| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator.h" |
| |
| #ifdef ART_ENABLE_CODEGEN_arm |
| #include "code_generator_arm.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| #include "code_generator_arm64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| #include "code_generator_x86.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| #include "code_generator_x86_64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| #include "code_generator_mips64.h" |
| #endif |
| |
| #include "compiled_method.h" |
| #include "dex/verified_method.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "gc_map_builder.h" |
| #include "graph_visualizer.h" |
| #include "leb128.h" |
| #include "mapping_table.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/object_reference.h" |
| #include "parallel_move_resolver.h" |
| #include "ssa_liveness_analysis.h" |
| #include "utils/assembler.h" |
| #include "verifier/dex_gc_map.h" |
| #include "vmap_table.h" |
| |
| namespace art { |
| |
| // Return whether a location is consistent with a type. |
| static bool CheckType(Primitive::Type type, Location location) { |
| if (location.IsFpuRegister() |
| || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { |
| return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble); |
| } else if (location.IsRegister() || |
| (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { |
| return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot); |
| } else if (location.IsRegisterPair()) { |
| return type == Primitive::kPrimLong; |
| } else if (location.IsFpuRegisterPair()) { |
| return type == Primitive::kPrimDouble; |
| } else if (location.IsStackSlot()) { |
| return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong) |
| || (type == Primitive::kPrimFloat) |
| || (type == Primitive::kPrimNot); |
| } else if (location.IsDoubleStackSlot()) { |
| return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); |
| } else if (location.IsConstant()) { |
| if (location.GetConstant()->IsIntConstant()) { |
| return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong); |
| } else if (location.GetConstant()->IsNullConstant()) { |
| return type == Primitive::kPrimNot; |
| } else if (location.GetConstant()->IsLongConstant()) { |
| return type == Primitive::kPrimLong; |
| } else if (location.GetConstant()->IsFloatConstant()) { |
| return type == Primitive::kPrimFloat; |
| } else { |
| return location.GetConstant()->IsDoubleConstant() |
| && (type == Primitive::kPrimDouble); |
| } |
| } else { |
| return location.IsInvalid() || (location.GetPolicy() == Location::kAny); |
| } |
| } |
| |
| // Check that a location summary is consistent with an instruction. |
| static bool CheckTypeConsistency(HInstruction* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (locations == nullptr) { |
| return true; |
| } |
| |
| if (locations->Out().IsUnallocated() |
| && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { |
| DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) |
| << instruction->GetType() |
| << " " << locations->InAt(0); |
| } else { |
| DCHECK(CheckType(instruction->GetType(), locations->Out())) |
| << instruction->GetType() |
| << " " << locations->Out(); |
| } |
| |
| for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { |
| DCHECK(CheckType(instruction->InputAt(i)->GetType(), locations->InAt(i))) |
| << instruction->InputAt(i)->GetType() |
| << " " << locations->InAt(i); |
| } |
| |
| HEnvironment* environment = instruction->GetEnvironment(); |
| for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| Primitive::Type type = environment->GetInstructionAt(i)->GetType(); |
| DCHECK(CheckType(type, environment->GetLocationAt(i))) |
| << type << " " << environment->GetLocationAt(i); |
| } else { |
| DCHECK(environment->GetLocationAt(i).IsInvalid()) |
| << environment->GetLocationAt(i); |
| } |
| } |
| return true; |
| } |
| |
| size_t CodeGenerator::GetCacheOffset(uint32_t index) { |
| return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue(); |
| } |
| |
| size_t CodeGenerator::GetCachePointerOffset(uint32_t index) { |
| auto pointer_size = InstructionSetPointerSize(GetInstructionSet()); |
| return mirror::Array::DataOffset(pointer_size).Uint32Value() + pointer_size * index; |
| } |
| |
| void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { |
| Initialize(); |
| if (!is_leaf) { |
| MarkNotLeaf(); |
| } |
| const bool is_64_bit = Is64BitInstructionSet(GetInstructionSet()); |
| InitializeCodeGeneration(GetGraph()->GetNumberOfLocalVRegs() |
