| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "space.h" |
| |
| #include "UniquePtr.h" |
| #include "dlmalloc.h" |
| #include "file.h" |
| #include "image.h" |
| #include "logging.h" |
| #include "os.h" |
| #include "space_bitmap.h" |
| #include "stl_util.h" |
| #include "utils.h" |
| |
| namespace art { |
| |
| #ifndef NDEBUG |
| static const bool kDebugSpaces = true; |
| #else |
| static const bool kDebugSpaces = false; |
| #endif |
| // Magic padding value that we use to check for buffer overruns. |
| static const word kPaddingValue = 0xBAC0BAC0; |
| |
| // TODO: Remove define macro |
| #define CHECK_MEMORY_CALL(call, args, what) \ |
| do { \ |
| int rc = call args; \ |
| if (UNLIKELY(rc != 0)) { \ |
| errno = rc; \ |
| PLOG(FATAL) << # call << " failed for " << what; \ |
| } \ |
| } while (false) |
| |
| Space::Space(const std::string& name, GcRetentionPolicy gc_retention_policy) |
| : name_(name), |
| gc_retention_policy_(gc_retention_policy) { |
| |
| } |
| |
| ContinuousSpace::ContinuousSpace(const std::string& name, byte* begin, byte* end, |
| GcRetentionPolicy gc_retention_policy) |
| : Space(name, gc_retention_policy), |
| begin_(begin), |
| end_(end) { |
| |
| } |
| |
| MemMapSpace::MemMapSpace(const std::string& name, MemMap* mem_map, size_t initial_size, |
| GcRetentionPolicy gc_retention_policy) |
| : ContinuousSpace(name, mem_map->Begin(), mem_map->Begin() + initial_size, gc_retention_policy), |
| mem_map_(mem_map) |
| { |
| |
| } |
| |
| size_t AllocSpace::bitmap_index_ = 0; |
| |
| AllocSpace::AllocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin, |
| byte* end, size_t growth_limit) |
| : MemMapSpace(name, mem_map, end - begin, kGcRetentionPolicyAlwaysCollect), |
| num_bytes_allocated_(0), num_objects_allocated_(0), |
| lock_("allocation space lock", kAllocSpaceLock), mspace_(mspace), |
| growth_limit_(growth_limit) { |
| CHECK(mspace != NULL); |
| |
| size_t bitmap_index = bitmap_index_++; |
| |
| static const uintptr_t kGcCardSize = static_cast<uintptr_t>(CardTable::kCardSize); |
| CHECK(reinterpret_cast<uintptr_t>(mem_map->Begin()) % kGcCardSize == 0); |
| CHECK(reinterpret_cast<uintptr_t>(mem_map->End()) % kGcCardSize == 0); |
| live_bitmap_.reset(SpaceBitmap::Create( |
| StringPrintf("allocspace-%s-live-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)), |
| Begin(), Capacity())); |
| DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace live bitmap #" << bitmap_index; |
| |
| mark_bitmap_.reset(SpaceBitmap::Create( |
| StringPrintf("allocspace-%s-mark-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)), |
| Begin(), Capacity())); |
| DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace mark bitmap #" << bitmap_index; |
| } |
| |
| AllocSpace* AllocSpace::Create(const std::string& name, size_t initial_size, size_t growth_limit, |
| size_t capacity, byte* requested_begin) { |
| // Memory we promise to dlmalloc before it asks for morecore. |
| // Note: making this value large means that large allocations are unlikely to succeed as dlmalloc |
| // will ask for this memory from sys_alloc which will fail as the footprint (this value plus the |
| // size of the large allocation) will be greater than the footprint limit. |
| size_t starting_size = kPageSize; |
| uint64_t start_time = 0; |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| start_time = NanoTime(); |
| VLOG(startup) << "Space::CreateAllocSpace entering " << name |
| << " initial_size=" << PrettySize(initial_size) |
| << " growth_limit=" << PrettySize(growth_limit) |
| << " capacity=" << PrettySize(capacity) |
| << " requested_begin=" << reinterpret_cast<void*>(requested_begin); |
