| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <functional> |
| |
| #include "arch/instruction_set.h" |
| #include "arch/arm/instruction_set_features_arm.h" |
| #include "arch/arm/registers_arm.h" |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "arch/mips/instruction_set_features_mips.h" |
| #include "arch/mips/registers_mips.h" |
| #include "arch/mips64/instruction_set_features_mips64.h" |
| #include "arch/mips64/registers_mips64.h" |
| #include "arch/x86/instruction_set_features_x86.h" |
| #include "arch/x86/registers_x86.h" |
| #include "arch/x86_64/instruction_set_features_x86_64.h" |
| #include "base/macros.h" |
| #include "builder.h" |
| #include "code_generator_arm.h" |
| #include "code_generator_arm64.h" |
| #include "code_generator_mips.h" |
| #include "code_generator_mips64.h" |
| #include "code_generator_x86.h" |
| #include "code_generator_x86_64.h" |
| #include "code_simulator_container.h" |
| #include "common_compiler_test.h" |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "driver/compiler_options.h" |
| #include "nodes.h" |
| #include "optimizing_unit_test.h" |
| #include "prepare_for_register_allocation.h" |
| #include "register_allocator.h" |
| #include "ssa_liveness_analysis.h" |
| #include "utils.h" |
| #include "utils/arm/managed_register_arm.h" |
| #include "utils/mips/managed_register_mips.h" |
| #include "utils/mips64/managed_register_mips64.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace art { |
| |
| // Provide our own codegen, that ensures the C calling conventions |
| // are preserved. Currently, ART and C do not match as R4 is caller-save |
| // in ART, and callee-save in C. Alternatively, we could use or write |
| // the stub that saves and restores all registers, but it is easier |
| // to just overwrite the code generator. |
| class TestCodeGeneratorARM : public arm::CodeGeneratorARM { |
| public: |
| TestCodeGeneratorARM(HGraph* graph, |
| const ArmInstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options) |
| : arm::CodeGeneratorARM(graph, isa_features, compiler_options) { |
| AddAllocatedRegister(Location::RegisterLocation(arm::R6)); |
| AddAllocatedRegister(Location::RegisterLocation(arm::R7)); |
| } |
| |
| void SetupBlockedRegisters(bool is_baseline) const OVERRIDE { |
| arm::CodeGeneratorARM::SetupBlockedRegisters(is_baseline); |
| blocked_core_registers_[arm::R4] = true; |
| blocked_core_registers_[arm::R6] = false; |
| blocked_core_registers_[arm::R7] = false; |
| // Makes pair R6-R7 available. |
| blocked_register_pairs_[arm::R6_R7] = false; |
| } |
| }; |
| |
| class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 { |
| public: |
| TestCodeGeneratorX86(HGraph* graph, |
| const X86InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options) |
| : x86::CodeGeneratorX86(graph, isa_features, compiler_options) { |
| // Save edi, we need it for getting enough registers for long multiplication. |
| AddAllocatedRegister(Location::RegisterLocation(x86::EDI)); |
| } |
| |
| void SetupBlockedRegisters(bool is_baseline) const OVERRIDE { |
| x86::CodeGeneratorX86::SetupBlockedRegisters(is_baseline); |
| // ebx is a callee-save register in C, but caller-save for ART. |
| blocked_core_registers_[x86::EBX] = true; |
| blocked_register_pairs_[x86::EAX_EBX] = true; |
| blocked_register_pairs_[x86::EDX_EBX] = true; |
| blocked_register_pairs_[x86::ECX_EBX] = true; |
| blocked_register_pairs_[x86::EBX_EDI] = true; |
| |
| // Make edi available. |
| blocked_core_registers_[x86::EDI] = false; |
| blocked_register_pairs_[x86::ECX_EDI] = false; |
| } |
| }; |
| |
| class InternalCodeAllocator : public CodeAllocator { |
| public: |
| InternalCodeAllocator() : size_(0) { } |
| |
| virtual uint8_t* Allocate(size_t size) { |
| size_ = size; |
| memory_.reset(new uint8_t[size]); |
| return memory_.get(); |
| } |
| |
| size_t GetSize() const { return size_; } |
| uint8_t* GetMemory() const { return memory_.get(); } |
| |
| private: |
| size_t size_; |
| std::unique_ptr<uint8_t[]> memory_; |
| |
| DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); |
| }; |
| |
| static bool CanExecuteOnHardware(InstructionSet target_isa) { |
| return (target_isa == kRuntimeISA) |
| // Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2). |
| || (kRuntimeISA == kArm && target_isa == kThumb2); |
| } |
| |