| + GetGraph()->GetTemporariesVRegSlots() |
| + 1 /* filler */, |
| 0, /* the baseline compiler does not have live registers at slow path */ |
| 0, /* the baseline compiler does not have live registers at slow path */ |
| GetGraph()->GetMaximumNumberOfOutVRegs() |
| + (is_64_bit ? 2 : 1) /* current method */, |
| GetGraph()->GetBlocks()); |
| CompileInternal(allocator, /* is_baseline */ true); |
| } |
| |
| bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { |
| DCHECK_EQ(block_order_->Get(current_block_index_), current); |
| return GetNextBlockToEmit() == FirstNonEmptyBlock(next); |
| } |
| |
| HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { |
| for (size_t i = current_block_index_ + 1; i < block_order_->Size(); ++i) { |
| HBasicBlock* block = block_order_->Get(i); |
| if (!block->IsSingleJump()) { |
| return block; |
| } |
| } |
| return nullptr; |
| } |
| |
| HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { |
| while (block->IsSingleJump()) { |
| block = block->GetSuccessors().Get(0); |
| } |
| return block; |
| } |
| |
| class DisassemblyScope { |
| public: |
| DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen) |
| : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) { |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| start_offset_ = codegen_.GetAssembler().CodeSize(); |
| } |
| } |
| |
| ~DisassemblyScope() { |
| // We avoid building this data when we know it will not be used. |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| codegen_.GetDisassemblyInformation()->AddInstructionInterval( |
| instruction_, start_offset_, codegen_.GetAssembler().CodeSize()); |
| } |
| } |
| |
| private: |
| const CodeGenerator& codegen_; |
| HInstruction* instruction_; |
| size_t start_offset_; |
| }; |
| |
| |
| void CodeGenerator::GenerateSlowPaths() { |
| size_t code_start = 0; |
| for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { |
| if (disasm_info_ != nullptr) { |
| code_start = GetAssembler()->CodeSize(); |
| } |
| slow_paths_.Get(i)->EmitNativeCode(this); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->AddSlowPathInterval(slow_paths_.Get(i), code_start, GetAssembler()->CodeSize()); |
| } |
| } |
| } |
| |
| void CodeGenerator::CompileInternal(CodeAllocator* allocator, bool is_baseline) { |
| is_baseline_ = is_baseline; |
| HGraphVisitor* instruction_visitor = GetInstructionVisitor(); |
| DCHECK_EQ(current_block_index_, 0u); |
| |
| size_t frame_start = GetAssembler()->CodeSize(); |
| GenerateFrameEntry(); |
| DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); |
| } |
| |
| for (size_t e = block_order_->Size(); current_block_index_ < e; ++current_block_index_) { |
| HBasicBlock* block = block_order_->Get(current_block_index_); |
| // Don't generate code for an empty block. Its predecessors will branch to its successor |
| // directly. Also, the label of that block will not be emitted, so this helps catch |
| // errors where we reference that label. |
| if (block->IsSingleJump()) continue; |
| Bind(block); |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| DisassemblyScope disassembly_scope(current, *this); |
| if (is_baseline) { |
| InitLocationsBaseline(current); |
| } |
| DCHECK(CheckTypeConsistency(current)); |
| current->Accept(instruction_visitor); |
| } |
| } |
| |
| GenerateSlowPaths(); |
| |
| // Finalize instructions in assember; |
| Finalize(allocator); |
| } |
| |
| void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { |
| // The register allocator already called `InitializeCodeGeneration`, |
| // where the frame size has been computed. |
| DCHECK(block_order_ != nullptr); |
| Initialize(); |
| CompileInternal(allocator, /* is_baseline */ false); |
| } |
| |
| void CodeGenerator::Finalize(CodeAllocator* allocator) { |
| size_t code_size = GetAssembler()->CodeSize(); |
| uint8_t* buffer = allocator->Allocate(code_size); |
| |
| MemoryRegion code(buffer, code_size); |
| GetAssembler()->FinalizeInstructions(code); |
| } |
| |
| void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) { |
| // No linker patches by default. |
| } |
| |
| size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) { |
| for (size_t i = 0; i < length; ++i) { |
| if (!array[i]) { |
| array[i] = true; |
| return i; |
| } |
| } |
| LOG(FATAL) << "Could not find a register in baseline register allocator"; |
| UNREACHABLE(); |
| } |
| |
| size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) { |
| for (size_t i = 0; i < length - 1; i += 2) { |
| if (!array[i] && !array[i + 1]) { |
| array[i] = true; |
