| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_ |
| #define ART_RUNTIME_BASE_HISTOGRAM_INL_H_ |
| |
| #include "histogram.h" |
| |
| #include "utils.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <ostream> |
| |
| namespace art { |
| |
| template <class Value> inline void Histogram<Value>::AddValue(Value value) { |
| CHECK_GE(value, 0.0); |
| if (value >= max_) { |
| Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_; |
| DCHECK_GT(new_max, max_); |
| GrowBuckets(new_max); |
| } |
| |
| BucketiseValue(value); |
| new_values_added_ = true; |
| } |
| |
| template <class Value> |
| inline Histogram<Value>::Histogram(const std::string name) |
| : kAdjust(1000), |
| kBucketWidth(5), |
| kInitialBucketCount(10), |
| bucket_width_(kBucketWidth), |
| bucket_count_(kInitialBucketCount) { |
| name_ = name; |
| Reset(); |
| } |
| |
| template <class Value> |
| inline void Histogram<Value>::GrowBuckets(Value new_max) { |
| while (max_ < new_max) { |
| max_ += bucket_width_; |
| ranges_.push_back(max_); |
| frequency_.push_back(0); |
| bucket_count_++; |
| } |
| } |
| |
| template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) { |
| // Since this is only a linear histogram, bucket index can be found simply with |
| // dividing the value by the bucket width. |
| DCHECK_GE(val, min_); |
| DCHECK_LE(val, max_); |
| size_t bucket_idx = static_cast<size_t>(static_cast<double>(val - min_) / bucket_width_); |
| DCHECK_GE(bucket_idx, 0ul); |
| DCHECK_LE(bucket_idx, bucket_count_); |
| return bucket_idx; |
| } |
| |
| template <class Value> |
| inline void Histogram<Value>::BucketiseValue(Value value) { |
| CHECK_LT(value, max_); |
| sum_ += value; |
| sum_of_squares_ += value * value; |
| size_t bucket_idx = FindBucket(value); |
| sample_size_++; |
| if (value > max_value_added_) { |
| max_value_added_ = value; |
| } |
| if (value < min_value_added_) { |
| min_value_added_ = value; |
| } |
| frequency_[bucket_idx]++; |
| } |
| |
| template <class Value> inline void Histogram<Value>::Initialize() { |
| DCHECK_GT(bucket_count_, 0ul); |
| size_t idx = 0; |
| for (; idx < bucket_count_; idx++) { |
| ranges_.push_back(min_ + static_cast<Value>(idx) * (bucket_width_)); |
| frequency_.push_back(0); |
| } |
| // Cumulative frequency and ranges has a length of 1 over frequency. |
| ranges_.push_back(min_ + idx * bucket_width_); |
| max_ = bucket_width_ * bucket_count_; |
| } |
| |
| template <class Value> inline void Histogram<Value>::Reset() { |
| bucket_width_ = kBucketWidth; |
| bucket_count_ = kInitialBucketCount; |
| max_ = bucket_width_ * bucket_count_; |
| sum_of_squares_ = 0; |
| sample_size_ = 0; |
| min_ = 0; |
| sum_ = 0; |
| min_value_added_ = std::numeric_limits<Value>::max(); |
| max_value_added_ = std::numeric_limits<Value>::min(); |
| new_values_added_ = false; |
| ranges_.clear(); |
| frequency_.clear(); |
| cumulative_freq_.clear(); |
| cumulative_perc_.clear(); |
| Initialize(); |
| } |
| |
| template <class Value> inline void Histogram<Value>::BuildRanges() { |
| for (size_t idx = 0; idx < bucket_count_; ++idx) { |
| ranges_.push_back(min_ + idx * bucket_width_); |
| } |
| } |
| |
| template <class Value> inline double Histogram<Value>::Mean() const { |
| DCHECK_GT(sample_size_, 0ull); |
| return static_cast<double>(sum_) / static_cast<double>(sample_size_); |
| } |
| |
| template <class Value> inline double Histogram<Value>::Variance() const { |
| DCHECK_GT(sample_size_, 0ull); |
| // Using algorithms for calculating variance over a population: |
| // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance |
| Value sum_squared = sum_ * sum_; |
| double sum_squared_by_n_squared = |
| static_cast<double>(sum_squared) / |