| static bool CanExecute(InstructionSet target_isa) { |
| CodeSimulatorContainer simulator(target_isa); |
| return CanExecuteOnHardware(target_isa) || simulator.CanSimulate(); |
| } |
| |
| template <typename Expected> |
| static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)()); |
| |
| template <> |
| bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) { |
| simulator->RunFrom(reinterpret_cast<intptr_t>(f)); |
| return simulator->GetCReturnBool(); |
| } |
| |
| template <> |
| int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) { |
| simulator->RunFrom(reinterpret_cast<intptr_t>(f)); |
| return simulator->GetCReturnInt32(); |
| } |
| |
| template <> |
| int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) { |
| simulator->RunFrom(reinterpret_cast<intptr_t>(f)); |
| return simulator->GetCReturnInt64(); |
| } |
| |
| template <typename Expected> |
| static void VerifyGeneratedCode(InstructionSet target_isa, |
| Expected (*f)(), |
| bool has_result, |
| Expected expected) { |
| ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable."; |
| |
| // Verify on simulator. |
| CodeSimulatorContainer simulator(target_isa); |
| if (simulator.CanSimulate()) { |
| Expected result = SimulatorExecute<Expected>(simulator.Get(), f); |
| if (has_result) { |
| ASSERT_EQ(expected, result); |
| } |
| } |
| |
| // Verify on hardware. |
| if (CanExecuteOnHardware(target_isa)) { |
| Expected result = f(); |
| if (has_result) { |
| ASSERT_EQ(expected, result); |
| } |
| } |
| } |
| |
| template <typename Expected> |
| static void Run(const InternalCodeAllocator& allocator, |
| const CodeGenerator& codegen, |
| bool has_result, |
| Expected expected) { |
| InstructionSet target_isa = codegen.GetInstructionSet(); |
| |
| typedef Expected (*fptr)(); |
| CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); |
| fptr f = reinterpret_cast<fptr>(allocator.GetMemory()); |
| if (target_isa == kThumb2) { |
| // For thumb we need the bottom bit set. |
| f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1); |
| } |
| VerifyGeneratedCode(target_isa, f, has_result, expected); |
| } |
| |
| template <typename Expected> |
| static void RunCodeBaseline(InstructionSet target_isa, |
| HGraph* graph, |
| bool has_result, |
| Expected expected) { |
| InternalCodeAllocator allocator; |
| |
| CompilerOptions compiler_options; |
| std::unique_ptr<const X86InstructionSetFeatures> features_x86( |
| X86InstructionSetFeatures::FromCppDefines()); |
| TestCodeGeneratorX86 codegenX86(graph, *features_x86.get(), compiler_options); |
| // We avoid doing a stack overflow check that requires the runtime being setup, |
| // by making sure the compiler knows the methods we are running are leaf methods. |
| codegenX86.CompileBaseline(&allocator, true); |
| if (target_isa == kX86) { |
| Run(allocator, codegenX86, has_result, expected); |
| } |
| |
| std::unique_ptr<const ArmInstructionSetFeatures> features_arm( |
| ArmInstructionSetFeatures::FromCppDefines()); |
| TestCodeGeneratorARM codegenARM(graph, *features_arm.get(), compiler_options); |
| codegenARM.CompileBaseline(&allocator, true); |
| if (target_isa == kArm || target_isa == kThumb2) { |
| Run(allocator, codegenARM, has_result, expected); |
| } |
| |
| std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64( |
| X86_64InstructionSetFeatures::FromCppDefines()); |
| x86_64::CodeGeneratorX86_64 codegenX86_64(graph, *features_x86_64.get(), compiler_options); |
| codegenX86_64.CompileBaseline(&allocator, true); |
| if (target_isa == kX86_64) { |
| Run(allocator, codegenX86_64, has_result, expected); |
| } |
| |
| std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64( |
| Arm64InstructionSetFeatures::FromCppDefines()); |
| arm64::CodeGeneratorARM64 codegenARM64(graph, *features_arm64.get(), compiler_options); |
| codegenARM64.CompileBaseline(&allocator, true); |
| if (target_isa == kArm64) { |
| Run(allocator, codegenARM64, has_result, expected); |
| } |
| |
| std::unique_ptr<const MipsInstructionSetFeatures> features_mips( |
| MipsInstructionSetFeatures::FromCppDefines()); |
| mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), compiler_options); |
| codegenMIPS.CompileBaseline(&allocator, true); |
| if (kRuntimeISA == kMips) { |
| Run(allocator, codegenMIPS, has_result, expected); |
| } |
| |