| array[i + 1] = true; |
| return i; |
| } |
| } |
| LOG(FATAL) << "Could not find a register in baseline register allocator"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, |
| size_t maximum_number_of_live_core_registers, |
| size_t maximum_number_of_live_fp_registers, |
| size_t number_of_out_slots, |
| const GrowableArray<HBasicBlock*>& block_order) { |
| block_order_ = &block_order; |
| DCHECK(block_order_->Get(0) == GetGraph()->GetEntryBlock()); |
| ComputeSpillMask(); |
| first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; |
| |
| if (number_of_spill_slots == 0 |
| && !HasAllocatedCalleeSaveRegisters() |
| && IsLeafMethod() |
| && !RequiresCurrentMethod()) { |
| DCHECK_EQ(maximum_number_of_live_core_registers, 0u); |
| DCHECK_EQ(maximum_number_of_live_fp_registers, 0u); |
| SetFrameSize(CallPushesPC() ? GetWordSize() : 0); |
| } else { |
| SetFrameSize(RoundUp( |
| number_of_spill_slots * kVRegSize |
| + number_of_out_slots * kVRegSize |
| + maximum_number_of_live_core_registers * GetWordSize() |
| + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize() |
| + FrameEntrySpillSize(), |
| kStackAlignment)); |
| } |
| } |
| |
| Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { |
| uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); |
| // The type of the previous instruction tells us if we need a single or double stack slot. |
| Primitive::Type type = temp->GetType(); |
| int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1; |
| // Use the temporary region (right below the dex registers). |
| int32_t slot = GetFrameSize() - FrameEntrySpillSize() |
| - kVRegSize // filler |
| - (number_of_locals * kVRegSize) |
| - ((temp_size + temp->GetIndex()) * kVRegSize); |
| return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot); |
| } |
| |
| int32_t CodeGenerator::GetStackSlot(HLocal* local) const { |
| uint16_t reg_number = local->GetRegNumber(); |
| uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); |
| if (reg_number >= number_of_locals) { |
| // Local is a parameter of the method. It is stored in the caller's frame. |
| // TODO: Share this logic with StackVisitor::GetVRegOffsetFromQuickCode. |
| return GetFrameSize() + InstructionSetPointerSize(GetInstructionSet()) // ART method |
| + (reg_number - number_of_locals) * kVRegSize; |
| } else { |
| // Local is a temporary in this method. It is stored in this method's frame. |
| return GetFrameSize() - FrameEntrySpillSize() |
| - kVRegSize // filler. |
| - (number_of_locals * kVRegSize) |
| + (reg_number * kVRegSize); |
| } |
| } |
| |
| void CodeGenerator::CreateCommonInvokeLocationSummary( |
| HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) { |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena(); |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCall); |
| |
| for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { |
| HInstruction* input = invoke->InputAt(i); |
| locations->SetInAt(i, visitor->GetNextLocation(input->GetType())); |
| } |
| |
| locations->SetOut(visitor->GetReturnLocation(invoke->GetType())); |
| |
| if (invoke->IsInvokeStaticOrDirect()) { |
| HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect(); |
| if (call->IsStringInit()) { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| } else if (call->IsRecursive()) { |
| locations->SetInAt(call->GetCurrentMethodInputIndex(), visitor->GetMethodLocation()); |
| } else { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| locations->SetInAt(call->GetCurrentMethodInputIndex(), Location::RequiresRegister()); |
| } |
| } else { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| } |
| } |
| |
| void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { |
| // The DCHECKS below check that a register is not specified twice in |
| // the summary. The out location can overlap with an input, so we need |
| // to special case it. |
| if (location.IsRegister()) { |
| DCHECK(is_out || !blocked_core_registers_[location.reg()]); |
| blocked_core_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegister()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); |
| blocked_fpu_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegisterPair()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; |
| } else if (location.IsRegisterPair()) { |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); |
| blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); |
| blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; |
| } |
| } |
| |
| void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (locations == nullptr) return; |
