blob: 760290cabe9bcd2964a5758b55a1fda83c1cc7ba [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
#include "dex/compiler_internals.h"
#include "x86_lir.h"
namespace art {
class X86Mir2Lir FINAL : public Mir2Lir {
public:
X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
// Required for target - codegen helpers.
bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
RegLocation rl_dest, int lit);
bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
LIR* CheckSuspendUsingLoad() OVERRIDE;
RegStorage LoadHelper(ThreadOffset<4> offset);
LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size,
int s_reg);
LIR* LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest, int s_reg);
LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
OpSize size);
// TODO: collapse r_dest, r_dest_hi
LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
RegStorage r_dest, RegStorage r_dest_hi, OpSize size, int s_reg);
LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size);
LIR* StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src);
LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
OpSize size);
// TODO: collapse r_src, r_src_hi
LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
RegStorage r_src, RegStorage r_src_hi, OpSize size, int s_reg);
void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
// Required for target - register utilities.
bool IsFpReg(int reg);
bool IsFpReg(RegStorage reg);
bool SameRegType(int reg1, int reg2);
RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
int S2d(int low_reg, int high_reg);
RegStorage TargetReg(SpecialTargetRegister reg);
RegStorage GetArgMappingToPhysicalReg(int arg_num);
RegLocation GetReturnAlt();
RegLocation GetReturnWideAlt();
RegLocation LocCReturn();
RegLocation LocCReturnDouble();
RegLocation LocCReturnFloat();
RegLocation LocCReturnWide();
uint32_t FpRegMask();
uint64_t GetRegMaskCommon(int reg);
void AdjustSpillMask();
void ClobberCallerSave();
void FlushReg(RegStorage reg);
void FlushRegWide(RegStorage reg);
void FreeCallTemps();
void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
void LockCallTemps();
void MarkPreservedSingle(int v_reg, int reg);
void CompilerInitializeRegAlloc();
// Required for target - miscellaneous.
void AssembleLIR();
int AssignInsnOffsets();
void AssignOffsets();
AssemblerStatus AssembleInstructions(CodeOffset start_addr);
void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
void SetupTargetResourceMasks(LIR* lir, uint64_t flags);
const char* GetTargetInstFmt(int opcode);
const char* GetTargetInstName(int opcode);
std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
uint64_t GetPCUseDefEncoding();
uint64_t GetTargetInstFlags(int opcode);
int GetInsnSize(LIR* lir);
bool IsUnconditionalBranch(LIR* lir);
// Required for target - Dalvik-level generators.
void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_dest, int scale);
void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift);
void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
bool GenInlinedSqrt(CallInfo* info);
bool GenInlinedPeek(CallInfo* info, OpSize size);
bool GenInlinedPoke(CallInfo* info, OpSize size);
void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
// TODO: collapse reg_lo, reg_hi
RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
void GenDivZeroCheckWide(RegStorage reg);
void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
void GenExitSequence();
void GenSpecialExitSequence();
void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
void GenSelect(BasicBlock* bb, MIR* mir);
void GenMemBarrier(MemBarrierKind barrier_kind);
void GenMoveException(RegLocation rl_dest);
void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
int first_bit, int second_bit);
void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
/*
* @brief Generate a two address long operation with a constant value
* @param rl_dest location of result
* @param rl_src constant source operand
* @param op Opcode to be generated
*/
void GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/*
* @brief Generate a three address long operation with a constant value
* @param rl_dest location of result
* @param rl_src1 source operand
* @param rl_src2 constant source operand
* @param op Opcode to be generated
*/
void GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
Instruction::Code op);
/**
* @brief Generate a long arithmetic operation.
* @param rl_dest The destination.
* @param rl_src1 First operand.
* @param rl_src2 Second operand.
* @param op The DEX opcode for the operation.
* @param is_commutative The sources can be swapped if needed.
*/
void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
Instruction::Code op, bool is_commutative);
/**
* @brief Generate a two operand long arithmetic operation.
* @param rl_dest The destination.
* @param rl_src Second operand.
* @param op The DEX opcode for the operation.
*/
void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/**
* @brief Generate a long operation.
* @param rl_dest The destination. Must be in a register
* @param rl_src The other operand. May be in a register or in memory.
* @param op The DEX opcode for the operation.
*/
void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/**
* @brief Implement instanceof a final class with x86 specific code.
* @param use_declaring_class 'true' if we can use the class itself.
* @param type_idx Type index to use if use_declaring_class is 'false'.
* @param rl_dest Result to be set to 0 or 1.
* @param rl_src Object to be tested.
*/
void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
/*
*
* @brief Implement Set up instanceof a class with x86 specific code.
* @param needs_access_check 'true' if we must check the access.
* @param type_known_final 'true' if the type is known to be a final class.
* @param type_known_abstract 'true' if the type is known to be an abstract class.
