| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_arm64.h" |
| |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_arm64.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "offsets.h" |
| #include "thread.h" |
| #include "utils/arm64/assembler_arm64.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| |
| |
| using namespace vixl; // NOLINT(build/namespaces) |
| |
| #ifdef __ |
| #error "ARM64 Codegen VIXL macro-assembler macro already defined." |
| #endif |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace arm64 { |
| |
| using helpers::CPURegisterFrom; |
| using helpers::DRegisterFrom; |
| using helpers::FPRegisterFrom; |
| using helpers::HeapOperand; |
| using helpers::HeapOperandFrom; |
| using helpers::InputCPURegisterAt; |
| using helpers::InputFPRegisterAt; |
| using helpers::InputRegisterAt; |
| using helpers::InputOperandAt; |
| using helpers::Int64ConstantFrom; |
| using helpers::LocationFrom; |
| using helpers::OperandFromMemOperand; |
| using helpers::OutputCPURegister; |
| using helpers::OutputFPRegister; |
| using helpers::OutputRegister; |
| using helpers::RegisterFrom; |
| using helpers::StackOperandFrom; |
| using helpers::VIXLRegCodeFromART; |
| using helpers::WRegisterFrom; |
| using helpers::XRegisterFrom; |
| using helpers::ARM64EncodableConstantOrRegister; |
| using helpers::ArtVixlRegCodeCoherentForRegSet; |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump |
| // table version generates 7 instructions and num_entries literals. Compare/jump sequence will |
| // generates less code/data with a small num_entries. |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; |
| |
| inline Condition ARM64Condition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne; |
| case kCondLT: return lt; |
| case kCondLE: return le; |
| case kCondGT: return gt; |
| case kCondGE: return ge; |
| case kCondB: return lo; |
| case kCondBE: return ls; |
| case kCondA: return hi; |
| case kCondAE: return hs; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { |
| // The ARM64 condition codes can express all the necessary branches, see the |
| // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. |
| // There is no dex instruction or HIR that would need the missing conditions |
| // "equal or unordered" or "not equal". |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne /* unordered */; |
| case kCondLT: return gt_bias ? cc : lt /* unordered */; |
| case kCondLE: return gt_bias ? ls : le /* unordered */; |
| case kCondGT: return gt_bias ? hi /* unordered */ : gt; |
| case kCondGE: return gt_bias ? cs /* unordered */ : ge; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| Location ARM64ReturnLocation(Primitive::Type return_type) { |
| // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the |
| // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, |
| // but we use the exact registers for clarity. |
| if (return_type == Primitive::kPrimFloat) { |
| return LocationFrom(s0); |
| } else if (return_type == Primitive::kPrimDouble) { |
| return LocationFrom(d0); |
| } else if (return_type == Primitive::kPrimLong) { |
| return LocationFrom(x0); |
| } else if (return_type == Primitive::kPrimVoid) { |
| return Location::NoLocation(); |
| } else { |
| return LocationFrom(w0); |
| } |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) { |
| return ARM64ReturnLocation(return_type); |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix from clang-tidy. |
| #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value() |
| |
| // Calculate memory accessing operand for save/restore live registers. |
| static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen, |
| RegisterSet* register_set, |
| int64_t spill_offset, |
| bool is_save) { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(), |
| codegen->GetNumberOfCoreRegisters(), |
| register_set->GetFloatingPointRegisters(), |
| codegen->GetNumberOfFloatingPointRegisters())); |
| |
| CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, |
| register_set->GetCoreRegisters() & (~callee_saved_core_registers.list())); |
| CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize, |
| register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list())); |
| |
| MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| Register base = masm->StackPointer(); |
| int64_t core_spill_size = core_list.TotalSizeInBytes(); |
| int64_t fp_spill_size = fp_list.TotalSizeInBytes(); |
| int64_t reg_size = kXRegSizeInBytes; |
| int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size; |
| uint32_t ls_access_size = WhichPowerOf2(reg_size); |
| if (((core_list.Count() > 1) || (fp_list.Count() > 1)) && |
| !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) { |
| // If the offset does not fit in the instruction's immediate field, use an alternate register |
| // to compute the base address(float point registers spill base address). |
| Register new_base = temps.AcquireSameSizeAs(base); |
| __ Add(new_base, base, Operand(spill_offset + core_spill_size)); |
| base = new_base; |
| spill_offset = -core_spill_size; |
| int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size; |
| DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size)); |
| DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size)); |
| } |
| |
| if (is_save) { |
| __ StoreCPURegList(core_list, MemOperand(base, spill_offset)); |
| __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); |
| } else { |
| __ LoadCPURegList(core_list, MemOperand(base, spill_offset)); |
| __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); |
| } |
| } |
| |
| void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| RegisterSet* register_set = locations->GetLiveRegisters(); |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += kXRegSizeInBytes; |
| } |
| } |
| |
| for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { |
| if (!codegen->IsFloatingPointCalleeSaveRegister(i) && |
| register_set->ContainsFloatingPointRegister(i)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += kDRegSizeInBytes; |
| } |
| } |
| |
| SaveRestoreLiveRegistersHelper(codegen, register_set, |
| codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */); |
| } |
| |
| void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| RegisterSet* register_set = locations->GetLiveRegisters(); |
| SaveRestoreLiveRegistersHelper(codegen, register_set, |
| codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */); |
| } |
| |
| class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves( |
| locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, |
| locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); |
| }; |
| |
| class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); |
| }; |
| |
| class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| LoadClassSlowPathARM64(HLoadClass* cls, |
| HInstruction* at, |
| uint32_t dex_pc, |
| bool do_clinit) |
| : SlowPathCodeARM64(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = at_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex()); |
| int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) |
| : QUICK_ENTRY_POINT(pInitializeType); |
| arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| // Move the class to the desired location. |
| Location out = locations->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| Primitive::Type type = at_->GetType(); |
| arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); |
| } |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The instruction where this slow path is happening. |
| // (Might be the load class or an initialization check). |
| HInstruction* const at_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); |
| }; |
| |
| class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit LoadStringSlowPathARM64(HLoadString* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), string_index); |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| Primitive::Type type = instruction_->GetType(); |
| arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); |
| }; |
| |
| class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); |
| }; |
| |
| class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeARM64(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, instruction_->GetLocations()); |
| if (successor_ == nullptr) { |
| __ B(GetReturnLabel()); |
| } else { |
| __ B(arm64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| vixl::Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| vixl::Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); |
| }; |
| |
| class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location class_to_check = locations->InAt(1); |
| Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) |
| : locations->Out(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves( |
| class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, |
| object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); |
| |
| if (instruction_->IsInstanceOf()) { |
| arm64_codegen->InvokeRuntime( |
| QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t, |
| const mirror::Class*, const mirror::Class*>(); |
| Primitive::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; } |
| bool IsFatal() const { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); |
| }; |
| |
| class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) |
| : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, void>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); |
| }; |
| |
| class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); |
| }; |
| |
| void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { |
| uint32_t num_entries = switch_instr_->GetNumEntries(); |
| DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); |
| |
| // We are about to use the assembler to place literals directly. Make sure we have enough |
| // underlying code buffer and we have generated the jump table with right size. |
| CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t), |
| CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize); |
| |
| __ Bind(&table_start_); |
| const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| vixl::Label* target_label = codegen->GetLabelOf(successors[i]); |
| DCHECK(target_label->IsBound()); |
| ptrdiff_t jump_offset = target_label->location() - table_start_.location(); |
| DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); |
| DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); |
| Literal<int32_t> literal(jump_offset); |
| __ place(&literal); |
| } |
| } |
| |
| // Slow path marking an object during a read barrier. |
| class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj) |
| : SlowPathCodeARM64(instruction), out_(out), obj_(obj) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Primitive::Type type = Primitive::kPrimNot; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast()) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type); |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| const Location out_; |
| const Location obj_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeARM64(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ Ldr(out, HeapOperand(out, class_offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Primitive::Type type = Primitive::kPrimNot; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(!instruction_->IsInvoke() || |
| (instruction_->IsInvokeStaticOrDirect() && |
| instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = RegisterFrom(index_, Primitive::kPrimInt); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); |
| if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to vixl::MacroAssembler::Lsl and |