| |
| for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { |
| blocked_core_registers_[i] = false; |
| } |
| |
| for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { |
| blocked_fpu_registers_[i] = false; |
| } |
| |
| for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) { |
| blocked_register_pairs_[i] = false; |
| } |
| |
| // Mark all fixed input, temp and output registers as used. |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| BlockIfInRegister(locations->InAt(i)); |
| } |
| |
| for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { |
| Location loc = locations->GetTemp(i); |
| BlockIfInRegister(loc); |
| } |
| Location result_location = locations->Out(); |
| if (locations->OutputCanOverlapWithInputs()) { |
| BlockIfInRegister(result_location, /* is_out */ true); |
| } |
| |
| SetupBlockedRegisters(/* is_baseline */ true); |
| |
| // Allocate all unallocated input locations. |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| Location loc = locations->InAt(i); |
| HInstruction* input = instruction->InputAt(i); |
| if (loc.IsUnallocated()) { |
| if ((loc.GetPolicy() == Location::kRequiresRegister) |
| || (loc.GetPolicy() == Location::kRequiresFpuRegister)) { |
| loc = AllocateFreeRegister(input->GetType()); |
| } else { |
| DCHECK_EQ(loc.GetPolicy(), Location::kAny); |
| HLoadLocal* load = input->AsLoadLocal(); |
| if (load != nullptr) { |
| loc = GetStackLocation(load); |
| } else { |
| loc = AllocateFreeRegister(input->GetType()); |
| } |
| } |
| locations->SetInAt(i, loc); |
| } |
| } |
| |
| // Allocate all unallocated temp locations. |
| for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { |
| Location loc = locations->GetTemp(i); |
| if (loc.IsUnallocated()) { |
| switch (loc.GetPolicy()) { |
| case Location::kRequiresRegister: |
| // Allocate a core register (large enough to fit a 32-bit integer). |
| loc = AllocateFreeRegister(Primitive::kPrimInt); |
| break; |
| |
| case Location::kRequiresFpuRegister: |
| // Allocate a core register (large enough to fit a 64-bit double). |
| loc = AllocateFreeRegister(Primitive::kPrimDouble); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected policy for temporary location " |
| << loc.GetPolicy(); |
| } |
| locations->SetTempAt(i, loc); |
| } |
| } |
| if (result_location.IsUnallocated()) { |
| switch (result_location.GetPolicy()) { |
| case Location::kAny: |
| case Location::kRequiresRegister: |
| case Location::kRequiresFpuRegister: |
| result_location = AllocateFreeRegister(instruction->GetType()); |
| break; |
| case Location::kSameAsFirstInput: |
| result_location = locations->InAt(0); |
| break; |
| } |
| locations->UpdateOut(result_location); |
| } |
| } |
| |
| void CodeGenerator::InitLocationsBaseline(HInstruction* instruction) { |
| AllocateLocations(instruction); |
| if (instruction->GetLocations() == nullptr) { |
| if (instruction->IsTemporary()) { |
| HInstruction* previous = instruction->GetPrevious(); |
| Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); |
| Move(previous, temp_location, instruction); |
| } |
| return; |
| } |
| AllocateRegistersLocally(instruction); |
| for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { |
| Location location = instruction->GetLocations()->InAt(i); |
| HInstruction* input = instruction->InputAt(i); |
| if (location.IsValid()) { |
| // Move the input to the desired location. |
| if (input->GetNext()->IsTemporary()) { |
| // If the input was stored in a temporary, use that temporary to |
| // perform the move. |
| Move(input->GetNext(), location, instruction); |
| } else { |
| Move(input, location, instruction); |
| } |
| } |
| } |
| } |
| |
| void CodeGenerator::AllocateLocations(HInstruction* instruction) { |
| instruction->Accept(GetLocationBuilder()); |
| DCHECK(CheckTypeConsistency(instruction)); |
| LocationSummary* locations = instruction->GetLocations(); |
| if (!instruction->IsSuspendCheckEntry()) { |
| if (locations != nullptr && locations->CanCall()) { |
| MarkNotLeaf(); |
| } |
| if (instruction->NeedsCurrentMethod()) { |
| SetRequiresCurrentMethod(); |
| } |
| } |
| } |
| |
| CodeGenerator* CodeGenerator::Create(HGraph* graph, |
| InstructionSet instruction_set, |
| const InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options) { |
| switch (instruction_set) { |
| #ifdef ART_ENABLE_CODEGEN_arm |
| case kArm: |
| case kThumb2: { |
| return new arm::CodeGeneratorARM(graph, |
| *isa_features.AsArmInstructionSetFeatures(), |
