| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_DALVIK |
| |
| #include "thread.h" |
| |
| #include <cutils/trace.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| |
| #include <algorithm> |
| #include <bitset> |
| #include <cerrno> |
| #include <iostream> |
| #include <list> |
| |
| #include "arch/context.h" |
| #include "base/mutex.h" |
| #include "class_linker.h" |
| #include "class_linker-inl.h" |
| #include "debugger.h" |
| #include "dex_file-inl.h" |
| #include "entrypoints/entrypoint_utils.h" |
| #include "entrypoints/quick/quick_alloc_entrypoints.h" |
| #include "gc_map.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/space.h" |
| #include "handle_scope.h" |
| #include "indirect_reference_table-inl.h" |
| #include "jni_internal.h" |
| #include "mirror/art_field-inl.h" |
| #include "mirror/art_method-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/stack_trace_element.h" |
| #include "monitor.h" |
| #include "object_utils.h" |
| #include "quick_exception_handler.h" |
| #include "quick/quick_method_frame_info.h" |
| #include "reflection.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change.h" |
| #include "ScopedLocalRef.h" |
| #include "ScopedUtfChars.h" |
| #include "handle_scope-inl.h" |
| #include "stack.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "utils.h" |
| #include "verifier/dex_gc_map.h" |
| #include "verify_object-inl.h" |
| #include "vmap_table.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| bool Thread::is_started_ = false; |
| pthread_key_t Thread::pthread_key_self_; |
| ConditionVariable* Thread::resume_cond_ = nullptr; |
| |
| static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; |
| |
| void Thread::InitCardTable() { |
| tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); |
| } |
| |
| static void UnimplementedEntryPoint() { |
| UNIMPLEMENTED(FATAL); |
| } |
| |
| void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, |
| PortableEntryPoints* ppoints, QuickEntryPoints* qpoints); |
| |
| void Thread::InitTlsEntryPoints() { |
| // Insert a placeholder so we can easily tell if we call an unimplemented entry point. |
| uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints); |
| uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + |
| sizeof(tlsPtr_.quick_entrypoints)); |
| for (uintptr_t* it = begin; it != end; ++it) { |
| *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); |
| } |
| InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints, |
| &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints); |
| } |
| |
| void Thread::ResetQuickAllocEntryPointsForThread() { |
| ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); |
| } |
| |
| void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) { |
| tlsPtr_.deoptimization_shadow_frame = sf; |
| } |
| |
| void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) { |
| tls64_.deoptimization_return_value.SetJ(ret_val.GetJ()); |
| } |
| |
| ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) { |
| ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame; |
| tlsPtr_.deoptimization_shadow_frame = nullptr; |
| ret_val->SetJ(tls64_.deoptimization_return_value.GetJ()); |
| return sf; |
| } |
| |
| void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) { |
| sf->SetLink(tlsPtr_.shadow_frame_under_construction); |
| tlsPtr_.shadow_frame_under_construction = sf; |
| } |
| |
| void Thread::ClearShadowFrameUnderConstruction() { |
| CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction); |
| tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink(); |
| } |
| |
| void Thread::InitTid() { |
| tls32_.tid = ::art::GetTid(); |
| } |
| |
| void Thread::InitAfterFork() { |
| // One thread (us) survived the fork, but we have a new tid so we need to |
| // update the value stashed in this Thread*. |
| InitTid(); |
| } |
| |
| void* Thread::CreateCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == nullptr) { |
| LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; |
| return nullptr; |
| } |
| { |
| // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true |
| // after self->Init(). |
| MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); |
| // Check that if we got here we cannot be shutting down (as shutdown should never have started |
| // while threads are being born). |
| CHECK(!runtime->IsShuttingDownLocked()); |
| self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); |
| Runtime::Current()->EndThreadBirth(); |
| } |
| { |
| ScopedObjectAccess soa(self); |
| |
| // Copy peer into self, deleting global reference when done. |
| CHECK(self->tlsPtr_.jpeer != nullptr); |
| self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer); |
| self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); |
| self->tlsPtr_.jpeer = nullptr; |
| self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str()); |
| Dbg::PostThreadStart(self); |
| |
| // Invoke the 'run' method of our java.lang.Thread. |
| mirror::Object* receiver = self->tlsPtr_.opeer; |
| jmethodID mid = WellKnownClasses::java_lang_Thread_run; |
| InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr); |
| } |
| // Detach and delete self. |
| Runtime::Current()->GetThreadList()->Unregister(self); |
| |
| return nullptr; |
| } |
| |
| Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, |
| mirror::Object* thread_peer) { |
| mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); |
| Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); |
| // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ |
| // to stop it from going away. |
| if (kIsDebugBuild) { |
| MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); |
| if (result != nullptr && !result->IsSuspended()) { |
| Locks::thread_list_lock_->AssertHeld(soa.Self()); |
| } |
| } |
| return result; |
| } |
| |
| Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, |
| jobject java_thread) { |
| return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); |
| } |
| |
| static size_t FixStackSize(size_t stack_size) { |
| // A stack size of zero means "use the default". |
| if (stack_size == 0) { |
| stack_size = Runtime::Current()->GetDefaultStackSize(); |
| } |
| |
| // Dalvik used the bionic pthread default stack size for native threads, |
| // so include that here to support apps that expect large native stacks. |
| stack_size += 1 * MB; |
| |
| // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. |
| if (stack_size < PTHREAD_STACK_MIN) { |
| stack_size = PTHREAD_STACK_MIN; |
| } |
| |
| if (Runtime::Current()->ExplicitStackOverflowChecks()) { |
| // It's likely that callers are trying to ensure they have at least a certain amount of |
| // stack space, so we should add our reserved space on top of what they requested, rather |
| // than implicitly take it away from them. |
| stack_size += kRuntimeStackOverflowReservedBytes; |
| } else { |
| // If we are going to use implicit stack checks, allocate space for the protected |
| // region at the bottom of the stack. |
| stack_size += Thread::kStackOverflowImplicitCheckSize; |
| } |
| |
| // Some systems require the stack size to be a multiple of the system page size, so round up. |
| stack_size = RoundUp(stack_size, kPageSize); |
| |
| return stack_size; |
| } |
| |
| // Global variable to prevent the compiler optimizing away the page reads for the stack. |
| byte dont_optimize_this; |
| |
| // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack |
| // overflow is detected. It is located right below the stack_end_. Just below that |
| // is the StackOverflow reserved region used when creating the StackOverflow |
| // exception. |
| // |
| // There is a little complexity here that deserves a special mention. When running on the |
| // host (glibc), the process's main thread's stack is allocated with a special flag |
| // to prevent memory being allocated when it's not needed. This flag makes the |
| // kernel only allocate memory for the stack by growing down in memory. Because we |
| // want to put an mprotected region far away from that at the stack top, we need |
| // to make sure the pages for the stack are mapped in before we call mprotect. We do |
| // this by reading every page from the stack bottom (highest address) to the stack top. |
| // We then madvise this away. |
| void Thread::InstallImplicitProtection(bool is_main_stack) { |
| byte* pregion = tlsPtr_.stack_end; |
| byte* stack_lowmem = tlsPtr_.stack_begin; |
| byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&pregion) & |
| ~(kPageSize - 1)); // Page containing current top of stack. |
| |
| #ifndef HAVE_ANDROID_OS |
| bool running_on_host = true; |
| #else |
| bool running_on_host = false; |
| #endif |
| |
| if (running_on_host) { |
| // On Host, we need to map in the main stack. This must be done by reading from the |
| // current stack pointer downwards as the stack is mapped using VM_GROWSDOWN |
| // in the kernel. Any access more than a page below the current SP will cause |
| // a segv. |
| if (is_main_stack) { |
| // First we need to unprotect the protected region because this may |
| // be called more than once for a particular stack and we will crash |
| // if we try to read the protected page. |
| mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_READ); |
| |
| // Read every page from the high address to the low. |
| for (byte* p = stack_top; p > stack_lowmem; p -= kPageSize) { |
| dont_optimize_this = *p; |
| } |
| } |
| } |
| |
| // Check and place a marker word at the lowest usable address in the stack. This |
| // is used to prevent a double protection. |
| constexpr uint32_t kMarker = 0xdadadada; |
| uintptr_t *marker = reinterpret_cast<uintptr_t*>(pregion); |
| if (*marker == kMarker) { |
| // The region has already been set up. But on the main stack on the host we have |
| // removed the protected region in order to read the stack memory. We need to put |
| // this back again. |
