break; |
| } |
| case Instruction::CONST: { |
| int32_t val = inst->VRegB_31i(); |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_)); |
| break; |
| } |
| case Instruction::CONST_HIGH16: { |
| int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16); |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_)); |
| break; |
| } |
| /* could be long or double; resolved upon use */ |
| case Instruction::CONST_WIDE_16: { |
| int64_t val = static_cast<int16_t>(inst->VRegB_21s()); |
| const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); |
| const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi); |
| break; |
| } |
| case Instruction::CONST_WIDE_32: { |
| int64_t val = static_cast<int32_t>(inst->VRegB_31i()); |
| const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); |
| const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi); |
| break; |
| } |
| case Instruction::CONST_WIDE: { |
| int64_t val = inst->VRegB_51l(); |
| const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); |
| const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi); |
| break; |
| } |
| case Instruction::CONST_WIDE_HIGH16: { |
| int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48; |
| const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); |
| const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi); |
| break; |
| } |
| case Instruction::CONST_STRING: |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21c(), reg_types_.JavaLangString()); |
| break; |
| case Instruction::CONST_STRING_JUMBO: |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_31c(), reg_types_.JavaLangString()); |
| break; |
| case Instruction::CONST_CLASS: { |
| // Get type from instruction if unresolved then we need an access check |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c())); |
| // Register holds class, ie its type is class, on error it will hold Conflict. |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21c(), res_type.IsConflict() ? res_type |
| : reg_types_.JavaLangClass()); |
| break; |
| } |
| case Instruction::CONST_METHOD_HANDLE: |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle()); |
| // TODO: add compiler support for const-method-{handle,type} (b/66890674) |
| Fail(VERIFY_ERROR_FORCE_INTERPRETER); |
| break; |
| case Instruction::CONST_METHOD_TYPE: |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType()); |
| // TODO: add compiler support for const-method-{handle,type} (b/66890674) |
| Fail(VERIFY_ERROR_FORCE_INTERPRETER); |
| break; |
| case Instruction::MONITOR_ENTER: |
| work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_); |
| // Check whether the previous instruction is a move-object with vAA as a source, creating |
| // untracked lock aliasing. |
| if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) { |
| uint32_t prev_idx = work_insn_idx_ - 1; |
| while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) { |
| prev_idx--; |
| } |
| const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx); |
| switch (prev_inst.Opcode()) { |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_OBJECT_FROM16: |
| if (prev_inst.VRegB() == inst->VRegA_11x()) { |
| // Redo the copy. This won't change the register types, but update the lock status |
| // for the aliased register. |
| work_line_->CopyRegister1(this, |
| prev_inst.VRegA(), |
| prev_inst.VRegB(), |
| kTypeCategoryRef); |
| } |
| break; |
| |
| default: // Other instruction types ignored. |
| break; |
| } |
| } |
| break; |
| case Instruction::MONITOR_EXIT: |
| /* |
| * monitor-exit instructions are odd. They can throw exceptions, |
| * but when they do they act as if they succeeded and the PC is |
| * pointing to the following instruction. (This behavior goes back |
| * to the need to handle asynchronous exceptions, a now-deprecated |
| * feature that Dalvik doesn't support.) |
| * |
| * In practice we don't need to worry about this. The only |
| * exceptions that can be thrown from monitor-exit are for a |
| * null reference and -exit without a matching -enter. If the |
| * structured locking checks are working, the former would have |
| * failed on the -enter instruction, and the latter is impossible. |
| * |
| * This is fortunate, because issue 3221411 prevents us from |
| * chasing the "can throw" path when monitor verification is |
| * enabled. If we can fully verify the locking we can ignore |
| * some catch blocks (which will show up as "dead" code when |
| * we skip them here); if we can't, then the code path could be |
| * "live" so we still need to check it. |
| */ |
| opcode_flags &= ~Instruction::kThrow; |
| work_line_->PopMonitor(this, inst->VRegA_11x()); |
| break; |
| case Instruction::CHECK_CAST: |
| case Instruction::INSTANCE_OF: { |
| /* |
| * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This |
| * could be a "upcast" -- not expected, so we don't try to address it.) |
| * |
| * If it fails, an exception is thrown, which we deal with later by ignoring the update to |
| * dec_insn.vA when branching to a handler. |
| */ |
| const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST); |
| const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c()); |
| const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx); |
| if (res_type.IsConflict()) { |
| // If this is a primitive type, fail HARD. |
| ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType( |
| type_idx, dex_cache_.Get(), class_loader_.Get()); |
| if (klass != nullptr && klass->IsPrimitive()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type " |
| << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in " |
| << GetDeclaringClass(); |
| break; |
| } |
| |
| DCHECK_NE(failures_.size(), 0U); |
| if (!is_checkcast) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, |
| inst->VRegA_22c(), |
| reg_types_.Boolean()); |
| } |
| break; // bad class |
| } |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c(); |
| const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg); |
| if (!res_type.IsNonZeroReferenceTypes()) { |
| if (is_checkcast) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type; |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type; |
| } |
| } else if (!orig_type.IsReferenceTypes()) { |
| if (is_checkcast) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg; |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg; |
| } |
| } else if (orig_type.IsUninitializedTypes()) { |
| if (is_checkcast) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v" |
| << orig_type_reg; |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v" |
| << orig_type_reg; |
| } |
| } else { |
| if (is_checkcast) { |
| work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type); |
| } else { |
| work_line_->SetRegisterType<LockOp::kClear>(this, |
| inst->VRegA_22c(), |
| reg_types_.Boolean()); |
| } |
| } |
| break; |
| } |
| case Instruction::ARRAY_LENGTH: { |
| const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x()); |
| if (res_type.IsReferenceTypes()) { |
| if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) { |
| // ie not an array or null |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type; |
| } else { |
| work_line_->SetRegisterType<LockOp::kClear>(this, |
| inst->VRegA_12x(), |
| reg_types_.Integer()); |
| } |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type; |
| } |
| break; |
| } |
| case Instruction::NEW_INSTANCE: { |
| const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c())); |
| if (res_type.IsConflict()) { |
| DCHECK_NE(failures_.size(), 0U); |
| break; // bad class |
| } |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| // can't create an instance of an interface or abstract class */ |
| if (!res_type.IsInstantiableTypes()) { |
| Fail(VERIFY_ERROR_INSTANTIATION) |
| << "new-instance on primitive, interface or abstract class" << res_type; |
| // Soft failure so carry on to set register type. |
| } |
| const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_); |
| // Any registers holding previous allocations from this address that have not yet been |
| // initialized must be marked invalid. |
| work_line_->MarkUninitRefsAsInvalid(this, uninit_type); |
| // add the new uninitialized reference to the register state |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type); |
| break; |
| } |
| case Instruction::NEW_ARRAY: |
| VerifyNewArray(inst, false, false); |
| break; |
| case Instruction::FILLED_NEW_ARRAY: |
| VerifyNewArray(inst, true, false); |
| just_set_result = true; // Filled new array sets result register |
| break; |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| VerifyNewArray(inst, true, true); |
| just_set_result = true; // Filled new array range sets result register |
| break; |
| case Instruction::CMPL_FLOAT: |
| case Instruction::CMPG_FLOAT: |
| if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) { |
| break; |
| } |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer()); |
| break; |
| case Instruction::CMPL_DOUBLE: |
| case Instruction::CMPG_DOUBLE: |
| if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(), |
| reg_types_.DoubleHi())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(), |
| reg_types_.DoubleHi())) { |
| break; |
| } |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer()); |
| break; |
| case Instruction::CMP_LONG: |
| if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(), |
| reg_types_.LongHi())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(), |
| reg_types_.LongHi())) { |
| break; |
| } |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer()); |
| break; |
| case Instruction::THROW: { |
| const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x()); |
| if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) { |
| if (res_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized"; |
| } else if (!res_type.IsReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type; |
| } else { |
| Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT) |
| << "thrown class " << res_type << " not instanceof Throwable"; |
| } |
| } |
| break; |
| } |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| /* no effect on or use of registers */ |
| break; |
| |
| case Instruction::PACKED_SWITCH: |
| case Instruction::SPARSE_SWITCH: |
| /* verify that vAA is an integer, or can be converted to one */ |
| work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer()); |
| break; |
| |
| case Instruction::FILL_ARRAY_DATA: { |
| /* Similar to the verification done for APUT */ |
| const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t()); |
| /* array_type can be null if the reg type is Zero */ |
| if (!array_type.IsZeroOrNull()) { |
| if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type " |
| << array_type; |
| } else if (array_type.IsUnresolvedTypes()) { |
| // If it's an unresolved array type, it must be non-primitive. |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type " |
| << array_type; |
| } else { |
| const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader()); |
| DCHECK(!component_type.IsConflict()); |
| if (component_type.IsNonZeroReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type " |
| << component_type; |
| } else { |
| // Now verify if the element width in the table matches the element width declared in |
| // the array |
| const uint16_t* array_data = |
| insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16)); |
| if (array_data[0] != Instruction::kArrayDataSignature) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data"; |
| } else { |
| size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType()); |
| // Since we don't compress the data in Dex, expect to see equal width of data stored |
| // in the table and expected from the array class. |
| if (array_data[1] != elem_width) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1] |
| << " vs " << elem_width << ")"; |
| } |
| } |
| } |
| } |
| } |
| break; |
| } |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: { |
| const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t()); |
| const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t()); |
| bool mismatch = false; |
| if (reg_type1.IsZeroOrNull()) { // zero then integral or reference expected |
| mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes(); |
| } else if (reg_type1.IsReferenceTypes()) { // both references? |
| mismatch = !reg_type2.IsReferenceTypes(); |
| } else { // both integral? |
| mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes(); |
| } |
| if (mismatch) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << "," |
| << reg_type2 << ") must both be references or integral"; |
| } |
| break; |
| } |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: { |
| const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t()); |
| const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t()); |
| if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << "," |
| << reg_type2 << ") must be integral"; |
| } |
| break; |
| } |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: { |
| const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t()); |
| if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type |
| << " unexpected as arg to if-eqz/if-nez"; |
| } |
| |
| // Find previous instruction - its existence is a precondition to peephole optimization. |
| uint32_t instance_of_idx = 0; |
| if (0 != work_insn_idx_) { |
| instance_of_idx = work_insn_idx_ - 1; |
| while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) { |
| instance_of_idx--; |
| } |
| if (FailOrAbort(this, GetInstructionFlags(instance_of_idx).IsOpcode(), |
| "Unable to get previous instruction of if-eqz/if-nez for work index ", |
| work_insn_idx_)) { |
| break; |
| } |
| } else { |
| break; |
| } |
| |
| const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx); |
| |
| /* Check for peep-hole pattern of: |
| * ...; |
| * instance-of vX, vY, T; |
| * ifXXX vX, label ; |
| * ...; |
| * label: |
| * ...; |
| * and sharpen the type of vY to be type T. |
| * Note, this pattern can't be if: |
| * - if there are other branches to this branch, |
| * - when vX == vY. |
| */ |
| if (!CurrentInsnFlags()->IsBranchTarget() && |
| (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) && |
| (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) && |
| (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) { |
| // Check the type of the instance-of is different than that of registers type, as if they |
| // are the same there is no work to be done here. Check that the conversion is not to or |
| // from an unresolved type as type information is imprecise. If the instance-of is to an |
| // interface then ignore the type information as interfaces can only be treated as Objects |