| compiler_options); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| case kArm64: { |
| return new arm64::CodeGeneratorARM64(graph, |
| *isa_features.AsArm64InstructionSetFeatures(), |
| compiler_options); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips |
| case kMips: |
| UNUSED(compiler_options); |
| UNUSED(graph); |
| UNUSED(isa_features); |
| return nullptr; |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| case kMips64: { |
| return new mips64::CodeGeneratorMIPS64(graph, |
| *isa_features.AsMips64InstructionSetFeatures(), |
| compiler_options); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| case kX86: { |
| return new x86::CodeGeneratorX86(graph, |
| *isa_features.AsX86InstructionSetFeatures(), |
| compiler_options); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| case kX86_64: { |
| return new x86_64::CodeGeneratorX86_64(graph, |
| *isa_features.AsX86_64InstructionSetFeatures(), |
| compiler_options); |
| } |
| #endif |
| default: |
| return nullptr; |
| } |
| } |
| |
| void CodeGenerator::BuildNativeGCMap( |
| std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const { |
| const std::vector<uint8_t>& gc_map_raw = |
| dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); |
| verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); |
| |
| uint32_t max_native_offset = stack_map_stream_.ComputeMaxNativePcOffset(); |
| |
| size_t num_stack_maps = stack_map_stream_.GetNumberOfStackMaps(); |
| GcMapBuilder builder(data, num_stack_maps, max_native_offset, dex_gc_map.RegWidth()); |
| for (size_t i = 0; i != num_stack_maps; ++i) { |
| const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); |
| uint32_t native_offset = stack_map_entry.native_pc_offset; |
| uint32_t dex_pc = stack_map_entry.dex_pc; |
| const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); |
| CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc; |
| builder.AddEntry(native_offset, references); |
| } |
| } |
| |
| void CodeGenerator::BuildSourceMap(DefaultSrcMap* src_map) const { |
| for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { |
| const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); |
| uint32_t pc2dex_offset = stack_map_entry.native_pc_offset; |
| int32_t pc2dex_dalvik_offset = stack_map_entry.dex_pc; |
| src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset})); |
| } |
| } |
| |
| void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data) const { |
| uint32_t pc2dex_data_size = 0u; |
| uint32_t pc2dex_entries = stack_map_stream_.GetNumberOfStackMaps(); |
| uint32_t pc2dex_offset = 0u; |
| int32_t pc2dex_dalvik_offset = 0; |
| uint32_t dex2pc_data_size = 0u; |
| uint32_t dex2pc_entries = 0u; |
| uint32_t dex2pc_offset = 0u; |
| int32_t dex2pc_dalvik_offset = 0; |
| |
| for (size_t i = 0; i < pc2dex_entries; i++) { |
| const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); |
| pc2dex_data_size += UnsignedLeb128Size(stack_map_entry.native_pc_offset - pc2dex_offset); |
| pc2dex_data_size += SignedLeb128Size(stack_map_entry.dex_pc - pc2dex_dalvik_offset); |
| pc2dex_offset = stack_map_entry.native_pc_offset; |
| pc2dex_dalvik_offset = stack_map_entry.dex_pc; |
| } |
| |
| // Walk over the blocks and find which ones correspond to catch block entries. |
| for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { |
| HBasicBlock* block = graph_->GetBlocks().Get(i); |
| if (block->IsCatchBlock()) { |
| intptr_t native_pc = GetAddressOf(block); |
| ++dex2pc_entries; |
| dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset); |
| dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset); |
| dex2pc_offset = native_pc; |
| dex2pc_dalvik_offset = block->GetDexPc(); |
| } |
| } |
| |
| uint32_t total_entries = pc2dex_entries + dex2pc_entries; |
| uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); |
| uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; |
| data->resize(data_size); |
| |
| uint8_t* data_ptr = &(*data)[0]; |
| uint8_t* write_pos = data_ptr; |
| |
| write_pos = EncodeUnsignedLeb128(write_pos, total_entries); |
| write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); |
| DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size); |
| uint8_t* write_pos2 = write_pos + pc2dex_data_size; |
| |
| pc2dex_offset = 0u; |
| pc2dex_dalvik_offset = 0u; |
| dex2pc_offset = 0u; |
| dex2pc_dalvik_offset = 0u; |
| |
| for (size_t i = 0; i < pc2dex_entries; i++) { |
| const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); |
| DCHECK(pc2dex_offset <= stack_map_entry.native_pc_offset); |