| } |
| |
| // Sanity check arguments |
| if (starting_size > initial_size) { |
| initial_size = starting_size; |
| } |
| if (initial_size > growth_limit) { |
| LOG(ERROR) << "Failed to create alloc space (" << name << ") where the initial size (" |
| << PrettySize(initial_size) << ") is larger than its capacity (" |
| << PrettySize(growth_limit) << ")"; |
| return NULL; |
| } |
| if (growth_limit > capacity) { |
| LOG(ERROR) << "Failed to create alloc space (" << name << ") where the growth limit capacity (" |
| << PrettySize(growth_limit) << ") is larger than the capacity (" |
| << PrettySize(capacity) << ")"; |
| return NULL; |
| } |
| |
| // Page align growth limit and capacity which will be used to manage mmapped storage |
| growth_limit = RoundUp(growth_limit, kPageSize); |
| capacity = RoundUp(capacity, kPageSize); |
| |
| UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), requested_begin, |
| capacity, PROT_READ | PROT_WRITE)); |
| if (mem_map.get() == NULL) { |
| LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size " |
| << PrettySize(capacity); |
| return NULL; |
| } |
| |
| void* mspace = AllocSpace::CreateMallocSpace(mem_map->Begin(), starting_size, initial_size); |
| if (mspace == NULL) { |
| LOG(ERROR) << "Failed to initialize mspace for alloc space (" << name << ")"; |
| return NULL; |
| } |
| |
| // Protect memory beyond the initial size. |
| byte* end = mem_map->Begin() + starting_size; |
| if (capacity - initial_size > 0) { |
| CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name); |
| } |
| |
| // Everything is set so record in immutable structure and leave |
| MemMap* mem_map_ptr = mem_map.release(); |
| AllocSpace* space = new AllocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end, |
| growth_limit); |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Space::CreateAllocSpace exiting (" << PrettyDuration(NanoTime() - start_time) |
| << " ) " << *space; |
| } |
| return space; |
| } |
| |
| void* AllocSpace::CreateMallocSpace(void* begin, size_t morecore_start, size_t initial_size) { |
| // clear errno to allow PLOG on error |
| errno = 0; |
| // create mspace using our backing storage starting at begin and with a footprint of |
| // morecore_start. Don't use an internal dlmalloc lock (as we already hold heap lock). When |
| // morecore_start bytes of memory is exhaused morecore will be called. |
| void* msp = create_mspace_with_base(begin, morecore_start, false /*locked*/); |
| if (msp != NULL) { |
| // Do not allow morecore requests to succeed beyond the initial size of the heap |
| mspace_set_footprint_limit(msp, initial_size); |
| } else { |
| PLOG(ERROR) << "create_mspace_with_base failed"; |
| } |
| return msp; |
| } |
| |
| void AllocSpace::SwapBitmaps() { |
| SpaceBitmap* temp_live_bitmap = live_bitmap_.release(); |
| live_bitmap_.reset(mark_bitmap_.release()); |
| mark_bitmap_.reset(temp_live_bitmap); |
| // Swap names to get more descriptive diagnostics. |
| std::string temp_name = live_bitmap_->GetName(); |
| live_bitmap_->SetName(mark_bitmap_->GetName()); |
| mark_bitmap_->SetName(temp_name); |
| } |
| |
| Object* AllocSpace::AllocWithoutGrowthLocked(size_t num_bytes) { |
| if (kDebugSpaces) { |
| num_bytes += sizeof(word); |
| } |
| |
| Object* result = reinterpret_cast<Object*>(mspace_calloc(mspace_, 1, num_bytes)); |
| if (kDebugSpaces && result != NULL) { |
| CHECK(Contains(result)) << "Allocation (" << reinterpret_cast<void*>(result) |
| << ") not in bounds of allocation space " << *this; |
| // Put a magic pattern before and after the allocation. |