| // and we don't want to disallow field and other operations on the object. If the value |
| // being instance-of checked against is known null (zero) then allow the optimization as |
| // we didn't have type information. If the merge of the instance-of type with the original |
| // type is assignable to the original then allow optimization. This check is performed to |
| // ensure that subsequent merges don't lose type information - such as becoming an |
| // interface from a class that would lose information relevant to field checks. |
| const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c()); |
| const RegType& cast_type = ResolveClass<CheckAccess::kYes>( |
| dex::TypeIndex(instance_of_inst.VRegC_22c())); |
| |
| if (!orig_type.Equals(cast_type) && |
| !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() && |
| cast_type.HasClass() && // Could be conflict type, make sure it has a class. |
| !cast_type.GetClass()->IsInterface() && |
| (orig_type.IsZeroOrNull() || |
| orig_type.IsStrictlyAssignableFrom( |
| cast_type.Merge(orig_type, ®_types_, this), this))) { |
| RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(), |
| this); |
| if (inst->Opcode() == Instruction::IF_EQZ) { |
| fallthrough_line.reset(update_line); |
| } else { |
| branch_line.reset(update_line); |
| } |
| update_line->CopyFromLine(work_line_.get()); |
| update_line->SetRegisterType<LockOp::kKeep>(this, |
| instance_of_inst.VRegB_22c(), |
| cast_type); |
| if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) { |
| // See if instance-of was preceded by a move-object operation, common due to the small |
| // register encoding space of instance-of, and propagate type information to the source |
| // of the move-object. |
| uint32_t move_idx = instance_of_idx - 1; |
| while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) { |
| move_idx--; |
| } |
| if (FailOrAbort(this, GetInstructionFlags(move_idx).IsOpcode(), |
| "Unable to get previous instruction of if-eqz/if-nez for work index ", |
| work_insn_idx_)) { |
| break; |
| } |
| const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx); |
| switch (move_inst.Opcode()) { |
| case Instruction::MOVE_OBJECT: |
| if (move_inst.VRegA_12x() == instance_of_inst.VRegB_22c()) { |
| update_line->SetRegisterType<LockOp::kKeep>(this, |
| move_inst.VRegB_12x(), |
| cast_type); |
| } |
| break; |
| case Instruction::MOVE_OBJECT_FROM16: |
| if (move_inst.VRegA_22x() == instance_of_inst.VRegB_22c()) { |
| update_line->SetRegisterType<LockOp::kKeep>(this, |
| move_inst.VRegB_22x(), |
| cast_type); |
| } |
| break; |
| case Instruction::MOVE_OBJECT_16: |
| if (move_inst.VRegA_32x() == instance_of_inst.VRegB_22c()) { |
| update_line->SetRegisterType<LockOp::kKeep>(this, |
| move_inst.VRegB_32x(), |
| cast_type); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| } |
| |
| break; |
| } |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: { |
| const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t()); |
| if (!reg_type.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type |
| << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez"; |
| } |
| break; |
| } |
| case Instruction::AGET_BOOLEAN: |
| VerifyAGet(inst, reg_types_.Boolean(), true); |
| break; |
| case Instruction::AGET_BYTE: |
| VerifyAGet(inst, reg_types_.Byte(), true); |
| break; |
| case Instruction::AGET_CHAR: |
| VerifyAGet(inst, reg_types_.Char(), true); |
| break; |
| case Instruction::AGET_SHORT: |
| VerifyAGet(inst, reg_types_.Short(), true); |
| break; |
| case Instruction::AGET: |
| VerifyAGet(inst, reg_types_.Integer(), true); |
| break; |
| case Instruction::AGET_WIDE: |
| VerifyAGet(inst, reg_types_.LongLo(), true); |
| break; |
| case Instruction::AGET_OBJECT: |
| VerifyAGet(inst, reg_types_.JavaLangObject(false), false); |
| break; |
| |
| case Instruction::APUT_BOOLEAN: |
| VerifyAPut(inst, reg_types_.Boolean(), true); |
| break; |
| case Instruction::APUT_BYTE: |
| VerifyAPut(inst, reg_types_.Byte(), true); |
| break; |
| case Instruction::APUT_CHAR: |
| VerifyAPut(inst, reg_types_.Char(), true); |
| break; |
| case Instruction::APUT_SHORT: |
| VerifyAPut(inst, reg_types_.Short(), true); |
| break; |
| case Instruction::APUT: |
| VerifyAPut(inst, reg_types_.Integer(), true); |
| break; |
| case Instruction::APUT_WIDE: |
| VerifyAPut(inst, reg_types_.LongLo(), true); |
| break; |
| case Instruction::APUT_OBJECT: |
| VerifyAPut(inst, reg_types_.JavaLangObject(false), false); |
| break; |
| |
| case Instruction::IGET_BOOLEAN: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false); |
| break; |
| case Instruction::IGET_BYTE: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false); |
| break; |
| case Instruction::IGET_CHAR: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false); |
| break; |
| case Instruction::IGET_SHORT: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false); |
| break; |
| case Instruction::IGET: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false); |
| break; |
| case Instruction::IGET_WIDE: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false); |
| break; |
| case Instruction::IGET_OBJECT: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false, |
| false); |
| break; |
| |
| case Instruction::IPUT_BOOLEAN: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false); |
| break; |
| case Instruction::IPUT_BYTE: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false); |
| break; |
| case Instruction::IPUT_CHAR: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false); |
| break; |
| case Instruction::IPUT_SHORT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false); |
| break; |
| case Instruction::IPUT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false); |
| break; |
| case Instruction::IPUT_WIDE: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false); |
| break; |
| case Instruction::IPUT_OBJECT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false, |
| false); |
| break; |
| |
| case Instruction::SGET_BOOLEAN: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true); |
| break; |
| case Instruction::SGET_BYTE: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true); |
| break; |
| case Instruction::SGET_CHAR: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true); |
| break; |
| case Instruction::SGET_SHORT: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true); |
| break; |
| case Instruction::SGET: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true); |
| break; |
| case Instruction::SGET_WIDE: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true); |
| break; |
| case Instruction::SGET_OBJECT: |
| VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false, |
| true); |
| break; |
| |
| case Instruction::SPUT_BOOLEAN: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true); |
| break; |
| case Instruction::SPUT_BYTE: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true); |
| break; |
| case Instruction::SPUT_CHAR: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true); |
| break; |
| case Instruction::SPUT_SHORT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true); |
| break; |
| case Instruction::SPUT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true); |
| break; |
| case Instruction::SPUT_WIDE: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true); |
| break; |
| case Instruction::SPUT_OBJECT: |
| VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false, |
| true); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_SUPER_RANGE: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE || |
| inst->Opcode() == Instruction::INVOKE_SUPER_RANGE); |
| bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER || |
| inst->Opcode() == Instruction::INVOKE_SUPER_RANGE); |
| MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL; |
| ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range); |
| const RegType* return_type = nullptr; |
| if (called_method != nullptr) { |
| ObjPtr<mirror::Class> return_type_class = can_load_classes_ |
| ? called_method->ResolveReturnType() |
| : called_method->LookupResolvedReturnType(); |
| if (return_type_class != nullptr) { |
| return_type = &FromClass(called_method->GetReturnTypeDescriptor(), |
| return_type_class.Ptr(), |
| return_type_class->CannotBeAssignedFromOtherTypes()); |
| } else { |
| DCHECK(!can_load_classes_ || self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } |
| if (return_type == nullptr) { |
| uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| dex::TypeIndex return_type_idx = |
| dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| return_type = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| } |
| if (!return_type->IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, *return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| break; |
| } |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE); |
| ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range); |
| const char* return_type_descriptor; |
| bool is_constructor; |
| const RegType* return_type = nullptr; |
| if (called_method == nullptr) { |
| uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0; |
| dex::TypeIndex return_type_idx = |
| dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| is_constructor = called_method->IsConstructor(); |
| return_type_descriptor = called_method->GetReturnTypeDescriptor(); |
| ObjPtr<mirror::Class> return_type_class = can_load_classes_ |
| ? called_method->ResolveReturnType() |
| : called_method->LookupResolvedReturnType(); |
| if (return_type_class != nullptr) { |
| return_type = &FromClass(return_type_descriptor, |
| return_type_class.Ptr(), |
| return_type_class->CannotBeAssignedFromOtherTypes()); |
| } else { |
| DCHECK(!can_load_classes_ || self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } |
| if (is_constructor) { |
| /* |
| * Some additional checks when calling a constructor. We know from the invocation arg check |
| * that the "this" argument is an instance of called_method->klass. Now we further restrict |
| * that to require that called_method->klass is the same as this->klass or this->super, |
| * allowing the latter only if the "this" argument is the same as the "this" argument to |
| * this method (which implies that we're in a constructor ourselves). |
| */ |
| const RegType& this_type = work_line_->GetInvocationThis(this, inst); |
| if (this_type.IsConflict()) // failure. |
| break; |
| |
| /* no null refs allowed (?) */ |
| if (this_type.IsZeroOrNull()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref"; |
| break; |
| } |
| |
| /* must be in same class or in superclass */ |
| // const RegType& this_super_klass = this_type.GetSuperClass(®_types_); |
| // TODO: re-enable constructor type verification |
| // if (this_super_klass.IsConflict()) { |
| // Unknown super class, fail so we re-check at runtime. |
| // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'"; |
| // break; |
| // } |
| |
| /* arg must be an uninitialized reference */ |
| if (!this_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference " |
| << this_type; |
| break; |
| } |
| |
| /* |
| * Replace the uninitialized reference with an initialized one. We need to do this for all |
| * registers that have the same object instance in them, not just the "this" register. |
| */ |
| work_line_->MarkRefsAsInitialized(this, this_type); |
| } |
| if (return_type == nullptr) { |
| return_type = ®_types_.FromDescriptor(GetClassLoader(), return_type_descriptor, false); |
| } |
| if (!return_type->IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, *return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| break; |
| } |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE); |
| ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range); |
| const char* descriptor; |
| if (called_method == nullptr) { |
| uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| dex::TypeIndex return_type_idx = |
| dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = called_method->GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| if (!return_type.IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| } |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); |
| ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range); |
| if (abs_method != nullptr) { |
| mirror::Class* called_interface = abs_method->GetDeclaringClass(); |
| if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '" |
| << abs_method->PrettyMethod() << "'"; |
| break; |
| } |
| } |
| /* Get the type of the "this" arg, which should either be a sub-interface of called |
| * interface or Object (see comments in RegType::JoinClass). |
| */ |
| const RegType& this_type = work_line_->GetInvocationThis(this, inst); |
| if (this_type.IsZeroOrNull()) { |
| /* null pointer always passes (and always fails at runtime) */ |
| } else { |
| if (this_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object " |
| << this_type; |
| break; |
| } |
| // In the past we have tried to assert that "called_interface" is assignable |
| // from "this_type.GetClass()", however, as we do an imprecise Join |
| // (RegType::JoinClass) we don't have full information on what interfaces are |
| // implemented by "this_type". For example, two classes may implement the same |
| // interfaces and have a common parent that doesn't implement the interface. The |
| // join will set "this_type" to the parent class and a test that this implements |
| // the interface will incorrectly fail. |
| } |
| /* |
| * We don't have an object instance, so we can't find the concrete method. However, all of |
| * the type information is in the abstract method, so we're good. |
| */ |
| const char* descriptor; |
| if (abs_method == nullptr) { |
| uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| dex::TypeIndex return_type_idx = |
| dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = abs_method->GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| if (!return_type.IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| break; |
| } |
| case Instruction::INVOKE_POLYMORPHIC: |
| case Instruction::INVOKE_POLYMORPHIC_RANGE: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); |
| ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range); |
| if (called_method == nullptr) { |
| // Convert potential soft failures in VerifyInvocationArgs() to hard errors. |
| if (failure_messages_.size() > 0) { |
| std::string message = failure_messages_.back()->str(); |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message; |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure."; |
| } |
| break; |
| } |
| if (!CheckSignaturePolymorphicMethod(called_method) || |
| !CheckSignaturePolymorphicReceiver(inst)) { |