| if (is_main_stack && running_on_host) { |
| mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_NONE); |
| madvise(stack_lowmem, stack_top - stack_lowmem, MADV_DONTNEED); |
| } |
| return; |
| } |
| // Add marker so that we can detect a second attempt to do this. |
| *marker = kMarker; |
| |
| if (!running_on_host) { |
| // Running on Android, stacks are mapped cleanly. The protected region for the |
| // main stack just needs to be mapped in. We do this by writing one byte per page. |
| for (byte* p = pregion - kStackOverflowProtectedSize; p < pregion; p += kPageSize) { |
| *p = 0; |
| } |
| } |
| |
| pregion -= kStackOverflowProtectedSize; |
| |
| VLOG(threads) << "installing stack protected region at " << std::hex << |
| static_cast<void*>(pregion) << " to " << |
| static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); |
| |
| |
| if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { |
| LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:" |
| << strerror(errno); |
| } |
| |
| // Tell the kernel that we won't be needing these pages any more. |
| // NB. madvise will probably write zeroes into the memory (on linux it does). |
| if (is_main_stack) { |
| if (running_on_host) { |
| // On the host, it's the whole stack (minus a page to prevent overwrite of stack top). |
| madvise(stack_lowmem, stack_top - stack_lowmem - kPageSize, MADV_DONTNEED); |
| } else { |
| // On Android, just the protected region. |
| madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED); |
| } |
| } |
| } |
| |
| void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { |
| CHECK(java_peer != nullptr); |
| Thread* self = static_cast<JNIEnvExt*>(env)->self; |
| Runtime* runtime = Runtime::Current(); |
| |
| // Atomically start the birth of the thread ensuring the runtime isn't shutting down. |
| bool thread_start_during_shutdown = false; |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| if (runtime->IsShuttingDownLocked()) { |
| thread_start_during_shutdown = true; |
| } else { |
| runtime->StartThreadBirth(); |
| } |
| } |
| if (thread_start_during_shutdown) { |
| ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); |
| env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); |
| return; |
| } |
| |
| Thread* child_thread = new Thread(is_daemon); |
| // Use global JNI ref to hold peer live while child thread starts. |
| child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); |
| stack_size = FixStackSize(stack_size); |
| |
| // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to |
| // assign it. |
| env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, |
| reinterpret_cast<jlong>(child_thread)); |
| |
| pthread_t new_pthread; |
| pthread_attr_t attr; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); |
| CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); |
| int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); |
| |
| if (pthread_create_result != 0) { |
| // pthread_create(3) failed, so clean up. |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| runtime->EndThreadBirth(); |
| } |
| // Manually delete the global reference since Thread::Init will not have been run. |
| env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); |
| child_thread->tlsPtr_.jpeer = nullptr; |
| delete child_thread; |
| child_thread = nullptr; |
| // TODO: remove from thread group? |
| env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); |
| { |
| std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", |
| PrettySize(stack_size).c_str(), strerror(pthread_create_result))); |
| ScopedObjectAccess soa(env); |
| soa.Self()->ThrowOutOfMemoryError(msg.c_str()); |
| } |
| } |
| } |
| |
| void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) { |
| // This function does all the initialization that must be run by the native thread it applies to. |
| // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so |
| // we can handshake with the corresponding native thread when it's ready.) Check this native |
| // thread hasn't been through here already... |
| CHECK(Thread::Current() == nullptr); |
| SetUpAlternateSignalStack(); |
| InitCpu(); |
| InitTlsEntryPoints(); |
| RemoveSuspendTrigger(); |
| InitCardTable(); |
| InitTid(); |
| // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this |
| // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). |
| tlsPtr_.pthread_self = pthread_self(); |
| CHECK(is_started_); |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); |
| DCHECK_EQ(Thread::Current(), this); |
| |
| tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); |
| InitStackHwm(); |
| |
| tlsPtr_.jni_env = new JNIEnvExt(this, java_vm); |
| thread_list->Register(this); |
| } |
| |
| Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, |
| bool create_peer) { |
| Thread* self; |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == nullptr) { |
| LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; |
| return nullptr; |
| } |
| { |
| MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); |
| if (runtime->IsShuttingDownLocked()) { |
| LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; |
| return nullptr; |
| } else { |
| Runtime::Current()->StartThreadBirth(); |
| self = new Thread(as_daemon); |
| self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); |
| Runtime::Current()->EndThreadBirth(); |
| } |
| } |
| |
| CHECK_NE(self->GetState(), kRunnable); |
| self->SetState(kNative); |
| |
| // If we're the main thread, ClassLinker won't be created until after we're attached, |
| // so that thread needs a two-stage attach. Regular threads don't need this hack. |
| // In the compiler, all threads need this hack, because no-one's going to be getting |
| // a native peer! |
| if (create_peer) { |
| self->CreatePeer(thread_name, as_daemon, thread_group); |
| } else { |
| // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. |
| if (thread_name != nullptr) { |
| self->tlsPtr_.name->assign(thread_name); |
| ::art::SetThreadName(thread_name); |
| } |
| } |
| |
| return self; |
| } |
| |
| void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| JNIEnv* env = tlsPtr_.jni_env; |
| |
| if (thread_group == nullptr) { |
| thread_group = runtime->GetMainThreadGroup(); |
| } |
| ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); |
| jint thread_priority = GetNativePriority(); |
| jboolean thread_is_daemon = as_daemon; |
| |
| ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); |
| if (peer.get() == nullptr) { |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| { |
| ScopedObjectAccess soa(this); |
| tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get()); |
| } |
| env->CallNonvirtualVoidMethod(peer.get(), |
| WellKnownClasses::java_lang_Thread, |
| WellKnownClasses::java_lang_Thread_init, |
| thread_group, thread_name.get(), thread_priority, thread_is_daemon); |
| AssertNoPendingException(); |
| |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, |
| reinterpret_cast<jlong>(self)); |
| |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa))); |
| if (peer_thread_name.Get() == nullptr) { |
| // The Thread constructor should have set the Thread.name to a |
| // non-null value. However, because we can run without code |
| // available (in the compiler, in tests), we manually assign the |
| // fields the constructor should have set. |
| if (runtime->IsActiveTransaction()) { |
| InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); |
| } else { |
| InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); |
| } |
| peer_thread_name.Assign(GetThreadName(soa)); |
| } |
| // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. |
| if (peer_thread_name.Get() != nullptr) { |
| SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); |
| } |
| } |
| |
| template<bool kTransactionActive> |
| void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, |
| jobject thread_name, jint thread_priority) { |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> |
| SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> |
| SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group)); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> |
| SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name)); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> |
| SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority); |
| } |
| |
| void Thread::SetThreadName(const char* name) { |
| tlsPtr_.name->assign(name); |
| ::art::SetThreadName(name); |
| Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); |
| } |
| |
| void Thread::InitStackHwm() { |
| void* read_stack_base; |
| size_t read_stack_size; |
| GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size); |
| |
| // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? |
| VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base, |
| PrettySize(read_stack_size).c_str()); |
| |
| tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base); |
| tlsPtr_.stack_size = read_stack_size; |
| |
| if (read_stack_size <= kRuntimeStackOverflowReservedBytes) { |
| LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size |
| << " bytes)"; |
| } |
| |
| // TODO: move this into the Linux GetThreadStack implementation. |
| #if defined(__APPLE__) |
| bool is_main_thread = false; |
| #else |
| // If we're the main thread, check whether we were run with an unlimited stack. In that case, |
| // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection |
| // will be broken because we'll die long before we get close to 2GB. |
| bool is_main_thread = (::art::GetTid() == getpid()); |
| if (is_main_thread) { |
| rlimit stack_limit; |
| if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { |
| PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; |
| } |
| if (stack_limit.rlim_cur == RLIM_INFINITY) { |
| // Find the default stack size for new threads... |
| pthread_attr_t default_attributes; |
| size_t default_stack_size; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), |