| std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64( |
| Mips64InstructionSetFeatures::FromCppDefines()); |
| mips64::CodeGeneratorMIPS64 codegenMIPS64(graph, *features_mips64.get(), compiler_options); |
| codegenMIPS64.CompileBaseline(&allocator, true); |
| if (target_isa == kMips64) { |
| Run(allocator, codegenMIPS64, has_result, expected); |
| } |
| } |
| |
| template <typename Expected> |
| static void RunCodeOptimized(CodeGenerator* codegen, |
| HGraph* graph, |
| std::function<void(HGraph*)> hook_before_codegen, |
| bool has_result, |
| Expected expected) { |
| // Tests may have already computed it. |
| if (graph->GetReversePostOrder().empty()) { |
| graph->BuildDominatorTree(); |
| } |
| SsaLivenessAnalysis liveness(graph, codegen); |
| liveness.Analyze(); |
| |
| RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness); |
| register_allocator.AllocateRegisters(); |
| hook_before_codegen(graph); |
| |
| InternalCodeAllocator allocator; |
| codegen->CompileOptimized(&allocator); |
| Run(allocator, *codegen, has_result, expected); |
| } |
| |
| template <typename Expected> |
| static void RunCodeOptimized(InstructionSet target_isa, |
| HGraph* graph, |
| std::function<void(HGraph*)> hook_before_codegen, |
| bool has_result, |
| Expected expected) { |
| CompilerOptions compiler_options; |
| if (target_isa == kArm || target_isa == kThumb2) { |
| std::unique_ptr<const ArmInstructionSetFeatures> features_arm( |
| ArmInstructionSetFeatures::FromCppDefines()); |
| TestCodeGeneratorARM codegenARM(graph, *features_arm.get(), compiler_options); |
| RunCodeOptimized(&codegenARM, graph, hook_before_codegen, has_result, expected); |
| } else if (target_isa == kArm64) { |
| std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64( |
| Arm64InstructionSetFeatures::FromCppDefines()); |
| arm64::CodeGeneratorARM64 codegenARM64(graph, *features_arm64.get(), compiler_options); |
| RunCodeOptimized(&codegenARM64, graph, hook_before_codegen, has_result, expected); |
| } else if (target_isa == kX86) { |
| std::unique_ptr<const X86InstructionSetFeatures> features_x86( |
| X86InstructionSetFeatures::FromCppDefines()); |
| x86::CodeGeneratorX86 codegenX86(graph, *features_x86.get(), compiler_options); |
| RunCodeOptimized(&codegenX86, graph, hook_before_codegen, has_result, expected); |
| } else if (target_isa == kX86_64) { |
| std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64( |
| X86_64InstructionSetFeatures::FromCppDefines()); |
| x86_64::CodeGeneratorX86_64 codegenX86_64(graph, *features_x86_64.get(), compiler_options); |
| RunCodeOptimized(&codegenX86_64, graph, hook_before_codegen, has_result, expected); |
| } else if (target_isa == kMips) { |
| std::unique_ptr<const MipsInstructionSetFeatures> features_mips( |
| MipsInstructionSetFeatures::FromCppDefines()); |
| mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), compiler_options); |
| RunCodeOptimized(&codegenMIPS, graph, hook_before_codegen, has_result, expected); |
| } else if (target_isa == kMips64) { |
| std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64( |
| Mips64InstructionSetFeatures::FromCppDefines()); |
| mips64::CodeGeneratorMIPS64 codegenMIPS64(graph, *features_mips64.get(), compiler_options); |
| RunCodeOptimized(&codegenMIPS64, graph, hook_before_codegen, has_result, expected); |
| } |
| } |
| |
| static void TestCode(InstructionSet target_isa, |
| const uint16_t* data, |
| bool has_result = false, |
| int32_t expected = 0) { |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| HGraph* graph = CreateGraph(&arena); |
| HGraphBuilder builder(graph); |
| const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data); |
| bool graph_built = builder.BuildGraph(*item); |
| ASSERT_TRUE(graph_built); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| RunCodeBaseline(target_isa, graph, has_result, expected); |
| } |
| |
| static void TestCodeLong(InstructionSet target_isa, |
| const uint16_t* data, |
| bool has_result, |
| int64_t expected) { |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| HGraph* graph = CreateGraph(&arena); |
| HGraphBuilder builder(graph, Primitive::kPrimLong); |
| const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data); |
| bool graph_built = builder.BuildGraph(*item); |
| ASSERT_TRUE(graph_built); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| RunCodeBaseline(target_isa, graph, has_result, expected); |