| DCHECK(HasFailures()); |
| break; |
| } |
| const uint32_t proto_idx = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc(); |
| const char* return_descriptor = |
| dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx)); |
| const RegType& return_type = |
| reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false); |
| if (!return_type.IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| break; |
| } |
| case Instruction::INVOKE_CUSTOM: |
| case Instruction::INVOKE_CUSTOM_RANGE: { |
| // Verify registers based on method_type in the call site. |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE); |
| |
| // Step 1. Check the call site that produces the method handle for invocation |
| const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| if (!CheckCallSite(call_site_idx)) { |
| DCHECK(HasFailures()); |
| break; |
| } |
| |
| // Step 2. Check the register arguments correspond to the expected arguments for the |
| // method handle produced by step 1. The dex file verifier has checked ranges for |
| // the first three arguments and CheckCallSite has checked the method handle type. |
| CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx)); |
| it.Next(); // Skip to name. |
| it.Next(); // Skip to method type of the method handle |
| const uint32_t proto_idx = static_cast<uint32_t>(it.GetJavaValue().i); |
| const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx); |
| DexFileParameterIterator param_it(*dex_file_, proto_id); |
| // Treat method as static as it has yet to be determined. |
| VerifyInvocationArgsFromIterator(¶m_it, inst, METHOD_STATIC, is_range, nullptr); |
| const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id); |
| |
| // Step 3. Propagate return type information |
| const RegType& return_type = |
| reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false); |
| if (!return_type.IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| // TODO: Add compiler support for invoke-custom (b/35337872). |
| Fail(VERIFY_ERROR_FORCE_INTERPRETER); |
| break; |
| } |
| case Instruction::NEG_INT: |
| case Instruction::NOT_INT: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer()); |
| break; |
| case Instruction::NEG_LONG: |
| case Instruction::NOT_LONG: |
| work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::NEG_FLOAT: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float()); |
| break; |
| case Instruction::NEG_DOUBLE: |
| work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::INT_TO_LONG: |
| work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_FLOAT: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_DOUBLE: |
| work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.Integer()); |
| break; |
| case Instruction::LONG_TO_INT: |
| work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::LONG_TO_FLOAT: |
| work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::LONG_TO_DOUBLE: |
| work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::FLOAT_TO_INT: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float()); |
| break; |
| case Instruction::FLOAT_TO_LONG: |
| work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.Float()); |
| break; |
| case Instruction::FLOAT_TO_DOUBLE: |
| work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.Float()); |
| break; |
| case Instruction::DOUBLE_TO_INT: |
| work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::DOUBLE_TO_LONG: |
| work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::DOUBLE_TO_FLOAT: |
| work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::INT_TO_BYTE: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_CHAR: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_SHORT: |
| work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer()); |
| break; |
| |
| case Instruction::ADD_INT: |
| case Instruction::SUB_INT: |
| case Instruction::MUL_INT: |
| case Instruction::REM_INT: |
| case Instruction::DIV_INT: |
| case Instruction::SHL_INT: |
| case Instruction::SHR_INT: |
| case Instruction::USHR_INT: |
| work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), |
| reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT: |
| case Instruction::OR_INT: |
| case Instruction::XOR_INT: |
| work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), |
| reg_types_.Integer(), true); |
| break; |
| case Instruction::ADD_LONG: |
| case Instruction::SUB_LONG: |
| case Instruction::MUL_LONG: |
| case Instruction::DIV_LONG: |
| case Instruction::REM_LONG: |
| case Instruction::AND_LONG: |
| case Instruction::OR_LONG: |
| case Instruction::XOR_LONG: |
| work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::SHL_LONG: |
| case Instruction::SHR_LONG: |
| case Instruction::USHR_LONG: |
| /* shift distance is Int, making these different from other binary operations */ |
| work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.Integer()); |
| break; |
| case Instruction::ADD_FLOAT: |
| case Instruction::SUB_FLOAT: |
| case Instruction::MUL_FLOAT: |
| case Instruction::DIV_FLOAT: |
| case Instruction::REM_FLOAT: |
| work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(), |
| reg_types_.Float(), false); |
| break; |
| case Instruction::ADD_DOUBLE: |
| case Instruction::SUB_DOUBLE: |
| case Instruction::MUL_DOUBLE: |
| case Instruction::DIV_DOUBLE: |
| case Instruction::REM_DOUBLE: |
| work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::SUB_INT_2ADDR: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::SHL_INT_2ADDR: |
| case Instruction::SHR_INT_2ADDR: |
| case Instruction::USHR_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(), |
| reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::XOR_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(), |
| reg_types_.Integer(), true); |
| break; |
| case Instruction::DIV_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(), |
| reg_types_.Integer(), false); |
| break; |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::MUL_LONG_2ADDR: |
| case Instruction::DIV_LONG_2ADDR: |
| case Instruction::REM_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.LongLo(), reg_types_.LongHi()); |
| break; |
| case Instruction::SHL_LONG_2ADDR: |
| case Instruction::SHR_LONG_2ADDR: |
| case Instruction::USHR_LONG_2ADDR: |
| work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(), |
| reg_types_.Integer()); |
| break; |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT_2ADDR: |
| work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(), |
| reg_types_.Float(), false); |
| break; |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE_2ADDR: |
| work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi(), |
| reg_types_.DoubleLo(), reg_types_.DoubleHi()); |
| break; |
| case Instruction::ADD_INT_LIT16: |
| case Instruction::RSUB_INT_LIT16: |
| case Instruction::MUL_INT_LIT16: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT_LIT16: |
| work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false, |
| true); |
| break; |
| case Instruction::AND_INT_LIT16: |
| case Instruction::OR_INT_LIT16: |
| case Instruction::XOR_INT_LIT16: |
| work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true, |
| true); |
| break; |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::USHR_INT_LIT8: |
| work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false, |
| false); |
| break; |
| case Instruction::AND_INT_LIT8: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::XOR_INT_LIT8: |
| work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true, |
| false); |
| break; |
| |
| // Special instructions. |
| case Instruction::RETURN_VOID_NO_BARRIER: |
| if (IsConstructor() && !IsStatic()) { |
| auto& declaring_class = GetDeclaringClass(); |
| if (declaring_class.IsUnresolvedReference()) { |
| // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it |
| // manually over the underlying dex file. |
| uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_, |
| dex_file_->GetMethodId(dex_method_idx_).class_idx_); |
| if (first_index != dex::kDexNoIndex) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field " |
| << first_index; |
| } |
| break; |
| } |
| auto* klass = declaring_class.GetClass(); |
| for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) { |
| if (klass->GetInstanceField(i)->IsFinal()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for " |
| << klass->GetInstanceField(i)->PrettyField(); |
| break; |
| } |
| } |
| } |
| // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from |
| // quickened opcodes (otherwise this could be a fall-through). |
| if (!IsConstructor()) { |
| if (!GetMethodReturnType().IsConflict()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected"; |
| } |
| } |
| break; |
| // Note: the following instructions encode offsets derived from class linking. |
| // As such they use Class*/Field*/Executable* as these offsets only have |
| // meaning if the class linking and resolution were successful. |
| case Instruction::IGET_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true); |
| break; |
| case Instruction::IGET_WIDE_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true); |
| break; |
| case Instruction::IGET_OBJECT_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false); |
| break; |
| case Instruction::IGET_BOOLEAN_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true); |
| break; |
| case Instruction::IGET_BYTE_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true); |
| break; |
| case Instruction::IGET_CHAR_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true); |
| break; |
| case Instruction::IGET_SHORT_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true); |
| break; |
| case Instruction::IPUT_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true); |
| break; |
| case Instruction::IPUT_BOOLEAN_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true); |
| break; |
| case Instruction::IPUT_BYTE_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true); |
| break; |
| case Instruction::IPUT_CHAR_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true); |
| break; |
| case Instruction::IPUT_SHORT_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true); |
| break; |
| case Instruction::IPUT_WIDE_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true); |
| break; |
| case Instruction::IPUT_OBJECT_QUICK: |
| VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false); |
| break; |
| case Instruction::INVOKE_VIRTUAL_QUICK: |
| case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { |
| bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK); |
| ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range); |
| if (called_method != nullptr) { |
| const char* descriptor = called_method->GetReturnTypeDescriptor(); |
| const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| if (!return_type.IsLowHalf()) { |
| work_line_->SetResultRegisterType(this, return_type); |
| } else { |
| work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); |
| } |
| just_set_result = true; |
| } |
| break; |
| } |
| |
| /* These should never appear during verification. */ |
| case Instruction::UNUSED_3E ... Instruction::UNUSED_43: |
| case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_); |
| break; |
| |
| /* |
| * DO NOT add a "default" clause here. Without it the compiler will |
| * complain if an instruction is missing (which is desirable). |
| */ |
| } // end - switch (dec_insn.opcode) |
| |
| if (have_pending_hard_failure_) { |
| if (Runtime::Current()->IsAotCompiler()) { |
| /* When AOT compiling, check that the last failure is a hard failure */ |
| if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) { |
| LOG(ERROR) << "Pending failures:"; |
| for (auto& error : failures_) { |
| LOG(ERROR) << error; |
| } |
| for (auto& error_msg : failure_messages_) { |
| LOG(ERROR) << error_msg->str(); |
| } |
| LOG(FATAL) << "Pending hard failure, but last failure not hard."; |
| } |
| } |
| /* immediate failure, reject class */ |
| info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_); |
| return false; |
| } else if (have_pending_runtime_throw_failure_) { |
| /* checking interpreter will throw, mark following code as unreachable */ |
| opcode_flags = Instruction::kThrow; |
| // Note: the flag must be reset as it is only global to decouple Fail and is semantically per |
| // instruction. However, RETURN checking may throw LOCKING errors, so we clear at the |
| // very end. |
| } |
| /* |
| * If we didn't just set the result register, clear it out. This ensures that you can only use |
| * "move-result" immediately after the result is set. (We could check this statically, but it's |
| * not expensive and it makes our debugging output cleaner.) |
| */ |
| if (!just_set_result) { |
| work_line_->SetResultTypeToUnknown(this); |
| } |
| |
| /* |
| * Handle "branch". Tag the branch target. |
| * |
| * NOTE: instructions like Instruction::EQZ provide information about the |
| * state of the register when the branch is taken or not taken. For example, |
| * somebody could get a reference field, check it for zero, and if the |
| * branch is taken immediately store that register in a boolean field |
| * since the value is known to be zero. We do not currently account for |
| * that, and will reject the code. |
| * |
| * TODO: avoid re-fetching the branch target |
| */ |
| if ((opcode_flags & Instruction::kBranch) != 0) { |
| bool isConditional, selfOkay; |
| if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) { |
| /* should never happen after static verification */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch"; |
| return false; |
| } |
| DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0); |
| if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), |
| work_insn_idx_ + branch_target)) { |
| return false; |
| } |
| /* update branch target, set "changed" if appropriate */ |
| if (nullptr != branch_line) { |
| if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) { |
| return false; |
| } |
| } else { |
| if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) { |
| return false; |
| } |
| } |
| } |
| |
| /* |
| * Handle "switch". Tag all possible branch targets. |
| * |
| * We've already verified that the table is structurally sound, so we |
| * just need to walk through and tag the targets. |
| */ |
| if ((opcode_flags & Instruction::kSwitch) != 0) { |
| int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16); |
| const uint16_t* switch_insns = insns + offset_to_switch; |
| int switch_count = switch_insns[1]; |
| int offset_to_targets, targ; |
| |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0 = sig, 1 = count, 2/3 = first key */ |
| offset_to_targets = 4; |
| } else { |
| /* 0 = sig, 1 = count, 2..count * 2 = keys */ |
| DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH); |
| offset_to_targets = 2 + 2 * switch_count; |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switch_count; targ++) { |
| int offset; |
| uint32_t abs_offset; |
| |
| /* offsets are 32-bit, and only partly endian-swapped */ |
| offset = switch_insns[offset_to_targets + targ * 2] | |
| (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16); |
| abs_offset = work_insn_idx_ + offset; |
| DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits()); |
| if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) { |
| return false; |
| } |
| if (!UpdateRegisters(abs_offset, work_line_.get(), false)) { |
| return false; |
| } |
| } |
| } |
| |
| /* |
| * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a |
| * "try" block when they throw, control transfers out of the method.) |
| */ |
| if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) { |
| bool has_catch_all_handler = false; |
| const DexFile::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_); |
| CHECK(try_item != nullptr); |
| CatchHandlerIterator iterator(code_item_accessor_, *try_item); |
| |
| // Need the linker to try and resolve the handled class to check if it's Throwable. |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex(); |
| if (!handler_type_idx.IsValid()) { |
| has_catch_all_handler = true; |
| } else { |
| // It is also a catch-all if it is java.lang.Throwable. |
| ObjPtr<mirror::Class> klass = |
| linker->ResolveType(handler_type_idx, dex_cache_, class_loader_); |
| if (klass != nullptr) { |
| if (klass == mirror::Throwable::GetJavaLangThrowable()) { |
| has_catch_all_handler = true; |
| } |
| } else { |
| // Clear exception. |
| DCHECK(self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } |
| /* |
| * Merge registers into the "catch" block. We want to use the "savedRegs" rather than |
| * "work_regs", because at runtime the exception will be thrown before the instruction |
| * modifies any registers. |
| */ |
| if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) { |
| return false; |
| } |
| } |
| |
| /* |
| * If the monitor stack depth is nonzero, there must be a "catch all" handler for this |
| * instruction. This does apply to monitor-exit because of async exception handling. |
| */ |
| if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) { |
| /* |
| * The state in work_line reflects the post-execution state. If the current instruction is a |
| * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws, |
| * it will do so before grabbing the lock). |
| */ |
| if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "expected to be within a catch-all for an instruction where a monitor is held"; |
| return false; |
| } |
| } |
| } |
| |
| /* Handle "continue". Tag the next consecutive instruction. |
| * Note: Keep the code handling "continue" case below the "branch" and "switch" cases, |
| * because it changes work_line_ when performing peephole optimization |
| * and this change should not be used in those cases. |
| */ |
| if ((opcode_flags & Instruction::kContinue) != 0) { |
| DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst); |
| uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits(); |
| if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area"; |
| return false; |
| } |
| // The only way to get to a move-exception instruction is to get thrown there. Make sure the |
| // next instruction isn't one. |
| if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) { |
| return false; |
| } |
| if (nullptr != fallthrough_line) { |
| // Make workline consistent with fallthrough computed from peephole optimization. |
| work_line_->CopyFromLine(fallthrough_line.get()); |
| } |
| if (GetInstructionFlags(next_insn_idx).IsReturn()) { |
| // For returns we only care about the operand to the return, all other registers are dead. |
| const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx); |
| AdjustReturnLine(this, ret_inst, work_line_.get()); |
| } |
| RegisterLine* next_line = reg_table_.GetLine(next_insn_idx); |
| if (next_line != nullptr) { |
| // Merge registers into what we have for the next instruction, and set the "changed" flag if |
| // needed. If the merge changes the state of the registers then the work line will be |
| // updated. |
| if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) { |
| return false; |
| } |
| } else { |
| /* |
| * We're not recording register data for the next instruction, so we don't know what the |
| * prior state was. We have to assume that something has changed and re-evaluate it. |
| */ |
| GetInstructionFlags(next_insn_idx).SetChanged(); |
| } |
| } |
| |
| /* If we're returning from the method, make sure monitor stack is empty. */ |
| if ((opcode_flags & Instruction::kReturn) != 0) { |
| work_line_->VerifyMonitorStackEmpty(this); |
| } |
| |
| /* |
| * Update start_guess. Advance to the next instruction of that's |
| * possible, otherwise use the branch target if one was found. If |
| * neither of those exists we're in a return or throw; leave start_guess |
| * alone and let the caller sort it out. |
| */ |
| if ((opcode_flags & Instruction::kContinue) != 0) { |
| DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst); |
| *start_guess = work_insn_idx_ + inst->SizeInCodeUnits(); |
| } else if ((opcode_flags & Instruction::kBranch) != 0) { |
| /* we're still okay if branch_target is zero */ |
| *start_guess = work_insn_idx_ + branch_target; |
| } |
| |
| DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits()); |
| DCHECK(GetInstructionFlags(*start_guess).IsOpcode()); |
| |
| if (have_pending_runtime_throw_failure_) { |
| have_any_pending_runtime_throw_failure_ = true; |
| // Reset the pending_runtime_throw flag now. |
| have_pending_runtime_throw_failure_ = false; |
| } |
| |
| return true; |
| } // NOLINT(readability/fn_size) |
| |
| void MethodVerifier::UninstantiableError(const char* descriptor) { |
| Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for " |
| << "non-instantiable klass " << descriptor; |
| } |
| |
| inline bool MethodVerifier::IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass) { |
| return klass->IsInstantiable() || klass->IsPrimitive(); |
| } |
| |
| template <MethodVerifier::CheckAccess C> |
| const RegType& MethodVerifier::ResolveClass(dex::TypeIndex class_idx) { |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| ObjPtr<mirror::Class> klass = can_load_classes_ |
| ? linker->ResolveType(class_idx, dex_cache_, class_loader_) |
| : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get()); |
| if (can_load_classes_ && klass == nullptr) { |
| DCHECK(self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| const RegType* result = nullptr; |
| if (klass != nullptr) { |
| bool precise = klass->CannotBeAssignedFromOtherTypes(); |
| if (precise && !IsInstantiableOrPrimitive(klass)) { |
| const char* descriptor = dex_file_->StringByTypeIdx(class_idx); |
| UninstantiableError(descriptor); |
| precise = false; |
| } |
| result = reg_types_.FindClass(klass.Ptr(), precise); |
| if (result == nullptr) { |
| const char* descriptor = dex_file_->StringByTypeIdx(class_idx); |
| result = reg_types_.InsertClass(descriptor, klass.Ptr(), precise); |
| } |
| } else { |
| const char* descriptor = dex_file_->StringByTypeIdx(class_idx); |
| result = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| } |
| DCHECK(result != nullptr); |
| if (result->IsConflict()) { |
| const char* descriptor = dex_file_->StringByTypeIdx(class_idx); |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor |
| << "' in " << GetDeclaringClass(); |
| return *result; |
| } |
| |
| // Record result of class resolution attempt. |
| VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass.Ptr()); |
| |
| // If requested, check if access is allowed. Unresolved types are included in this check, as the |
| // interpreter only tests whether access is allowed when a class is not pre-verified and runs in |
| // the access-checks interpreter. If result is primitive, skip the access check. |
| // |
| // Note: we do this for unresolved classes to trigger re-verification at runtime. |
| if (C == CheckAccess::kYes && result->IsNonZeroReferenceTypes()) { |
| const RegType& referrer = GetDeclaringClass(); |
| if (!referrer.CanAccess(*result)) { |
| Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '" |
| << referrer << "' -> '" << *result << "'"; |
| } |
| } |
| return *result; |
| } |
| |
| // Instantiate ResolveClass variants. This is required as the -inl file has a function with a call |
| // to ResolveClass, and compilers may decide to inline, requiring a symbol. |
| template const RegType& MethodVerifier::ResolveClass<MethodVerifier::CheckAccess::kNo>( |
| dex::TypeIndex class_idx); |
| template const RegType& MethodVerifier::ResolveClass<MethodVerifier::CheckAccess::kYes>( |
| dex::TypeIndex class_idx); |
| |
| const RegType& MethodVerifier::GetCaughtExceptionType() { |
| const RegType* common_super = nullptr; |
| if (code_item_accessor_.TriesSize() != 0) { |
| const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t i = 0; i < handlers_size; i++) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) { |
| if (!iterator.GetHandlerTypeIndex().IsValid()) { |
| common_super = ®_types_.JavaLangThrowable(false); |
| } else { |
| const RegType& exception = |
| ResolveClass<CheckAccess::kYes>(iterator.GetHandlerTypeIndex()); |
| if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) { |
| DCHECK(!exception.IsUninitializedTypes()); // Comes from dex, shouldn't be uninit. |
| if (exception.IsUnresolvedTypes()) { |
| // We don't know enough about the type. Fail here and let runtime handle it. |
| Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception; |
| return exception; |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception; |
| return reg_types_.Conflict(); |
| } |
| } else if (common_super == nullptr) { |
| common_super = &exception; |
| } else if (common_super->Equals(exception)) { |
| // odd case, but nothing to do |
| } else { |
| common_super = &common_super->Merge(exception, ®_types_, this); |
| if (FailOrAbort(this, |
| reg_types_.JavaLangThrowable(false).IsAssignableFrom( |
| *common_super, this), |
| "java.lang.Throwable is not assignable-from common_super at ", |
| work_insn_idx_)) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| } |
| if (common_super == nullptr) { |
| /* no catch blocks, or no catches with classes we can find */ |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler"; |
| return reg_types_.Conflict(); |
| } |
| return *common_super; |
| } |
| |
| ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess( |
| uint32_t dex_method_idx, MethodType method_type) { |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx); |
| const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_); |
| if (klass_type.IsConflict()) { |
| std::string append(" in attempt to access method "); |
| append += dex_file_->GetMethodName(method_id); |
| AppendToLastFailMessage(append); |
| return nullptr; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| return nullptr; // Can't resolve Class so no more to do here |
| } |
| ObjPtr<mirror::Class> klass = klass_type.GetClass(); |
| const RegType& referrer = GetDeclaringClass(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size); |
| if (res_method == nullptr) { |
| res_method = class_linker->FindResolvedMethod( |
| klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx); |
| } |
| |
| // Record result of method resolution attempt. The klass resolution has recorded whether |
| // the class is an interface or not and therefore the type of the lookup performed above. |
| // TODO: Maybe we should not record dependency if the invoke type does not match the lookup type. |
| VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_method); |
| |
| bool must_fail = false; |
| // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method |
| // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's |
| // hard to see the differences. |
| // If we don't have res_method here we must fail. Just use this bool to make sure of that with a |
| // DCHECK. |
| if (res_method == nullptr) { |
| must_fail = true; |
| // Try to find the method also with the other type for better error reporting below |
| // but do not store such bogus lookup result in the DexCache or VerifierDeps. |
| if (klass->IsInterface()) { |
| // NB This is normally not really allowed but we want to get any static or private object |
| // methods for error message purposes. This will never be returned. |
| // TODO We might want to change the verifier to not require this. |
| res_method = klass->FindClassMethod(dex_cache_.Get(), dex_method_idx, pointer_size); |
| } else { |
| // If there was an interface method with the same signature, |
| // we would have found it also in the "copied" methods. |
| DCHECK(klass->FindInterfaceMethod(dex_cache_.Get(), dex_method_idx, pointer_size) == nullptr); |
| } |
| } |
| |
| if (res_method == nullptr) { |
| Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method " |
| << klass->PrettyDescriptor() << "." |
| << dex_file_->GetMethodName(method_id) << " " |
| << dex_file_->GetMethodSignature(method_id); |
| return nullptr; |
| } |
| |
| // Make sure calls to constructors are "direct". There are additional restrictions but we don't |
| // enforce them here. |
| if (res_method->IsConstructor() && method_type != METHOD_DIRECT) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor " |
| << res_method->PrettyMethod(); |
| return nullptr; |
| } |
| // Disallow any calls to class initializers. |
| if (res_method->IsClassInitializer()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer " |
| << res_method->PrettyMethod(); |
| return nullptr; |
| } |
| |
| // Check that interface methods are static or match interface classes. |
| // We only allow statics if we don't have default methods enabled. |
| // |
| // Note: this check must be after the initializer check, as those are required to fail a class, |
| // while this check implies an IncompatibleClassChangeError. |
| if (klass->IsInterface()) { |
| // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if |
| // default methods are supported for the dex file), or invoke-static. |
| if (method_type != METHOD_INTERFACE && |
| method_type != METHOD_STATIC && |
| (!dex_file_->SupportsDefaultMethods() || |
| method_type != METHOD_DIRECT) && |
| method_type != METHOD_SUPER) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) |
| << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx) |
| << " is in an interface class " << klass->PrettyClass(); |
| return nullptr; |
| } |
| } else { |