| *reinterpret_cast<word*>(reinterpret_cast<byte*>(result) + AllocationSize(result) |
| - sizeof(word) - kChunkOverhead) = kPaddingValue; |
| } |
| num_bytes_allocated_ += AllocationSize(result); |
| ++num_objects_allocated_; |
| return result; |
| } |
| |
| Object* AllocSpace::AllocWithoutGrowth(Thread* self, size_t num_bytes) { |
| MutexLock mu(self, lock_); |
| return AllocWithoutGrowthLocked(num_bytes); |
| } |
| |
| Object* AllocSpace::AllocWithGrowth(Thread* self, size_t num_bytes) { |
| MutexLock mu(self, lock_); |
| // Grow as much as possible within the mspace. |
| size_t max_allowed = Capacity(); |
| mspace_set_footprint_limit(mspace_, max_allowed); |
| // Try the allocation. |
| void* ptr = AllocWithoutGrowthLocked(num_bytes); |
| // Shrink back down as small as possible. |
| size_t footprint = mspace_footprint(mspace_); |
| mspace_set_footprint_limit(mspace_, footprint); |
| // Return the new allocation or NULL. |
| Object* result = reinterpret_cast<Object*>(ptr); |
| CHECK(!kDebugSpaces || result == NULL || Contains(result)); |
| return result; |
| } |
| |
| void AllocSpace::SetGrowthLimit(size_t growth_limit) { |
| growth_limit = RoundUp(growth_limit, kPageSize); |
| growth_limit_ = growth_limit; |
| if (Size() > growth_limit_) { |
| end_ = begin_ + growth_limit; |
| } |
| } |
| |
| AllocSpace* AllocSpace::CreateZygoteSpace() { |
| end_ = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(end_), kPageSize)); |
| DCHECK(IsAligned<CardTable::kCardSize>(begin_)); |
| DCHECK(IsAligned<CardTable::kCardSize>(end_)); |
| DCHECK(IsAligned<kPageSize>(begin_)); |
| DCHECK(IsAligned<kPageSize>(end_)); |
| size_t size = RoundUp(Size(), kPageSize); |
| // Trim the heap so that we minimize the size of the Zygote space. |
| Trim(); |
| // Trim our mem-map to free unused pages. |
| GetMemMap()->UnMapAtEnd(end_); |
| // TODO: Not hardcode these in? |
| const size_t starting_size = kPageSize; |
| const size_t initial_size = 2 * MB; |
| // Remaining size is for the new alloc space. |
| const size_t growth_limit = growth_limit_ - size; |
| const size_t capacity = Capacity() - size; |
| VLOG(heap) << "Begin " << reinterpret_cast<const void*>(begin_) << "\n" |
| << "End " << reinterpret_cast<const void*>(end_) << "\n" |
| << "Size " << size << "\n" |
| << "GrowthLimit " << growth_limit_ << "\n" |
| << "Capacity " << Capacity(); |
| SetGrowthLimit(RoundUp(size, kPageSize)); |
| SetFootprintLimit(RoundUp(size, kPageSize)); |
| // FIXME: Do we need reference counted pointers here? |
| // Make the two spaces share the same mark bitmaps since the bitmaps span both of the spaces. |
| VLOG(heap) << "Creating new AllocSpace: "; |
| VLOG(heap) << "Size " << GetMemMap()->Size(); |
| VLOG(heap) << "GrowthLimit " << PrettySize(growth_limit); |
| VLOG(heap) << "Capacity " << PrettySize(capacity); |
| UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(GetName().c_str(), End(), capacity, PROT_READ | PROT_WRITE)); |
| void* mspace = CreateMallocSpace(end_, starting_size, initial_size); |
| // Protect memory beyond the initial size. |
| byte* end = mem_map->Begin() + starting_size; |
| if (capacity - initial_size > 0) { |
| CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name_.c_str()); |
| } |
| AllocSpace* alloc_space = new AllocSpace(name_, mem_map.release(), mspace, end_, end, growth_limit); |
| live_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End())); |
| CHECK_EQ(live_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End())); |
| mark_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End())); |
| CHECK_EQ(mark_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End())); |
| name_ += "-zygote-transformed"; |
