blob: eaecbb04aea8085dcf9b64ef0d8d9afeed49b58c [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "optimizing_compiler.h"
#include <fstream>
#include <stdint.h>
#include "bounds_check_elimination.h"
#include "builder.h"
#include "code_generator.h"
#include "compiler.h"
#include "constant_folding.h"
#include "dead_code_elimination.h"
#include "driver/compiler_driver.h"
#include "driver/dex_compilation_unit.h"
#include "elf_writer_quick.h"
#include "graph_visualizer.h"
#include "gvn.h"
#include "inliner.h"
#include "instruction_simplifier.h"
#include "jni/quick/jni_compiler.h"
#include "mirror/art_method-inl.h"
#include "nodes.h"
#include "prepare_for_register_allocation.h"
#include "register_allocator.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "ssa_liveness_analysis.h"
#include "utils/arena_allocator.h"
namespace art {
/**
* Used by the code generator, to allocate the code in a vector.
*/
class CodeVectorAllocator FINAL : public CodeAllocator {
public:
CodeVectorAllocator() {}
virtual uint8_t* Allocate(size_t size) {
size_ = size;
memory_.resize(size);
return &memory_[0];
}
size_t GetSize() const { return size_; }
const std::vector<uint8_t>& GetMemory() const { return memory_; }
private:
std::vector<uint8_t> memory_;
size_t size_;
DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};
/**
* Filter to apply to the visualizer. Methods whose name contain that filter will
* be dumped.
*/
static const char* kStringFilter = "";
class OptimizingCompiler FINAL : public Compiler {
public:
explicit OptimizingCompiler(CompilerDriver* driver);
~OptimizingCompiler();
bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file, CompilationUnit* cu) const
OVERRIDE;
CompiledMethod* Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
jobject class_loader,
const DexFile& dex_file) const OVERRIDE;
CompiledMethod* JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file) const OVERRIDE;
uintptr_t GetEntryPointOf(mirror::ArtMethod* method) const OVERRIDE
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool WriteElf(art::File* file,
OatWriter* oat_writer,
const std::vector<const art::DexFile*>& dex_files,
const std::string& android_root,
bool is_host) const OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Backend* GetCodeGenerator(CompilationUnit* cu ATTRIBUTE_UNUSED,
void* compilation_unit ATTRIBUTE_UNUSED) const OVERRIDE {
return nullptr;
}
void InitCompilationUnit(CompilationUnit& cu ATTRIBUTE_UNUSED) const OVERRIDE {}
void Init() OVERRIDE;
void UnInit() const OVERRIDE {}
private:
// Whether we should run any optimization or register allocation. If false, will
// just run the code generation after the graph was built.
const bool run_optimizations_;
// Optimize and compile `graph`.
CompiledMethod* CompileOptimized(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
const HGraphVisualizer& visualizer) const;
// Just compile without doing optimizations.
CompiledMethod* CompileBaseline(CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit) const;
mutable OptimizingCompilerStats compilation_stats_;
std::unique_ptr<std::ostream> visualizer_output_;
DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};
static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver)
: Compiler(driver, kMaximumCompilationTimeBeforeWarning),
run_optimizations_(
driver->GetCompilerOptions().GetCompilerFilter() != CompilerOptions::kTime),
compilation_stats_() {}
void OptimizingCompiler::Init() {
// Enable C1visualizer output. Must be done in Init() because the compiler
// driver is not fully initialized when passed to the compiler's constructor.
CompilerDriver* driver = GetCompilerDriver();
const std::string cfg_file_name = driver->GetDumpCfgFileName();
if (!cfg_file_name.empty()) {
CHECK_EQ(driver->GetThreadCount(), 1U)
<< "Graph visualizer requires the compiler to run single-threaded. "
<< "Invoke the compiler with '-j1'.";
visualizer_output_.reset(new std::ofstream(cfg_file_name));
}
}
OptimizingCompiler::~OptimizingCompiler() {
compilation_stats_.Log();
}
bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
const DexFile& dex_file ATTRIBUTE_UNUSED,
CompilationUnit* cu ATTRIBUTE_UNUSED) const {
return true;
}
CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file) const {
return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file);
}
uintptr_t OptimizingCompiler::GetEntryPointOf(mirror::ArtMethod* method) const {
return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet())));
}
bool OptimizingCompiler::WriteElf(art::File* file, OatWriter* oat_writer,
const std::vector<const art::DexFile*>& dex_files,
const std::string& android_root, bool is_host) const {
return art::ElfWriterQuick32::Create(file, oat_writer, dex_files, android_root, is_host,
*GetCompilerDriver());
}
static bool IsInstructionSetSupported(InstructionSet instruction_set) {
return instruction_set == kArm64
|| (instruction_set == kThumb2 && !kArm32QuickCodeUseSoftFloat)
|| instruction_set == kX86
|| instruction_set == kX86_64;
}
static bool CanOptimize(const DexFile::CodeItem& code_item) {
// TODO: We currently cannot optimize methods with try/catch.