| if (method_type == METHOD_INTERFACE) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) |
| << "interface method " << dex_file_->PrettyMethod(dex_method_idx) |
| << " is in a non-interface class " << klass->PrettyClass(); |
| return nullptr; |
| } |
| } |
| |
| // Check specifically for non-public object methods being provided for interface dispatch. This |
| // can occur if we failed to find a method with FindInterfaceMethod but later find one with |
| // FindClassMethod for error message use. |
| if (method_type == METHOD_INTERFACE && |
| res_method->GetDeclaringClass()->IsObjectClass() && |
| !res_method->IsPublic()) { |
| Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "." |
| << dex_file_->GetMethodName(method_id) << " " |
| << dex_file_->GetMethodSignature(method_id) << " resolved to " |
| << "non-public object method " << res_method->PrettyMethod() << " " |
| << "but non-public Object methods are excluded from interface " |
| << "method resolution."; |
| return nullptr; |
| } |
| // Check if access is allowed. |
| if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " |
| << res_method->PrettyMethod() |
| << " from " << referrer << ")"; |
| return res_method; |
| } |
| // Check that invoke-virtual and invoke-super are not used on private methods of the same class. |
| if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method " |
| << res_method->PrettyMethod(); |
| return nullptr; |
| } |
| // See if the method type implied by the invoke instruction matches the access flags for the |
| // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two |
| // signature polymorphic methods supported by the run-time which are native methods with variable |
| // arguments. |
| if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) || |
| (method_type == METHOD_STATIC && !res_method->IsStatic()) || |
| ((method_type == METHOD_SUPER || |
| method_type == METHOD_VIRTUAL || |
| method_type == METHOD_INTERFACE) && res_method->IsDirect()) || |
| ((method_type == METHOD_POLYMORPHIC) && |
| (!res_method->IsNative() || !res_method->IsVarargs()))) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method " |
| "type of " << res_method->PrettyMethod(); |
| return nullptr; |
| } |
| // Make sure we weren't expecting to fail. |
| DCHECK(!must_fail) << "invoke type (" << method_type << ")" |
| << klass->PrettyDescriptor() << "." |
| << dex_file_->GetMethodName(method_id) << " " |
| << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to " |
| << res_method->PrettyMethod() << " without error. Initially this method was " |
| << "not found so we were expecting to fail for some reason."; |
| return res_method; |
| } |
| |
| template <class T> |
| ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator( |
| T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) { |
| // We use vAA as our expected arg count, rather than res_method->insSize, because we need to |
| // match the call to the signature. Also, we might be calling through an abstract method |
| // definition (which doesn't have register count values). |
| const size_t expected_args = inst->VRegA(); |
| /* caught by static verifier */ |
| DCHECK(is_range || expected_args <= 5); |
| |
| if (expected_args > code_item_accessor_.OutsSize()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args |
| << ") exceeds outsSize (" |
| << code_item_accessor_.OutsSize() << ")"; |
| return nullptr; |
| } |
| |
| /* |
| * Check the "this" argument, which must be an instance of the class that declared the method. |
| * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a |
| * rigorous check here (which is okay since we have to do it at runtime). |
| */ |
| if (method_type != METHOD_STATIC) { |
| const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst); |
| if (actual_arg_type.IsConflict()) { // GetInvocationThis failed. |
| CHECK(have_pending_hard_failure_); |
| return nullptr; |
| } |
| bool is_init = false; |
| if (actual_arg_type.IsUninitializedTypes()) { |
| if (res_method) { |
| if (!res_method->IsConstructor()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; |
| return nullptr; |
| } |
| } else { |
| // Check whether the name of the called method is "<init>" |
| const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; |
| return nullptr; |
| } |
| } |
| is_init = true; |
| } |
| const RegType& adjusted_type = is_init |
| ? GetRegTypeCache()->FromUninitialized(actual_arg_type) |
| : actual_arg_type; |
| if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) { |
| const RegType* res_method_class; |
| // Miranda methods have the declaring interface as their declaring class, not the abstract |
| // class. It would be wrong to use this for the type check (interface type checks are |
| // postponed to runtime). |
| if (res_method != nullptr && !res_method->IsMiranda()) { |
| mirror::Class* klass = res_method->GetDeclaringClass(); |
| std::string temp; |
| res_method_class = &FromClass(klass->GetDescriptor(&temp), klass, |
| klass->CannotBeAssignedFromOtherTypes()); |
| } else { |
| const uint32_t method_idx = inst->VRegB(); |
| const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_; |
| res_method_class = ®_types_.FromDescriptor( |
| GetClassLoader(), |
| dex_file_->StringByTypeIdx(class_idx), |
| false); |
| } |
| if (!res_method_class->IsAssignableFrom(adjusted_type, this)) { |
| Fail(adjusted_type.IsUnresolvedTypes() |
| ? VERIFY_ERROR_NO_CLASS |
| : VERIFY_ERROR_BAD_CLASS_SOFT) |
| << "'this' argument '" << actual_arg_type << "' not instance of '" |
| << *res_method_class << "'"; |
| // Continue on soft failures. We need to find possible hard failures to avoid problems in |
| // the compiler. |
| if (have_pending_hard_failure_) { |
| return nullptr; |
| } |
| } |
| } |
| } |
| |
| uint32_t arg[5]; |
| if (!is_range) { |
| inst->GetVarArgs(arg); |
| } |
| uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1; |
| for ( ; it->HasNext(); it->Next()) { |
| if (sig_registers >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() << |
| " argument registers, method signature has " << sig_registers + 1 << " or more"; |
| return nullptr; |
| } |
| |
| const char* param_descriptor = it->GetDescriptor(); |
| |
| if (param_descriptor == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature " |
| "component"; |
| return nullptr; |
| } |
| |
| const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false); |
| uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) : |
| arg[sig_registers]; |
| if (reg_type.IsIntegralTypes()) { |
| const RegType& src_type = work_line_->GetRegisterType(this, get_reg); |
| if (!src_type.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type |
| << " but expected " << reg_type; |
| return nullptr; |
| } |
| } else { |
| if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) { |
| // Continue on soft failures. We need to find possible hard failures to avoid problems in |
| // the compiler. |
| if (have_pending_hard_failure_) { |
| return nullptr; |
| } |
| } else if (reg_type.IsLongOrDoubleTypes()) { |
| // Check that registers are consecutive (for non-range invokes). Invokes are the only |
| // instructions not specifying register pairs by the first component, but require them |
| // nonetheless. Only check when there's an actual register in the parameters. If there's |
| // none, this will fail below. |
| if (!is_range && sig_registers + 1 < expected_args) { |
| uint32_t second_reg = arg[sig_registers + 1]; |
| if (second_reg != get_reg + 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter " |
| "at index " << sig_registers << " is not a pair: " << get_reg << " + " |
| << second_reg << "."; |
| return nullptr; |
| } |
| } |
| } |
| } |
| sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1; |
| } |
| if (expected_args != sig_registers) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args << |
| " argument registers, method signature has " << sig_registers; |
| return nullptr; |
| } |
| return res_method; |
| } |
| |
| void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, |
| MethodType method_type, |
| bool is_range) { |
| // As the method may not have been resolved, make this static check against what we expect. |
| // The main reason for this code block is to fail hard when we find an illegal use, e.g., |
| // wrong number of arguments or wrong primitive types, even if the method could not be resolved. |
| const uint32_t method_idx = inst->VRegB(); |
| DexFileParameterIterator it(*dex_file_, |
| dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_)); |
| VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr); |
| } |
| |
| bool MethodVerifier::CheckCallSite(uint32_t call_site_idx) { |
| if (call_site_idx >= dex_file_->NumCallSiteIds()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx |
| << " >= " << dex_file_->NumCallSiteIds(); |
| return false; |
| } |
| |
| CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx)); |
| // Check essential arguments are provided. The dex file verifier has verified indicies of the |
| // main values (method handle, name, method_type). |
| if (it.Size() < 3) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " has too few arguments: " |
| << it.Size() << "< 3"; |
| return false; |
| } |
| |
| // Get and check the first argument: the method handle (index range |
| // checked by the dex file verifier). |
| uint32_t method_handle_idx = static_cast<uint32_t>(it.GetJavaValue().i); |
| it.Next(); |
| |
| const DexFile::MethodHandleItem& mh = dex_file_->GetMethodHandle(method_handle_idx); |
| if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " argument 0 method handle type is not InvokeStatic: " |
| << mh.method_handle_type_; |
| return false; |
| } |
| |
| // Skip the second argument, the name to resolve, as checked by the |
| // dex file verifier. |
| it.Next(); |
| |
| // Skip the third argument, the method type expected, as checked by |
| // the dex file verifier. |
| it.Next(); |
| |
| // Check the bootstrap method handle and remaining arguments. |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(mh.field_or_method_idx_); |
| uint32_t length; |
| const char* shorty = dex_file_->GetMethodShorty(method_id, &length); |
| |
| if (it.Size() < length - 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " too few arguments for bootstrap method: " |
| << it.Size() << " < " << (length - 1); |
| return false; |
| } |
| |
| // Check the return type and first 3 arguments are references |
| // (CallSite, Lookup, String, MethodType). If they are not of the |
| // expected types (or subtypes), it will trigger a |
| // WrongMethodTypeException during execution. |
| if (shorty[0] != 'L') { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " bootstrap return type is not a reference"; |
| return false; |
| } |
| |
| for (uint32_t i = 1; i < 4; ++i) { |
| if (shorty[i] != 'L') { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " bootstrap method argument " << (i - 1) |
| << " is not a reference"; |
| return false; |
| } |
| } |
| |
| // Check the optional arguments. |
| for (uint32_t i = 4; i < length; ++i, it.Next()) { |
| bool match = false; |
| switch (it.GetValueType()) { |
| case EncodedArrayValueIterator::ValueType::kBoolean: |
| case EncodedArrayValueIterator::ValueType::kByte: |
| case EncodedArrayValueIterator::ValueType::kShort: |
| case EncodedArrayValueIterator::ValueType::kChar: |
| case EncodedArrayValueIterator::ValueType::kInt: |
| // These all fit within one register and encoders do not seem |
| // too exacting on the encoding type they use (ie using |
| // integer for all of these). |
| match = (strchr("ZBCSI", shorty[i]) != nullptr); |
| break; |
| case EncodedArrayValueIterator::ValueType::kLong: |
| match = ('J' == shorty[i]); |
| break; |
| case EncodedArrayValueIterator::ValueType::kFloat: |
| match = ('F' == shorty[i]); |
| break; |
| case EncodedArrayValueIterator::ValueType::kDouble: |
| match = ('D' == shorty[i]); |
| break; |
| case EncodedArrayValueIterator::ValueType::kMethodType: |
| case EncodedArrayValueIterator::ValueType::kMethodHandle: |
| case EncodedArrayValueIterator::ValueType::kString: |
| case EncodedArrayValueIterator::ValueType::kType: |
| case EncodedArrayValueIterator::ValueType::kNull: |
| match = ('L' == shorty[i]); |
| break; |
| case EncodedArrayValueIterator::ValueType::kField: |
| case EncodedArrayValueIterator::ValueType::kMethod: |
| case EncodedArrayValueIterator::ValueType::kEnum: |
| case EncodedArrayValueIterator::ValueType::kArray: |
| case EncodedArrayValueIterator::ValueType::kAnnotation: |
| // Unreachable based on current EncodedArrayValueIterator::Next(). |
| UNREACHABLE(); |
| } |
| |
| if (!match) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx |
| << " bootstrap method argument " << (i - 1) |
| << " expected " << shorty[i] |
| << " got value type: " << it.GetValueType(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| class MethodParamListDescriptorIterator { |
| public: |
| explicit MethodParamListDescriptorIterator(ArtMethod* res_method) : |
| res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()), |
| params_size_(params_ == nullptr ? 0 : params_->Size()) { |
| } |
| |
| bool HasNext() { |
| return pos_ < params_size_; |
| } |
| |
| void Next() { |
| ++pos_; |
| } |
| |
| const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) { |
| return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_); |
| } |
| |
| private: |
| ArtMethod* res_method_; |
| size_t pos_; |
| const DexFile::TypeList* params_; |
| const size_t params_size_; |
| }; |
| |
| ArtMethod* MethodVerifier::VerifyInvocationArgs( |
| const Instruction* inst, MethodType method_type, bool is_range) { |
| // Resolve the method. This could be an abstract or concrete method depending on what sort of call |
| // we're making. |
| const uint32_t method_idx = inst->VRegB(); |
| ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type); |
| if (res_method == nullptr) { // error or class is unresolved |
| // Check what we can statically. |
| if (!have_pending_hard_failure_) { |
| VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range); |
| } |
| return nullptr; |
| } |
| |
| // If we're using invoke-super(method), make sure that the executing method's class' superclass |
| // has a vtable entry for the target method. Or the target is on a interface. |
| if (method_type == METHOD_SUPER) { |
| dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_; |
| const RegType& reference_type = reg_types_.FromDescriptor( |
| GetClassLoader(), |
| dex_file_->StringByTypeIdx(class_idx), |
| false); |
| if (reference_type.IsUnresolvedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super"; |
| return nullptr; |
| } |