* @param use_declaring_class 'true' if the type can be loaded off the current Method*.
* @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
* @param type_idx Type index to use if use_declaring_class is 'false'.
* @param rl_dest Result to be set to 0 or 1.
* @param rl_src Object to be tested.
*/
void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
// Single operation generators.
LIR* OpUnconditionalBranch(LIR* target);
LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
LIR* OpCondBranch(ConditionCode cc, LIR* target);
LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
LIR* OpIT(ConditionCode cond, const char* guide);
void OpEndIT(LIR* it);
LIR* OpMem(OpKind op, RegStorage r_base, int disp);
LIR* OpPcRelLoad(RegStorage reg, LIR* target);
LIR* OpReg(OpKind op, RegStorage r_dest_src);
void OpRegCopy(RegStorage r_dest, RegStorage r_src);
LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
LIR* OpTestSuspend(LIR* target);
LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset);
LIR* OpVldm(RegStorage r_base, int count);
LIR* OpVstm(RegStorage r_base, int count);
void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
void OpRegCopyWide(RegStorage dest, RegStorage src);
void OpTlsCmp(ThreadOffset<4> offset, int val);
void OpRegThreadMem(OpKind op, int r_dest, ThreadOffset<4> thread_offset);
void SpillCoreRegs();
void UnSpillCoreRegs();
static const X86EncodingMap EncodingMap[kX86Last];
bool InexpensiveConstantInt(int32_t value);
bool InexpensiveConstantFloat(int32_t value);
bool InexpensiveConstantLong(int64_t value);
bool InexpensiveConstantDouble(int64_t value);
RegLocation UpdateLocWide(RegLocation loc);
RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
RegStorage AllocTempDouble();
void ResetDefLocWide(RegLocation rl);
/*
* @brief x86 specific codegen for int operations.
* @param opcode Operation to perform.
* @param rl_dest Destination for the result.
* @param rl_lhs Left hand operand.
* @param rl_rhs Right hand operand.
*/
void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
RegLocation rl_rhs);
/*
* @brief Dump a RegLocation using printf
* @param loc Register location to dump
*/
static void DumpRegLocation(RegLocation loc);
/*
* @brief Load the Method* of a dex method into the register.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Class* of a Dex Class type into the register.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
/*
* @brief Generate a relative call to the method that will be patched at link time.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @returns Call instruction
*/
LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
/*
* @brief Handle x86 specific literals
*/
void InstallLiteralPools();
/*
* @brief Generate the debug_frame CFI information.
* @returns pointer to vector containing CFE information
*/
static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
/*
* @brief Generate the debug_frame FDE information.
* @returns pointer to vector containing CFE information
*/
std::vector<uint8_t>* ReturnCallFrameInformation();
private:
void EmitPrefix(const X86EncodingMap* entry);
void EmitOpcode(const X86EncodingMap* entry);
void EmitPrefixAndOpcode(const X86EncodingMap* entry);
void EmitDisp(uint8_t base, int disp);
void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp);
void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale, int disp);
void EmitImm(const X86EncodingMap* entry, int imm);
void EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg);
void EmitOpReg(const X86EncodingMap* entry, uint8_t reg);
void EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp);
void EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp);
void EmitMemReg(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg);
void EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm);
void EmitRegMem(const X86EncodingMap* entry, uint8_t reg, uint8_t base, int disp);
void EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
int scale, int disp);
void EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
uint8_t reg);
void EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp);
void EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2);
void EmitRegRegImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
void EmitRegRegImmRev(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
void EmitRegMemImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t base, int disp,
int32_t imm);
void EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitThreadImm(const X86EncodingMap* entry, int disp, int imm);
void EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base, int displacement, uint8_t cl);
void EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl);
void EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition);
/**
* @brief Used for encoding conditional register to register operation.
* @param entry The entry in the encoding map for the opcode.
* @param reg1 The first physical register.
* @param reg2 The second physical register.
* @param condition The condition code for operation.
*/
void EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition);
void EmitJmp(const X86EncodingMap* entry, int rel);
void EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc);
void EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp);
void EmitCallImmediate(const X86EncodingMap* entry, int disp);
void EmitCallThread(const X86EncodingMap* entry, int disp);
void EmitPcRel(const X86EncodingMap* entry, uint8_t reg, int base_or_table, uint8_t index,
int scale, int table_or_disp);
void EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset);
void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
int64_t val, ConditionCode ccode);
void OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg);
void GenConstWide(RegLocation rl_dest, int64_t value);
static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
/*
* @brief generate inline code for fast case of Strng.indexOf.
* @param info Call parameters
* @param zero_based 'true' if the index into the string is 0.
* @returns 'true' if the call was inlined, 'false' if a regular call needs to be
* generated.