| write_pos = EncodeUnsignedLeb128(write_pos, stack_map_entry.native_pc_offset - pc2dex_offset); |
| write_pos = EncodeSignedLeb128(write_pos, stack_map_entry.dex_pc - pc2dex_dalvik_offset); |
| pc2dex_offset = stack_map_entry.native_pc_offset; |
| pc2dex_dalvik_offset = stack_map_entry.dex_pc; |
| } |
| |
| for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { |
| HBasicBlock* block = graph_->GetBlocks().Get(i); |
| if (block->IsCatchBlock()) { |
| intptr_t native_pc = GetAddressOf(block); |
| write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset); |
| write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset); |
| dex2pc_offset = native_pc; |
| dex2pc_dalvik_offset = block->GetDexPc(); |
| } |
| } |
| |
| |
| DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); |
| DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size); |
| |
| if (kIsDebugBuild) { |
| // Verify the encoded table holds the expected data. |
| MappingTable table(data_ptr); |
| CHECK_EQ(table.TotalSize(), total_entries); |
| CHECK_EQ(table.PcToDexSize(), pc2dex_entries); |
| auto it = table.PcToDexBegin(); |
| auto it2 = table.DexToPcBegin(); |
| for (size_t i = 0; i < pc2dex_entries; i++) { |
| const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); |
| CHECK_EQ(stack_map_entry.native_pc_offset, it.NativePcOffset()); |
| CHECK_EQ(stack_map_entry.dex_pc, it.DexPc()); |
| ++it; |
| } |
| for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { |
| HBasicBlock* block = graph_->GetBlocks().Get(i); |
| if (block->IsCatchBlock()) { |
| CHECK_EQ(GetAddressOf(block), it2.NativePcOffset()); |
| CHECK_EQ(block->GetDexPc(), it2.DexPc()); |
| ++it2; |
| } |
| } |
| CHECK(it == table.PcToDexEnd()); |
| CHECK(it2 == table.DexToPcEnd()); |
| } |
| } |
| |
| void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const { |
| Leb128EncodingVector vmap_encoder; |
| // We currently don't use callee-saved registers. |
| size_t size = 0 + 1 /* marker */ + 0; |
| vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). |
| vmap_encoder.PushBackUnsigned(size); |
| vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); |
| |
| *data = vmap_encoder.GetData(); |
| } |
| |
| void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) { |
| uint32_t size = stack_map_stream_.PrepareForFillIn(); |
| data->resize(size); |
| MemoryRegion region(data->data(), size); |
| stack_map_stream_.FillIn(region); |
| } |
| |
| void CodeGenerator::RecordPcInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| if (instruction != nullptr) { |
| // The code generated for some type conversions and comparisons |
| // may call the runtime, thus normally requiring a subsequent |
| // call to this method. However, the method verifier does not |
| // produce PC information for certain instructions, which are |
| // considered "atomic" (they cannot join a GC). |
| // Therefore we do not currently record PC information for such |
| // instructions. As this may change later, we added this special |
| // case so that code generators may nevertheless call |
| // CodeGenerator::RecordPcInfo without triggering an error in |
| // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") |
| // thereafter. |
| if (instruction->IsTypeConversion() || instruction->IsCompare()) { |
| return; |
| } |
| if (instruction->IsRem()) { |
| Primitive::Type type = instruction->AsRem()->GetResultType(); |
| if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) { |
| return; |
| } |
| } |
| } |
| |
| uint32_t outer_dex_pc = dex_pc; |
| uint32_t outer_environment_size = 0; |
| uint32_t inlining_depth = 0; |
| if (instruction != nullptr) { |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| outer_dex_pc = environment->GetDexPc(); |
| outer_environment_size = environment->Size(); |
| if (environment != instruction->GetEnvironment()) { |
| inlining_depth++; |
| } |
| } |
| } |
| |
| // Collect PC infos for the mapping table. |
| uint32_t native_pc = GetAssembler()->CodeSize(); |
| |
| if (instruction == nullptr) { |
| // For stack overflow checks. |
| stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0); |
| stack_map_stream_.EndStackMapEntry(); |
| return; |
| } |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| uint32_t register_mask = locations->GetRegisterMask(); |
| if (locations->OnlyCallsOnSlowPath()) { |
| // In case of slow path, we currently set the location of caller-save registers |
| // to register (instead of their stack location when pushed before the slow-path |
| // call). Therefore register_mask contains both callee-save and caller-save |