| // vixl::MacroAssembler::Mov below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Mov(free_reg.W(), index_reg); |
| index_reg = free_reg; |
| index = LocationFrom(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Add(index_reg, index_reg, Operand(offset_)); |
| } else { |
| DCHECK(instruction_->IsInvoke()); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| type, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| type, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); |
| } |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(XRegisterFrom(ref_).code()); |
| size_t obj = static_cast<int>(XRegisterFrom(obj_).code()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return Register(VIXLRegCodeFromART(i), kXRegSize); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on ARM64 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeARM64(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Primitive::Type type = Primitive::kPrimNot; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| // The argument of the ReadBarrierForRootSlow is not a managed |
| // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`; |
| // thus we need a 64-bit move here, and we cannot use |
| // |
| // arm64_codegen->MoveLocation( |
| // LocationFrom(calling_convention.GetRegisterAt(0)), |
| // root_, |
| // type); |
| // |
| // which would emit a 32-bit move, as `type` is a (32-bit wide) |
| // reference type (`Primitive::kPrimNot`). |
| __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); |
| arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); |
| }; |
| |
| #undef __ |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) { |
| Location next_location; |
| if (type == Primitive::kPrimVoid) { |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| |
| if (Primitive::IsFloatingPointType(type) && |
| (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { |
| next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else if (!Primitive::IsFloatingPointType(type) && |
| (gp_index_ < calling_convention.GetNumberOfRegisters())) { |
| next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) |
| : Location::StackSlot(stack_offset); |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += Primitive::Is64BitType(type) ? 2 : 1; |
| return next_location; |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { |
| return LocationFrom(kArtMethodRegister); |
| } |
| |
| CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, |
| const Arm64InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfAllocatableRegisters, |
| kNumberOfAllocatableFPRegisters, |
| kNumberOfAllocatableRegisterPairs, |
| callee_saved_core_registers.list(), |
| callee_saved_fp_registers.list(), |
| compiler_options, |
| stats), |
| block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| uint64_literals_(std::less<uint64_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| method_patches_(MethodReferenceComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| call_patches_(MethodReferenceComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_address_patches_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { |
| // Save the link register (containing the return address) to mimic Quick. |
| AddAllocatedRegister(LocationFrom(lr)); |
| } |
| |
| #define __ GetVIXLAssembler()-> |
| |
| void CodeGeneratorARM64::EmitJumpTables() { |
| for (auto&& jump_table : jump_tables_) { |
| jump_table->EmitTable(this); |
| } |
| } |
| |
| void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { |
| EmitJumpTables(); |
| // Ensure we emit the literal pool. |
| __ FinalizeCode(); |
| |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { |
| // Note: There are 6 kinds of moves: |
| // 1. constant -> GPR/FPR (non-cycle) |
| // 2. constant -> stack (non-cycle) |
| // 3. GPR/FPR -> GPR/FPR |
| // 4. GPR/FPR -> stack |
| // 5. stack -> GPR/FPR |
| // 6. stack -> stack (non-cycle) |
| // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 |
| // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting |
| // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the |
| // dependency. |
| vixl_temps_.Open(GetVIXLAssembler()); |
| } |
| |
| void ParallelMoveResolverARM64::FinishEmitNativeCode() { |
| vixl_temps_.Close(); |
| } |
| |
| Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { |
| DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister || |
| kind == Location::kStackSlot || kind == Location::kDoubleStackSlot); |
| kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister; |
| Location scratch = GetScratchLocation(kind); |
| if (!scratch.Equals(Location::NoLocation())) { |
| return scratch; |
| } |
| // Allocate from VIXL temp registers. |
| if (kind == Location::kRegister) { |
| scratch = LocationFrom(vixl_temps_.AcquireX()); |
| } else { |
| DCHECK(kind == Location::kFpuRegister); |
| scratch = LocationFrom(vixl_temps_.AcquireD()); |
| } |
| AddScratchLocation(scratch); |
| return scratch; |
| } |
| |
| void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { |
| if (loc.IsRegister()) { |
| vixl_temps_.Release(XRegisterFrom(loc)); |
| } else { |
| DCHECK(loc.IsFpuRegister()); |
| vixl_temps_.Release(DRegisterFrom(loc)); |
| } |
| RemoveScratchLocation(loc); |
| } |
| |
| void ParallelMoveResolverARM64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid); |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameEntry() { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| BlockPoolsScope block_pools(masm); |
| __ Bind(&frame_entry_label_); |
| |
| bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod(); |
| if (do_overflow_check) { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64))); |
| __ Ldr(wzr, MemOperand(temp, 0)); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (!HasEmptyFrame()) { |
| int frame_size = GetFrameSize(); |
| // Stack layout: |
| // sp[frame_size - 8] : lr. |
| // ... : other preserved core registers. |
| // ... : other preserved fp registers. |
| // ... : reserved frame space. |
| // sp[0] : current method. |
| __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); |
| GetAssembler()->cfi().AdjustCFAOffset(frame_size); |
| GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(), |
| frame_size - GetCoreSpillSize()); |
| GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(), |
| frame_size - FrameEntrySpillSize()); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameExit() { |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| GetAssembler()->cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int frame_size = GetFrameSize(); |
| GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(), |
| frame_size - FrameEntrySpillSize()); |
| GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(), |
| frame_size - GetCoreSpillSize()); |
| __ Drop(frame_size); |
| GetAssembler()->cfi().AdjustCFAOffset(-frame_size); |
| } |
| __ Ret(); |
| GetAssembler()->cfi().RestoreState(); |
| GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); |
| return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize, |
| core_spill_mask_); |
| } |
| |
| vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, |
| GetNumberOfFloatingPointRegisters())); |
| return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize, |
| fpu_spill_mask_); |
| } |
| |
| void CodeGeneratorARM64::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ Mov(RegisterFrom(location, Primitive::kPrimInt), value); |
| } |
| |
| void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register card = temps.AcquireX(); |
| Register temp = temps.AcquireW(); // Index within the CardTable - 32bit. |
| vixl::Label done; |
| if (value_can_be_null) { |
| __ Cbz(value, &done); |
| } |
| __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value())); |
| __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Strb(card, MemOperand(card, temp.X())); |
| if (value_can_be_null) { |
| __ Bind(&done); |
| } |
| } |
| |
| void CodeGeneratorARM64::SetupBlockedRegisters() const { |
| // Blocked core registers: |
| // lr : Runtime reserved. |
| // tr : Runtime reserved. |
| // xSuspend : Runtime reserved. TODO: Unblock this when the runtime stops using it. |
| // ip1 : VIXL core temp. |
| // ip0 : VIXL core temp. |
| // |
| // Blocked fp registers: |
| // d31 : VIXL fp temp. |
| CPURegList reserved_core_registers = vixl_reserved_core_registers; |
| reserved_core_registers.Combine(runtime_reserved_core_registers); |
| while (!reserved_core_registers.IsEmpty()) { |
| blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true; |
| } |
| |
| CPURegList reserved_fp_registers = vixl_reserved_fp_registers; |
| while (!reserved_fp_registers.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true; |
| } |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; |
| while (!reserved_fp_registers_debuggable.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Str(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Ldr(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| FPRegister reg = FPRegister(reg_id, kDRegSize); |
| __ Str(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| FPRegister reg = FPRegister(reg_id, kDRegSize); |
| __ Ldr(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << XRegister(reg); |
| } |
| |
| void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << DRegister(reg); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { |
| if (constant->IsIntConstant()) { |
| __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); |
| } else if (constant->IsLongConstant()) { |
| __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); |
| } else if (constant->IsNullConstant()) { |
| __ Mov(Register(destination), 0); |
| } else if (constant->IsFloatConstant()) { |
| __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue()); |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue()); |
| } |
| } |
| |
| |
| static bool CoherentConstantAndType(Location constant, Primitive::Type type) { |
| DCHECK(constant.IsConstant()); |
| HConstant* cst = constant.GetConstant(); |
| return (cst->IsIntConstant() && type == Primitive::kPrimInt) || |
| // Null is mapped to a core W register, which we associate with kPrimInt. |
| (cst->IsNullConstant() && type == Primitive::kPrimInt) || |
| (cst->IsLongConstant() && type == Primitive::kPrimLong) || |
| (cst->IsFloatConstant() && type == Primitive::kPrimFloat) || |
| (cst->IsDoubleConstant() && type == Primitive::kPrimDouble); |
| } |
| |
| void CodeGeneratorARM64::MoveLocation(Location destination, |
| Location source, |
| Primitive::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| // A valid move can always be inferred from the destination and source |
| // locations. When moving from and to a register, the argument type can be |
| // used to generate 32bit instead of 64bit moves. In debug mode we also |
| // checks the coherency of the locations and the type. |
| bool unspecified_type = (dst_type == Primitive::kPrimVoid); |
| |
| if (destination.IsRegister() || destination.IsFpuRegister()) { |
| if (unspecified_type) { |
| HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; |
| if (source.IsStackSlot() || |
| (src_cst != nullptr && (src_cst->IsIntConstant() |
| || src_cst->IsFloatConstant() |
| || src_cst->IsNullConstant()))) { |
| // For stack slots and 32bit constants, a 64bit type is appropriate. |
| dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat; |
| } else { |
| // If the source is a double stack slot or a 64bit constant, a 64bit |
| // type is appropriate. Else the source is a register, and since the |
| // type has not been specified, we chose a 64bit type to force a 64bit |
| // move. |
| dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble; |