| VLOG(heap) << "zygote space creation done"; |
| return alloc_space; |
| } |
| |
| void AllocSpace::Free(Thread* self, Object* ptr) { |
| MutexLock mu(self, lock_); |
| if (kDebugSpaces) { |
| CHECK(ptr != NULL); |
| CHECK(Contains(ptr)) << "Free (" << ptr << ") not in bounds of heap " << *this; |
| CHECK_EQ( |
| *reinterpret_cast<word*>(reinterpret_cast<byte*>(ptr) + AllocationSize(ptr) - |
| sizeof(word) - kChunkOverhead), kPaddingValue); |
| } |
| num_bytes_allocated_ -= AllocationSize(ptr); |
| --num_objects_allocated_; |
| mspace_free(mspace_, ptr); |
| } |
| |
| void AllocSpace::FreeList(Thread* self, size_t num_ptrs, Object** ptrs) { |
| MutexLock mu(self, lock_); |
| if (kDebugSpaces) { |
| CHECK(ptrs != NULL); |
| size_t num_broken_ptrs = 0; |
| for (size_t i = 0; i < num_ptrs; i++) { |
| if (!Contains(ptrs[i])) { |
| num_broken_ptrs++; |
| LOG(ERROR) << "FreeList[" << i << "] (" << ptrs[i] << ") not in bounds of heap " << *this; |
| } else { |
| size_t size = mspace_usable_size(ptrs[i]); |
| memset(ptrs[i], 0xEF, size); |
| } |
| } |
| CHECK_EQ(num_broken_ptrs, 0u); |
| } |
| for (size_t i = 0; i < num_ptrs; i++) { |
| num_bytes_allocated_ -= AllocationSize(ptrs[i]); |
| } |
| num_objects_allocated_ -= num_ptrs; |
| mspace_bulk_free(mspace_, reinterpret_cast<void**>(ptrs), num_ptrs); |
| } |
| |
| // Callback from dlmalloc when it needs to increase the footprint |
| extern "C" void* art_heap_morecore(void* mspace, intptr_t increment) { |
| Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK_EQ(heap->GetAllocSpace()->GetMspace(), mspace); |
| return heap->GetAllocSpace()->MoreCore(increment); |
| } |
| |
| void* AllocSpace::MoreCore(intptr_t increment) { |
| lock_.AssertHeld(Thread::Current()); |
| byte* original_end = end_; |
| if (increment != 0) { |
| VLOG(heap) << "AllocSpace::MoreCore " << PrettySize(increment); |
| byte* new_end = original_end + increment; |
| if (increment > 0) { |
| #if DEBUG_SPACES |
| // Should never be asked to increase the allocation beyond the capacity of the space. Enforced |
| // by mspace_set_footprint_limit. |
| CHECK_LE(new_end, Begin() + Capacity()); |
| #endif |
| CHECK_MEMORY_CALL(mprotect, (original_end, increment, PROT_READ | PROT_WRITE), GetName()); |
| } else { |
| #if DEBUG_SPACES |
| // Should never be asked for negative footprint (ie before begin) |
| CHECK_GT(original_end + increment, Begin()); |
| #endif |
| // Advise we don't need the pages and protect them |
| // TODO: by removing permissions to the pages we may be causing TLB shoot-down which can be |
| // expensive (note the same isn't true for giving permissions to a page as the protected |
| // page shouldn't be in a TLB). We should investigate performance impact of just |
| // removing ignoring the memory protection change here and in Space::CreateAllocSpace. It's |
| // likely just a useful debug feature. |
| size_t size = -increment; |
| CHECK_MEMORY_CALL(madvise, (new_end, size, MADV_DONTNEED), GetName()); |
| CHECK_MEMORY_CALL(mprotect, (new_end, size, PROT_NONE), GetName()); |
| } |
| // Update end_ |
| end_ = new_end; |
| } |
| return original_end; |
| } |
| |
| size_t AllocSpace::AllocationSize(const Object* obj) { |
| return mspace_usable_size(const_cast<void*>(reinterpret_cast<const void*>(obj))) + |
| kChunkOverhead; |
| } |
| |
| void MspaceMadviseCallback(void* start, void* end, size_t used_bytes, void* /* arg */) { |
| // Is this chunk in use? |
| if (used_bytes != 0) { |
| return; |
| } |
| // Do we have any whole pages to give back? |
| start = reinterpret_cast<void*>(RoundUp(reinterpret_cast<uintptr_t>(start), kPageSize)); |