| // registers that hold objects. We must remove the caller-save from the mask, since |
| // they will be overwritten by the callee. |
| register_mask &= core_callee_save_mask_; |
| } |
| // The register mask must be a subset of callee-save registers. |
| DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); |
| stack_map_stream_.BeginStackMapEntry(outer_dex_pc, |
| native_pc, |
| register_mask, |
| locations->GetStackMask(), |
| outer_environment_size, |
| inlining_depth); |
| |
| EmitEnvironment(instruction->GetEnvironment(), slow_path); |
| stack_map_stream_.EndStackMapEntry(); |
| } |
| |
| void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) { |
| if (environment == nullptr) return; |
| |
| if (environment->GetParent() != nullptr) { |
| // We emit the parent environment first. |
| EmitEnvironment(environment->GetParent(), slow_path); |
| stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(), |
| environment->GetDexPc(), |
| environment->GetInvokeType(), |
| environment->Size()); |
| } |
| |
| // Walk over the environment, and record the location of dex registers. |
| for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { |
| HInstruction* current = environment->GetInstructionAt(i); |
| if (current == nullptr) { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| continue; |
| } |
| |
| Location location = environment->GetLocationAt(i); |
| switch (location.GetKind()) { |
| case Location::kConstant: { |
| DCHECK_EQ(current, location.GetConstant()); |
| if (current->IsLongConstant()) { |
| int64_t value = current->AsLongConstant()->GetValue(); |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, Low32Bits(value)); |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsDoubleConstant()) { |
| int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, Low32Bits(value)); |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsIntConstant()) { |
| int32_t value = current->AsIntConstant()->GetValue(); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); |
| } else if (current->IsNullConstant()) { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0); |
| } else { |
| DCHECK(current->IsFloatConstant()) << current->DebugName(); |
| int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); |
| } |
| break; |
| } |
| |
| case Location::kStackSlot: { |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| break; |
| } |
| |
| case Location::kDoubleStackSlot: { |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegister : { |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| if (current->GetType() == Primitive::kPrimLong) { |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id); |
| if (current->GetType() == Primitive::kPrimLong) { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegister : { |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| if (current->GetType() == Primitive::kPrimDouble) { |
| stack_map_stream_.AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id); |
| if (current->GetType() == Primitive::kPrimDouble) { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegisterPair : { |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| ++i; |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high); |
| ++i; |
| } |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegisterPair : { |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high); |
| } |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kInvalid: { |
| stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected kind " << location.GetKind(); |
| } |
| } |
| |
| if (environment->GetParent() != nullptr) { |
| stack_map_stream_.EndInlineInfoEntry(); |
| } |
| } |
| |
| bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { |
| HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); |
| |
| return (first_next_not_move != nullptr) |
| && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0)); |
| } |
| |
| void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { |
| // If we are from a static path don't record the pc as we can't throw NPE. |
| // NB: having the checks here makes the code much less verbose in the arch |
| // specific code generators. |
| if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { |
| return; |
| } |
| |
| if (!compiler_options_.GetImplicitNullChecks()) { |
| return; |
| } |
| |
| if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) { |
| return; |
| } |
| |
| // Find the first previous instruction which is not a move. |
| HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); |
| |