| } |
| } |
| DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) || |
| (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type))); |
| CPURegister dst = CPURegisterFrom(destination, dst_type); |
| if (source.IsStackSlot() || source.IsDoubleStackSlot()) { |
| DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); |
| __ Ldr(dst, StackOperandFrom(source)); |
| } else if (source.IsConstant()) { |
| DCHECK(CoherentConstantAndType(source, dst_type)); |
| MoveConstant(dst, source.GetConstant()); |
| } else if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ Mov(Register(dst), RegisterFrom(source, dst_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| Primitive::Type source_type = Primitive::Is64BitType(dst_type) |
| ? Primitive::kPrimLong |
| : Primitive::kPrimInt; |
| __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); |
| } |
| } else { |
| DCHECK(source.IsFpuRegister()); |
| if (destination.IsRegister()) { |
| Primitive::Type source_type = Primitive::Is64BitType(dst_type) |
| ? Primitive::kPrimDouble |
| : Primitive::kPrimFloat; |
| __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type)); |
| } |
| } |
| } else { // The destination is not a register. It must be a stack slot. |
| DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); |
| if (source.IsRegister() || source.IsFpuRegister()) { |
| if (unspecified_type) { |
| if (source.IsRegister()) { |
| dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong; |
| } else { |
| dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble; |
| } |
| } |
| DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) && |
| (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type))); |
| __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); |
| } else if (source.IsConstant()) { |
| DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) |
| << source << " " << dst_type; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| HConstant* src_cst = source.GetConstant(); |
| CPURegister temp; |
| if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) { |
| temp = temps.AcquireW(); |
| } else if (src_cst->IsLongConstant()) { |
| temp = temps.AcquireX(); |
| } else if (src_cst->IsFloatConstant()) { |
| temp = temps.AcquireS(); |
| } else { |
| DCHECK(src_cst->IsDoubleConstant()); |
| temp = temps.AcquireD(); |
| } |
| MoveConstant(temp, src_cst); |
| __ Str(temp, StackOperandFrom(destination)); |
| } else { |
| DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); |
| DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| // There is generally less pressure on FP registers. |
| FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS(); |
| __ Ldr(temp, StackOperandFrom(source)); |
| __ Str(temp, StackOperandFrom(destination)); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::Load(Primitive::Type type, |
| CPURegister dst, |
| const MemOperand& src) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| __ Ldrb(Register(dst), src); |
| break; |
| case Primitive::kPrimByte: |
| __ Ldrsb(Register(dst), src); |
| break; |
| case Primitive::kPrimShort: |
| __ Ldrsh(Register(dst), src); |
| break; |
| case Primitive::kPrimChar: |
| __ Ldrh(Register(dst), src); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Ldr(dst, src); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, |
| CPURegister dst, |
| const MemOperand& src, |
| bool needs_null_check) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| BlockPoolsScope block_pools(masm); |
| UseScratchRegisterScope temps(masm); |
| Register temp_base = temps.AcquireX(); |
| Primitive::Type type = instruction->GetType(); |
| |
| DCHECK(!src.IsPreIndex()); |
| DCHECK(!src.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle MemOperand. |
| __ Add(temp_base, src.base(), OperandFromMemOperand(src)); |
| MemOperand base = MemOperand(temp_base); |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| __ Ldarb(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| case Primitive::kPrimByte: |
| __ Ldarb(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte); |
| break; |
| case Primitive::kPrimChar: |
| __ Ldarh(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| case Primitive::kPrimShort: |
| __ Ldarh(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Ldar(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| DCHECK(dst.IsFPRegister()); |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| |
| Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| __ Ldar(temp, base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ Fmov(FPRegister(dst), temp); |
| break; |
| } |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::Store(Primitive::Type type, |
| CPURegister src, |
| const MemOperand& dst) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| __ Strb(Register(src), dst); |
| break; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| __ Strh(Register(src), dst); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Str(src, dst); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::StoreRelease(Primitive::Type type, |
| CPURegister src, |
| const MemOperand& dst) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp_base = temps.AcquireX(); |
| |
| DCHECK(!dst.IsPreIndex()); |
| DCHECK(!dst.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle this. |
| Operand op = OperandFromMemOperand(dst); |
| __ Add(temp_base, dst.base(), op); |
| MemOperand base = MemOperand(temp_base); |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| __ Stlrb(Register(src), base); |
| break; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| __ Stlrh(Register(src), base); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Stlr(Register(src), base); |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| DCHECK(src.IsFPRegister()); |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| |
| Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| __ Fmov(temp, FPRegister(src)); |
| __ Stlr(temp, base); |
| break; |
| } |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(), |
| instruction, |
| dex_pc, |
| slow_path); |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(instruction, slow_path); |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| __ Ldr(lr, MemOperand(tr, entry_point_offset)); |
| __ Blr(lr); |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, |
| vixl::Register class_reg) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| size_t status_offset = mirror::Class::StatusOffset().SizeValue(); |
| |
| // Even if the initialized flag is set, we need to ensure consistent memory ordering. |
| // TODO(vixl): Let the MacroAssembler handle MemOperand. |
| __ Add(temp, class_reg, status_offset); |
| __ Ldar(temp, HeapOperand(temp)); |
| __ Cmp(temp, mirror::Class::kStatusInitialized); |
| __ B(lt, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { |
| BarrierType type = BarrierAll; |
| |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: |
| case MemBarrierKind::kAnyStore: { |
| type = BarrierAll; |
| break; |
| } |
| case MemBarrierKind::kLoadAny: { |
| type = BarrierReads; |
| break; |
| } |
| case MemBarrierKind::kStoreStore: { |
| type = BarrierWrites; |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| __ Dmb(InnerShareable, type); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathARM64* slow_path = |
| down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| |
| __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue())); |
| if (successor == nullptr) { |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ Cbz(temp, codegen_->GetLabelOf(successor)); |
| __ B(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, |
| CodeGeneratorARM64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| #define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M) \ |
| /* No unimplemented IR. */ |
| |
| #define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode |
| |
| enum UnimplementedInstructionBreakCode { |
| // Using a base helps identify when we hit such breakpoints. |
| UnimplementedInstructionBreakCodeBaseCode = 0x900, |
| #define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name), |
| FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION) |
| #undef ENUM_UNIMPLEMENTED_INSTRUCTION |
| }; |
| |
| #define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name) \ |
| void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) { \ |
| __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name)); \ |
| } \ |
| void LocationsBuilderARM64::Visit##name(H##name* instr) { \ |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \ |
| locations->SetOut(Location::Any()); \ |
| } |
| FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS) |
| #undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS |
| |
| #undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE |
| #undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION |
| |
| void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| DCHECK_EQ(instr->InputCount(), 2U); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| Primitive::Type type = instr->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_field_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps for an object field get when read barriers |
| // are enabled: we do not want the load to overwrite the object's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(0); |
| Location out = locations->Out(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset()); |
| |
| if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Object FieldGet with Baker's read barrier case. |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| // /* HeapReference<Object> */ out = *(base + offset) |
| Register base = RegisterFrom(base_loc, Primitive::kPrimNot); |
| Register temp = temps.AcquireW(); |
| // Note that potential implicit null checks are handled in this |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, |
| out, |
| base, |
| offset, |
| temp, |
| /* needs_null_check */ true, |
| field_info.IsVolatile()); |
| } else { |
| // General case. |
| if (field_info.IsVolatile()) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARM64::LoadAcquire call. |
| // NB: LoadAcquire will record the pc info if needed. |
| codegen_->LoadAcquire( |
| instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true); |
| } else { |
| codegen_->Load(field_type, OutputCPURegister(instruction), field); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (field_type == Primitive::kPrimNot) { |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| |
| Register obj = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterAt(instruction, 1); |
| CPURegister source = value; |
| Offset offset = field_info.GetFieldOffset(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| |
| if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp, value.W()); |
| GetAssembler()->PoisonHeapReference(temp.W()); |
| source = temp; |
| } |
| |
| if (field_info.IsVolatile()) { |
| codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| codegen_->Store(field_type, source, HeapOperand(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| codegen_->MarkGCCard(obj, Register(value), value_can_be_null); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| Primitive::Type type = instr->GetType(); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Add(dst, lhs, rhs); |
| } else if (instr->IsAnd()) { |
| __ And(dst, lhs, rhs); |
| } else if (instr->IsOr()) { |
| __ Orr(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Sub(dst, lhs, rhs); |
| } else if (instr->IsRor()) { |
| if (rhs.IsImmediate()) { |
| uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1); |
| __ Ror(dst, lhs, shift); |