| "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); |
| |
| // ...and use that as our limit. |
| size_t old_stack_size = read_stack_size; |
| tlsPtr_.stack_size = default_stack_size; |
| tlsPtr_.stack_begin += (old_stack_size - default_stack_size); |
| VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" |
| << " to " << PrettySize(default_stack_size) |
| << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin); |
| } |
| } |
| #endif |
| |
| // Set stack_end_ to the bottom of the stack saving space of stack overflows |
| bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); |
| ResetDefaultStackEnd(implicit_stack_check); |
| |
| // Install the protected region if we are doing implicit overflow checks. |
| if (implicit_stack_check) { |
| if (is_main_thread) { |
| size_t guardsize; |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query"); |
| // The main thread might have protected region at the bottom. We need |
| // to install our own region so we need to move the limits |
| // of the stack to make room for it. |
| tlsPtr_.stack_begin += guardsize; |
| tlsPtr_.stack_end += guardsize; |
| tlsPtr_.stack_size -= guardsize; |
| } |
| InstallImplicitProtection(is_main_thread); |
| } |
| |
| // Sanity check. |
| int stack_variable; |
| CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end)); |
| } |
| |
| void Thread::ShortDump(std::ostream& os) const { |
| os << "Thread["; |
| if (GetThreadId() != 0) { |
| // If we're in kStarting, we won't have a thin lock id or tid yet. |
| os << GetThreadId() |
| << ",tid=" << GetTid() << ','; |
| } |
| os << GetState() |
| << ",Thread*=" << this |
| << ",peer=" << tlsPtr_.opeer |
| << ",\"" << *tlsPtr_.name << "\"" |
| << "]"; |
| } |
| |
| void Thread::Dump(std::ostream& os) const { |
| DumpState(os); |
| DumpStack(os); |
| } |
| |
| mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const { |
| mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); |
| return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr; |
| } |
| |
| void Thread::GetThreadName(std::string& name) const { |
| name.assign(*tlsPtr_.name); |
| } |
| |
| uint64_t Thread::GetCpuMicroTime() const { |
| #if defined(HAVE_POSIX_CLOCKS) |
| clockid_t cpu_clock_id; |
| pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); |
| timespec now; |
| clock_gettime(cpu_clock_id, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); |
| #else |
| UNIMPLEMENTED(WARNING); |
| return -1; |
| #endif |
| } |
| |
| // Attempt to rectify locks so that we dump thread list with required locks before exiting. |
| static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { |
| LOG(ERROR) << *thread << " suspend count already zero."; |
| Locks::thread_suspend_count_lock_->Unlock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| Locks::mutator_lock_->SharedTryLock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; |
| } |
| } |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| Locks::thread_list_lock_->TryLock(self); |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; |
| } |
| } |
| std::ostringstream ss; |
| Runtime::Current()->GetThreadList()->DumpLocked(ss); |
| LOG(FATAL) << ss.str(); |
| } |
| |
| void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { |
| if (kIsDebugBuild) { |
| DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) |
| << delta << " " << tls32_.debug_suspend_count << " " << this; |
| DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; |
| Locks::thread_suspend_count_lock_->AssertHeld(self); |
| if (this != self && !IsSuspended()) { |
| Locks::thread_list_lock_->AssertHeld(self); |
| } |
| } |
| if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { |
| UnsafeLogFatalForSuspendCount(self, this); |
| return; |
| } |
| |
| tls32_.suspend_count += delta; |
| if (for_debugger) { |
| tls32_.debug_suspend_count += delta; |
| } |
| |
| if (tls32_.suspend_count == 0) { |
| AtomicClearFlag(kSuspendRequest); |
| } else { |
| AtomicSetFlag(kSuspendRequest); |
| TriggerSuspend(); |
| } |
| } |
| |
| void Thread::RunCheckpointFunction() { |
| Closure *checkpoints[kMaxCheckpoints]; |
| |
| // Grab the suspend_count lock and copy the current set of |
| // checkpoints. Then clear the list and the flag. The RequestCheckpoint |
| // function will also grab this lock so we prevent a race between setting |
| // the kCheckpointRequest flag and clearing it. |
| { |
| MutexLock mu(this, *Locks::thread_suspend_count_lock_); |
| for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { |
| checkpoints[i] = tlsPtr_.checkpoint_functions[i]; |
| tlsPtr_.checkpoint_functions[i] = nullptr; |
| } |
| AtomicClearFlag(kCheckpointRequest); |
| } |
| |
| // Outside the lock, run all the checkpoint functions that |
| // we collected. |
| bool found_checkpoint = false; |
| for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { |
| if (checkpoints[i] != nullptr) { |
| ATRACE_BEGIN("Checkpoint function"); |
| checkpoints[i]->Run(this); |
| ATRACE_END(); |
| found_checkpoint = true; |
| } |
| } |
| CHECK(found_checkpoint); |
| } |
| |
| bool Thread::RequestCheckpoint(Closure* function) { |
| union StateAndFlags old_state_and_flags; |
| old_state_and_flags.as_int = tls32_.state_and_flags.as_int; |
| if (old_state_and_flags.as_struct.state != kRunnable) { |
| return false; // Fail, thread is suspended and so can't run a checkpoint. |
| } |
| |
| uint32_t available_checkpoint = kMaxCheckpoints; |
| for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) { |
| if (tlsPtr_.checkpoint_functions[i] == nullptr) { |
| available_checkpoint = i; |
| break; |
| } |
| } |
| if (available_checkpoint == kMaxCheckpoints) { |
| // No checkpoint functions available, we can't run a checkpoint |
| return false; |
| } |
| tlsPtr_.checkpoint_functions[available_checkpoint] = function; |
| |
| // Checkpoint function installed now install flag bit. |
| // We must be runnable to request a checkpoint. |
| DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); |
| union StateAndFlags new_state_and_flags; |
| new_state_and_flags.as_int = old_state_and_flags.as_int; |
| new_state_and_flags.as_struct.flags |= kCheckpointRequest; |
| bool success = |
| tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int, |
| new_state_and_flags.as_int); |
| if (UNLIKELY(!success)) { |
| // The thread changed state before the checkpoint was installed. |
| CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function); |
| tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr; |
| } else { |
| CHECK_EQ(ReadFlag(kCheckpointRequest), true); |
| TriggerSuspend(); |
| } |
| return success; |
| } |
| |
| void Thread::FullSuspendCheck() { |
| VLOG(threads) << this << " self-suspending"; |
| ATRACE_BEGIN("Full suspend check"); |
| // Make thread appear suspended to other threads, release mutator_lock_. |
| TransitionFromRunnableToSuspended(kSuspended); |
| // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. |
| TransitionFromSuspendedToRunnable(); |
| ATRACE_END(); |
| VLOG(threads) << this << " self-reviving"; |
| } |
| |
| void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { |
| std::string group_name; |
| int priority; |
| bool is_daemon = false; |
| Thread* self = Thread::Current(); |
| |
| // Don't do this if we are aborting since the GC may have all the threads suspended. This will |
| // cause ScopedObjectAccessUnchecked to deadlock. |
| if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { |
| ScopedObjectAccessUnchecked soa(self); |
| priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority) |
| ->GetInt(thread->tlsPtr_.opeer); |
| is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon) |
| ->GetBoolean(thread->tlsPtr_.opeer); |
| |
| mirror::Object* thread_group = |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer); |
| |
| if (thread_group != nullptr) { |
| mirror::ArtField* group_name_field = |
| soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); |
| mirror::String* group_name_string = |
| reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); |
| group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; |
| } |
| } else { |
| priority = GetNativePriority(); |
| } |
| |
| std::string scheduler_group_name(GetSchedulerGroupName(tid)); |
| if (scheduler_group_name.empty()) { |
| scheduler_group_name = "default"; |
| } |
| |
| if (thread != nullptr) { |
| os << '"' << *thread->tlsPtr_.name << '"'; |
| if (is_daemon) { |
| os << " daemon"; |
| } |
| os << " prio=" << priority |
| << " tid=" << thread->GetThreadId() |
| << " " << thread->GetState(); |
| if (thread->IsStillStarting()) { |
| os << " (still starting up)"; |
| } |
| os << "\n"; |
| } else { |
| os << '"' << ::art::GetThreadName(tid) << '"' |
| << " prio=" << priority |
| << " (not attached)\n"; |
| } |
| |
| if (thread != nullptr) { |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| os << " | group=\"" << group_name << "\"" |
| << " sCount=" << thread->tls32_.suspend_count |
| << " dsCount=" << thread->tls32_.debug_suspend_count |
| << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) |
| << " self=" << reinterpret_cast<const void*>(thread) << "\n"; |
| } |
| |
| os << " | sysTid=" << tid |
| << " nice=" << getpriority(PRIO_PROCESS, tid) |
| << " cgrp=" << scheduler_group_name; |
| if (thread != nullptr) { |
| int policy; |
| sched_param sp; |
| CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), |
| __FUNCTION__); |
| os << " sched=" << policy << "/" << sp.sched_priority |
| << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); |
| } |
| os << "\n"; |
| |
| // Grab the scheduler stats for this thread. |
| std::string scheduler_stats; |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { |
| scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. |
| } else { |
| scheduler_stats = "0 0 0"; |
| } |
| |
| char native_thread_state = '?'; |
| int utime = 0; |
| int stime = 0; |
| int task_cpu = 0; |
| GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); |
| |
| os << " | state=" << native_thread_state |
| << " schedstat=( " << scheduler_stats << " )" |
| << " utm=" << utime |
| << " stm=" << stime |
| << " core=" << task_cpu |
| << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; |
| if (thread != nullptr) { |
| os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" |
| << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" |
| << PrettySize(thread->tlsPtr_.stack_size) << "\n"; |
| // Dump the held mutexes. |
| os << " | held mutexes="; |
| for (size_t i = 0; i < kLockLevelCount; ++i) { |
| if (i != kMonitorLock) { |
| BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); |
| if (mutex != nullptr) { |
| os << " \"" << mutex->GetName() << "\""; |
| if (mutex->IsReaderWriterMutex()) { |
| ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); |
| if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) { |
| os << "(exclusive held)"; |
| } else { |
| os << "(shared held)"; |
| } |
| } |
| } |
| } |
| } |
| os << "\n"; |
| } |
| } |
| |
| void Thread::DumpState(std::ostream& os) const { |
| Thread::DumpState(os, this, GetTid()); |
| } |
| |
| struct StackDumpVisitor : public StackVisitor { |
| StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate), |
| last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) { |
| } |
| |
| virtual ~StackDumpVisitor() { |
| if (frame_count == 0) { |
| os << " (no managed stack frames)\n"; |
| } |
| } |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| mirror::ArtMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| return true; |
| } |
| const int kMaxRepetition = 3; |
| mirror::Class* c = m->GetDeclaringClass(); |
| mirror::DexCache* dex_cache = c->GetDexCache(); |
| int line_number = -1; |
| if (dex_cache != nullptr) { // be tolerant of bad input |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false)); |
| } |
| if (line_number == last_line_number && last_method == m) { |
| ++repetition_count; |
| } else { |
| if (repetition_count >= kMaxRepetition) { |
| os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; |
| } |
| repetition_count = 0; |
| last_line_number = line_number; |
| last_method = m; |
| } |
| if (repetition_count < kMaxRepetition) { |
| os << " at " << PrettyMethod(m, false); |
| if (m->IsNative()) { |
| os << "(Native method)"; |
| } else { |
| const char* source_file(m->GetDeclaringClassSourceFile()); |
| os << "(" << (source_file != nullptr ? source_file : "unavailable") |
| << ":" << line_number << ")"; |
| } |
| os << "\n"; |
| if (frame_count == 0) { |
| Monitor::DescribeWait(os, thread); |
| } |
| if (can_allocate) { |
| Monitor::VisitLocks(this, DumpLockedObject, &os); |
| } |
| } |
| |
| ++frame_count; |
| return true; |
| } |
| |
| static void DumpLockedObject(mirror::Object* o, void* context) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| std::ostream& os = *reinterpret_cast<std::ostream*>(context); |
| os << " - locked "; |
| if (o == nullptr) { |
| os << "an unknown object"; |
| } else { |
| if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) && |
| Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { |
| // Getting the identity hashcode here would result in lock inflation and suspension of the |
| // current thread, which isn't safe if this is the only runnable thread. |
| os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o), |
| PrettyTypeOf(o).c_str()); |
| } else { |
| os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str()); |
| } |
| } |
| os << "\n"; |
| } |
| |
| std::ostream& os; |
| const Thread* thread; |
| const bool can_allocate; |
| mirror::ArtMethod* method; |
| mirror::ArtMethod* last_method; |
| int last_line_number; |
| int repetition_count; |
| int frame_count; |
| }; |
| |
| static bool ShouldShowNativeStack(const Thread* thread) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| ThreadState state = thread->GetState(); |
| |
| // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. |
| if (state > kWaiting && state < kStarting) { |
| return true; |
| } |
| |
| // In an Object.wait variant or Thread.sleep? That's not interesting. |
| if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { |
| return false; |
| } |
| |
| // In some other native method? That's interesting. |
| // We don't just check kNative because native methods will be in state kSuspended if they're |
| // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the |
| // thread-startup states if it's early enough in their life cycle (http://b/7432159). |
| mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr); |
| return current_method != nullptr && current_method->IsNative(); |
| } |
| |
| void Thread::DumpJavaStack(std::ostream& os) const { |
| std::unique_ptr<Context> context(Context::Create()); |
| StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), |
| !tls32_.throwing_OutOfMemoryError); |
| dumper.WalkStack(); |
| } |
| |
| void Thread::DumpStack(std::ostream& os) const { |
| // TODO: we call this code when dying but may not have suspended the thread ourself. The |
| // IsSuspended check is therefore racy with the use for dumping (normally we inhibit |
| // the race with the thread_suspend_count_lock_). |
| bool dump_for_abort = (gAborting > 0); |
| bool safe_to_dump = (this == Thread::Current() || IsSuspended()); |
| if (!kIsDebugBuild) { |
| // We always want to dump the stack for an abort, however, there is no point dumping another |
| // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. |
| safe_to_dump = (safe_to_dump || dump_for_abort); |
| } |
| if (safe_to_dump) { |
| // If we're currently in native code, dump that stack before dumping the managed stack. |
| if (dump_for_abort || ShouldShowNativeStack(this)) { |
| DumpKernelStack(os, GetTid(), " kernel: ", false); |
| DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr)); |
| } |
| DumpJavaStack(os); |
| } else { |
| os << "Not able to dump stack of thread that isn't suspended"; |
| } |
| } |
| |
| void Thread::ThreadExitCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| if (self->tls32_.thread_exit_check_count == 0) { |
| LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " |
| "going to use a pthread_key_create destructor?): " << *self; |
| CHECK(is_started_); |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); |
| self->tls32_.thread_exit_check_count = 1; |
| } else { |
| LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; |
| } |
| } |
| |
| void Thread::Startup() { |
| CHECK(!is_started_); |
| is_started_ = true; |
| { |
| // MutexLock to keep annotalysis happy. |
| // |
| // Note we use nullptr for the thread because Thread::Current can |
| // return garbage since (is_started_ == true) and |
| // Thread::pthread_key_self_ is not yet initialized. |
| // This was seen on glibc. |
| MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); |
| resume_cond_ = new ConditionVariable("Thread resumption condition variable", |
| *Locks::thread_suspend_count_lock_); |
| } |
| |
| // Allocate a TLS slot. |
| CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); |
| |
| // Double-check the TLS slot allocation. |
| if (pthread_getspecific(pthread_key_self_) != nullptr) { |
| LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; |
| } |
| } |
| |
| void Thread::FinishStartup() { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| |
| // Finish attaching the main thread. |
| ScopedObjectAccess soa(Thread::Current()); |
| Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); |
| |
| Runtime::Current()->GetClassLinker()->RunRootClinits(); |
| } |
| |
| void Thread::Shutdown() { |
| CHECK(is_started_); |
| is_started_ = false; |
| CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); |
| MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); |
| if (resume_cond_ != nullptr) { |
| delete resume_cond_; |
| resume_cond_ = nullptr; |
| } |
| } |
| |
| Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) { |
| wait_mutex_ = new Mutex("a thread wait mutex"); |
| wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); |
| tlsPtr_.debug_invoke_req = new DebugInvokeReq; |
| tlsPtr_.single_step_control = new SingleStepControl; |
| tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; |
| tlsPtr_.name = new std::string(kThreadNameDuringStartup); |
| |
| CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); |
| tls32_.state_and_flags.as_struct.flags = 0; |
| tls32_.state_and_flags.as_struct.state = kNative; |
| memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); |
| std::fill(tlsPtr_.rosalloc_runs, |
| tlsPtr_.rosalloc_runs + gc::allocator::RosAlloc::kNumThreadLocalSizeBrackets, |
| gc::allocator::RosAlloc::GetDedicatedFullRun()); |
| for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { |
| tlsPtr_.checkpoint_functions[i] = nullptr; |
| } |
| } |
| |
| bool Thread::IsStillStarting() const { |
| // You might think you can check whether the state is kStarting, but for much of thread startup, |
| // the thread is in kNative; it might also be in kVmWait. |
| // You might think you can check whether the peer is nullptr, but the peer is actually created and |
| // assigned fairly early on, and needs to be. |
| // It turns out that the last thing to change is the thread name; that's a good proxy for "has |
| // this thread _ever_ entered kRunnable". |
| return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || |
| (*tlsPtr_.name == kThreadNameDuringStartup); |
| } |
| |
| void Thread::AssertNoPendingException() const { |
| if (UNLIKELY(IsExceptionPending())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| mirror::Throwable* exception = GetException(nullptr); |
| LOG(FATAL) << "No pending exception expected: " << exception->Dump(); |
| } |
| } |
| |
| void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { |
| if (UNLIKELY(IsExceptionPending())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| mirror::Throwable* exception = GetException(nullptr); |