| } |
| |
| class CodegenTest: public ::testing::TestWithParam<InstructionSet> {}; |
| |
| TEST_P(CodegenTest, ReturnVoid) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, CFG1) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, CFG2) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, CFG3) { |
| const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x200, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0xFF00); |
| |
| TestCode(GetParam(), data1); |
| |
| const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_16, 3, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_16, 0xFFFF); |
| |
| TestCode(GetParam(), data2); |
| |
| const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_32, 4, 0, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_32, 0xFFFF, 0xFFFF); |
| |
| TestCode(GetParam(), data3); |
| } |
| |
| TEST_P(CodegenTest, CFG4) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0xFE00); |
| |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, CFG5) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::IF_EQ, 3, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, IntConstant) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN_VOID); |
| |
| TestCode(GetParam(), data); |
| } |
| |
| TEST_P(CodegenTest, Return1) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN | 0); |
| |
| TestCode(GetParam(), data, true, 0); |
| } |
| |
| TEST_P(CodegenTest, Return2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 0 | 1 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(GetParam(), data, true, 0); |
| } |
| |
| TEST_P(CodegenTest, Return3) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(GetParam(), data, true, 1); |
| } |
| |
| TEST_P(CodegenTest, ReturnIf1) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(GetParam(), data, true, 1); |
| } |
| |
| TEST_P(CodegenTest, ReturnIf2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(GetParam(), data, true, 0); |
| } |
| |
| // Exercise bit-wise (one's complement) not-int instruction. |
| #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST_P(CodegenTest, TEST_NAME) { \ |
| const int32_t input = INPUT; \ |
| const uint16_t input_lo = Low16Bits(input); \ |
| const uint16_t input_hi = High16Bits(input); \ |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST | 0 << 8, input_lo, input_hi, \ |
| Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ |
| Instruction::RETURN | 1 << 8); \ |
| \ |
| TestCode(GetParam(), data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) |
| NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) |
| NOT_INT_TEST(ReturnNotInt0, 0, -1) |
| NOT_INT_TEST(ReturnNotInt1, 1, -2) |
| NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 |
| NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) |
| |
| #undef NOT_INT_TEST |
| |
| // Exercise bit-wise (one's complement) not-long instruction. |
| #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST_P(CodegenTest, TEST_NAME) { \ |
| const int64_t input = INPUT; \ |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ |
| const uint16_t word1 = High16Bits(Low32Bits(input)); \ |
| const uint16_t word2 = Low16Bits(High32Bits(input)); \ |
| const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ |
| const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ |
| Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ |
| Instruction::RETURN_WIDE | 2 << 8); \ |
| \ |
| TestCodeLong(GetParam(), data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) |
| NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) |
| NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) |
| NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) |
| |
| NOT_LONG_TEST(ReturnNotLongINT32_MIN, |
| INT64_C(-2147483648), |
| INT64_C(2147483647)) // (2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, |
| INT64_C(-2147483647), |
| INT64_C(2147483646)) // (2^31) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, |
| INT64_C(2147483646), |
| INT64_C(-2147483647)) // -(2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAX, |
| INT64_C(2147483647), |
| INT64_C(-2147483648)) // -(2^31) |
| |
| // Note that the C++ compiler won't accept |
| // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid |
| // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. |
| NOT_LONG_TEST(ReturnNotINT64_MIN, |
| INT64_C(-9223372036854775807)-1, |
| INT64_C(9223372036854775807)); // (2^63) - 1 |
| NOT_LONG_TEST(ReturnNotINT64_MINPlus1, |
| INT64_C(-9223372036854775807), |
| INT64_C(9223372036854775806)); // (2^63) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, |
| INT64_C(9223372036854775806), |
| INT64_C(-9223372036854775807)); // -(2^63) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAX, |
| INT64_C(9223372036854775807), |
| INT64_C(-9223372036854775807)-1); // -(2^63) |
| |
| #undef NOT_LONG_TEST |
| |
| TEST_P(CodegenTest, IntToLongOfLongToInt) { |
| const int64_t input = INT64_C(4294967296); // 2^32 |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. |
| const uint16_t word1 = High16Bits(Low32Bits(input)); |
| const uint16_t word2 = Low16Bits(High32Bits(input)); |
| const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. |
| const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM( |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, |
| Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, |
| Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 |
| Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, |
| Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, |
| Instruction::RETURN_WIDE | 2 << 8); |
| |
| TestCodeLong(GetParam(), data, true, 1); |
| } |
| |
| TEST_P(CodegenTest, ReturnAdd1) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT, 1 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 7); |
| } |
| |
| TEST_P(CodegenTest, ReturnAdd2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 7); |
| } |
| |
| TEST_P(CodegenTest, ReturnAdd3) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 7); |
| } |
| |
| TEST_P(CodegenTest, ReturnAdd4) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 7); |
| } |
| |
| TEST_P(CodegenTest, NonMaterializedCondition) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| |
| HGraph* graph = CreateGraph(&allocator); |
| HBasicBlock* entry = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry); |
| graph->SetEntryBlock(entry); |
| entry->AddInstruction(new (&allocator) HGoto()); |
| |
| HBasicBlock* first_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(first_block); |
| entry->AddSuccessor(first_block); |
| HIntConstant* constant0 = graph->GetIntConstant(0); |
| HIntConstant* constant1 = graph->GetIntConstant(1); |
| HEqual* equal = new (&allocator) HEqual(constant0, constant0); |
| first_block->AddInstruction(equal); |
| first_block->AddInstruction(new (&allocator) HIf(equal)); |
| |
| HBasicBlock* then = new (&allocator) HBasicBlock(graph); |
| HBasicBlock* else_ = new (&allocator) HBasicBlock(graph); |
| HBasicBlock* exit = new (&allocator) HBasicBlock(graph); |
| |
| graph->AddBlock(then); |
| graph->AddBlock(else_); |
| graph->AddBlock(exit); |
| first_block->AddSuccessor(then); |
| first_block->AddSuccessor(else_); |
| then->AddSuccessor(exit); |
| else_->AddSuccessor(exit); |
| |
| exit->AddInstruction(new (&allocator) HExit()); |
| then->AddInstruction(new (&allocator) HReturn(constant0)); |
| else_->AddInstruction(new (&allocator) HReturn(constant1)); |
| |
| ASSERT_TRUE(equal->NeedsMaterialization()); |
| graph->BuildDominatorTree(); |
| PrepareForRegisterAllocation(graph).Run(); |
| ASSERT_FALSE(equal->NeedsMaterialization()); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(GetParam(), graph, hook_before_codegen, true, 0); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulInt) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::MUL_INT, 1 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulInt2addr) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::MUL_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulLong) { |
| const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 0 << 12 | 1 << 8, |
| Instruction::CONST_4 | 4 << 12 | 2 << 8, |
| Instruction::CONST_4 | 0 << 12 | 3 << 8, |
| Instruction::MUL_LONG, 2 << 8 | 0, |
| Instruction::RETURN_WIDE); |
| |
| TestCodeLong(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulLong2addr) { |
| const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0 << 8, |
| Instruction::CONST_4 | 0 << 12 | 1 << 8, |
| Instruction::CONST_4 | 4 << 12 | 2 << 8, |
| Instruction::CONST_4 | 0 << 12 | 3 << 8, |
| Instruction::MUL_LONG_2ADDR | 2 << 12, |