*/
bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
/*
* @brief Return the correct x86 opcode for the Dex operation
* @param op Dex opcode for the operation
* @param loc Register location of the operand
* @param is_high_op 'true' if this is an operation on the high word
* @param value Immediate value for the operation. Used for byte variants
* @returns the correct x86 opcode to perform the operation
*/
X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
/*
* @brief Return the correct x86 opcode for the Dex operation
* @param op Dex opcode for the operation
* @param dest location of the destination. May be register or memory.
* @param rhs Location for the rhs of the operation. May be in register or memory.
* @param is_high_op 'true' if this is an operation on the high word
* @returns the correct x86 opcode to perform the operation
* @note at most one location may refer to memory
*/
X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
bool is_high_op);
/*
* @brief Is this operation a no-op for this opcode and value
* @param op Dex opcode for the operation
* @param value Immediate value for the operation.
* @returns 'true' if the operation will have no effect
*/
bool IsNoOp(Instruction::Code op, int32_t value);
/**
* @brief Calculate magic number and shift for a given divisor
* @param divisor divisor number for calculation
* @param magic hold calculated magic number
* @param shift hold calculated shift
*/
void CalculateMagicAndShift(int divisor, int& magic, int& shift);
/*
* @brief Generate an integer div or rem operation.
* @param rl_dest Destination Location.
* @param rl_src1 Numerator Location.
* @param rl_src2 Divisor Location.
* @param is_div 'true' if this is a division, 'false' for a remainder.
* @param check_zero 'true' if an exception should be generated if the divisor is 0.
*/
RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
bool is_div, bool check_zero);
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src Numerator Location.
* @param lit Divisor.
* @param is_div 'true' if this is a division, 'false' for a remainder.
*/
RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
/*
* Generate code to implement long shift operations.
* @param opcode The DEX opcode to specify the shift type.
* @param rl_dest The destination.
* @param rl_src The value to be shifted.
* @param shift_amount How much to shift.
* @returns the RegLocation of the result.
*/
RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int shift_amount);
/*
* Generate an imul of a register by a constant or a better sequence.
* @param dest Destination Register.
* @param src Source Register.
* @param val Constant multiplier.
*/
void GenImulRegImm(RegStorage dest, RegStorage src, int val);
/*
* Generate an imul of a memory location by a constant or a better sequence.
* @param dest Destination Register.
* @param sreg Symbolic register.
* @param displacement Displacement on stack of Symbolic Register.
* @param val Constant multiplier.
*/
void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
/*
* @brief Compare memory to immediate, and branch if condition true.
* @param cond The condition code that when true will branch to the target.
* @param temp_reg A temporary register that can be used if compare memory is not
* supported by the architecture.
* @param base_reg The register holding the base address.
* @param offset The offset from the base.
* @param check_value The immediate to compare to.
*/
LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
int offset, int check_value, LIR* target);
/*
* Can this operation be using core registers without temporaries?
* @param rl_lhs Left hand operand.
* @param rl_rhs Right hand operand.
* @returns 'true' if the operation can proceed without needing temporary regs.
*/
bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
/**
* @brief Generates inline code for conversion of long to FP by using x87/
* @param rl_dest The destination of the FP.
* @param rl_src The source of the long.
* @param is_double 'true' if dealing with double, 'false' for float.
*/
void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
/*
* @brief Perform MIR analysis before compiling method.
* @note Invokes Mir2LiR::Materialize after analysis.
*/
void Materialize();
/*
* @brief Analyze MIR before generating code, to prepare for the code generation.
*/
void AnalyzeMIR();
/*
* @brief Analyze one basic block.
* @param bb Basic block to analyze.
*/
void AnalyzeBB(BasicBlock * bb);
/*
* @brief Analyze one extended MIR instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Extended instruction to analyze.
*/
void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one MIR instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Instruction to analyze.
*/
void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one MIR float/double instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Instruction to analyze.
*/
void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one use of a double operand.
* @param rl_use Double RegLocation for the operand.
*/
void AnalyzeDoubleUse(RegLocation rl_use);
// Information derived from analysis of MIR
// The compiler temporary for the code address of the method.
CompilerTemp *base_of_code_;
// Have we decided to compute a ptr to code and store in temporary VR?
bool store_method_addr_;
// Have we used the stored method address?
bool store_method_addr_used_;
// Instructions to remove if we didn't use the stored method address.
LIR* setup_method_address_[2];
// Instructions needing patching with Method* values.
GrowableArray<LIR*> method_address_insns_;
// Instructions needing patching with Class Type* values.
GrowableArray<LIR*> class_type_address_insns_;
// Instructions needing patching with PC relative code addresses.
GrowableArray<LIR*> call_method_insns_;
// Prologue decrement of stack pointer.
LIR* stack_decrement_;
// Epilogue increment of stack pointer.
LIR* stack_increment_;
};
} // namespace art
#endif // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_