| } else { |
| // Ensure shift distance is in the same size register as the result. If |
| // we are rotating a long and the shift comes in a w register originally, |
| // we don't need to sxtw for use as an x since the shift distances are |
| // all & reg_bits - 1. |
| __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); |
| } |
| } else { |
| DCHECK(instr->IsXor()); |
| __ Eor(dst, lhs, rhs); |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| FPRegister dst = OutputFPRegister(instr); |
| FPRegister lhs = InputFPRegisterAt(instr, 0); |
| FPRegister rhs = InputFPRegisterAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Fadd(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Fsub(dst, lhs, rhs); |
| } else { |
| LOG(FATAL) << "Unexpected floating-point binary operation"; |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| Primitive::Type type = instr->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| Primitive::Type type = instr->GetType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (rhs.IsImmediate()) { |
| uint32_t shift_value = rhs.immediate() & |
| (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, shift_value); |
| } else { |
| __ Lsr(dst, lhs, shift_value); |
| } |
| } else { |
| Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W(); |
| |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, rhs_reg); |
| } else { |
| __ Lsr(dst, lhs, rhs_reg); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| DCHECK(Primitive::IsIntegralType(instr->GetType())) << instr->GetType(); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // There is no immediate variant of negated bitwise instructions in AArch64. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Register rhs = InputRegisterAt(instr, 1); |
| |
| switch (instr->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ Bic(dst, lhs, rhs); |
| break; |
| case HInstruction::kOr: |
| __ Orn(dst, lhs, rhs); |
| break; |
| case HInstruction::kXor: |
| __ Eon(dst, lhs, rhs); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp( |
| HArm64DataProcWithShifterOp* instruction) { |
| DCHECK(instruction->GetType() == Primitive::kPrimInt || |
| instruction->GetType() == Primitive::kPrimLong); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| if (instruction->GetInstrKind() == HInstruction::kNeg) { |
| locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp( |
| HArm64DataProcWithShifterOp* instruction) { |
| Primitive::Type type = instruction->GetType(); |
| HInstruction::InstructionKind kind = instruction->GetInstrKind(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| Register out = OutputRegister(instruction); |
| Register left; |
| if (kind != HInstruction::kNeg) { |
| left = InputRegisterAt(instruction, 0); |
| } |
| // If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the |
| // shifter operand operation, the IR generating `right_reg` (input to the type |
| // conversion) can have a different type from the current instruction's type, |
| // so we manually indicate the type. |
| Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); |
| int64_t shift_amount = instruction->GetShiftAmount() & |
| (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| |
| Operand right_operand(0); |
| |
| HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); |
| if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) { |
| right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); |
| } else { |
| right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount); |
| } |
| |
| // Logical binary operations do not support extension operations in the |
| // operand. Note that VIXL would still manage if it was passed by generating |
| // the extension as a separate instruction. |
| // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. |
| DCHECK(!right_operand.IsExtendedRegister() || |
| (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor && |
| kind != HInstruction::kNeg)); |
| switch (kind) { |
| case HInstruction::kAdd: |
| __ Add(out, left, right_operand); |
| break; |
| case HInstruction::kAnd: |
| __ And(out, left, right_operand); |
| break; |
| case HInstruction::kNeg: |
| DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); |
| __ Neg(out, right_operand); |
| break; |
| case HInstruction::kOr: |
| __ Orr(out, left, right_operand); |
| break; |
| case HInstruction::kSub: |
| __ Sub(out, left, right_operand); |
| break; |
| case HInstruction::kXor: |
| __ Eor(out, left, right_operand); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation kind: " << kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) { |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!kEmitCompilerReadBarrier); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress( |
| HArm64IntermediateAddress* instruction) { |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!kEmitCompilerReadBarrier); |
| __ Add(OutputRegister(instruction), |
| InputRegisterAt(instruction, 0), |
| Operand(InputOperandAt(instruction, 1))); |
| } |
| |
| void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall); |
| HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (instr->GetOpKind() == HInstruction::kSub && |
| accumulator->IsConstant() && |
| accumulator->AsConstant()->IsArithmeticZero()) { |
| // Don't allocate register for Mneg instruction. |
| } else { |
| locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, |
| Location::RequiresRegister()); |
| } |
| locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| Register res = OutputRegister(instr); |
| Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); |
| Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); |
| |
| // Avoid emitting code that could trigger Cortex A53's erratum 835769. |
| // This fixup should be carried out for all multiply-accumulate instructions: |
| // madd, msub, smaddl, smsubl, umaddl and umsubl. |
| if (instr->GetType() == Primitive::kPrimLong && |
| codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { |
| MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler(); |
| vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize; |
| if (prev->IsLoadOrStore()) { |
| // Make sure we emit only exactly one nop. |
| vixl::CodeBufferCheckScope scope(masm, |
| vixl::kInstructionSize, |
| vixl::CodeBufferCheckScope::kCheck, |
| vixl::CodeBufferCheckScope::kExactSize); |
| __ nop(); |
| } |
| } |
| |
| if (instr->GetOpKind() == HInstruction::kAdd) { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Madd(res, mul_left, mul_right, accumulator); |
| } else { |
| DCHECK(instr->GetOpKind() == HInstruction::kSub); |
| HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { |
| __ Mneg(res, mul_left, mul_right); |
| } else { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Msub(res, mul_left, mul_right, accumulator); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { |
| Primitive::Type type = instruction->GetType(); |
| Register obj = InputRegisterAt(instruction, 0); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index = locations->InAt(1); |
| uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value(); |
| Location out = locations->Out(); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| // Block pools between `Load` and `MaybeRecordImplicitNullCheck`. |
| BlockPoolsScope block_pools(masm); |
| |
| if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Object ArrayGet with Baker's read barrier case. |
| Register temp = temps.AcquireW(); |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress()); |
| // Note that a potential implicit null check is handled in the |
| // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true); |
| } else { |
| // General case. |
| MemOperand source = HeapOperand(obj); |
| if (index.IsConstant()) { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type); |
| source = HeapOperand(obj, offset); |
| } else { |
| Register temp = temps.AcquireSameSizeAs(obj); |
| if (instruction->GetArray()->IsArm64IntermediateAddress()) { |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!kEmitCompilerReadBarrier); |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress(); |
| DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); |
| } |
| temp = obj; |
| } else { |
| __ Add(temp, obj, offset); |
| } |
| source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type)); |
| } |
| |
| codegen_->Load(type, OutputCPURegister(instruction), source); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| |
| if (type == Primitive::kPrimNot) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| Location obj_loc = locations->InAt(0); |
| if (index.IsConstant()) { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); |
| } else { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); |
| } |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| __ Ldr(OutputRegister(instruction), HeapOperand(InputRegisterAt(instruction, 0), offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool object_array_set_with_read_barrier = |
| kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| Register array = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterAt(instruction, 2); |
| CPURegister source = value; |
| Location index = locations->InAt(1); |
| size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); |
| MemOperand destination = HeapOperand(array); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| BlockPoolsScope block_pools(masm); |
| |
| if (!needs_write_barrier) { |
| DCHECK(!may_need_runtime_call_for_type_check); |
| if (index.IsConstant()) { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| if (instruction->GetArray()->IsArm64IntermediateAddress()) { |
| // The read barrier instrumentation does not support the |
| // HArm64IntermediateAddress instruction yet. |
| DCHECK(!kEmitCompilerReadBarrier); |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress(); |
| DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); |
| } |
| temp = array; |
| } else { |
| __ Add(temp, array, offset); |
| } |
| destination = HeapOperand(temp, |
| XRegisterFrom(index), |
| LSL, |
| Primitive::ComponentSizeShift(value_type)); |
| } |
| codegen_->Store(value_type, value, destination); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| DCHECK(needs_write_barrier); |
| DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress()); |
| vixl::Label done; |
| SlowPathCodeARM64* slow_path = nullptr; |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| if (index.IsConstant()) { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| destination = HeapOperand(temp, |
| XRegisterFrom(index), |
| LSL, |
| Primitive::ComponentSizeShift(value_type)); |
| } |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| vixl::Label non_zero; |
| __ Cbnz(Register(value), &non_zero); |
| if (!index.IsConstant()) { |
| __ Add(temp, array, offset); |
| } |
| __ Str(wzr, destination); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ B(&done); |
| __ Bind(&non_zero); |
| } |
| |
| if (kEmitCompilerReadBarrier) { |
| // When read barriers are enabled, the type checking |
| // instrumentation requires two read barriers: |
| // |
| // __ Mov(temp2, temp); |
| // // /* HeapReference<Class> */ temp = temp->component_type_ |
| // __ Ldr(temp, HeapOperand(temp, component_offset)); |
| // codegen_->GenerateReadBarrierSlow( |
| // instruction, temp_loc, temp_loc, temp2_loc, component_offset); |
| // |
| // // /* HeapReference<Class> */ temp2 = value->klass_ |
| // __ Ldr(temp2, HeapOperand(Register(value), class_offset)); |
| // codegen_->GenerateReadBarrierSlow( |
| // instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc); |
| // |
| // __ Cmp(temp, temp2); |
| // |
| // However, the second read barrier may trash `temp`, as it |