| end = reinterpret_cast<void*>(RoundDown(reinterpret_cast<uintptr_t>(end), kPageSize)); |
| if (end > start) { |
| size_t length = reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start); |
| CHECK_MEMORY_CALL(madvise, (start, length, MADV_DONTNEED), "trim"); |
| } |
| } |
| |
| void AllocSpace::Trim() { |
| MutexLock mu(Thread::Current(), lock_); |
| // Trim to release memory at the end of the space. |
| mspace_trim(mspace_, 0); |
| // Visit space looking for page-sized holes to advise the kernel we don't need. |
| mspace_inspect_all(mspace_, MspaceMadviseCallback, NULL); |
| } |
| |
| void AllocSpace::Walk(void(*callback)(void *start, void *end, size_t num_bytes, void* callback_arg), |
| void* arg) { |
| MutexLock mu(Thread::Current(), lock_); |
| mspace_inspect_all(mspace_, callback, arg); |
| callback(NULL, NULL, 0, arg); // Indicate end of a space. |
| } |
| |
| size_t AllocSpace::GetFootprintLimit() { |
| MutexLock mu(Thread::Current(), lock_); |
| return mspace_footprint_limit(mspace_); |
| } |
| |
| void AllocSpace::SetFootprintLimit(size_t new_size) { |
| MutexLock mu(Thread::Current(), lock_); |
| VLOG(heap) << "AllocSpace::SetFootprintLimit " << PrettySize(new_size); |
| // Compare against the actual footprint, rather than the Size(), because the heap may not have |
| // grown all the way to the allowed size yet. |
| size_t current_space_size = mspace_footprint(mspace_); |
| if (new_size < current_space_size) { |
| // Don't let the space grow any more. |
| new_size = current_space_size; |
| } |
| mspace_set_footprint_limit(mspace_, new_size); |
| } |
| |
| size_t ImageSpace::bitmap_index_ = 0; |
| |
| ImageSpace::ImageSpace(const std::string& name, MemMap* mem_map) |
| : MemMapSpace(name, mem_map, mem_map->Size(), kGcRetentionPolicyNeverCollect) { |
| const size_t bitmap_index = bitmap_index_++; |
| live_bitmap_.reset(SpaceBitmap::Create( |
| StringPrintf("imagespace-%s-live-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)), |
| Begin(), Capacity())); |
| DCHECK(live_bitmap_.get() != NULL) << "could not create imagespace live bitmap #" << bitmap_index; |
| } |
| |
| ImageSpace* ImageSpace::Create(const std::string& image_file_name) { |
| CHECK(!image_file_name.empty()); |
| |
| uint64_t start_time = 0; |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| start_time = NanoTime(); |
| LOG(INFO) << "Space::CreateImageSpace entering" << " image_file_name=" << image_file_name; |
| } |
| |
| UniquePtr<File> file(OS::OpenFile(image_file_name.c_str(), false)); |
| if (file.get() == NULL) { |
| LOG(ERROR) << "Failed to open " << image_file_name; |
| return NULL; |
| } |
| ImageHeader image_header; |
| bool success = file->ReadFully(&image_header, sizeof(image_header)); |
| if (!success || !image_header.IsValid()) { |
| LOG(ERROR) << "Invalid image header " << image_file_name; |
| return NULL; |
| } |
| UniquePtr<MemMap> map(MemMap::MapFileAtAddress(image_header.GetImageBegin(), |
| file->Length(), |
| // TODO: selectively PROT_EXEC stubs |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_PRIVATE | MAP_FIXED, |
| file->Fd(), |
| 0)); |
| if (map.get() == NULL) { |
| LOG(ERROR) << "Failed to map " << image_file_name; |
| return NULL; |
| } |
| CHECK_EQ(image_header.GetImageBegin(), map->Begin()); |
| DCHECK_EQ(0, memcmp(&image_header, map->Begin(), sizeof(ImageHeader))); |
| |
| Runtime* runtime = Runtime::Current(); |
| Object* jni_stub_array = image_header.GetImageRoot(ImageHeader::kJniStubArray); |
| runtime->SetJniDlsymLookupStub(down_cast<ByteArray*>(jni_stub_array)); |
| |
| Object* ame_stub_array = image_header.GetImageRoot(ImageHeader::kAbstractMethodErrorStubArray); |