| LOG(FATAL) << "Throwing new exception " << msg << " with unexpected pending exception: " |
| << exception->Dump(); |
| } |
| } |
| |
| static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/, |
| RootType /*root_type*/) |
| NO_THREAD_SAFETY_ANALYSIS { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| mirror::Object* entered_monitor = *object; |
| if (self->HoldsLock(entered_monitor)) { |
| LOG(WARNING) << "Calling MonitorExit on object " |
| << object << " (" << PrettyTypeOf(entered_monitor) << ")" |
| << " left locked by native thread " |
| << *Thread::Current() << " which is detaching"; |
| entered_monitor->MonitorExit(self); |
| } |
| } |
| |
| void Thread::Destroy() { |
| Thread* self = this; |
| DCHECK_EQ(self, Thread::Current()); |
| |
| if (tlsPtr_.opeer != nullptr) { |
| ScopedObjectAccess soa(self); |
| // We may need to call user-supplied managed code, do this before final clean-up. |
| HandleUncaughtExceptions(soa); |
| RemoveFromThreadGroup(soa); |
| |
| // this.nativePeer = 0; |
| if (Runtime::Current()->IsActiveTransaction()) { |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) |
| ->SetLong<true>(tlsPtr_.opeer, 0); |
| } else { |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) |
| ->SetLong<false>(tlsPtr_.opeer, 0); |
| } |
| Dbg::PostThreadDeath(self); |
| |
| // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone |
| // who is waiting. |
| mirror::Object* lock = |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); |
| // (This conditional is only needed for tests, where Thread.lock won't have been set.) |
| if (lock != nullptr) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Object> h_obj(hs.NewHandle(lock)); |
| ObjectLock<mirror::Object> locker(self, h_obj); |
| locker.NotifyAll(); |
| } |
| } |
| |
| // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. |
| if (tlsPtr_.jni_env != nullptr) { |
| tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal); |
| } |
| } |
| |
| Thread::~Thread() { |
| if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) { |
| // If pthread_create fails we don't have a jni env here. |
| tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); |
| tlsPtr_.jpeer = nullptr; |
| } |
| tlsPtr_.opeer = nullptr; |
| |
| bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? |
| if (initialized) { |
| delete tlsPtr_.jni_env; |
| tlsPtr_.jni_env = nullptr; |
| } |
| CHECK_NE(GetState(), kRunnable); |
| CHECK_NE(ReadFlag(kCheckpointRequest), true); |
| CHECK(tlsPtr_.checkpoint_functions[0] == nullptr); |
| CHECK(tlsPtr_.checkpoint_functions[1] == nullptr); |
| CHECK(tlsPtr_.checkpoint_functions[2] == nullptr); |
| |
| // We may be deleting a still born thread. |
| SetStateUnsafe(kTerminated); |
| |
| delete wait_cond_; |
| delete wait_mutex_; |
| |
| if (tlsPtr_.long_jump_context != nullptr) { |
| delete tlsPtr_.long_jump_context; |
| } |
| |
| if (initialized) { |
| CleanupCpu(); |
| } |
| |
| delete tlsPtr_.debug_invoke_req; |
| delete tlsPtr_.single_step_control; |
| delete tlsPtr_.instrumentation_stack; |
| delete tlsPtr_.name; |
| delete tlsPtr_.stack_trace_sample; |
| |
| Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); |
| |
| TearDownAlternateSignalStack(); |
| } |
| |
| void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { |
| if (!IsExceptionPending()) { |
| return; |
| } |
| ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); |
| ScopedThreadStateChange tsc(this, kNative); |
| |
| // Get and clear the exception. |
| ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); |
| tlsPtr_.jni_env->ExceptionClear(); |
| |
| // If the thread has its own handler, use that. |
| ScopedLocalRef<jobject> handler(tlsPtr_.jni_env, |
| tlsPtr_.jni_env->GetObjectField(peer.get(), |
| WellKnownClasses::java_lang_Thread_uncaughtHandler)); |
| if (handler.get() == nullptr) { |
| // Otherwise use the thread group's default handler. |
| handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(), |
| WellKnownClasses::java_lang_Thread_group)); |
| } |
| |
| // Call the handler. |
| tlsPtr_.jni_env->CallVoidMethod(handler.get(), |
| WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException, |
| peer.get(), exception.get()); |
| |
| // If the handler threw, clear that exception too. |
| tlsPtr_.jni_env->ExceptionClear(); |
| } |
| |
| void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { |
| // this.group.removeThread(this); |
| // group can be null if we're in the compiler or a test. |
| mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group) |
| ->GetObject(tlsPtr_.opeer); |
| if (ogroup != nullptr) { |
| ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); |
| ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); |
| ScopedThreadStateChange tsc(soa.Self(), kNative); |
| tlsPtr_.jni_env->CallVoidMethod(group.get(), |
| WellKnownClasses::java_lang_ThreadGroup_removeThread, |
| peer.get()); |
| } |
| } |
| |
| size_t Thread::NumHandleReferences() { |
| size_t count = 0; |
| for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { |
| count += cur->NumberOfReferences(); |
| } |
| return count; |
| } |
| |
| bool Thread::HandleScopeContains(jobject obj) const { |
| StackReference<mirror::Object>* hs_entry = |
| reinterpret_cast<StackReference<mirror::Object>*>(obj); |
| for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { |
| if (cur->Contains(hs_entry)) { |
| return true; |
| } |
| } |
| // JNI code invoked from portable code uses shadow frames rather than the handle scope. |
| return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); |
| } |
| |
| void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) { |
| for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { |
| size_t num_refs = cur->NumberOfReferences(); |
| for (size_t j = 0; j < num_refs; ++j) { |
| mirror::Object* object = cur->GetReference(j); |
| if (object != nullptr) { |
| mirror::Object* old_obj = object; |
| visitor(&object, arg, thread_id, kRootNativeStack); |
| if (old_obj != object) { |
| cur->SetReference(j, object); |
| } |
| } |
| } |
| } |
| } |
| |
| mirror::Object* Thread::DecodeJObject(jobject obj) const { |
| Locks::mutator_lock_->AssertSharedHeld(this); |
| if (obj == nullptr) { |
| return nullptr; |
| } |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| IndirectRefKind kind = GetIndirectRefKind(ref); |
| mirror::Object* result; |
| // The "kinds" below are sorted by the frequency we expect to encounter them. |
| if (kind == kLocal) { |
| IndirectReferenceTable& locals = tlsPtr_.jni_env->locals; |
| // Local references do not need a read barrier. |
| result = locals.Get<kWithoutReadBarrier>(ref); |
| } else if (kind == kHandleScopeOrInvalid) { |
| // TODO: make stack indirect reference table lookup more efficient. |
| // Check if this is a local reference in the handle scope. |
| if (LIKELY(HandleScopeContains(obj))) { |
| // Read from handle scope. |
| result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); |
| VerifyObject(result); |
| } else { |
| result = kInvalidIndirectRefObject; |
| } |
| } else if (kind == kGlobal) { |
| JavaVMExt* const vm = Runtime::Current()->GetJavaVM(); |
| result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref); |
| } else { |
| DCHECK_EQ(kind, kWeakGlobal); |
| result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref); |
| if (result == kClearedJniWeakGlobal) { |
| // This is a special case where it's okay to return nullptr. |
| return nullptr; |
| } |
| } |
| |
| if (UNLIKELY(result == nullptr)) { |
| JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); |
| } |
| return result; |
| } |
| |
| // Implements java.lang.Thread.interrupted. |
| bool Thread::Interrupted() { |
| MutexLock mu(Thread::Current(), *wait_mutex_); |
| bool interrupted = IsInterruptedLocked(); |
| SetInterruptedLocked(false); |
| return interrupted; |
| } |
| |
| // Implements java.lang.Thread.isInterrupted. |
| bool Thread::IsInterrupted() { |
| MutexLock mu(Thread::Current(), *wait_mutex_); |
| return IsInterruptedLocked(); |
| } |
| |
| void Thread::Interrupt(Thread* self) { |
| MutexLock mu(self, *wait_mutex_); |
| if (interrupted_) { |
| return; |
| } |
| interrupted_ = true; |
| NotifyLocked(self); |
| } |
| |
| void Thread::Notify() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *wait_mutex_); |
| NotifyLocked(self); |
| } |
| |
| void Thread::NotifyLocked(Thread* self) { |
| if (wait_monitor_ != nullptr) { |
| wait_cond_->Signal(self); |
| } |
| } |
| |
| class CountStackDepthVisitor : public StackVisitor { |
| public: |
| explicit CountStackDepthVisitor(Thread* thread) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(thread, nullptr), |
| depth_(0), skip_depth_(0), skipping_(true) {} |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| // We want to skip frames up to and including the exception's constructor. |
| // Note we also skip the frame if it doesn't have a method (namely the callee |
| // save frame) |
| mirror::ArtMethod* m = GetMethod(); |
| if (skipping_ && !m->IsRuntimeMethod() && |
| !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { |
| skipping_ = false; |
| } |
| if (!skipping_) { |
| if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). |
| ++depth_; |
| } |
| } else { |
| ++skip_depth_; |
| } |
| return true; |
| } |
| |
| int GetDepth() const { |
| return depth_; |
| } |
| |
| int GetSkipDepth() const { |
| return skip_depth_; |
| } |
| |
| private: |
| uint32_t depth_; |
| uint32_t skip_depth_; |
| bool skipping_; |
| }; |
| |
| template<bool kTransactionActive> |
| class BuildInternalStackTraceVisitor : public StackVisitor { |
| public: |
| explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) |
| : StackVisitor(thread, nullptr), self_(self), |
| skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {} |
| |
| bool Init(int depth) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| // Allocate method trace with an extra slot that will hold the PC trace |