| // is a temporary register, and as such would not be saved |
| // along with live registers before calling the runtime (nor |
| // restored afterwards). So in this case, we bail out and |
| // delegate the work to the array set slow path. |
| // |
| // TODO: Extend the register allocator to support a new |
| // "(locally) live temp" location so as to avoid always |
| // going into the slow path when read barriers are enabled. |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| Register temp2 = temps.AcquireSameSizeAs(array); |
| // /* HeapReference<Class> */ temp = array->klass_ |
| __ Ldr(temp, HeapOperand(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ Ldr(temp, HeapOperand(temp, component_offset)); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ Ldr(temp2, HeapOperand(Register(value), class_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor `temp2`, as we are comparing two poisoned references. |
| __ Cmp(temp, temp2); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| vixl::Label do_put; |
| __ B(eq, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| __ Ldr(temp, HeapOperand(temp, super_offset)); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp`, as we are comparing against null below. |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| temps.Release(temp2); |
| } |
| } |
| |
| if (kPoisonHeapReferences) { |
| Register temp2 = temps.AcquireSameSizeAs(array); |
| DCHECK(value.IsW()); |
| __ Mov(temp2, value.W()); |
| GetAssembler()->PoisonHeapReference(temp2); |
| source = temp2; |
| } |
| |
| if (!index.IsConstant()) { |
| __ Add(temp, array, offset); |
| } |
| __ Str(source, destination); |
| |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull()); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| BoundsCheckSlowPathARM64* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1)); |
| __ B(slow_path->GetEntryLabel(), hs); |
| } |
| |
| void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); |
| } |
| |
| static bool IsFloatingPointZeroConstant(HInstruction* inst) { |
| return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) |
| || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { |
| FPRegister lhs_reg = InputFPRegisterAt(instruction, 0); |
| Location rhs_loc = instruction->GetLocations()->InAt(1); |
| if (rhs_loc.IsConstant()) { |
| // 0.0 is the only immediate that can be encoded directly in |
| // an FCMP instruction. |
| // |
| // Both the JLS (section 15.20.1) and the JVMS (section 6.5) |
| // specify that in a floating-point comparison, positive zero |
| // and negative zero are considered equal, so we can use the |
| // literal 0.0 for both cases here. |
| // |
| // Note however that some methods (Float.equal, Float.compare, |
| // Float.compareTo, Double.equal, Double.compare, |
| // Double.compareTo, Math.max, Math.min, StrictMath.max, |
| // StrictMath.min) consider 0.0 to be (strictly) greater than |
| // -0.0. So if we ever translate calls to these methods into a |
| // HCompare instruction, we must handle the -0.0 case with |
| // care here. |
| DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); |
| __ Fcmp(lhs_reg, 0.0); |
| } else { |
| __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| Primitive::Type in_type = compare->InputAt(0)->GetType(); |
| switch (in_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(compare->InputAt(1)) |
| ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { |
| Primitive::Type in_type = compare->InputAt(0)->GetType(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register result = OutputRegister(compare); |
| Register left = InputRegisterAt(compare, 0); |
| Operand right = InputOperandAt(compare, 1); |
| __ Cmp(left, right); |
| __ Cset(result, ne); // result == +1 if NE or 0 otherwise |
| __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| Register result = OutputRegister(compare); |
| GenerateFcmp(compare); |
| __ Cset(result, ne); |
| __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| |
| if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(instruction->InputAt(1)) |
| ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| } else { |
| // Integer cases. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); |
| } |
| |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register res = RegisterFrom(locations->Out(), instruction->GetType()); |
| IfCondition if_cond = instruction->GetCondition(); |
| |
| if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| GenerateFcmp(instruction); |
| __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(instruction, 0); |
| Operand rhs = InputOperandAt(instruction, 1); |
| __ Cmp(lhs, rhs); |
| __ Cset(res, ARM64Condition(if_cond)); |
| } |
| } |
| |
| #define FOR_EACH_CONDITION_INSTRUCTION(M) \ |
| M(Equal) \ |
| M(NotEqual) \ |
| M(LessThan) \ |
| M(LessThanOrEqual) \ |
| M(GreaterThan) \ |
| M(GreaterThanOrEqual) \ |
| M(Below) \ |
| M(BelowOrEqual) \ |
| M(Above) \ |
| M(AboveOrEqual) |
| #define DEFINE_CONDITION_VISITORS(Name) \ |
| void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \ |
| void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } |
| FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) |
| #undef DEFINE_CONDITION_VISITORS |
| #undef FOR_EACH_CONDITION_INSTRUCTION |
| |
| void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ Mov(out, 0); |
| } else { |
| if (imm == 1) { |
| __ Mov(out, dividend); |
| } else { |
| __ Neg(out, dividend); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| if (instruction->IsDiv()) { |
| __ Add(temp, dividend, abs_imm - 1); |
| __ Cmp(dividend, 0); |
| __ Csel(out, temp, dividend, lt); |
| if (imm > 0) { |
| __ Asr(out, out, ctz_imm); |
| } else { |
| __ Neg(out, Operand(out, ASR, ctz_imm)); |
| } |
| } else { |
| int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64; |
| __ Asr(temp, dividend, bits - 1); |
| __ Lsr(temp, temp, bits - ctz_imm); |
| __ Add(out, dividend, temp); |
| __ And(out, out, abs_imm - 1); |
| __ Sub(out, out, temp); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| Primitive::Type type = instruction->GetResultType(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| // temp = get_high(dividend * magic) |
| __ Mov(temp, magic); |
| if (type == Primitive::kPrimLong) { |
| __ Smulh(temp, dividend, temp); |
| } else { |
| __ Smull(temp.X(), dividend, temp); |
| __ Lsr(temp.X(), temp.X(), 32); |
| } |
| |
| if (imm > 0 && magic < 0) { |
| __ Add(temp, temp, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Sub(temp, temp, dividend); |
| } |
| |
| if (shift != 0) { |
| __ Asr(temp, temp, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31)); |
| } else { |
| __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31)); |
| // TODO: Strength reduction for msub. |
| Register temp_imm = temps.AcquireSameSizeAs(out); |
| __ Mov(temp_imm, imm); |
| __ Msub(out, temp, temp_imm, dividend); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| Primitive::Type type = instruction->GetResultType(); |
| DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register out = OutputRegister(instruction); |
| Location second = locations->InAt(1); |
| |
| if (second.IsConstant()) { |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| Register dividend = InputRegisterAt(instruction, 0); |
| Register divisor = InputRegisterAt(instruction, 1); |
| if (instruction->IsDiv()) { |
| __ Sdiv(out, dividend, divisor); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| __ Sdiv(temp, dividend, divisor); |
| __ Msub(out, temp, divisor, dividend); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall); |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { |
| Primitive::Type type = div->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| GenerateDivRemIntegral(div); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| |
| Primitive::Type type = instruction->GetType(); |
| |
| if (!Primitive::IsIntegralType(type)) { |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| return; |
| } |
| |
| if (value.IsConstant()) { |
| int64_t divisor = Int64ConstantFrom(value); |
| if (divisor == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDoubleConstant( |
| HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| vixl::Label* true_target, |
| vixl::Label* false_target) { |
| // FP branching requires both targets to be explicit. If either of the targets |
| // is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| vixl::Label fallthrough_target; |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ B(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); |
| } else { |
| __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (Primitive::IsFloatingPointType(type)) { |
| GenerateFcmp(condition); |
| if (true_target == nullptr) { |
| IfCondition opposite_condition = condition->GetOppositeCondition(); |
| __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); |
| } else { |
| __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); |
| } |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(condition, 0); |
| Operand rhs = InputOperandAt(condition, 1); |
| |
| Condition arm64_cond; |
| vixl::Label* non_fallthrough_target; |
| if (true_target == nullptr) { |
| arm64_cond = ARM64Condition(condition->GetOppositeCondition()); |
| non_fallthrough_target = false_target; |
| } else { |
| arm64_cond = ARM64Condition(condition->GetCondition()); |
| non_fallthrough_target = true_target; |
| } |
| |
| if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && |
| rhs.IsImmediate() && (rhs.immediate() == 0)) { |
| switch (arm64_cond) { |
| case eq: |
| __ Cbz(lhs, non_fallthrough_target); |
| break; |
| case ne: |
| __ Cbnz(lhs, non_fallthrough_target); |
| break; |
| case lt: |
| // Test the sign bit and branch accordingly. |
| __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| case ge: |
| // Test the sign bit and branch accordingly. |
| __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| default: |
| // Without the `static_cast` the compiler throws an error for |
| // `-Werror=sign-promo`. |
| LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond); |
| } |
| } else { |
| __ Cmp(lhs, rhs); |
| __ B(arm64_cond, non_fallthrough_target); |
| } |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ B(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeARM64* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { |
| return condition->IsCondition() && |
| Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()); |
| } |
| |
| static inline Condition GetConditionForSelect(HCondition* condition) { |
| IfCondition cond = condition->AsCondition()->GetCondition(); |
| return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) |
| : ARM64Condition(cond); |
| } |
| |
| void LocationsBuilderARM64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); |
| HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); |
| bool is_true_value_constant = cst_true_value != nullptr; |
| bool is_false_value_constant = cst_false_value != nullptr; |
| // Ask VIXL whether we should synthesize constants in registers. |
| // We give an arbitrary register to VIXL when dealing with non-constant inputs. |
| Operand true_op = is_true_value_constant ? |
| Operand(Int64FromConstant(cst_true_value)) : Operand(x1); |
| Operand false_op = is_false_value_constant ? |
| Operand(Int64FromConstant(cst_false_value)) : Operand(x2); |
| bool true_value_in_register = false; |
| bool false_value_in_register = false; |
| MacroAssembler::GetCselSynthesisInformation( |
| x0, true_op, false_op, &true_value_in_register, &false_value_in_register); |
| true_value_in_register |= !is_true_value_constant; |