| runtime->SetAbstractMethodErrorStubArray(down_cast<ByteArray*>(ame_stub_array)); |
| |
| Object* resolution_stub_array = |
| image_header.GetImageRoot(ImageHeader::kStaticResolutionStubArray); |
| runtime->SetResolutionStubArray( |
| down_cast<ByteArray*>(resolution_stub_array), Runtime::kStaticMethod); |
| resolution_stub_array = image_header.GetImageRoot(ImageHeader::kUnknownMethodResolutionStubArray); |
| runtime->SetResolutionStubArray( |
| down_cast<ByteArray*>(resolution_stub_array), Runtime::kUnknownMethod); |
| |
| Object* resolution_method = image_header.GetImageRoot(ImageHeader::kResolutionMethod); |
| runtime->SetResolutionMethod(down_cast<AbstractMethod*>(resolution_method)); |
| |
| Object* callee_save_method = image_header.GetImageRoot(ImageHeader::kCalleeSaveMethod); |
| runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kSaveAll); |
| callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsOnlySaveMethod); |
| runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kRefsOnly); |
| callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsAndArgsSaveMethod); |
| runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kRefsAndArgs); |
| |
| ImageSpace* space = new ImageSpace(image_file_name, map.release()); |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Space::CreateImageSpace exiting (" << PrettyDuration(NanoTime() - start_time) |
| << ") " << *space; |
| } |
| return space; |
| } |
| |
| void ImageSpace::RecordImageAllocations(SpaceBitmap* live_bitmap) const { |
| uint64_t start_time = 0; |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "ImageSpace::RecordImageAllocations entering"; |
| start_time = NanoTime(); |
| } |
| DCHECK(!Runtime::Current()->IsStarted()); |
| CHECK(live_bitmap != NULL); |
| byte* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| byte* end = End(); |
| while (current < end) { |
| DCHECK_ALIGNED(current, kObjectAlignment); |
| const Object* obj = reinterpret_cast<const Object*>(current); |
| live_bitmap->Set(obj); |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "ImageSpace::RecordImageAllocations exiting (" |
| << PrettyDuration(NanoTime() - start_time) << ")"; |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const Space& space) { |
| space.Dump(os); |
| return os; |
| } |
| |
| void AllocSpace::Dump(std::ostream& os) const { |
| os << GetType() |
| << "begin=" << reinterpret_cast<void*>(Begin()) |
| << ",end=" << reinterpret_cast<void*>(End()) |
| << ",size=" << PrettySize(Size()) << ",capacity=" << PrettySize(Capacity()) |
| << ",name=\"" << GetName() << "\"]"; |
| } |
| |
| void ImageSpace::Dump(std::ostream& os) const { |
| os << GetType() |
| << "begin=" << reinterpret_cast<void*>(Begin()) |
| << ",end=" << reinterpret_cast<void*>(End()) |
| << ",size=" << PrettySize(Size()) |
| << ",name=\"" << GetName() << "\"]"; |
| } |
| |
| void LargeObjectSpace::SwapBitmaps() { |
| SpaceSetMap* temp_live_objects = live_objects_.release(); |
| live_objects_.reset(mark_objects_.release()); |
| mark_objects_.reset(temp_live_objects); |
| // Swap names to get more descriptive diagnostics. |
| std::string temp_name = live_objects_->GetName(); |
| live_objects_->SetName(mark_objects_->GetName()); |
| mark_objects_->SetName(temp_name); |
| } |
| |
| DiscontinuousSpace::DiscontinuousSpace(const std::string& name, |
| GcRetentionPolicy gc_retention_policy) |
| : Space(name, gc_retention_policy) { |
| |
| } |
| |
| LargeObjectSpace::LargeObjectSpace(const std::string& name) |
| : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect), |
| num_bytes_allocated_(0), |
| num_objects_allocated_(0) { |