| if (reference_type.GetClass()->IsInterface()) { |
| // TODO Can we verify anything else. |
| if (class_idx == class_def_.class_idx_) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "Cannot invoke-super on self as interface"; |
| return nullptr; |
| } |
| // TODO Revisit whether we want to allow invoke-super on direct interfaces only like the JLS |
| // does. |
| if (!GetDeclaringClass().HasClass()) { |
| Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an" |
| << "interface invoke-super"; |
| return nullptr; |
| } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) |
| << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass()) |
| << " in method " |
| << dex_file_->PrettyMethod(dex_method_idx_) << " to method " |
| << dex_file_->PrettyMethod(method_idx) << " references " |
| << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass()); |
| return nullptr; |
| } |
| } else { |
| const RegType& super = GetDeclaringClass().GetSuperClass(®_types_); |
| if (super.IsUnresolvedTypes()) { |
| Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from " |
| << dex_file_->PrettyMethod(dex_method_idx_) |
| << " to super " << res_method->PrettyMethod(); |
| return nullptr; |
| } |
| if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) || |
| (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) { |
| Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from " |
| << dex_file_->PrettyMethod(dex_method_idx_) |
| << " to super " << super |
| << "." << res_method->GetName() |
| << res_method->GetSignature(); |
| return nullptr; |
| } |
| } |
| } |
| |
| if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) { |
| // Process the signature of the calling site that is invoking the method handle. |
| DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(inst->VRegH())); |
| return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method); |
| } else { |
| // Process the target method's signature. |
| MethodParamListDescriptorIterator it(res_method); |
| return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method); |
| } |
| } |
| |
| bool MethodVerifier::CheckSignaturePolymorphicMethod(ArtMethod* method) { |
| mirror::Class* klass = method->GetDeclaringClass(); |
| const char* method_name = method->GetName(); |
| |
| const char* expected_return_descriptor; |
| if (klass == mirror::MethodHandle::StaticClass()) { |
| expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name); |
| } else if (klass == mirror::VarHandle::StaticClass()) { |
| expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name); |
| // TODO: add compiler support for VarHandle accessor methods (b/71781600) |
| Fail(VERIFY_ERROR_FORCE_INTERPRETER); |
| } else { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor(); |
| return false; |
| } |
| |
| if (expected_return_descriptor == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Signature polymorphic method name invalid: " << method_name; |
| return false; |
| } |
| |
| const DexFile::TypeList* types = method->GetParameterTypeList(); |
| if (types->Size() != 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Signature polymorphic method has too many arguments " << types->Size() << " != 1"; |
| return false; |
| } |
| |
| const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_; |
| const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index); |
| if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Signature polymorphic method has unexpected argument type: " << argument_descriptor; |
| return false; |
| } |
| |
| const char* return_descriptor = method->GetReturnTypeDescriptor(); |
| if (strcmp(return_descriptor, expected_return_descriptor) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Signature polymorphic method has unexpected return type: " << return_descriptor |
| << " != " << expected_return_descriptor; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool MethodVerifier::CheckSignaturePolymorphicReceiver(const Instruction* inst) { |
| const RegType& this_type = work_line_->GetInvocationThis(this, inst); |
| if (this_type.IsZeroOrNull()) { |
| /* null pointer always passes (and always fails at run time) */ |
| return true; |
| } else if (!this_type.IsNonZeroReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "invoke-polymorphic receiver is not a reference: " |
| << this_type; |
| return false; |
| } else if (this_type.IsUninitializedReference()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "invoke-polymorphic receiver is uninitialized: " |
| << this_type; |
| return false; |
| } else if (!this_type.HasClass()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "invoke-polymorphic receiver has no class: " |
| << this_type; |
| return false; |
| } else if (!this_type.GetClass()->IsSubClass(mirror::MethodHandle::StaticClass()) && |
| !this_type.GetClass()->IsSubClass(mirror::VarHandle::StaticClass())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: " |
| << this_type; |
| return false; |
| } |
| return true; |
| } |
| |
| ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line, |
| bool is_range, bool allow_failure) { |
| if (is_range) { |
| DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK); |
| } else { |
| DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK); |
| } |
| const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, allow_failure); |
| if (!actual_arg_type.HasClass()) { |
| VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'"; |
| return nullptr; |
| } |
| mirror::Class* klass = actual_arg_type.GetClass(); |
| mirror::Class* dispatch_class; |
| if (klass->IsInterface()) { |
| // Derive Object.class from Class.class.getSuperclass(). |
| mirror::Class* object_klass = klass->GetClass()->GetSuperClass(); |
| if (FailOrAbort(this, object_klass->IsObjectClass(), |
| "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) { |
| return nullptr; |
| } |
| dispatch_class = object_klass; |
| } else { |
| dispatch_class = klass; |
| } |
| if (!dispatch_class->HasVTable()) { |
| FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ", |
| work_insn_idx_); |
| return nullptr; |
| } |
| uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| auto* cl = Runtime::Current()->GetClassLinker(); |
| auto pointer_size = cl->GetImagePointerSize(); |
| if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) { |
| FailOrAbort(this, allow_failure, |
| "Receiver class has not enough vtable slots for quickened invoke at ", |
| work_insn_idx_); |
| return nullptr; |
| } |
| ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size); |
| if (self_->IsExceptionPending()) { |
| FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ", |
| work_insn_idx_); |
| return nullptr; |
| } |
| return res_method; |
| } |
| |
| ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) { |
| DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_) |
| << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_; |
| |
| ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false); |
| if (res_method == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name(); |
| return nullptr; |
| } |
| if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ", |
| work_insn_idx_)) { |
| return nullptr; |
| } |
| if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ", |
| work_insn_idx_)) { |
| return nullptr; |
| } |
| |
| // We use vAA as our expected arg count, rather than res_method->insSize, because we need to |
| // match the call to the signature. Also, we might be calling through an abstract method |
| // definition (which doesn't have register count values). |
| const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst); |
| if (actual_arg_type.IsConflict()) { // GetInvocationThis failed. |
| return nullptr; |
| } |
| const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c(); |
| /* caught by static verifier */ |
| DCHECK(is_range || expected_args <= 5); |
| if (expected_args > code_item_accessor_.OutsSize()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args |
| << ") exceeds outsSize (" << code_item_accessor_.OutsSize() << ")"; |
| return nullptr; |
| } |
| |
| /* |
| * Check the "this" argument, which must be an instance of the class that declared the method. |
| * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a |
| * rigorous check here (which is okay since we have to do it at runtime). |
| */ |
| // Note: given an uninitialized type, this should always fail. Constructors aren't virtual. |
| if (actual_arg_type.IsUninitializedTypes() && !res_method->IsConstructor()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; |
| return nullptr; |
| } |
| if (!actual_arg_type.IsZeroOrNull()) { |
| mirror::Class* klass = res_method->GetDeclaringClass(); |
| std::string temp; |
| const RegType& res_method_class = |
| FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes()); |
| if (!res_method_class.IsAssignableFrom(actual_arg_type, this)) { |
| Fail(actual_arg_type.IsUninitializedTypes() // Just overcautious - should have never |
| ? VERIFY_ERROR_BAD_CLASS_HARD // quickened this. |
| : actual_arg_type.IsUnresolvedTypes() |
| ? VERIFY_ERROR_NO_CLASS |
| : VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type |
| << "' not instance of '" << res_method_class << "'"; |
| return nullptr; |
| } |
| } |
| /* |
| * Process the target method's signature. This signature may or may not |
| * have been verified, so we can't assume it's properly formed. |
| */ |
| const DexFile::TypeList* params = res_method->GetParameterTypeList(); |
| size_t params_size = params == nullptr ? 0 : params->Size(); |
| uint32_t arg[5]; |
| if (!is_range) { |
| inst->GetVarArgs(arg); |
| } |
| size_t actual_args = 1; |
| for (size_t param_index = 0; param_index < params_size; param_index++) { |
| if (actual_args >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" |
| << res_method->PrettyMethod() |
| << "'. Expected " << expected_args |
| << " arguments, processing argument " << actual_args |
| << " (where longs/doubles count twice)."; |
| return nullptr; |
| } |
| const char* descriptor = |
| res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_); |
| if (descriptor == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " |
| << res_method->PrettyMethod() |
| << " missing signature component"; |
| return nullptr; |
| } |
| const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args]; |
| if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) { |
| return res_method; |
| } |
| actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1; |
| } |
| if (actual_args != expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " |
| << res_method->PrettyMethod() << " expected " |
| << expected_args << " arguments, found " << actual_args; |
| return nullptr; |
| } else { |
| return res_method; |
| } |
| } |
| |
| void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) { |
| dex::TypeIndex type_idx; |
| if (!is_filled) { |
| DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY); |
| type_idx = dex::TypeIndex(inst->VRegC_22c()); |
| } else if (!is_range) { |
| DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY); |
| type_idx = dex::TypeIndex(inst->VRegB_35c()); |
| } else { |
| DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE); |
| type_idx = dex::TypeIndex(inst->VRegB_3rc()); |
| } |
| const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx); |
| if (res_type.IsConflict()) { // bad class |
| DCHECK_NE(failures_.size(), 0U); |
| } else { |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| if (!res_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type; |
| } else if (!is_filled) { |
| /* make sure "size" register is valid type */ |
| work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer()); |
| /* set register type to array class */ |
| const RegType& precise_type = reg_types_.FromUninitialized(res_type); |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type); |
| } else { |
| DCHECK(!res_type.IsUnresolvedMergedReference()); |
| // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of |
| // the list and fail. It's legal, if silly, for arg_count to be zero. |
| const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader()); |
| uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c(); |
| uint32_t arg[5]; |
| if (!is_range) { |
| inst->GetVarArgs(arg); |
| } |
| for (size_t ui = 0; ui < arg_count; ui++) { |
| uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui]; |
| if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) { |
| work_line_->SetResultRegisterType(this, reg_types_.Conflict()); |
| return; |
| } |
| } |
| // filled-array result goes into "result" register |
| const RegType& precise_type = reg_types_.FromUninitialized(res_type); |
| work_line_->SetResultRegisterType(this, precise_type); |
| } |
| } |
| } |
| |
| void MethodVerifier::VerifyAGet(const Instruction* inst, |
| const RegType& insn_type, bool is_primitive) { |
| const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x()); |
| if (!index_type.IsArrayIndexTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; |
| } else { |
| const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x()); |
| if (array_type.IsZeroOrNull()) { |
| // Null array class; this code path will fail at runtime. Infer a merge-able type from the |
| // instruction type. |
| if (!is_primitive) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null()); |
| } else if (insn_type.IsInteger()) { |
| // Pick a non-zero constant (to distinguish with null) that can fit in any primitive. |
| // We cannot use 'insn_type' as it could be a float array or an int array. |
| work_line_->SetRegisterType<LockOp::kClear>( |
| this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_)); |
| } else if (insn_type.IsCategory1Types()) { |
| // Category 1 |
| // The 'insn_type' is exactly the type we need. |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type); |
| } else { |
| // Category 2 |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), |
| reg_types_.FromCat2ConstLo(0, false), |
| reg_types_.FromCat2ConstHi(0, false)); |
| } |
| } else if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget"; |
| } else if (array_type.IsUnresolvedMergedReference()) { |
| // Unresolved array types must be reference array types. |
| if (is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type |
| << " source for category 1 aget"; |
| } else { |
| Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type |
| << " because of missing class"; |
| // Approximate with java.lang.Object[]. |
| work_line_->SetRegisterType<LockOp::kClear>(this, |
| inst->VRegA_23x(), |
| reg_types_.JavaLangObject(false)); |
| } |
| } else { |
| /* verify the class */ |
| const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader()); |