| false_value_in_register |= !is_false_value_constant; |
| |
| locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_true_value)); |
| locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_false_value)); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { |
| HInstruction* cond = select->GetCondition(); |
| Condition csel_cond; |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (cond->IsCondition() && cond->GetNext() == select) { |
| // Use the condition flags set by the previous instruction. |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(select, 2), 0); |
| csel_cond = ne; |
| } |
| } else if (IsConditionOnFloatingPointValues(cond)) { |
| GenerateFcmp(cond); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } |
| |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| __ Fcsel(OutputFPRegister(select), |
| InputFPRegisterAt(select, 1), |
| InputFPRegisterAt(select, 0), |
| csel_cond); |
| } else { |
| __ Csel(OutputRegister(select), |
| InputOperandAt(select, 1), |
| InputOperandAt(select, 0), |
| csel_cond); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorARM64::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { |
| return kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // The "out" register is used as a temporary, so it overlaps with the inputs. |
| // Note that TypeCheckSlowPathARM64 uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| // When read barriers are enabled, we need a temporary register for |
| // some cases. |
| if (TypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = InputRegisterAt(instruction, 1); |
| Location out_loc = locations->Out(); |
| Register out = OutputRegister(instruction); |
| Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(0) : |
| Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| |
| vixl::Label done, zero; |
| SlowPathCodeARM64* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &zero); |
| } |
| |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc); |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| __ Cmp(out, cls); |
| __ Cset(out, eq); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::Label loop, success; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Cmp(out, cls); |
| __ B(ne, &loop); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // Walk over the class hierarchy to find a match. |
| vixl::Label loop, success; |
| __ Bind(&loop); |
| __ Cmp(out, cls); |
| __ B(eq, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); |
| __ Cbnz(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ B(&done); |
| __ Bind(&success); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // Do an exact check. |
| vixl::Label exact_check; |
| __ Cmp(out, cls); |
| __ B(eq, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Ldrh(out, HeapOperand(out, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(out, &zero); |
| __ Bind(&exact_check); |
| __ Mov(out, 1); |
| __ B(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| __ Cmp(out, cls); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ Mov(out, 0); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Note that TypeCheckSlowPathARM64 uses this "temp" register too. |
| locations->AddTemp(Location::RequiresRegister()); |
| // When read barriers are enabled, we need an additional temporary |
| // register for some cases. |
| if (TypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = InputRegisterAt(instruction, 1); |
| Location temp_loc = locations->GetTemp(0); |
| Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(1) : |
| Location::NoLocation(); |
| Register temp = WRegisterFrom(temp_loc); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| |
| bool is_type_check_slow_path_fatal = |
| (type_check_kind == TypeCheckKind::kExactCheck || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck) && |
| !instruction->CanThrowIntoCatchBlock(); |
| SlowPathCodeARM64* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| vixl::Label done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &done); |
| } |
| |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| __ Cmp(temp, cls); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ B(ne, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::Label loop, compare_classes; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // to the `compare_classes` label to compare it with the checked |
| // class. |
| __ Cbnz(temp, &compare_classes); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ B(type_check_slow_path->GetEntryLabel()); |
| |
| __ Bind(&compare_classes); |
| __ Cmp(temp, cls); |
| __ B(ne, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // Walk over the class hierarchy to find a match. |
| vixl::Label loop; |
| __ Bind(&loop); |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ Cbnz(temp, &loop); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // Do an exact check. |
| vixl::Label check_non_primitive_component_type; |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc); |
| |
| // If the component type is not null (i.e. the object is indeed |
| // an array), jump to label `check_non_primitive_component_type` |
| // to further check that this component type is not a primitive |
| // type. |
| __ Cbnz(temp, &check_non_primitive_component_type); |
| // Otherwise, jump to the slow path to throw the exception. |
| // |
| // But before, move back the object's class into `temp` before |
| // going into the slow path, as it has been overwritten in the |
| // meantime. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ B(type_check_slow_path->GetEntryLabel()); |
| |
| __ Bind(&check_non_primitive_component_type); |
| __ Ldrh(temp, HeapOperand(temp, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbz(temp, &done); |
| // Same comment as above regarding `temp` and the slow path. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters( |
| instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| // We always go into the type check slow path for the unresolved |
| // and interface check cases. |
| // |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = XRegisterFrom(locations->GetTemp(0)); |
| uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset( |
| invoke->GetImtIndex() % mirror::Class::kImtSize, kArm64PointerSize).Uint32Value(); |
| Location receiver = locations->InAt(0); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize); |
| |
| // The register ip1 is required to be used for the hidden argument in |
| // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope scratch_scope(masm); |
| BlockPoolsScope block_pools(masm); |
| scratch_scope.Exclude(ip1); |
| __ Mov(ip1, invoke->GetDexMethodIndex()); |
| |
| if (receiver.IsStackSlot()) { |
| __ Ldr(temp.W(), StackOperandFrom(receiver)); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); |
| } else { |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); |
| // lr(); |
| __ Blr(lr); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena()); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena()); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorARM64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| MethodReference target_method ATTRIBUTE_UNUSED) { |
| // On ARM64 we support all dispatch types. |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { |
| // For better instruction scheduling we load the direct code pointer before the method pointer. |
| bool direct_code_loaded = false; |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: |
| // LR = code address from literal pool with link-time patch. |
| __ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod())); |
| direct_code_loaded = true; |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: |
| // LR = invoke->GetDirectCodePtr(); |
| __ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr())); |
| direct_code_loaded = true; |
| break; |
| default: |
| break; |
| } |
| |
| // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: |
| // temp = thread->string_init_entrypoint |
| __ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| // Load method address from literal pool. |
| __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: |
| // Load method address from literal pool with a link-time patch. |
| __ Ldr(XRegisterFrom(temp), |
| DeduplicateMethodAddressLiteral(invoke->GetTargetMethod())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { |
| // Add ADRP with its PC-relative DexCache access patch. |
| const DexFile& dex_file = *invoke->GetTargetMethod().dex_file; |
| uint32_t element_offset = invoke->GetDexCacheArrayOffset(); |
| vixl::Label* adrp_label = NewPcRelativeDexCacheArrayPatch(dex_file, element_offset); |
| { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(adrp_label); |
| __ adrp(XRegisterFrom(temp), /* offset placeholder */ 0); |
| } |
| // Add LDR with its PC-relative DexCache access patch. |
| vixl::Label* ldr_label = |
| NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label); |
| { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(ldr_label); |
| __ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), /* offset placeholder */ 0)); |
| } |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| Register reg = XRegisterFrom(temp); |
| Register method_reg; |
| if (current_method.IsRegister()) { |
| method_reg = XRegisterFrom(current_method); |
| } else { |
| DCHECK(invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg; |
| __ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset)); |
| } |
| |
| // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; |
| __ Ldr(reg.X(), |
| MemOperand(method_reg.X(), |
| ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value())); |
| // temp = temp[index_in_cache]; |
| // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. |
| uint32_t index_in_cache = invoke->GetDexMethodIndex(); |
| __ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache))); |
| break; |
| } |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ Bl(&frame_entry_label_); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: { |
| relative_call_patches_.emplace_back(invoke->GetTargetMethod()); |
| vixl::Label* label = &relative_call_patches_.back().label; |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(label); |
| __ bl(0); // Branch and link to itself. This will be overriden at link time. |
| break; |
| } |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: |
| // LR prepared above for better instruction scheduling. |
| DCHECK(direct_code_loaded); |
| // lr() |
| __ Blr(lr); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // LR = callee_method->entry_point_from_quick_compiled_code_; |
| __ Ldr(lr, MemOperand( |
| XRegisterFrom(callee_method), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value())); |
| // lr() |
| __ Blr(lr); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| Register temp = XRegisterFrom(temp_in); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize); |
| |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| |
| DCHECK(receiver.IsRegister()); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| // temp = temp->GetMethodAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); |
| // lr(); |
| __ Blr(lr); |
| } |
| |
| vixl::Label* CodeGeneratorARM64::NewPcRelativeStringPatch(const DexFile& dex_file, |
| uint32_t string_index, |
| vixl::Label* adrp_label) { |
| return NewPcRelativePatch(dex_file, string_index, adrp_label, &pc_relative_string_patches_); |
| } |
| |
| vixl::Label* CodeGeneratorARM64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, |
| uint32_t element_offset, |
| vixl::Label* adrp_label) { |
| return NewPcRelativePatch(dex_file, element_offset, adrp_label, &pc_relative_dex_cache_patches_); |