| live_objects_.reset(new SpaceSetMap("large live objects")); |
| mark_objects_.reset(new SpaceSetMap("large marked objects")); |
| } |
| |
| |
| void LargeObjectSpace::CopyLiveToMarked() { |
| mark_objects_->CopyFrom(*live_objects_.get()); |
| } |
| |
| LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name) |
| : LargeObjectSpace(name), |
| lock_("large object space lock", kAllocSpaceLock) |
| { |
| |
| } |
| |
| LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) { |
| return new LargeObjectMapSpace(name); |
| } |
| |
| Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes) { |
| MemMap* mem_map = MemMap::MapAnonymous("allocation", NULL, num_bytes, PROT_READ | PROT_WRITE); |
| if (mem_map == NULL) { |
| return NULL; |
| } |
| MutexLock mu(self, lock_); |
| Object* obj = reinterpret_cast<Object*>(mem_map->Begin()); |
| large_objects_.push_back(obj); |
| mem_maps_.Put(obj, mem_map); |
| num_bytes_allocated_ += mem_map->Size(); |
| ++num_objects_allocated_; |
| return obj; |
| } |
| |
| void LargeObjectMapSpace::Free(Thread* self, Object* ptr) { |
| MutexLock mu(self, lock_); |
| MemMaps::iterator found = mem_maps_.find(ptr); |
| CHECK(found != mem_maps_.end()) << "Attempted to free large object which was not live"; |
| DCHECK_GE(num_bytes_allocated_, found->second->Size()); |
| num_bytes_allocated_ -= found->second->Size(); |
| --num_objects_allocated_; |
| delete found->second; |
| mem_maps_.erase(found); |
| } |
| |
| size_t LargeObjectMapSpace::AllocationSize(const Object* obj) { |
| MutexLock mu(Thread::Current(), lock_); |
| MemMaps::iterator found = mem_maps_.find(const_cast<Object*>(obj)); |
| CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live"; |
| return found->second->Size(); |
| } |
| |
| void LargeObjectMapSpace::Walk(AllocSpace::WalkCallback callback, void* arg) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (MemMaps::iterator it = mem_maps_.begin(); it != mem_maps_.end(); ++it) { |
| MemMap* mem_map = it->second; |
| callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg); |
| callback(NULL, NULL, 0, arg); |
| } |
| } |
| |
| bool LargeObjectMapSpace::Contains(const Object* obj) const { |
| MutexLock mu(Thread::Current(), lock_); |
| return mem_maps_.find(const_cast<Object*>(obj)) != mem_maps_.end(); |
| } |
| |
| FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) { |
| CHECK(size % kAlignment == 0); |
| MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size, |
| PROT_READ | PROT_WRITE); |
| CHECK(mem_map != NULL) << "Failed to allocate large object space mem map"; |
| return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End()); |
| } |
| |
| FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end) |
| : LargeObjectSpace(name), |
| begin_(begin), |
| end_(end), |
| mem_map_(mem_map), |
| lock_("free list space lock", kAllocSpaceLock) { |
| chunks_.resize(Size() / kAlignment + 1); |
| // Add a dummy chunk so we don't need to handle chunks having no next chunk. |
| chunks_.back().SetSize(kAlignment, false); |
| // Start out with one large free chunk. |
| AddFreeChunk(begin_, end_ - begin_, NULL); |
| } |
| |
| FreeListSpace::~FreeListSpace() { |
| |
| } |
| |
| void FreeListSpace::AddFreeChunk(void* address, size_t size, Chunk* previous) { |
| Chunk* chunk = ChunkFromAddr(address); |
| chunk->SetSize(size, true); |
| chunk->SetPrevious(previous); |
| Chunk* next_chunk = GetNextChunk(chunk); |
| next_chunk->SetPrevious(chunk); |
| free_chunks_.insert(chunk); |
| } |
| |
| FreeListSpace::Chunk* FreeListSpace::ChunkFromAddr(void* address) { |
| size_t offset = reinterpret_cast<byte*>(address) - Begin(); |