| if (!component_type.IsReferenceTypes() && !is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type |
| << " source for aget-object"; |
| } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type |
| << " source for category 1 aget"; |
| } else if (is_primitive && !insn_type.Equals(component_type) && |
| !((insn_type.IsInteger() && component_type.IsFloat()) || |
| (insn_type.IsLong() && component_type.IsDouble()))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type |
| << " incompatible with aget of type " << insn_type; |
| } else { |
| // Use knowledge of the field type which is stronger than the type inferred from the |
| // instruction, which can't differentiate object types and ints from floats, longs from |
| // doubles. |
| if (!component_type.IsLowHalf()) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type); |
| } else { |
| work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type, |
| component_type.HighHalf(®_types_)); |
| } |
| } |
| } |
| } |
| } |
| |
| void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type, |
| const uint32_t vregA) { |
| // Primitive assignability rules are weaker than regular assignability rules. |
| bool instruction_compatible; |
| bool value_compatible; |
| const RegType& value_type = work_line_->GetRegisterType(this, vregA); |
| if (target_type.IsIntegralTypes()) { |
| instruction_compatible = target_type.Equals(insn_type); |
| value_compatible = value_type.IsIntegralTypes(); |
| } else if (target_type.IsFloat()) { |
| instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int |
| value_compatible = value_type.IsFloatTypes(); |
| } else if (target_type.IsLong()) { |
| instruction_compatible = insn_type.IsLong(); |
| // Additional register check: this is not checked statically (as part of VerifyInstructions), |
| // as target_type depends on the resolved type of the field. |
| if (instruction_compatible && work_line_->NumRegs() > vregA + 1) { |
| const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1); |
| value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi); |
| } else { |
| value_compatible = false; |
| } |
| } else if (target_type.IsDouble()) { |
| instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long |
| // Additional register check: this is not checked statically (as part of VerifyInstructions), |
| // as target_type depends on the resolved type of the field. |
| if (instruction_compatible && work_line_->NumRegs() > vregA + 1) { |
| const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1); |
| value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi); |
| } else { |
| value_compatible = false; |
| } |
| } else { |
| instruction_compatible = false; // reference with primitive store |
| value_compatible = false; // unused |
| } |
| if (!instruction_compatible) { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time. |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type |
| << "' but expected type '" << target_type << "'"; |
| return; |
| } |
| if (!value_compatible) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA |
| << " of type " << value_type << " but expected " << target_type << " for put"; |
| return; |
| } |
| } |
| |
| void MethodVerifier::VerifyAPut(const Instruction* inst, |
| const RegType& insn_type, bool is_primitive) { |
| const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x()); |
| if (!index_type.IsArrayIndexTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; |
| } else { |
| const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x()); |
| if (array_type.IsZeroOrNull()) { |
| // Null array type; this code path will fail at runtime. |
| // Still check that the given value matches the instruction's type. |
| // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed |
| // and fits multiple register types. |
| const RegType* modified_reg_type = &insn_type; |
| if ((modified_reg_type == ®_types_.Integer()) || |
| (modified_reg_type == ®_types_.LongLo())) { |
| // May be integer or float | long or double. Overwrite insn_type accordingly. |
| const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x()); |
| if (modified_reg_type == ®_types_.Integer()) { |
| if (&value_type == ®_types_.Float()) { |
| modified_reg_type = &value_type; |
| } |
| } else { |
| if (&value_type == ®_types_.DoubleLo()) { |
| modified_reg_type = &value_type; |
| } |
| } |
| } |
| work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type); |
| } else if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput"; |
| } else if (array_type.IsUnresolvedMergedReference()) { |
| // Unresolved array types must be reference array types. |
| if (is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type |
| << "' but unresolved type '" << array_type << "'"; |
| } else { |
| Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type |
| << " because of missing class"; |
| } |
| } else { |
| const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader()); |
| const uint32_t vregA = inst->VRegA_23x(); |
| if (is_primitive) { |
| VerifyPrimitivePut(component_type, insn_type, vregA); |
| } else { |
| if (!component_type.IsReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type |
| << " source for aput-object"; |
| } else { |
| // The instruction agrees with the type of array, confirm the value to be stored does too |
| // Note: we use the instruction type (rather than the component type) for aput-object as |
| // incompatible classes will be caught at runtime as an array store exception |
| work_line_->VerifyRegisterType(this, vregA, insn_type); |
| } |
| } |
| } |
| } |
| } |
| |
| ArtField* MethodVerifier::GetStaticField(int field_idx) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| // Check access to class |
| const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_); |
| if (klass_type.IsConflict()) { // bad class |
| AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s", |
| field_idx, dex_file_->GetFieldName(field_id), |
| dex_file_->GetFieldDeclaringClassDescriptor(field_id))); |
| return nullptr; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| // Accessibility checks depend on resolved fields. |
| DCHECK(klass_type.Equals(GetDeclaringClass()) || !failures_.empty()); |
| |
| return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime. |
| } |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_); |
| |
| // Record result of the field resolution attempt. |
| VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field); |
| |
| if (field == nullptr) { |
| VLOG(verifier) << "Unable to resolve static field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| DCHECK(self_->IsExceptionPending()); |
| self_->ClearException(); |
| return nullptr; |
| } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(), |
| field->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField() |
| << " from " << GetDeclaringClass(); |
| return nullptr; |
| } else if (!field->IsStatic()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static"; |
| return nullptr; |
| } |
| return field; |
| } |
| |
| ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| // Check access to class. |
| const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_); |
| if (klass_type.IsConflict()) { |
| AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s", |
| field_idx, dex_file_->GetFieldName(field_id), |
| dex_file_->GetFieldDeclaringClassDescriptor(field_id))); |
| return nullptr; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| // Accessibility checks depend on resolved fields. |
| DCHECK(klass_type.Equals(GetDeclaringClass()) || !failures_.empty()); |
| |
| return nullptr; // Can't resolve Class so no more to do here |
| } |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_); |
| |
| // Record result of the field resolution attempt. |
| VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field); |
| |
| if (field == nullptr) { |
| VLOG(verifier) << "Unable to resolve instance field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| DCHECK(self_->IsExceptionPending()); |
| self_->ClearException(); |
| return nullptr; |
| } else if (obj_type.IsZeroOrNull()) { |
| // Cannot infer and check type, however, access will cause null pointer exception. |
| // Fall through into a few last soft failure checks below. |
| } else if (!obj_type.IsReferenceTypes()) { |
| // Trying to read a field from something that isn't a reference. |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has " |
| << "non-reference type " << obj_type; |
| return nullptr; |
| } else { |
| std::string temp; |
| ObjPtr<mirror::Class> klass = field->GetDeclaringClass(); |
| const RegType& field_klass = |
| FromClass(klass->GetDescriptor(&temp), |
| klass.Ptr(), |
| klass->CannotBeAssignedFromOtherTypes()); |
| if (obj_type.IsUninitializedTypes()) { |
| // Field accesses through uninitialized references are only allowable for constructors where |
| // the field is declared in this class. |
| // Note: this IsConstructor check is technically redundant, as UninitializedThis should only |
| // appear in constructors. |
| if (!obj_type.IsUninitializedThisReference() || |
| !IsConstructor() || |
| !field_klass.Equals(GetDeclaringClass())) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField() |
| << " of a not fully initialized object within the context" |
| << " of " << dex_file_->PrettyMethod(dex_method_idx_); |
| return nullptr; |
| } |
| } else if (!field_klass.IsAssignableFrom(obj_type, this)) { |
| // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class |
| // of C1. For resolution to occur the declared class of the field must be compatible with |
| // obj_type, we've discovered this wasn't so, so report the field didn't exist. |
| VerifyError type; |
| bool is_aot = Runtime::Current()->IsAotCompiler(); |
| if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) { |
| // Compiler & unresolved types involved, retry at runtime. |
| type = VerifyError::VERIFY_ERROR_NO_CLASS; |
| } else { |
| // Classes known (resolved; and thus assignability check is precise), or we are at runtime |
| // and still missing classes. This is a hard failure. |
| type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD; |
| } |
| Fail(type) << "cannot access instance field " << field->PrettyField() |
| << " from object of type " << obj_type; |
| return nullptr; |
| } |
| } |
| |
| // Few last soft failure checks. |
| if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(), |
| field->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField() |
| << " from " << GetDeclaringClass(); |
| return nullptr; |
| } else if (field->IsStatic()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() |
| << " to not be static"; |
| return nullptr; |
| } |
| |
| return field; |
| } |
| |
| template <MethodVerifier::FieldAccessType kAccType> |
| void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type, |
| bool is_primitive, bool is_static) { |
| uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); |
| ArtField* field; |
| if (is_static) { |
| field = GetStaticField(field_idx); |
| } else { |
| const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c()); |
| |
| // One is not allowed to access fields on uninitialized references, except to write to |
| // fields in the constructor (before calling another constructor). |
| // GetInstanceField does an assignability check which will fail for uninitialized types. |
| // We thus modify the type if the uninitialized reference is a "this" reference (this also |
| // checks at the same time that we're verifying a constructor). |
| bool should_adjust = (kAccType == FieldAccessType::kAccPut) && |
| object_type.IsUninitializedThisReference(); |
| const RegType& adjusted_type = should_adjust |
| ? GetRegTypeCache()->FromUninitialized(object_type) |
| : object_type; |
| field = GetInstanceField(adjusted_type, field_idx); |
| if (UNLIKELY(have_pending_hard_failure_)) { |
| return; |
| } |
| if (should_adjust) { |
| if (field == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior " |
| << "to the superclass being initialized in " |
| << dex_file_->PrettyMethod(dex_method_idx_); |
| } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field " |
| << field->PrettyField() << " of a not fully initialized " |
| << "object within the context of " |
| << dex_file_->PrettyMethod(dex_method_idx_); |
| return; |
| } |
| } |
| } |
| const RegType* field_type = nullptr; |
| if (field != nullptr) { |
| if (kAccType == FieldAccessType::kAccPut) { |
| if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField() |
| << " from other class " << GetDeclaringClass(); |
| // Keep hunting for possible hard fails. |
| } |
| } |
| |
| ObjPtr<mirror::Class> field_type_class = |
| can_load_classes_ ? field->ResolveType() : field->LookupResolvedType(); |
| if (field_type_class != nullptr) { |
| field_type = &FromClass(field->GetTypeDescriptor(), |
| field_type_class.Ptr(), |
| field_type_class->CannotBeAssignedFromOtherTypes()); |
| } else { |
| DCHECK(!can_load_classes_ || self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } else { |
| // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to |
| // redo verification at runtime as the field may be final, unless the field id shows it's in |
| // the same class. |
| // |
| // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an |
| // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class |
| // to the access-checks interpreter. |
| // |
| // Note: see b/34966607. This and above may be changed in the future. |
| if (kAccType == FieldAccessType::kAccPut) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| const RegType* field_class_type = ®_types_.FromDescriptor(GetClassLoader(), |
| field_class_descriptor, |
| false); |
| if (!field_class_type->Equals(GetDeclaringClass())) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of " |
| << field_class_descriptor |
| << "." |
| << dex_file_->GetFieldName(field_id) |
| << " from other class " |
| << GetDeclaringClass(); |
| } |
| } |
| } |
| if (field_type == nullptr) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id); |
| field_type = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| } |
| DCHECK(field_type != nullptr); |
| const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c(); |
| static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet, |
| "Unexpected third access type"); |
| if (kAccType == FieldAccessType::kAccPut) { |
| // sput or iput. |
| if (is_primitive) { |
| VerifyPrimitivePut(*field_type, insn_type, vregA); |
| } else { |
| if (!insn_type.IsAssignableFrom(*field_type, this)) { |
| // If the field type is not a reference, this is a global failure rather than |
| // a class change failure as the instructions and the descriptors for the type |