return code_item.tries_size_ == 0;
}
static void RunOptimizations(HGraph* graph,
CompilerDriver* driver,
OptimizingCompilerStats* stats,
const DexCompilationUnit& dex_compilation_unit,
const HGraphVisualizer& visualizer) {
SsaRedundantPhiElimination redundant_phi(graph);
SsaDeadPhiElimination dead_phi(graph);
HDeadCodeElimination dce(graph);
HConstantFolding fold(graph);
InstructionSimplifier simplify1(graph);
HInliner inliner(graph, dex_compilation_unit, driver, stats);
GVNOptimization gvn(graph);
BoundsCheckElimination bce(graph);
InstructionSimplifier simplify2(graph);
HOptimization* optimizations[] = {
&redundant_phi,
&dead_phi,
&dce,
&fold,
&simplify1,
&inliner,
&gvn,
&bce,
&simplify2
};
for (size_t i = 0; i < arraysize(optimizations); ++i) {
HOptimization* optimization = optimizations[i];
visualizer.DumpGraph(optimization->GetPassName(), /*is_after=*/false);
optimization->Run();
visualizer.DumpGraph(optimization->GetPassName(), /*is_after=*/true);
optimization->Check();
}
}
// The stack map we generate must be 4-byte aligned on ARM. Since existing
// maps are generated alongside these stack maps, we must also align them.
static ArrayRef<const uint8_t> AlignVectorSize(std::vector<uint8_t>& vector) {
size_t size = vector.size();
size_t aligned_size = RoundUp(size, 4);
for (; size < aligned_size; ++size) {
vector.push_back(0);
}
return ArrayRef<const uint8_t>(vector);
}
CompiledMethod* OptimizingCompiler::CompileOptimized(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* compiler_driver,
const DexCompilationUnit& dex_compilation_unit,
const HGraphVisualizer& visualizer) const {
RunOptimizations(
graph, compiler_driver, &compilation_stats_, dex_compilation_unit, visualizer);
PrepareForRegisterAllocation(graph).Run();
SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
visualizer.DumpGraph(kLivenessPassName);
RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness);
register_allocator.AllocateRegisters();
visualizer.DumpGraph(kRegisterAllocatorPassName);
CodeVectorAllocator allocator;
codegen->CompileOptimized(&allocator);
std::vector<uint8_t> stack_map;
codegen->BuildStackMaps(&stack_map);
compilation_stats_.RecordStat(MethodCompilationStat::kCompiledOptimized);
return CompiledMethod::SwapAllocCompiledMethodStackMap(
compiler_driver,
codegen->GetInstructionSet(),
ArrayRef<const uint8_t>(allocator.GetMemory()),
codegen->GetFrameSize(),
codegen->GetCoreSpillMask(),
0, /* FPR spill mask, unused */
ArrayRef<const uint8_t>(stack_map));
}
CompiledMethod* OptimizingCompiler::CompileBaseline(
CodeGenerator* codegen,
CompilerDriver* compiler_driver,
const DexCompilationUnit& dex_compilation_unit) const {
CodeVectorAllocator allocator;
codegen->CompileBaseline(&allocator);
std::vector<uint8_t> mapping_table;
DefaultSrcMap src_mapping_table;
bool include_debug_symbol = compiler_driver->GetCompilerOptions().GetIncludeDebugSymbols();
codegen->BuildMappingTable(&mapping_table, include_debug_symbol ? &src_mapping_table : nullptr);
std::vector<uint8_t> vmap_table;
codegen->BuildVMapTable(&vmap_table);
std::vector<uint8_t> gc_map;
codegen->BuildNativeGCMap(&gc_map, dex_compilation_unit);
compilation_stats_.RecordStat(MethodCompilationStat::kCompiledBaseline);
return CompiledMethod::SwapAllocCompiledMethod(compiler_driver,
codegen->GetInstructionSet(),
ArrayRef<const uint8_t>(allocator.GetMemory()),
codegen->GetFrameSize(),
codegen->GetCoreSpillMask(),
0, /* FPR spill mask, unused */
&src_mapping_table,
AlignVectorSize(mapping_table),
AlignVectorSize(vmap_table),
AlignVectorSize(gc_map),
ArrayRef<const uint8_t>());
}
CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
jobject class_loader,
const DexFile& dex_file) const {
UNUSED(invoke_type);
compilation_stats_.RecordStat(MethodCompilationStat::kAttemptCompilation);
InstructionSet instruction_set = GetCompilerDriver()->GetInstructionSet();
// Always use the thumb2 assembler: some runtime functionality (like implicit stack
// overflow checks) assume thumb2.