| DCHECK(IsAligned<kAlignment>(offset)); |
| DCHECK_LT(offset, Size()); |
| return &chunks_[offset / kAlignment]; |
| } |
| |
| void* FreeListSpace::AddrFromChunk(Chunk* chunk) { |
| return reinterpret_cast<void*>(Begin() + (chunk - &chunks_.front()) * kAlignment); |
| } |
| |
| void FreeListSpace::RemoveFreeChunk(Chunk* chunk) { |
| // TODO: C++0x |
| // TODO: Improve performance, this might be slow. |
| std::pair<FreeChunks::iterator, FreeChunks::iterator> range = free_chunks_.equal_range(chunk); |
| for (FreeChunks::iterator it = range.first; it != range.second; ++it) { |
| if (*it == chunk) { |
| free_chunks_.erase(it); |
| return; |
| } |
| } |
| } |
| |
| void FreeListSpace::Walk(AllocSpace::WalkCallback callback, void* arg) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (Chunk* chunk = &chunks_.front(); chunk < &chunks_.back(); ) { |
| if (!chunk->IsFree()) { |
| size_t size = chunk->GetSize(); |
| void* begin = AddrFromChunk(chunk); |
| void* end = reinterpret_cast<void*>(reinterpret_cast<byte*>(begin) + size); |
| callback(begin, end, size, arg); |
| callback(NULL, NULL, 0, arg); |
| } |
| chunk = GetNextChunk(chunk); |
| } |
| } |
| |
| void FreeListSpace::Free(Thread* self, Object* obj) { |
| MutexLock mu(self, lock_); |
| CHECK(Contains(obj)); |
| // Check adjacent chunks to see if we need to combine. |
| Chunk* chunk = ChunkFromAddr(obj); |
| CHECK(!chunk->IsFree()); |
| |
| size_t allocation_size = chunk->GetSize(); |
| madvise(obj, allocation_size, MADV_DONTNEED); |
| num_objects_allocated_--; |
| num_bytes_allocated_ -= allocation_size; |
| Chunk* prev = chunk->GetPrevious(); |
| Chunk* next = GetNextChunk(chunk); |
| |
| // Combine any adjacent free chunks |
| size_t extra_size = chunk->GetSize(); |
| if (next->IsFree()) { |
| extra_size += next->GetSize(); |
| RemoveFreeChunk(next); |
| } |
| if (prev != NULL && prev->IsFree()) { |
| RemoveFreeChunk(prev); |
| AddFreeChunk(AddrFromChunk(prev), prev->GetSize() + extra_size, prev->GetPrevious()); |
| } else { |
| AddFreeChunk(AddrFromChunk(chunk), extra_size, prev); |
| } |
| } |
| |
| bool FreeListSpace::Contains(const Object* obj) const { |
| return mem_map_->HasAddress(obj); |
| } |
| |
| FreeListSpace::Chunk* FreeListSpace::GetNextChunk(Chunk* chunk) { |
| return chunk + chunk->GetSize() / kAlignment; |
| } |
| |
| size_t FreeListSpace::AllocationSize(const Object* obj) { |
| Chunk* chunk = ChunkFromAddr(const_cast<Object*>(obj)); |
| CHECK(!chunk->IsFree()); |
| return chunk->GetSize(); |
| } |
| |
| Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes) { |
| MutexLock mu(self, lock_); |
| num_bytes = RoundUp(num_bytes, kAlignment); |
| Chunk temp; |
| temp.SetSize(num_bytes); |
| // Find the smallest chunk at least num_bytes in size. |
| FreeChunks::iterator found = free_chunks_.lower_bound(&temp); |
| if (found == free_chunks_.end()) { |
| // Out of memory, or too much fragmentation. |
| return NULL; |
| } |
| Chunk* chunk = *found; |
| free_chunks_.erase(found); |
| CHECK(chunk->IsFree()); |
| void* addr = AddrFromChunk(chunk); |
| size_t chunk_size = chunk->GetSize(); |
| chunk->SetSize(num_bytes); |
| if (chunk_size > num_bytes) { |
| // Split the chunk into two chunks. |
| Chunk* new_chunk = GetNextChunk(chunk); |
| AddFreeChunk(AddrFromChunk(new_chunk), chunk_size - num_bytes, chunk); |
| } |
| |
| num_objects_allocated_++; |
| num_bytes_allocated_ += num_bytes; |
| return reinterpret_cast<Object*>(addr); |
| } |
| |
| void FreeListSpace::FreeList(Thread* self, size_t num_ptrs, Object** ptrs) { |
| for (size_t i = 0; i < num_ptrs; ++i) { |
| Free(self, ptrs[i]); |
| } |
| } |
| |
| } // namespace art |