| // should have been consistent within the same file at compile time. |
| VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT |
| : VERIFY_ERROR_BAD_CLASS_HARD; |
| Fail(error) << "expected field " << ArtField::PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << *field_type |
| << "' in put-object"; |
| return; |
| } |
| work_line_->VerifyRegisterType(this, vregA, *field_type); |
| } |
| } else if (kAccType == FieldAccessType::kAccGet) { |
| // sget or iget. |
| if (is_primitive) { |
| if (field_type->Equals(insn_type) || |
| (field_type->IsFloat() && insn_type.IsInteger()) || |
| (field_type->IsDouble() && insn_type.IsLong())) { |
| // expected that read is of the correct primitive type or that int reads are reading |
| // floats or long reads are reading doubles |
| } else { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field) |
| << " to be of type '" << insn_type |
| << "' but found type '" << *field_type << "' in get"; |
| return; |
| } |
| } else { |
| if (!insn_type.IsAssignableFrom(*field_type, this)) { |
| // If the field type is not a reference, this is a global failure rather than |
| // a class change failure as the instructions and the descriptors for the type |
| // should have been consistent within the same file at compile time. |
| VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT |
| : VERIFY_ERROR_BAD_CLASS_HARD; |
| Fail(error) << "expected field " << ArtField::PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << *field_type |
| << "' in get-object"; |
| if (error != VERIFY_ERROR_BAD_CLASS_HARD) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict()); |
| } |
| return; |
| } |
| } |
| if (!field_type->IsLowHalf()) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type); |
| } else { |
| work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_)); |
| } |
| } else { |
| LOG(FATAL) << "Unexpected case."; |
| } |
| } |
| |
| ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst, RegisterLine* reg_line) { |
| DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode(); |
| const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c()); |
| if (!object_type.HasClass()) { |
| VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'"; |
| return nullptr; |
| } |
| uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c()); |
| ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset); |
| if (f == nullptr) { |
| VLOG(verifier) << "Failed to find instance field at offset '" << field_offset |
| << "' from '" << mirror::Class::PrettyDescriptor(object_type.GetClass()) << "'"; |
| } else { |
| DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset); |
| } |
| return f; |
| } |
| |
| template <MethodVerifier::FieldAccessType kAccType> |
| void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type, |
| bool is_primitive) { |
| DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_); |
| |
| ArtField* field = GetQuickFieldAccess(inst, work_line_.get()); |
| if (field == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name(); |
| return; |
| } |
| |
| // For an IPUT_QUICK, we now test for final flag of the field. |
| if (kAccType == FieldAccessType::kAccPut) { |
| if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField() |
| << " from other class " << GetDeclaringClass(); |
| return; |
| } |
| } |
| |
| // Get the field type. |
| const RegType* field_type; |
| { |
| ObjPtr<mirror::Class> field_type_class = |
| can_load_classes_ ? field->ResolveType() : field->LookupResolvedType(); |
| |
| if (field_type_class != nullptr) { |
| field_type = &FromClass(field->GetTypeDescriptor(), |
| field_type_class.Ptr(), |
| field_type_class->CannotBeAssignedFromOtherTypes()); |
| } else { |
| Thread* self = Thread::Current(); |
| DCHECK(!can_load_classes_ || self->IsExceptionPending()); |
| self->ClearException(); |
| field_type = ®_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(), |
| field->GetTypeDescriptor(), |
| false); |
| } |
| if (field_type == nullptr) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name(); |
| return; |
| } |
| } |
| |
| const uint32_t vregA = inst->VRegA_22c(); |
| static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet, |
| "Unexpected third access type"); |
| if (kAccType == FieldAccessType::kAccPut) { |
| if (is_primitive) { |
| // Primitive field assignability rules are weaker than regular assignability rules |
| bool instruction_compatible; |
| bool value_compatible; |
| const RegType& value_type = work_line_->GetRegisterType(this, vregA); |
| if (field_type->IsIntegralTypes()) { |
| instruction_compatible = insn_type.IsIntegralTypes(); |
| value_compatible = value_type.IsIntegralTypes(); |
| } else if (field_type->IsFloat()) { |
| instruction_compatible = insn_type.IsInteger(); // no [is]put-float, so expect [is]put-int |
| value_compatible = value_type.IsFloatTypes(); |
| } else if (field_type->IsLong()) { |
| instruction_compatible = insn_type.IsLong(); |
| value_compatible = value_type.IsLongTypes(); |
| } else if (field_type->IsDouble()) { |
| instruction_compatible = insn_type.IsLong(); // no [is]put-double, so expect [is]put-long |
| value_compatible = value_type.IsDoubleTypes(); |
| } else { |
| instruction_compatible = false; // reference field with primitive store |
| value_compatible = false; // unused |
| } |
| if (!instruction_compatible) { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field) |
| << " to be of type '" << insn_type |
| << "' but found type '" << *field_type |
| << "' in put"; |
| return; |
| } |
| if (!value_compatible) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA |
| << " of type " << value_type |
| << " but expected " << *field_type |
| << " for store to " << ArtField::PrettyField(field) << " in put"; |
| return; |
| } |
| } else { |
| if (!insn_type.IsAssignableFrom(*field_type, this)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << ArtField::PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << *field_type |
| << "' in put-object"; |
| return; |
| } |
| work_line_->VerifyRegisterType(this, vregA, *field_type); |
| } |
| } else if (kAccType == FieldAccessType::kAccGet) { |
| if (is_primitive) { |
| if (field_type->Equals(insn_type) || |
| (field_type->IsFloat() && insn_type.IsIntegralTypes()) || |
| (field_type->IsDouble() && insn_type.IsLongTypes())) { |
| // expected that read is of the correct primitive type or that int reads are reading |
| // floats or long reads are reading doubles |
| } else { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field) |
| << " to be of type '" << insn_type |
| << "' but found type '" << *field_type << "' in Get"; |
| return; |
| } |
| } else { |
| if (!insn_type.IsAssignableFrom(*field_type, this)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << ArtField::PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << *field_type |
| << "' in get-object"; |
| work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict()); |
| return; |
| } |
| } |
| if (!field_type->IsLowHalf()) { |
| work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type); |
| } else { |
| work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_)); |
| } |
| } else { |
| LOG(FATAL) << "Unexpected case."; |
| } |
| } |
| |
| bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) { |
| if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) { |
| if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) && |
| ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) { |
| return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx)); |
| } |
| |
| bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, |
| bool update_merge_line) { |
| bool changed = true; |
| RegisterLine* target_line = reg_table_.GetLine(next_insn); |
| if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) { |
| /* |
| * We haven't processed this instruction before, and we haven't touched the registers here, so |
| * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the |
| * only way a register can transition out of "unknown", so this is not just an optimization.) |
| */ |
| target_line->CopyFromLine(merge_line); |
| if (GetInstructionFlags(next_insn).IsReturn()) { |
| // Verify that the monitor stack is empty on return. |
| merge_line->VerifyMonitorStackEmpty(this); |
| |
| // For returns we only care about the operand to the return, all other registers are dead. |
| // Initialize them as conflicts so they don't add to GC and deoptimization information. |
| const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn); |
| AdjustReturnLine(this, ret_inst, target_line); |
| // Directly bail if a hard failure was found. |
| if (have_pending_hard_failure_) { |
| return false; |
| } |
| } |
| } else { |
| RegisterLineArenaUniquePtr copy; |
| if (UNLIKELY(VLOG_IS_ON(verifier_debug))) { |
| copy.reset(RegisterLine::Create(target_line->NumRegs(), this)); |
| copy->CopyFromLine(target_line); |
| } |
| changed = target_line->MergeRegisters(this, merge_line); |
| if (have_pending_hard_failure_) { |
| return false; |
| } |
| if (UNLIKELY(VLOG_IS_ON(verifier_debug)) && changed) { |
| LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]" |
| << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n" |
| << copy->Dump(this) << " MERGE\n" |
| << merge_line->Dump(this) << " ==\n" |
| << target_line->Dump(this) << "\n"; |
| } |
| if (update_merge_line && changed) { |
| merge_line->CopyFromLine(target_line); |
| } |
| } |
| if (changed) { |
| GetInstructionFlags(next_insn).SetChanged(); |
| } |
| return true; |
| } |
| |
| InstructionFlags* MethodVerifier::CurrentInsnFlags() { |
| return &GetInstructionFlags(work_insn_idx_); |
| } |
| |
| const RegType& MethodVerifier::GetMethodReturnType() { |
| if (return_type_ == nullptr) { |
| if (mirror_method_ != nullptr) { |
| ObjPtr<mirror::Class> return_type_class = can_load_classes_ |
| ? mirror_method_->ResolveReturnType() |
| : mirror_method_->LookupResolvedReturnType(); |
| if (return_type_class != nullptr) { |
| return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(), |
| return_type_class.Ptr(), |
| return_type_class->CannotBeAssignedFromOtherTypes()); |
| } else { |
| DCHECK(!can_load_classes_ || self_->IsExceptionPending()); |
| self_->ClearException(); |
| } |
| } |
| if (return_type_ == nullptr) { |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_); |
| const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id); |
| dex::TypeIndex return_type_idx = proto_id.return_type_idx_; |
| const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx)); |
| return_type_ = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| } |
| } |
| return *return_type_; |
| } |
| |
| const RegType& MethodVerifier::GetDeclaringClass() { |
| if (declaring_class_ == nullptr) { |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_); |
| const char* descriptor |
| = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_)); |
| if (mirror_method_ != nullptr) { |
| mirror::Class* klass = mirror_method_->GetDeclaringClass(); |
| declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()); |
| } else { |
| declaring_class_ = ®_types_.FromDescriptor(GetClassLoader(), descriptor, false); |
| } |
| } |
| return *declaring_class_; |
| } |
| |
| std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) { |
| RegisterLine* line = reg_table_.GetLine(dex_pc); |
| DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc); |
| std::vector<int32_t> result; |
| for (size_t i = 0; i < line->NumRegs(); ++i) { |
| const RegType& type = line->GetRegisterType(this, i); |
| if (type.IsConstant()) { |
| result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant); |
| const ConstantType* const_val = down_cast<const ConstantType*>(&type); |
| result.push_back(const_val->ConstantValue()); |
| } else if (type.IsConstantLo()) { |
| result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant); |
| const ConstantType* const_val = down_cast<const ConstantType*>(&type); |
| result.push_back(const_val->ConstantValueLo()); |
| } else if (type.IsConstantHi()) { |
| result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant); |
| const ConstantType* const_val = down_cast<const ConstantType*>(&type); |
| result.push_back(const_val->ConstantValueHi()); |
| } else if (type.IsIntegralTypes()) { |
| result.push_back(kIntVReg); |
| result.push_back(0); |
| } else if (type.IsFloat()) { |
| result.push_back(kFloatVReg); |
| result.push_back(0); |
| } else if (type.IsLong()) { |
| result.push_back(kLongLoVReg); |
| result.push_back(0); |
| result.push_back(kLongHiVReg); |
| result.push_back(0); |
| ++i; |
| } else if (type.IsDouble()) { |
| result.push_back(kDoubleLoVReg); |
| result.push_back(0); |
| result.push_back(kDoubleHiVReg); |
| result.push_back(0); |
| ++i; |
| } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) { |
| result.push_back(kUndefined); |
| result.push_back(0); |
| } else { |
| CHECK(type.IsNonZeroReferenceTypes()); |
| result.push_back(kReferenceVReg); |
| result.push_back(0); |
| } |
| } |
| return result; |
| } |
| |
| const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) { |
| if (precise) { |
| // Precise constant type. |
| return reg_types_.FromCat1Const(value, true); |
| } else { |
| // Imprecise constant type. |
| if (value < -32768) { |
| return reg_types_.IntConstant(); |
| } else if (value < -128) { |
| return reg_types_.ShortConstant(); |
| } else if (value < 0) { |
| return reg_types_.ByteConstant(); |
| } else if (value == 0) { |
| return reg_types_.Zero(); |
| } else if (value == 1) { |
| return reg_types_.One(); |
| } else if (value < 128) { |
| return reg_types_.PosByteConstant(); |
| } else if (value < 32768) { |
| return reg_types_.PosShortConstant(); |
| } else if (value < 65536) { |
| return reg_types_.CharConstant(); |
| } else { |
| return reg_types_.IntConstant(); |
| } |
| } |
| } |
| |
| void MethodVerifier::Init() { |
| art::verifier::RegTypeCache::Init(); |
| } |
| |
| void MethodVerifier::Shutdown() { |
| verifier::RegTypeCache::ShutDown(); |
| } |
| |
| void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) { |
| RegTypeCache::VisitStaticRoots(visitor); |
| } |
| |
| void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) { |
| reg_types_.VisitRoots(visitor, root_info); |
| } |
| |
| const RegType& MethodVerifier::FromClass(const char* descriptor, |
| mirror::Class* klass, |
| bool precise) { |
| DCHECK(klass != nullptr); |
| if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) { |
| Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for " |
| << "non-instantiable klass " << descriptor; |
| precise = false; |
| } |
| return reg_types_.FromClass(descriptor, klass, precise); |
| } |
| |
| } // namespace verifier |
| } // namespace art |