| } |
| |
| vixl::Label* CodeGeneratorARM64::NewPcRelativePatch(const DexFile& dex_file, |
| uint32_t offset_or_index, |
| vixl::Label* adrp_label, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| // Add a patch entry and return the label. |
| patches->emplace_back(dex_file, offset_or_index); |
| PcRelativePatchInfo* info = &patches->back(); |
| vixl::Label* label = &info->label; |
| // If adrp_label is null, this is the ADRP patch and needs to point to its own label. |
| info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; |
| return label; |
| } |
| |
| vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageStringLiteral( |
| const DexFile& dex_file, uint32_t string_index) { |
| return boot_image_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(uint64_t address) { |
| bool needs_patch = GetCompilerOptions().GetIncludePatchInformation(); |
| Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_; |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map); |
| } |
| |
| vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateDexCacheAddressLiteral(uint64_t address) { |
| return DeduplicateUint64Literal(address); |
| } |
| |
| void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| method_patches_.size() + |
| call_patches_.size() + |
| relative_call_patches_.size() + |
| pc_relative_dex_cache_patches_.size() + |
| boot_image_string_patches_.size() + |
| pc_relative_string_patches_.size() + |
| boot_image_address_patches_.size(); |
| linker_patches->reserve(size); |
| for (const auto& entry : method_patches_) { |
| const MethodReference& target_method = entry.first; |
| vixl::Literal<uint64_t>* literal = entry.second; |
| linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(), |
| target_method.dex_file, |
| target_method.dex_method_index)); |
| } |
| for (const auto& entry : call_patches_) { |
| const MethodReference& target_method = entry.first; |
| vixl::Literal<uint64_t>* literal = entry.second; |
| linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(), |
| target_method.dex_file, |
| target_method.dex_method_index)); |
| } |
| for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) { |
| linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(), |
| info.target_method.dex_file, |
| info.target_method.dex_method_index)); |
| } |
| for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) { |
| linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(), |
| &info.target_dex_file, |
| info.pc_insn_label->location(), |
| info.offset_or_index)); |
| } |
| for (const auto& entry : boot_image_string_patches_) { |
| const StringReference& target_string = entry.first; |
| vixl::Literal<uint32_t>* literal = entry.second; |
| linker_patches->push_back(LinkerPatch::StringPatch(literal->offset(), |
| target_string.dex_file, |
| target_string.string_index)); |
| } |
| for (const PcRelativePatchInfo& info : pc_relative_string_patches_) { |
| linker_patches->push_back(LinkerPatch::RelativeStringPatch(info.label.location(), |
| &info.target_dex_file, |
| info.pc_insn_label->location(), |
| info.offset_or_index)); |
| } |
| for (const auto& entry : boot_image_address_patches_) { |
| DCHECK(GetCompilerOptions().GetIncludePatchInformation()); |
| vixl::Literal<uint32_t>* literal = entry.second; |
| linker_patches->push_back(LinkerPatch::RecordPosition(literal->offset())); |
| } |
| } |
| |
| vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value, |
| Uint32ToLiteralMap* map) { |
| return map->GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); }); |
| } |
| |
| vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { |
| return uint64_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); }); |
| } |
| |
| vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral( |
| MethodReference target_method, |
| MethodToLiteralMap* map) { |
| return map->GetOrCreate( |
| target_method, |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(/* placeholder */ 0u); }); |
| } |
| |
| vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral( |
| MethodReference target_method) { |
| return DeduplicateMethodLiteral(target_method, &method_patches_); |
| } |
| |
| vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral( |
| MethodReference target_method) { |
| return DeduplicateMethodLiteral(target_method, &call_patches_); |
| } |
| |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassLocationSummary( |
| cls, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| LocationFrom(vixl::x0), |
| /* code_generator_supports_read_barrier */ true); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) { |
| if (cls->NeedsAccessCheck()) { |
| codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex()); |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess), |
| cls, |
| cls->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); |
| return; |
| } |
| |
| Location out_loc = cls->GetLocations()->Out(); |
| Register out = OutputRegister(cls); |
| Register current_method = InputRegisterAt(cls, 0); |
| if (cls->IsReferrersClass()) { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| GenerateGcRootFieldLoad( |
| cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value()); |
| } else { |
| MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize); |
| // /* GcRoot<mirror::Class>[] */ out = |
| // current_method.ptr_sized_fields_->dex_cache_resolved_types_ |
| __ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value())); |
| // /* GcRoot<mirror::Class> */ out = out[type_index] |
| GenerateGcRootFieldLoad( |
| cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex())); |
| |
| if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| if (!cls->IsInDexCache()) { |
| __ Cbz(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| } |
| |
| static MemOperand GetExceptionTlsAddress() { |
| return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { |
| __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderARM64::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ Str(wzr, GetExceptionTlsAddress()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| if (kEmitCompilerReadBarrier) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageAddress: |
| // TODO: Implement for read barrier. |
| return HLoadString::LoadKind::kDexCacheViaMethod; |
| default: |
| break; |
| } |
| } |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| break; |
| case HLoadString::LoadKind::kDexCacheAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kDexCachePcRelative: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) { |
| Location out_loc = load->GetLocations()->Out(); |
| Register out = OutputRegister(load); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!kEmitCompilerReadBarrier); |
| __ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(), |
| load->GetStringIndex())); |
| return; // No dex cache slow path. |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| // Add ADRP with its PC-relative String patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| uint32_t string_index = load->GetStringIndex(); |
| vixl::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index); |
| { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(adrp_label); |
| __ adrp(out.X(), /* offset placeholder */ 0); |
| } |
| // Add ADD with its PC-relative String patch. |
| vixl::Label* add_label = |
| codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label); |
| { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(add_label); |
| __ add(out.X(), out.X(), Operand(/* offset placeholder */ 0)); |
| } |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| DCHECK(!kEmitCompilerReadBarrier); |
| DCHECK(load->GetAddress() != 0u && IsUint<32>(load->GetAddress())); |
| __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(load->GetAddress())); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kDexCacheAddress: { |
| DCHECK_NE(load->GetAddress(), 0u); |
| // LDR immediate has a 12-bit offset multiplied by the size and for 32-bit loads |
| // that gives a 16KiB range. To try and reduce the number of literals if we load |
| // multiple strings, simply split the dex cache address to a 16KiB aligned base |
| // loaded from a literal and the remaining offset embedded in the load. |
| static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes."); |
| DCHECK_ALIGNED(load->GetAddress(), 4u); |
| constexpr size_t offset_bits = /* encoded bits */ 12 + /* scale */ 2; |
| uint64_t base_address = load->GetAddress() & ~MaxInt<uint64_t>(offset_bits); |
| uint32_t offset = load->GetAddress() & MaxInt<uint64_t>(offset_bits); |
| __ Ldr(out.X(), codegen_->DeduplicateDexCacheAddressLiteral(base_address)); |
| GenerateGcRootFieldLoad(load, out_loc, out.X(), offset); |
| break; |
| } |
| case HLoadString::LoadKind::kDexCachePcRelative: { |
| // Add ADRP with its PC-relative DexCache access patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| uint32_t element_offset = load->GetDexCacheElementOffset(); |
| vixl::Label* adrp_label = codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset); |
| { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(adrp_label); |
| __ adrp(out.X(), /* offset placeholder */ 0); |
| } |
| // Add LDR with its PC-relative DexCache access patch. |
| vixl::Label* ldr_label = |
| codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label); |
| GenerateGcRootFieldLoad(load, out_loc, out.X(), /* offset placeholder */ 0, ldr_label); |
| break; |
| } |
| case HLoadString::LoadKind::kDexCacheViaMethod: { |
| Register current_method = InputRegisterAt(load, 0); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| GenerateGcRootFieldLoad( |
| load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value()); |
| // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_ |
| __ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value())); |
| // /* GcRoot<mirror::String> */ out = out[string_index] |
| GenerateGcRootFieldLoad( |
| load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex())); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| |
| if (!load->IsInDexCache()) { |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load); |
| codegen_->AddSlowPath(slow_path); |
| __ Cbz(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() |
| ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(LocationFrom(x0)); |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| InvokeRuntimeCallingConvention calling_convention; |
| Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt); |
| DCHECK(type_index.Is(w0)); |
| __ Mov(type_index, instruction->GetTypeIndex()); |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>(); |
| } |
| |
| void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(LocationFrom(kArtMethodRegister)); |
| } else { |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| } |
| locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| Location temp = instruction->GetLocations()->GetTemp(0); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize); |
| __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString))); |
| __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value())); |
| __ Blr(lr); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { |
| switch (instruction->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1)); |
| } |
| |
| void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| |
| BlockPoolsScope block_pools(GetVIXLAssembler()); |
| Location obj = instruction->GetLocations()->InAt(0); |
| __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(LocationFrom(kArtMethodRegister)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCurrentMethod( |
| HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderARM64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| LocationSummary::CallKind call_kind = |
| Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf) |
| : QUICK_ENTRY_POINT(pFmod); |
| codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr); |
| if (type == Primitive::kPrimFloat) { |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| Primitive::Type return_type = instruction->InputAt(0)->GetType(); |
| locations->SetInAt(0, ARM64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void LocationsBuilderARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime( |
| QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall); |
| Primitive::Type input_type = conversion->GetInputType(); |
| Primitive::Type result_type = conversion->GetResultType(); |
| DCHECK_NE(input_type, result_type); |
| if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) || |
| (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| if (Primitive::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (Primitive::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| |
| DCHECK_NE(input_type, result_type); |
| |
| if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) { |
| int result_size = Primitive::ComponentSize(result_type); |
| int input_size = Primitive::ComponentSize(input_type); |
| int min_size = std::min(result_size, input_size); |
| Register output = OutputRegister(conversion); |
| Register source = InputRegisterAt(conversion, 0); |
| if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) { |
| // 'int' values are used directly as W registers, discarding the top |
| // bits, so we don't need to sign-extend and can just perform a move. |
| // We do not pass the `kDiscardForSameWReg` argument to force clearing the |
| // top 32 bits of the target register. We theoretically could leave those |
| // bits unchanged, but we would have to make sure that no code uses a |
| // 32bit input value as a 64bit value assuming that the top 32 bits are |
| // zero. |
| __ Mov(output.W(), source.W()); |
| } else if (result_type == Primitive::kPrimChar || |
| (input_type == Primitive::kPrimChar && input_size < result_size)) { |
| __ Ubfx(output, |
| output.IsX() ? source.X() : source.W(), |
| 0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte); |
| } else { |
| __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); |
| } |
| } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) { |
| __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); |
| } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) { |
| CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong); |
| __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else if (Primitive::IsFloatingPointType(result_type) && |
| Primitive::IsFloatingPointType(input_type)) { |
| __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| Register value_reg = InputRegisterAt(switch_instr, 0); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| // Roughly set 16 as max average assemblies generated per HIR in a graph. |
| static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize; |
| // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to |
| // make sure we don't emit it if the target may run out of range. |
| // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR |
| // ranges and emit the tables only as required. |
| static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; |
| |
| if (num_entries <= kPackedSwitchCompareJumpThreshold || |
| // Current instruction id is an upper bound of the number of HIRs in the graph. |
| GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { |
| // Create a series of compare/jumps. |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| __ Subs(temp, value_reg, Operand(lower_bound)); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ B(eq, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Subs(temp, temp, Operand(2)); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Cmp(temp, Operand(1)); |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ B(codegen_->GetLabelOf(default_block)); |
| } |
| } else { |
| JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| |
| // Below instructions should use at most one blocked register. Since there are two blocked |
| // registers, we are free to block one. |
| Register temp_w = temps.AcquireW(); |
| Register index; |
| // Remove the bias. |
| if (lower_bound != 0) { |
| index = temp_w; |
| __ Sub(index, value_reg, Operand(lower_bound)); |
| } else { |
| index = value_reg; |
| } |
| |
| // Jump to default block if index is out of the range. |
| __ Cmp(index, Operand(num_entries)); |
| __ B(hs, codegen_->GetLabelOf(default_block)); |
| |
| // In current VIXL implementation, it won't require any blocked registers to encode the |
| // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the |
| // register pressure. |
| Register table_base = temps.AcquireX(); |
| // Load jump offset from the table. |
| __ Adr(table_base, jump_table->GetTableStartLabel()); |
| Register jump_offset = temp_w; |
| __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); |
| |
| // Jump to target block by branching to table_base(pc related) + offset. |
| Register target_address = table_base; |
| __ Add(target_address, table_base, Operand(jump_offset, SXTW)); |
| __ Br(target_address); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp) { |
| Primitive::Type type = Primitive::kPrimNot; |
| Register out_reg = RegisterFrom(out, type); |
| if (kEmitCompilerReadBarrier) { |
| Register temp_reg = RegisterFrom(maybe_temp, type); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| temp_reg, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Mov(temp_reg, out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp) { |
| Primitive::Type type = Primitive::kPrimNot; |
| Register out_reg = RegisterFrom(out, type); |
| Register obj_reg = RegisterFrom(obj, type); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| Register temp_reg = RegisterFrom(maybe_temp, type); |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| temp_reg, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| vixl::Register obj, |
| uint32_t offset, |
| vixl::Label* fixup_label) { |
| Register root_reg = RegisterFrom(root, Primitive::kPrimNot); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| // |
| // root = obj.field; |
| // if (Thread::Current()->GetIsGcMarking()) { |
| // root = ReadBarrier::Mark(root) |
| // } |
| |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (fixup_label == nullptr) { |
| __ Ldr(root_reg, MemOperand(obj, offset)); |
| } else { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ ldr(root_reg, MemOperand(obj, offset)); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path used to mark the GC root `root`. |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root); |
| codegen_->AddSlowPath(slow_path); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| // temp = Thread::Current()->GetIsGcMarking() |
| __ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value())); |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| if (fixup_label == nullptr) { |
| __ Add(root_reg.X(), obj.X(), offset); |
| } else { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ add(root_reg.X(), obj.X(), offset); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (fixup_label == nullptr) { |
| __ Ldr(root_reg, MemOperand(obj, offset)); |
| } else { |
| vixl::SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ ldr(root_reg, MemOperand(obj, offset)); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl::Register obj, |
| uint32_t offset, |
| Register temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Location no_index = Location::NoLocation(); |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire); |
| } |
| |
| void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl::Register obj, |
| uint32_t data_offset, |
| Location index, |
| Register temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // Array cells are never volatile variables, therefore array loads |
| // never use Load-Acquire instructions on ARM64. |
| const bool use_load_acquire = false; |
| |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire); |
| } |
| |
| void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl::Register obj, |
| uint32_t offset, |
| Location index, |
| Register temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| // If `index` is a valid location, then we are emitting an array |
| // load, so we shouldn't be using a Load Acquire instruction. |
| // In other words: `index.IsValid()` => `!use_load_acquire`. |
| DCHECK(!index.IsValid() || !use_load_acquire); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::gray_ptr_); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| Primitive::Type type = Primitive::kPrimNot; |
| Register ref_reg = RegisterFrom(ref, type); |
| DCHECK(obj.IsW()); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| __ Ldr(temp, HeapOperand(obj, monitor_offset)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| // /* uint32_t */ rb_state = lock_word.ReadBarrierState() |
| __ Lsr(temp, temp, LockWord::kReadBarrierStateShift); |
| __ And(temp, temp, Operand(LockWord::kReadBarrierStateMask)); |
| static_assert( |
| LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_, |
| "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_."); |
| |
| // Introduce a dependency on the high bits of rb_state, which shall |
| // be all zeroes, to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| // temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0 |
| Register temp2 = temps.AcquireW(); |
| __ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask)); |
| // obj is unchanged by this operation, but its value now depends on |
| // temp2, which depends on temp. |
| __ Add(obj, obj, Operand(temp2)); |
| temps.Release(temp2); |
| |
| // The actual reference load. |
| if (index.IsValid()) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + offset + index * sizeof(HeapReference<Object>)) |
| const size_t shift_amount = Primitive::ComponentSizeShift(type); |
| if (index.IsConstant()) { |
| uint32_t computed_offset = offset + (Int64ConstantFrom(index) << shift_amount); |
| Load(type, ref_reg, HeapOperand(obj, computed_offset)); |
| } else { |
| temp2 = temps.AcquireW(); |
| __ Add(temp2, obj, offset); |
| Load(type, ref_reg, HeapOperand(temp2, XRegisterFrom(index), LSL, shift_amount)); |
| temps.Release(temp2); |
| } |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| MemOperand field = HeapOperand(obj, offset); |
| if (use_load_acquire) { |
| LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false); |
| } else { |
| Load(type, ref_reg, field); |
| } |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| GetAssembler()->MaybeUnpoisonHeapReference(ref_reg); |
| |
| // Slow path used to mark the object `ref` when it is gray. |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref); |
| AddSlowPath(slow_path); |
| |
| // if (rb_state == ReadBarrier::gray_ptr_) |
| // ref = ReadBarrier::Mark(ref); |
| __ Cmp(temp, ReadBarrier::gray_ptr_); |
| __ B(eq, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t method_offset = 0; |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kArm64PointerSize).SizeValue(); |
| } else { |
| method_offset = mirror::Class::EmbeddedImTableEntryOffset( |
| instruction->GetIndex() % mirror::Class::kImtSize, kArm64PointerSize).Uint32Value(); |
| } |
| __ Ldr(XRegisterFrom(locations->Out()), |
| MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); |
| } |
| |
| |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| |
| } // namespace arm64 |
| } // namespace art |