| Instruction::RETURN_WIDE); |
| |
| TestCodeLong(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulIntLit8) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, ReturnMulIntLit16) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 12); |
| } |
| |
| TEST_P(CodegenTest, MaterializedCondition1) { |
| // Check that condition are materialized correctly. A materialized condition |
| // should yield `1` if it evaluated to true, and `0` otherwise. |
| // We force the materialization of comparisons for different combinations of |
| // inputs and check the results. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| HGraph* graph = CreateGraph(&allocator); |
| |
| HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (&allocator) HGoto()); |
| HBasicBlock* code_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(code_block); |
| HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (&allocator) HExit()); |
| |
| entry_block->AddSuccessor(code_block); |
| code_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); |
| HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); |
| HLessThan cmp_lt(cst_lhs, cst_rhs); |
| code_block->AddInstruction(&cmp_lt); |
| HReturn ret(&cmp_lt); |
| code_block->AddInstruction(&ret); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(GetParam(), graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| |
| TEST_P(CodegenTest, MaterializedCondition2) { |
| // Check that HIf correctly interprets a materialized condition. |
| // We force the materialization of comparisons for different combinations of |
| // inputs. An HIf takes the materialized combination as input and returns a |
| // value that we verify. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| HGraph* graph = CreateGraph(&allocator); |
| |
| HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (&allocator) HGoto()); |
| |
| HBasicBlock* if_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_block); |
| HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_true_block); |
| HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_false_block); |
| HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (&allocator) HExit()); |
| |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddSuccessor(if_block); |
| if_block->AddSuccessor(if_true_block); |
| if_block->AddSuccessor(if_false_block); |
| if_true_block->AddSuccessor(exit_block); |
| if_false_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); |
| HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); |
| HLessThan cmp_lt(cst_lhs, cst_rhs); |
| if_block->AddInstruction(&cmp_lt); |
| // We insert a temporary to separate the HIf from the HLessThan and force |
| // the materialization of the condition. |
| HTemporary force_materialization(0); |
| if_block->AddInstruction(&force_materialization); |
| HIf if_lt(&cmp_lt); |
| if_block->AddInstruction(&if_lt); |
| |
| HIntConstant* cst_lt = graph->GetIntConstant(1); |
| HReturn ret_lt(cst_lt); |
| if_true_block->AddInstruction(&ret_lt); |
| HIntConstant* cst_ge = graph->GetIntConstant(0); |
| HReturn ret_ge(cst_ge); |
| if_false_block->AddInstruction(&ret_ge); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(GetParam(), graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| |
| TEST_P(CodegenTest, ReturnDivIntLit8) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::DIV_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 1); |
| } |
| |
| TEST_P(CodegenTest, ReturnDivInt2Addr) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0, |
| Instruction::CONST_4 | 2 << 12 | 1 << 8, |
| Instruction::DIV_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(GetParam(), data, true, 2); |
| } |
| |
| // Helper method. |
| static void TestComparison(IfCondition condition, |
| int64_t i, |
| int64_t j, |
| Primitive::Type type, |
| const InstructionSet target_isa) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| HGraph* graph = CreateGraph(&allocator); |
| |
| HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (&allocator) HGoto()); |
| |
| HBasicBlock* block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(block); |
| |
| HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| graph->SetExitBlock(exit_block); |
| exit_block->AddInstruction(new (&allocator) HExit()); |
| |
| entry_block->AddSuccessor(block); |
