blob: 1a63cf477fa408a246895ee1b963cc27ca7f7965 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
#define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
#include "histogram.h"
#include "utils.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <ostream>
namespace art {
template <class Value> inline void Histogram<Value>::AddValue(Value value) {
CHECK_GE(value, 0.0);
if (value >= max_) {
Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
DCHECK_GT(new_max, max_);
GrowBuckets(new_max);
}
BucketiseValue(value);
new_values_added_ = true;
}
template <class Value>
inline Histogram<Value>::Histogram(const std::string name)
: kAdjust(1000),
kBucketWidth(5),
kInitialBucketCount(10),
bucket_width_(kBucketWidth),
bucket_count_(kInitialBucketCount) {
name_ = name;
Reset();
}
template <class Value>
inline void Histogram<Value>::GrowBuckets(Value new_max) {
while (max_ < new_max) {
max_ += bucket_width_;
ranges_.push_back(max_);
frequency_.push_back(0);
bucket_count_++;
}
}
template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) {
// Since this is only a linear histogram, bucket index can be found simply with
// dividing the value by the bucket width.
DCHECK_GE(val, min_);
DCHECK_LE(val, max_);
size_t bucket_idx = static_cast<size_t>(static_cast<double>(val - min_) / bucket_width_);
DCHECK_GE(bucket_idx, 0ul);
DCHECK_LE(bucket_idx, bucket_count_);
return bucket_idx;
}
template <class Value>
inline void Histogram<Value>::BucketiseValue(Value value) {
CHECK_LT(value, max_);
sum_ += value;
sum_of_squares_ += value * value;
size_t bucket_idx = FindBucket(value);
sample_size_++;
if (value > max_value_added_) {
max_value_added_ = value;
}
if (value < min_value_added_) {
min_value_added_ = value;
}
frequency_[bucket_idx]++;
}
template <class Value> inline void Histogram<Value>::Initialize() {
DCHECK_GT(bucket_count_, 0ul);
size_t idx = 0;
for (; idx < bucket_count_; idx++) {
ranges_.push_back(min_ + static_cast<Value>(idx) * (bucket_width_));
frequency_.push_back(0);
}
// Cumulative frequency and ranges has a length of 1 over frequency.
ranges_.push_back(min_ + idx * bucket_width_);
max_ = bucket_width_ * bucket_count_;
}
template <class Value> inline void Histogram<Value>::Reset() {
bucket_width_ = kBucketWidth;
bucket_count_ = kInitialBucketCount;
max_ = bucket_width_ * bucket_count_;
sum_of_squares_ = 0;
sample_size_ = 0;
min_ = 0;
sum_ = 0;
min_value_added_ = std::numeric_limits<Value>::max();
max_value_added_ = std::numeric_limits<Value>::min();
new_values_added_ = false;
ranges_.clear();
frequency_.clear();
cumulative_freq_.clear();
cumulative_perc_.clear();
Initialize();
}
template <class Value> inline void Histogram<Value>::BuildRanges() {
for (size_t idx = 0; idx < bucket_count_; ++idx) {
ranges_.push_back(min_ + idx * bucket_width_);
}
}
template <class Value> inline double Histogram<Value>::Mean() const {
DCHECK_GT(sample_size_, 0ull);
return static_cast<double>(sum_) / static_cast<double>(sample_size_);
}
template <class Value> inline double Histogram<Value>::Variance() const {
DCHECK_GT(sample_size_, 0ull);
// Using algorithms for calculating variance over a population:
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
Value sum_squared = sum_ * sum_;
double sum_squared_by_n_squared =
static_cast<double>(sum_squared) /
static_cast<double>(sample_size_ * sample_size_);
double sum_of_squares_by_n =
static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
return sum_of_squares_by_n - sum_squared_by_n_squared;
}
template <class Value>
inline void Histogram<Value>::PrintBins(std::ostream &os) {
DCHECK_GT(sample_size_, 0ull);
DCHECK(!new_values_added_);
size_t bin_idx = 0;
while (bin_idx < cumulative_freq_.size()) {
if (bin_idx > 0 &&
cumulative_perc_[bin_idx] == cumulative_perc_[bin_idx - 1]) {
bin_idx++;
continue;
}
os << ranges_[bin_idx] << ": " << cumulative_freq_[bin_idx] << "\t"
<< cumulative_perc_[bin_idx] * 100.0 << "%\n";
bin_idx++;
}
}
template <class Value>
inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os,
double interval) const {
DCHECK_GT(interval, 0);
DCHECK_LT(interval, 1.0);
double per_0 = (1.0 - interval) / 2.0;
double per_1 = per_0 + interval;
os << Name() << ":\t";
TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
os << (interval * 100) << "% C.I. "
<< FormatDuration(Percentile(per_0) * kAdjust, unit);
os << "-" << FormatDuration(Percentile(per_1) * kAdjust, unit) << " ";
os << "Avg: " << FormatDuration(Mean() * kAdjust, unit) << " Max: ";
os << FormatDuration(Max() * kAdjust, unit) << "\n";
}
template <class Value> inline void Histogram<Value>::BuildCDF() {
DCHECK_EQ(cumulative_freq_.size(), 0ull);
DCHECK_EQ(cumulative_perc_.size(), 0ull);
uint64_t accumulated = 0;
cumulative_freq_.push_back(accumulated);
cumulative_perc_.push_back(0.0);
for (size_t idx = 0; idx < frequency_.size(); idx++) {
accumulated += frequency_[idx];
cumulative_freq_.push_back(accumulated);
cumulative_perc_.push_back(static_cast<double>(accumulated) /
static_cast<double>(sample_size_));
}
DCHECK_EQ(*(cumulative_freq_.end() - 1), sample_size_);
DCHECK_EQ(*(cumulative_perc_.end() - 1), 1.0);
}
template <class Value> inline void Histogram<Value>::CreateHistogram() {
DCHECK_GT(sample_size_, 0ull);
// Create a histogram only if new values are added.
if (!new_values_added_)
return;
// Reset cumulative values in case this is not the first time creating histogram.
cumulative_freq_.clear();
cumulative_perc_.clear();
BuildCDF();
new_values_added_ = false;
}
template <class Value>
inline double Histogram<Value>::Percentile(double per) const {
DCHECK_GT(cumulative_perc_.size(), 0ull);
size_t idx, upper_idx = 0, lower_idx = 0;
for (idx = 0; idx < cumulative_perc_.size(); idx++) {
if (per <= cumulative_perc_[idx]) {
upper_idx = idx;
break;
}
if (per >= cumulative_perc_[idx] && idx != 0 &&
cumulative_perc_[idx] != cumulative_perc_[idx - 1]) {
lower_idx = idx;
}
}
double upper_value = static_cast<double>(ranges_[upper_idx]);
double lower_value = static_cast<double>(ranges_[lower_idx]);
double lower_perc = cumulative_perc_[lower_idx];
double upper_perc = cumulative_perc_[upper_idx];
if (per == lower_perc) {
return lower_value;
}
if (per == upper_perc) {
return upper_value;
}
DCHECK_GT(upper_perc, lower_perc);
double value = lower_value + (upper_value - lower_value) *
(per - lower_perc) / (upper_perc - lower_perc);
if (value < min_value_added_) {
value = min_value_added_;
} else if (value > max_value_added_) {
value = max_value_added_;
}
return value;
}
} // namespace art
#endif // ART_RUNTIME_BASE_HISTOGRAM_INL_H_