| StackHandleScope<1> hs(self_); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Handle<mirror::ObjectArray<mirror::Object>> method_trace( |
| hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1))); |
| if (method_trace.Get() == nullptr) { |
| return false; |
| } |
| mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth); |
| if (dex_pc_trace == nullptr) { |
| return false; |
| } |
| // Save PC trace in last element of method trace, also places it into the |
| // object graph. |
| // We are called from native: use non-transactional mode. |
| method_trace->Set<kTransactionActive>(depth, dex_pc_trace); |
| // Set the Object*s and assert that no thread suspension is now possible. |
| const char* last_no_suspend_cause = |
| self_->StartAssertNoThreadSuspension("Building internal stack trace"); |
| CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; |
| method_trace_ = method_trace.Get(); |
| dex_pc_trace_ = dex_pc_trace; |
| return true; |
| } |
| |
| virtual ~BuildInternalStackTraceVisitor() { |
| if (method_trace_ != nullptr) { |
| self_->EndAssertNoThreadSuspension(nullptr); |
| } |
| } |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) { |
| return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. |
| } |
| if (skip_depth_ > 0) { |
| skip_depth_--; |
| return true; |
| } |
| mirror::ArtMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| return true; // Ignore runtime frames (in particular callee save). |
| } |
| method_trace_->Set<kTransactionActive>(count_, m); |
| dex_pc_trace_->Set<kTransactionActive>(count_, |
| m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc()); |
| ++count_; |
| return true; |
| } |
| |
| mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { |
| return method_trace_; |
| } |
| |
| private: |
| Thread* const self_; |
| // How many more frames to skip. |
| int32_t skip_depth_; |
| // Current position down stack trace. |
| uint32_t count_; |
| // Array of dex PC values. |
| mirror::IntArray* dex_pc_trace_; |
| // An array of the methods on the stack, the last entry is a reference to the PC trace. |
| mirror::ObjectArray<mirror::Object>* method_trace_; |
| }; |
| |
| template<bool kTransactionActive> |
| jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { |
| // Compute depth of stack |
| CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); |
| count_visitor.WalkStack(); |
| int32_t depth = count_visitor.GetDepth(); |
| int32_t skip_depth = count_visitor.GetSkipDepth(); |
| |
| // Build internal stack trace. |
| BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), |
| const_cast<Thread*>(this), |
| skip_depth); |
| if (!build_trace_visitor.Init(depth)) { |
| return nullptr; // Allocation failed. |
| } |
| build_trace_visitor.WalkStack(); |
| mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); |
| if (kIsDebugBuild) { |
| for (int32_t i = 0; i < trace->GetLength(); ++i) { |
| CHECK(trace->Get(i) != nullptr); |
| } |
| } |
| return soa.AddLocalReference<jobjectArray>(trace); |
| } |
| template jobject Thread::CreateInternalStackTrace<false>( |
| const ScopedObjectAccessAlreadyRunnable& soa) const; |
| template jobject Thread::CreateInternalStackTrace<true>( |
| const ScopedObjectAccessAlreadyRunnable& soa) const; |
| |
| jobjectArray Thread::InternalStackTraceToStackTraceElementArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array, |
| int* stack_depth) { |
| // Decode the internal stack trace into the depth, method trace and PC trace |
| int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1; |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| jobjectArray result; |
| |
| if (output_array != nullptr) { |
| // Reuse the array we were given. |
| result = output_array; |
| // ...adjusting the number of frames we'll write to not exceed the array length. |
| const int32_t traces_length = |
| soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength(); |
| depth = std::min(depth, traces_length); |
| } else { |
| // Create java_trace array and place in local reference table |
| mirror::ObjectArray<mirror::StackTraceElement>* java_traces = |
| class_linker->AllocStackTraceElementArray(soa.Self(), depth); |
| if (java_traces == nullptr) { |
| return nullptr; |
| } |
| result = soa.AddLocalReference<jobjectArray>(java_traces); |
| } |
| |
| if (stack_depth != nullptr) { |
| *stack_depth = depth; |
| } |
| |
| for (int32_t i = 0; i < depth; ++i) { |
| mirror::ObjectArray<mirror::Object>* method_trace = |
| soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal); |
| // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) |
| mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i)); |
| int32_t line_number; |
| StackHandleScope<3> hs(soa.Self()); |
| auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); |
| auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); |
| if (method->IsProxyMethod()) { |
| line_number = -1; |
| class_name_object.Assign(method->GetDeclaringClass()->GetName()); |
| // source_name_object intentionally left null for proxy methods |
| } else { |
| mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth)); |
| uint32_t dex_pc = pc_trace->Get(i); |
| line_number = method->GetLineNumFromDexPC(dex_pc); |
| // Allocate element, potentially triggering GC |
| // TODO: reuse class_name_object via Class::name_? |
| const char* descriptor = method->GetDeclaringClassDescriptor(); |
| CHECK(descriptor != nullptr); |
| std::string class_name(PrettyDescriptor(descriptor)); |
| class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); |
| if (class_name_object.Get() == nullptr) { |
| return nullptr; |
| } |
| const char* source_file = method->GetDeclaringClassSourceFile(); |
| if (source_file != nullptr) { |
| source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); |
| if (source_name_object.Get() == nullptr) { |
| return nullptr; |
| } |
| } |
| } |
| const char* method_name = method->GetName(); |
| CHECK(method_name != nullptr); |
| Handle<mirror::String> method_name_object( |
| hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); |
| if (method_name_object.Get() == nullptr) { |
| return nullptr; |
| } |
| mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( |
| soa.Self(), class_name_object, method_name_object, source_name_object, line_number); |
| if (obj == nullptr) { |
| return nullptr; |
| } |
| // We are called from native: use non-transactional mode. |
| soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj); |
| } |
| return result; |
| } |
| |
| void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location, |
| const char* exception_class_descriptor, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| ThrowNewExceptionV(throw_location, exception_class_descriptor, |
| fmt, args); |
| va_end(args); |
| } |
| |
| void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location, |
| const char* exception_class_descriptor, |
| const char* fmt, va_list ap) { |
| std::string msg; |
| StringAppendV(&msg, fmt, ap); |
| ThrowNewException(throw_location, exception_class_descriptor, msg.c_str()); |
| } |
| |
| void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor, |
| const char* msg) { |
| // Callers should either clear or call ThrowNewWrappedException. |
| AssertNoPendingExceptionForNewException(msg); |
| ThrowNewWrappedException(throw_location, exception_class_descriptor, msg); |
| } |
| |
| void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location, |
| const char* exception_class_descriptor, |
| const char* msg) { |
| DCHECK_EQ(this, Thread::Current()); |
| ScopedObjectAccessUnchecked soa(this); |
| StackHandleScope<5> hs(soa.Self()); |
| // Ensure we don't forget arguments over object allocation. |
| Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis())); |
| Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod())); |
| // Ignore the cause throw location. TODO: should we report this as a re-throw? |
| ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr))); |
| bool is_exception_reported = IsExceptionReportedToInstrumentation(); |
| ClearException(); |
| Runtime* runtime = Runtime::Current(); |
| |
| mirror::ClassLoader* cl = nullptr; |
| if (saved_throw_method.Get() != nullptr) { |
| cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader(); |
| } |
| Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl)); |
| Handle<mirror::Class> exception_class( |
| hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor, |
| class_loader))); |
| if (UNLIKELY(exception_class.Get() == nullptr)) { |
| CHECK(IsExceptionPending()); |
| LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); |
| return; |
| } |
| |
| if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) { |
| DCHECK(IsExceptionPending()); |
| return; |
| } |
| DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); |
| Handle<mirror::Throwable> exception( |
| hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this)))); |
| |
| // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. |
| if (exception.Get() == nullptr) { |
| ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), |
| throw_location.GetDexPc()); |
| SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); |
| SetExceptionReportedToInstrumentation(is_exception_reported); |
| return; |
| } |
| |
| // Choose an appropriate constructor and set up the arguments. |
| const char* signature; |
| ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); |
| if (msg != nullptr) { |
| // Ensure we remember this and the method over the String allocation. |
| msg_string.reset( |
| soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); |
| if (UNLIKELY(msg_string.get() == nullptr)) { |
| CHECK(IsExceptionPending()); // OOME. |
| return; |
| } |
| if (cause.get() == nullptr) { |
| signature = "(Ljava/lang/String;)V"; |
| } else { |
| signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; |
| } |
| } else { |