| static_cast<double>(sample_size_ * sample_size_); |
| double sum_of_squares_by_n = |
| static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_); |
| return sum_of_squares_by_n - sum_squared_by_n_squared; |
| } |
| |
| template <class Value> |
| inline void Histogram<Value>::PrintBins(std::ostream &os) { |
| DCHECK_GT(sample_size_, 0ull); |
| DCHECK(!new_values_added_); |
| size_t bin_idx = 0; |
| while (bin_idx < cumulative_freq_.size()) { |
| if (bin_idx > 0 && |
| cumulative_perc_[bin_idx] == cumulative_perc_[bin_idx - 1]) { |
| bin_idx++; |
| continue; |
| } |
| os << ranges_[bin_idx] << ": " << cumulative_freq_[bin_idx] << "\t" |
| << cumulative_perc_[bin_idx] * 100.0 << "%\n"; |
| bin_idx++; |
| } |
| } |
| |
| template <class Value> |
| inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, |
| double interval) const { |
| DCHECK_GT(interval, 0); |
| DCHECK_LT(interval, 1.0); |
| |
| double per_0 = (1.0 - interval) / 2.0; |
| double per_1 = per_0 + interval; |
| os << Name() << ":\t"; |
| TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust); |
| os << (interval * 100) << "% C.I. " |
| << FormatDuration(Percentile(per_0) * kAdjust, unit); |
| os << "-" << FormatDuration(Percentile(per_1) * kAdjust, unit) << " "; |
| os << "Avg: " << FormatDuration(Mean() * kAdjust, unit) << " Max: "; |
| os << FormatDuration(Max() * kAdjust, unit) << "\n"; |
| } |
| |
| template <class Value> inline void Histogram<Value>::BuildCDF() { |
| DCHECK_EQ(cumulative_freq_.size(), 0ull); |
| DCHECK_EQ(cumulative_perc_.size(), 0ull); |
| uint64_t accumulated = 0; |
| |
| cumulative_freq_.push_back(accumulated); |
| cumulative_perc_.push_back(0.0); |
| for (size_t idx = 0; idx < frequency_.size(); idx++) { |
| accumulated += frequency_[idx]; |
| cumulative_freq_.push_back(accumulated); |
| cumulative_perc_.push_back(static_cast<double>(accumulated) / |
| static_cast<double>(sample_size_)); |
| } |
| DCHECK_EQ(*(cumulative_freq_.end() - 1), sample_size_); |
| DCHECK_EQ(*(cumulative_perc_.end() - 1), 1.0); |
| } |
| |
| template <class Value> inline void Histogram<Value>::CreateHistogram() { |
| DCHECK_GT(sample_size_, 0ull); |
| |
| // Create a histogram only if new values are added. |
| if (!new_values_added_) |
| return; |
| |
| // Reset cumulative values in case this is not the first time creating histogram. |
| cumulative_freq_.clear(); |
| cumulative_perc_.clear(); |
| BuildCDF(); |
| new_values_added_ = false; |
| } |
| |
| template <class Value> |
| inline double Histogram<Value>::Percentile(double per) const { |
| DCHECK_GT(cumulative_perc_.size(), 0ull); |
| size_t idx, upper_idx = 0, lower_idx = 0; |
| for (idx = 0; idx < cumulative_perc_.size(); idx++) { |
| if (per <= cumulative_perc_[idx]) { |
| upper_idx = idx; |
| break; |
| } |
| |
| if (per >= cumulative_perc_[idx] && idx != 0 && |
| cumulative_perc_[idx] != cumulative_perc_[idx - 1]) { |
| lower_idx = idx; |
| } |
| } |
| |
| double upper_value = static_cast<double>(ranges_[upper_idx]); |
| double lower_value = static_cast<double>(ranges_[lower_idx]); |
| |
| double lower_perc = cumulative_perc_[lower_idx]; |
| double upper_perc = cumulative_perc_[upper_idx]; |
| |
| if (per == lower_perc) { |
| return lower_value; |
| } |
| if (per == upper_perc) { |
| return upper_value; |
| } |
| DCHECK_GT(upper_perc, lower_perc); |
| |
| double value = lower_value + (upper_value - lower_value) * |
| (per - lower_perc) / (upper_perc - lower_perc); |
| |
| if (value < min_value_added_) { |
| value = min_value_added_; |
| } else if (value > max_value_added_) { |
| value = max_value_added_; |
| } |
| |
| return value; |
| } |
| |
| } // namespace art |
| #endif // ART_RUNTIME_BASE_HISTOGRAM_INL_H_ |
| |