| // If the instruction is a null check it means that `instr` is the first user |
| // and needs to record the pc. |
| if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { |
| HNullCheck* null_check = first_prev_not_move->AsNullCheck(); |
| // TODO: The parallel moves modify the environment. Their changes need to be reverted |
| // otherwise the stack maps at the throw point will not be correct. |
| RecordPcInfo(null_check, null_check->GetDexPc()); |
| } |
| } |
| |
| void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { |
| LocationSummary* locations = suspend_check->GetLocations(); |
| HBasicBlock* block = suspend_check->GetBlock(); |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); |
| DCHECK(block->IsLoopHeader()); |
| |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| LiveInterval* interval = current->GetLiveInterval(); |
| // We only need to clear bits of loop phis containing objects and allocated in register. |
| // Loop phis allocated on stack already have the object in the stack. |
| if (current->GetType() == Primitive::kPrimNot |
| && interval->HasRegister() |
| && interval->HasSpillSlot()) { |
| locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); |
| } |
| } |
| } |
| |
| void CodeGenerator::EmitParallelMoves(Location from1, |
| Location to1, |
| Primitive::Type type1, |
| Location from2, |
| Location to2, |
| Primitive::Type type2) { |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(from1, to1, type1, nullptr); |
| parallel_move.AddMove(from2, to2, type2, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| |
| void CodeGenerator::ValidateInvokeRuntime(HInstruction* instruction, SlowPathCode* slow_path) { |
| // Ensure that the call kind indication given to the register allocator is |
| // coherent with the runtime call generated, and that the GC side effect is |
| // set when required. |
| if (slow_path == nullptr) { |
| DCHECK(instruction->GetLocations()->WillCall()) << instruction->DebugName(); |
| DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC())) |
| << instruction->DebugName() << instruction->GetSideEffects().ToString(); |
| } else { |
| DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath() || slow_path->IsFatal()) |
| << instruction->DebugName() << slow_path->GetDescription(); |
| DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) || |
| // Control flow would not come back into the code if a fatal slow |
| // path is taken, so we do not care if it triggers GC. |
| slow_path->IsFatal() || |
| // HDeoptimize is a special case: we know we are not coming back from |
| // it into the code. |
| instruction->IsDeoptimize()) |
| << instruction->DebugName() << instruction->GetSideEffects().ToString() |
| << slow_path->GetDescription(); |
| } |
| |
| // Check the coherency of leaf information. |
| DCHECK(instruction->IsSuspendCheck() |
| || ((slow_path != nullptr) && slow_path->IsFatal()) |
| || instruction->GetLocations()->CanCall() |
| || !IsLeafMethod()) |
| << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : ""); |
| } |
| |
| void SlowPathCode::RecordPcInfo(CodeGenerator* codegen, |
| HInstruction* instruction, |
| uint32_t dex_pc) { |
| codegen->RecordPcInfo(instruction, dex_pc, this); |
| } |
| |
| void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| RegisterSet* register_set = locations->GetLiveRegisters(); |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (!codegen->IsCoreCalleeSaveRegister(i)) { |
| if (register_set->ContainsCoreRegister(i)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveCoreRegister(stack_offset, i); |
| } |
| } |
| } |
| |
| for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { |
| if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { |
| if (register_set->ContainsFloatingPointRegister(i)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); |
| } |
| } |
| } |
| } |
| |
| void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| RegisterSet* register_set = locations->GetLiveRegisters(); |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (!codegen->IsCoreCalleeSaveRegister(i)) { |
| if (register_set->ContainsCoreRegister(i)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| stack_offset += codegen->RestoreCoreRegister(stack_offset, i); |
| } |
| } |
| } |
| |
| for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { |
| if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { |
| if (register_set->ContainsFloatingPointRegister(i)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); |
| } |
| } |
| } |
| } |
| |
| } // namespace art |