if (instruction_set == kArm) {
instruction_set = kThumb2;
}
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledUnsupportedIsa);
return nullptr;
}
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledPathological);
return nullptr;
}
DexCompilationUnit dex_compilation_unit(
nullptr, class_loader, art::Runtime::Current()->GetClassLinker(), dex_file, code_item,
class_def_idx, method_idx, access_flags,
GetCompilerDriver()->GetVerifiedMethod(&dex_file, method_idx));
std::string method_name = PrettyMethod(method_idx, dex_file);
// For testing purposes, we put a special marker on method names that should be compiled
// with this compiler. This makes sure we're not regressing.
bool shouldCompile = method_name.find("$opt$") != std::string::npos;
bool shouldOptimize = method_name.find("$opt$reg$") != std::string::npos;
ArenaPool pool;
ArenaAllocator arena(&pool);
HGraphBuilder builder(&arena,
&dex_compilation_unit,
&dex_compilation_unit,
&dex_file,
GetCompilerDriver(),
&compilation_stats_);
VLOG(compiler) << "Building " << PrettyMethod(method_idx, dex_file);
HGraph* graph = builder.BuildGraph(*code_item);
if (graph == nullptr) {
CHECK(!shouldCompile) << "Could not build graph in optimizing compiler";
return nullptr;
}
CompilerDriver* compiler_driver = GetCompilerDriver();
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph, instruction_set, *compiler_driver->GetInstructionSetFeatures()));
if (codegen.get() == nullptr) {
CHECK(!shouldCompile) << "Could not find code generator for optimizing compiler";
compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledNoCodegen);
return nullptr;
}
HGraphVisualizer visualizer(
visualizer_output_.get(), graph, kStringFilter, *codegen.get(), method_name.c_str());
visualizer.DumpGraph("builder");
bool can_optimize = CanOptimize(*code_item);
bool can_allocate_registers = RegisterAllocator::CanAllocateRegistersFor(*graph, instruction_set);
CompiledMethod* result = nullptr;
if (run_optimizations_ && can_optimize && can_allocate_registers) {
VLOG(compiler) << "Optimizing " << PrettyMethod(method_idx, dex_file);
if (!graph->TryBuildingSsa()) {
LOG(INFO) << "Skipping compilation of "
<< PrettyMethod(method_idx, dex_file)
<< ": it contains a non natural loop";
// We could not transform the graph to SSA, bailout.
compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledCannotBuildSSA);
} else {
result = CompileOptimized(graph, codegen.get(), compiler_driver, dex_compilation_unit, visualizer);
}
} else if (shouldOptimize && RegisterAllocator::Supports(instruction_set)) {
LOG(FATAL) << "Could not allocate registers in optimizing compiler";
UNREACHABLE();
} else {
VLOG(compiler) << "Compile baseline " << PrettyMethod(method_idx, dex_file);
if (!run_optimizations_) {
compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedDisabled);
} else if (!can_optimize) {
compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedTryCatch);
} else if (!can_allocate_registers) {
compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedRegisterAllocator);
}
result = CompileBaseline(codegen.get(), compiler_driver, dex_compilation_unit);
}
return result;
}
Compiler* CreateOptimizingCompiler(CompilerDriver* driver) {
return new OptimizingCompiler(driver);
}
} // namespace art