| if (cause.get() == nullptr) { |
| signature = "()V"; |
| } else { |
| signature = "(Ljava/lang/Throwable;)V"; |
| } |
| } |
| mirror::ArtMethod* exception_init_method = |
| exception_class->FindDeclaredDirectMethod("<init>", signature); |
| |
| CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " |
| << PrettyDescriptor(exception_class_descriptor); |
| |
| if (UNLIKELY(!runtime->IsStarted())) { |
| // Something is trying to throw an exception without a started runtime, which is the common |
| // case in the compiler. We won't be able to invoke the constructor of the exception, so set |
| // the exception fields directly. |
| if (msg != nullptr) { |
| exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get()))); |
| } |
| if (cause.get() != nullptr) { |
| exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get()))); |
| } |
| ScopedLocalRef<jobject> trace(GetJniEnv(), |
| Runtime::Current()->IsActiveTransaction() |
| ? CreateInternalStackTrace<true>(soa) |
| : CreateInternalStackTrace<false>(soa)); |
| if (trace.get() != nullptr) { |
| exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get()))); |
| } |
| ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), |
| throw_location.GetDexPc()); |
| SetException(gc_safe_throw_location, exception.Get()); |
| SetExceptionReportedToInstrumentation(is_exception_reported); |
| } else { |
| jvalue jv_args[2]; |
| size_t i = 0; |
| |
| if (msg != nullptr) { |
| jv_args[i].l = msg_string.get(); |
| ++i; |
| } |
| if (cause.get() != nullptr) { |
| jv_args[i].l = cause.get(); |
| ++i; |
| } |
| InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args); |
| if (LIKELY(!IsExceptionPending())) { |
| ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), |
| throw_location.GetDexPc()); |
| SetException(gc_safe_throw_location, exception.Get()); |
| SetExceptionReportedToInstrumentation(is_exception_reported); |
| } |
| } |
| } |
| |
| void Thread::ThrowOutOfMemoryError(const char* msg) { |
| LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", |
| msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); |
| ThrowLocation throw_location = GetCurrentLocationForThrow(); |
| if (!tls32_.throwing_OutOfMemoryError) { |
| tls32_.throwing_OutOfMemoryError = true; |
| ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg); |
| tls32_.throwing_OutOfMemoryError = false; |
| } else { |
| Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. |
| SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); |
| } |
| } |
| |
| Thread* Thread::CurrentFromGdb() { |
| return Thread::Current(); |
| } |
| |
| void Thread::DumpFromGdb() const { |
| std::ostringstream ss; |
| Dump(ss); |
| std::string str(ss.str()); |
| // log to stderr for debugging command line processes |
| std::cerr << str; |
| #ifdef HAVE_ANDROID_OS |
| // log to logcat for debugging frameworks processes |
| LOG(INFO) << str; |
| #endif |
| } |
| |
| // Explicitly instantiate 32 and 64bit thread offset dumping support. |
| template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset); |
| template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset); |
| |
| template<size_t ptr_size> |
| void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { |
| #define DO_THREAD_OFFSET(x, y) \ |
| if (offset == x.Uint32Value()) { \ |
| os << y; \ |
| return; \ |
| } |
| DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") |
| DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") |
| DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") |
| DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); |
| DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") |
| DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") |
| DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") |
| DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") |
| DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") |
| DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc") |
| DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") |
| DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") |
| DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") |
| #undef DO_THREAD_OFFSET |
| |
| #define INTERPRETER_ENTRY_POINT_INFO(x) \ |
| if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge) |
| INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge) |
| #undef INTERPRETER_ENTRY_POINT_INFO |
| |
| #define JNI_ENTRY_POINT_INFO(x) \ |
| if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| JNI_ENTRY_POINT_INFO(pDlsymLookup) |
| #undef JNI_ENTRY_POINT_INFO |
| |
| #define PORTABLE_ENTRY_POINT_INFO(x) \ |
| if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline) |
| PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline) |
| PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge) |
| #undef PORTABLE_ENTRY_POINT_INFO |
| |
| #define QUICK_ENTRY_POINT_INFO(x) \ |
| if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ |
| os << #x; \ |
| return; \ |
| } |
| QUICK_ENTRY_POINT_INFO(pAllocArray) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) |
| QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pAllocObject) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) |
| QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray) |
| QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) |
| QUICK_ENTRY_POINT_INFO(pCheckCast) |
| QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) |
| QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) |
| QUICK_ENTRY_POINT_INFO(pInitializeType) |
| QUICK_ENTRY_POINT_INFO(pResolveString) |
| QUICK_ENTRY_POINT_INFO(pSet32Instance) |
| QUICK_ENTRY_POINT_INFO(pSet32Static) |
| QUICK_ENTRY_POINT_INFO(pSet64Instance) |
| QUICK_ENTRY_POINT_INFO(pSet64Static) |
| QUICK_ENTRY_POINT_INFO(pSetObjInstance) |
| QUICK_ENTRY_POINT_INFO(pSetObjStatic) |
| QUICK_ENTRY_POINT_INFO(pGet32Instance) |
| QUICK_ENTRY_POINT_INFO(pGet32Static) |
| QUICK_ENTRY_POINT_INFO(pGet64Instance) |
| QUICK_ENTRY_POINT_INFO(pGet64Static) |
| QUICK_ENTRY_POINT_INFO(pGetObjInstance) |
| QUICK_ENTRY_POINT_INFO(pGetObjStatic) |
| QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck) |
| QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck) |
| QUICK_ENTRY_POINT_INFO(pAputObject) |
| QUICK_ENTRY_POINT_INFO(pHandleFillArrayData) |
| QUICK_ENTRY_POINT_INFO(pJniMethodStart) |
| QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEnd) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) |
| QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) |
| QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) |
| QUICK_ENTRY_POINT_INFO(pLockObject) |
| QUICK_ENTRY_POINT_INFO(pUnlockObject) |
| QUICK_ENTRY_POINT_INFO(pCmpgDouble) |
| QUICK_ENTRY_POINT_INFO(pCmpgFloat) |
| QUICK_ENTRY_POINT_INFO(pCmplDouble) |
| QUICK_ENTRY_POINT_INFO(pCmplFloat) |
| QUICK_ENTRY_POINT_INFO(pFmod) |
| QUICK_ENTRY_POINT_INFO(pL2d) |
| QUICK_ENTRY_POINT_INFO(pFmodf) |
| QUICK_ENTRY_POINT_INFO(pL2f) |
| QUICK_ENTRY_POINT_INFO(pD2iz) |
| QUICK_ENTRY_POINT_INFO(pF2iz) |
| QUICK_ENTRY_POINT_INFO(pIdivmod) |
| QUICK_ENTRY_POINT_INFO(pD2l) |
| QUICK_ENTRY_POINT_INFO(pF2l) |
| QUICK_ENTRY_POINT_INFO(pLdiv) |
| QUICK_ENTRY_POINT_INFO(pLmod) |
| QUICK_ENTRY_POINT_INFO(pLmul) |
| QUICK_ENTRY_POINT_INFO(pShlLong) |
| QUICK_ENTRY_POINT_INFO(pShrLong) |
| QUICK_ENTRY_POINT_INFO(pUshrLong) |
| QUICK_ENTRY_POINT_INFO(pIndexOf) |
| QUICK_ENTRY_POINT_INFO(pStringCompareTo) |
| QUICK_ENTRY_POINT_INFO(pMemcpy) |
| QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) |
| QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) |
| QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) |
| QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) |
| QUICK_ENTRY_POINT_INFO(pTestSuspend) |
| QUICK_ENTRY_POINT_INFO(pDeliverException) |
| QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) |
| QUICK_ENTRY_POINT_INFO(pThrowDivZero) |
| QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod) |
| QUICK_ENTRY_POINT_INFO(pThrowNullPointer) |
| QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) |
| #undef QUICK_ENTRY_POINT_INFO |
| |
| os << offset; |
| } |
| |
| void Thread::QuickDeliverException() { |
| // Get exception from thread. |
| ThrowLocation throw_location; |
| mirror::Throwable* exception = GetException(&throw_location); |
| CHECK(exception != nullptr); |
| // Don't leave exception visible while we try to find the handler, which may cause class |
| // resolution. |
| bool is_exception_reported = IsExceptionReportedToInstrumentation(); |
| ClearException(); |
| bool is_deoptimization = (exception == GetDeoptimizationException()); |
| QuickExceptionHandler exception_handler(this, is_deoptimization); |
| if (is_deoptimization) { |
| exception_handler.DeoptimizeStack(); |
| } else { |
| exception_handler.FindCatch(throw_location, exception, is_exception_reported); |
| } |
| exception_handler.UpdateInstrumentationStack(); |
| exception_handler.DoLongJump(); |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| |
| Context* Thread::GetLongJumpContext() { |
| Context* result = tlsPtr_.long_jump_context; |
| if (result == nullptr) { |
| result = Context::Create(); |
| } else { |
| tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. |
| result->Reset(); |
| } |
| return result; |
| } |
| |
| struct CurrentMethodVisitor FINAL : public StackVisitor { |
| CurrentMethodVisitor(Thread* thread, Context* context) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {} |
| bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| mirror::ArtMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| // Continue if this is a runtime method. |
| return true; |
| } |
| if (context_ != nullptr) { |
| this_object_ = GetThisObject(); |
| } |
| method_ = m; |
| dex_pc_ = GetDexPc(); |
| return false; |
| } |
| mirror::Object* this_object_; |
| mirror::ArtMethod* method_; |
| uint32_t dex_pc_; |
| }; |
| |
| mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const { |
| CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr); |
| visitor.WalkStack(false); |
| if (dex_pc != nullptr) { |
| *dex_pc = visitor.dex_pc_; |
| } |
| return visitor.method_; |
| } |
| |
| ThrowLocation Thread::GetCurrentLocationForThrow() { |
| Context* context = GetLongJumpContext(); |
| CurrentMethodVisitor visitor(this, context); |
| visitor.WalkStack(false); |
| ReleaseLongJumpContext(context); |
| return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_); |
| } |
| |
| bool Thread::HoldsLock(mirror::Object* object) const { |
| if (object == nullptr) { |
| return false; |
| } |
| return object->GetLockOwnerThreadId() == GetThreadId(); |
| } |
| |
| // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). |
| template <typename RootVisitor> |
| class ReferenceMapVisitor : public StackVisitor { |
| public: |
| ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(thread, context), visitor_(visitor) {} |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (false) { |
| LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) |
| << StringPrintf("@ PC:%04x", GetDexPc()); |
| } |
| ShadowFrame* shadow_frame = GetCurrentShadowFrame(); |
| if (shadow_frame != nullptr) { |
| VisitShadowFrame(shadow_frame); |
| } else { |
| VisitQuickFrame(); |
| } |
| return true; |
| } |
| |
| void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress(); |
| visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this); |
| mirror::ArtMethod* m = *method_addr; |
| DCHECK(m != nullptr); |
| size_t num_regs = shadow_frame->NumberOfVRegs(); |
| if (m->IsNative() || shadow_frame->HasReferenceArray()) { |
| // handle scope for JNI or References for interpreter. |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| mirror::Object* ref = shadow_frame->GetVRegReference(reg); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, reg, this); |
| if (new_ref != ref) { |
| shadow_frame->SetVRegReference(reg, new_ref); |
| } |
| } |
| } |
| } else { |
| // Java method. |
| // Portable path use DexGcMap and store in Method.native_gc_map_. |
| const uint8_t* gc_map = m->GetNativeGcMap(); |
| CHECK(gc_map != nullptr) << PrettyMethod(m); |
| verifier::DexPcToReferenceMap dex_gc_map(gc_map); |
| uint32_t dex_pc = shadow_frame->GetDexPC(); |
| const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); |
| DCHECK(reg_bitmap != nullptr); |
| num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| if (TestBitmap(reg, reg_bitmap)) { |
| mirror::Object* ref = shadow_frame->GetVRegReference(reg); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, reg, this); |
| if (new_ref != ref) { |
| shadow_frame->SetVRegReference(reg, new_ref); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); |
| mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr(); |
| mirror::ArtMethod* old_method = m; |
| visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this); |
| if (m != old_method) { |
| cur_quick_frame->Assign(m); |
| } |
| |
| // Process register map (which native and runtime methods don't have) |
| if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { |
| const uint8_t* native_gc_map = m->GetNativeGcMap(); |
| CHECK(native_gc_map != nullptr) << PrettyMethod(m); |
| const DexFile::CodeItem* code_item = m->GetCodeItem(); |
| DCHECK(code_item != nullptr) << PrettyMethod(m); // Can't be nullptr or how would we compile its instructions? |
| NativePcOffsetToReferenceMap map(native_gc_map); |
| size_t num_regs = std::min(map.RegWidth() * 8, |
| static_cast<size_t>(code_item->registers_size_)); |
| if (num_regs > 0) { |
| Runtime* runtime = Runtime::Current(); |
| const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m); |
| uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point); |
| const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); |
| DCHECK(reg_bitmap != nullptr); |
| const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point); |
| const VmapTable vmap_table(m->GetVmapTable(code_pointer)); |
| QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer); |
| // For all dex registers in the bitmap |
| StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); |
| DCHECK(cur_quick_frame != nullptr); |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| // Does this register hold a reference? |
| if (TestBitmap(reg, reg_bitmap)) { |
| uint32_t vmap_offset; |
| if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { |
| int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset, |
| kReferenceVReg); |
| // This is sound as spilled GPRs will be word sized (ie 32 or 64bit). |
| mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg)); |
| if (*ref_addr != nullptr) { |
| visitor_(ref_addr, reg, this); |
| } |
| } else { |
| StackReference<mirror::Object>* ref_addr = |
| reinterpret_cast<StackReference<mirror::Object>*>( |
| GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(), |
| frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg)); |
| mirror::Object* ref = ref_addr->AsMirrorPtr(); |
| if (ref != nullptr) { |
| mirror::Object* new_ref = ref; |
| visitor_(&new_ref, reg, this); |
| if (ref != new_ref) { |
| ref_addr->Assign(new_ref); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static bool TestBitmap(size_t reg, const uint8_t* reg_vector) { |
| return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0; |
| } |
| |
| // Visitor for when we visit a root. |
| const RootVisitor& visitor_; |
| }; |
| |
| class RootCallbackVisitor { |
| public: |
| RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid) |
| : callback_(callback), arg_(arg), tid_(tid) {} |
| |
| void operator()(mirror::Object** obj, size_t, const StackVisitor*) const { |
| callback_(obj, arg_, tid_, kRootJavaFrame); |
| } |
| |
| private: |
| RootCallback* const callback_; |
| void* const arg_; |
| const uint32_t tid_; |
| }; |
| |
| void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) { |
| VerifyObject(class_loader_override); |
| tlsPtr_.class_loader_override = class_loader_override; |
| } |
| |
| void Thread::VisitRoots(RootCallback* visitor, void* arg) { |
| uint32_t thread_id = GetThreadId(); |
| if (tlsPtr_.opeer != nullptr) { |
| visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject); |
| } |
| if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { |
| visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack); |
| } |
| tlsPtr_.throw_location.VisitRoots(visitor, arg); |
| if (tlsPtr_.class_loader_override != nullptr) { |
| visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id, |
| kRootNativeStack); |
| } |
| if (tlsPtr_.monitor_enter_object != nullptr) { |
| visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack); |
| } |
| tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal); |
| tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor); |
| HandleScopeVisitRoots(visitor, arg, thread_id); |
| if (tlsPtr_.debug_invoke_req != nullptr) { |
| tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger); |
| } |
| if (tlsPtr_.single_step_control != nullptr) { |
| tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger); |
| } |
| if (tlsPtr_.deoptimization_shadow_frame != nullptr) { |
| RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback); |
| for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr; |
| shadow_frame = shadow_frame->GetLink()) { |
| mapper.VisitShadowFrame(shadow_frame); |
| } |
| } |
| if (tlsPtr_.shadow_frame_under_construction != nullptr) { |
| RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback); |
| for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction; |
| shadow_frame != nullptr; |
| shadow_frame = shadow_frame->GetLink()) { |
| mapper.VisitShadowFrame(shadow_frame); |
| } |
| } |
| // Visit roots on this thread's stack |
| Context* context = GetLongJumpContext(); |
| RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); |
| ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback); |
| mapper.WalkStack(); |
| ReleaseLongJumpContext(context); |
| for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { |
| if (frame.this_object_ != nullptr) { |
| visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame); |
| } |
| DCHECK(frame.method_ != nullptr); |
| visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame); |
| } |
| } |
| |
| static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/, |
| RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| VerifyObject(*root); |
| } |
| |
| void Thread::VerifyStackImpl() { |
| std::unique_ptr<Context> context(Context::Create()); |
| RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId()); |
| ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback); |
| mapper.WalkStack(); |
| } |
| |
| // Set the stack end to that to be used during a stack overflow |
| void Thread::SetStackEndForStackOverflow() { |
| // During stack overflow we allow use of the full stack. |
| if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { |
| // However, we seem to have already extended to use the full stack. |
| LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " |
| << kRuntimeStackOverflowReservedBytes << ")?"; |
| DumpStack(LOG(ERROR)); |
| LOG(FATAL) << "Recursive stack overflow."; |
| } |
| |
| tlsPtr_.stack_end = tlsPtr_.stack_begin; |
| } |
| |
| void Thread::SetTlab(byte* start, byte* end) { |
| DCHECK_LE(start, end); |
| tlsPtr_.thread_local_start = start; |
| tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; |
| tlsPtr_.thread_local_end = end; |
| tlsPtr_.thread_local_objects = 0; |
| } |
| |
| bool Thread::HasTlab() const { |
| bool has_tlab = tlsPtr_.thread_local_pos != nullptr; |
| if (has_tlab) { |
| DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); |
| } else { |
| DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); |
| } |
| return has_tlab; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const Thread& thread) { |
| thread.ShortDump(os); |
| return os; |
| } |
| |
| } // namespace art |