| block->AddSuccessor(exit_block); |
| |
| HInstruction* op1; |
| HInstruction* op2; |
| if (type == Primitive::kPrimInt) { |
| op1 = graph->GetIntConstant(i); |
| op2 = graph->GetIntConstant(j); |
| } else { |
| DCHECK_EQ(type, Primitive::kPrimLong); |
| op1 = graph->GetLongConstant(i); |
| op2 = graph->GetLongConstant(j); |
| } |
| |
| HInstruction* comparison = nullptr; |
| bool expected_result = false; |
| const uint64_t x = i; |
| const uint64_t y = j; |
| switch (condition) { |
| case kCondEQ: |
| comparison = new (&allocator) HEqual(op1, op2); |
| expected_result = (i == j); |
| break; |
| case kCondNE: |
| comparison = new (&allocator) HNotEqual(op1, op2); |
| expected_result = (i != j); |
| break; |
| case kCondLT: |
| comparison = new (&allocator) HLessThan(op1, op2); |
| expected_result = (i < j); |
| break; |
| case kCondLE: |
| comparison = new (&allocator) HLessThanOrEqual(op1, op2); |
| expected_result = (i <= j); |
| break; |
| case kCondGT: |
| comparison = new (&allocator) HGreaterThan(op1, op2); |
| expected_result = (i > j); |
| break; |
| case kCondGE: |
| comparison = new (&allocator) HGreaterThanOrEqual(op1, op2); |
| expected_result = (i >= j); |
| break; |
| case kCondB: |
| comparison = new (&allocator) HBelow(op1, op2); |
| expected_result = (x < y); |
| break; |
| case kCondBE: |
| comparison = new (&allocator) HBelowOrEqual(op1, op2); |
| expected_result = (x <= y); |
| break; |
| case kCondA: |
| comparison = new (&allocator) HAbove(op1, op2); |
| expected_result = (x > y); |
| break; |
| case kCondAE: |
| comparison = new (&allocator) HAboveOrEqual(op1, op2); |
| expected_result = (x >= y); |
| break; |
| } |
| block->AddInstruction(comparison); |
| block->AddInstruction(new (&allocator) HReturn(comparison)); |
| |
| auto hook_before_codegen = [](HGraph*) { |
| }; |
| RunCodeOptimized(target_isa, graph, hook_before_codegen, true, expected_result); |
| } |
| |
| TEST_P(CodegenTest, ComparisonsInt) { |
| const InstructionSet target_isa = GetParam(); |
| for (int64_t i = -1; i <= 1; i++) { |
| for (int64_t j = -1; j <= 1; j++) { |
| TestComparison(kCondEQ, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondNE, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondLT, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondLE, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondGT, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondGE, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondB, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondBE, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondA, i, j, Primitive::kPrimInt, target_isa); |
| TestComparison(kCondAE, i, j, Primitive::kPrimInt, target_isa); |
| } |
| } |
| } |
| |
| TEST_P(CodegenTest, ComparisonsLong) { |
| // TODO: make MIPS work for long |
| if (kRuntimeISA == kMips || kRuntimeISA == kMips64) { |
| return; |
| } |
| |
| const InstructionSet target_isa = GetParam(); |
| if (target_isa == kMips || target_isa == kMips64) { |
| return; |
| } |
| |
| for (int64_t i = -1; i <= 1; i++) { |
| for (int64_t j = -1; j <= 1; j++) { |
| TestComparison(kCondEQ, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondNE, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondLT, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondLE, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondGT, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondGE, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondB, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondBE, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondA, i, j, Primitive::kPrimLong, target_isa); |
| TestComparison(kCondAE, i, j, Primitive::kPrimLong, target_isa); |
| } |
| } |
| } |
| |
| static ::std::vector<InstructionSet> GetTargetISAs() { |
| ::std::vector<InstructionSet> v; |
| // Add all ISAs that are executable on hardware or on simulator. |
| const ::std::vector<InstructionSet> executable_isa_candidates = { |
| kArm, |
| kArm64, |
| kThumb2, |
| kX86, |
| kX86_64, |
| kMips, |
| kMips64 |
| }; |
| |
| for (auto target_isa : executable_isa_candidates) { |
| if (CanExecute(target_isa)) { |
| v.push_back(target_isa); |
| } |
| } |
| |
| return v; |
| } |
| |
| INSTANTIATE_TEST_CASE_P(MultipleTargets, |
| CodegenTest, |
| ::testing::ValuesIn(GetTargetISAs())); |
| |
| } // namespace art |