blob: 9c8819b21ef05c9a85cc50abab9196acfb2b527b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space.h"
#include "UniquePtr.h"
#include "dlmalloc.h"
#include "file.h"
#include "image.h"
#include "logging.h"
#include "os.h"
#include "space_bitmap.h"
#include "stl_util.h"
#include "utils.h"
namespace art {
#ifndef NDEBUG
static const bool kDebugSpaces = true;
#else
static const bool kDebugSpaces = false;
#endif
// Magic padding value that we use to check for buffer overruns.
static const word kPaddingValue = 0xBAC0BAC0;
// TODO: Remove define macro
#define CHECK_MEMORY_CALL(call, args, what) \
do { \
int rc = call args; \
if (UNLIKELY(rc != 0)) { \
errno = rc; \
PLOG(FATAL) << # call << " failed for " << what; \
} \
} while (false)
Space::Space(const std::string& name, GcRetentionPolicy gc_retention_policy)
: name_(name),
gc_retention_policy_(gc_retention_policy) {
}
ContinuousSpace::ContinuousSpace(const std::string& name, byte* begin, byte* end,
GcRetentionPolicy gc_retention_policy)
: Space(name, gc_retention_policy),
begin_(begin),
end_(end) {
}
MemMapSpace::MemMapSpace(const std::string& name, MemMap* mem_map, size_t initial_size,
GcRetentionPolicy gc_retention_policy)
: ContinuousSpace(name, mem_map->Begin(), mem_map->Begin() + initial_size, gc_retention_policy),
mem_map_(mem_map)
{
}
size_t AllocSpace::bitmap_index_ = 0;
AllocSpace::AllocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin,
byte* end, size_t growth_limit)
: MemMapSpace(name, mem_map, end - begin, kGcRetentionPolicyAlwaysCollect),
num_bytes_allocated_(0), num_objects_allocated_(0),
lock_("allocation space lock", kAllocSpaceLock), mspace_(mspace),
growth_limit_(growth_limit) {
CHECK(mspace != NULL);
size_t bitmap_index = bitmap_index_++;
static const uintptr_t kGcCardSize = static_cast<uintptr_t>(CardTable::kCardSize);
CHECK(reinterpret_cast<uintptr_t>(mem_map->Begin()) % kGcCardSize == 0);
CHECK(reinterpret_cast<uintptr_t>(mem_map->End()) % kGcCardSize == 0);
live_bitmap_.reset(SpaceBitmap::Create(
StringPrintf("allocspace-%s-live-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)),
Begin(), Capacity()));
DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace live bitmap #" << bitmap_index;
mark_bitmap_.reset(SpaceBitmap::Create(
StringPrintf("allocspace-%s-mark-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)),
Begin(), Capacity()));
DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace mark bitmap #" << bitmap_index;
}
AllocSpace* AllocSpace::Create(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, byte* requested_begin) {
// Memory we promise to dlmalloc before it asks for morecore.
// Note: making this value large means that large allocations are unlikely to succeed as dlmalloc
// will ask for this memory from sys_alloc which will fail as the footprint (this value plus the
// size of the large allocation) will be greater than the footprint limit.
size_t starting_size = kPageSize;
uint64_t start_time = 0;
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
start_time = NanoTime();
VLOG(startup) << "Space::CreateAllocSpace entering " << name
<< " initial_size=" << PrettySize(initial_size)
<< " growth_limit=" << PrettySize(growth_limit)
<< " capacity=" << PrettySize(capacity)
<< " requested_begin=" << reinterpret_cast<void*>(requested_begin);
}
// Sanity check arguments
if (starting_size > initial_size) {
initial_size = starting_size;
}
if (initial_size > growth_limit) {
LOG(ERROR) << "Failed to create alloc space (" << name << ") where the initial size ("
<< PrettySize(initial_size) << ") is larger than its capacity ("
<< PrettySize(growth_limit) << ")";
return NULL;
}
if (growth_limit > capacity) {
LOG(ERROR) << "Failed to create alloc space (" << name << ") where the growth limit capacity ("
<< PrettySize(growth_limit) << ") is larger than the capacity ("
<< PrettySize(capacity) << ")";
return NULL;
}
// Page align growth limit and capacity which will be used to manage mmapped storage
growth_limit = RoundUp(growth_limit, kPageSize);
capacity = RoundUp(capacity, kPageSize);
UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), requested_begin,
capacity, PROT_READ | PROT_WRITE));
if (mem_map.get() == NULL) {
LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size "
<< PrettySize(capacity);
return NULL;
}
void* mspace = AllocSpace::CreateMallocSpace(mem_map->Begin(), starting_size, initial_size);
if (mspace == NULL) {
LOG(ERROR) << "Failed to initialize mspace for alloc space (" << name << ")";
return NULL;
}
// Protect memory beyond the initial size.
byte* end = mem_map->Begin() + starting_size;
if (capacity - initial_size > 0) {
CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name);
}
// Everything is set so record in immutable structure and leave
MemMap* mem_map_ptr = mem_map.release();
AllocSpace* space = new AllocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end,
growth_limit);
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Space::CreateAllocSpace exiting (" << PrettyDuration(NanoTime() - start_time)
<< " ) " << *space;
}
return space;
}
void* AllocSpace::CreateMallocSpace(void* begin, size_t morecore_start, size_t initial_size) {
// clear errno to allow PLOG on error
errno = 0;
// create mspace using our backing storage starting at begin and with a footprint of
// morecore_start. Don't use an internal dlmalloc lock (as we already hold heap lock). When
// morecore_start bytes of memory is exhaused morecore will be called.
void* msp = create_mspace_with_base(begin, morecore_start, false /*locked*/);
if (msp != NULL) {
// Do not allow morecore requests to succeed beyond the initial size of the heap
mspace_set_footprint_limit(msp, initial_size);
} else {
PLOG(ERROR) << "create_mspace_with_base failed";
}
return msp;
}
void AllocSpace::SwapBitmaps() {
SpaceBitmap* temp_live_bitmap = live_bitmap_.release();
live_bitmap_.reset(mark_bitmap_.release());
mark_bitmap_.reset(temp_live_bitmap);
// Swap names to get more descriptive diagnostics.
std::string temp_name = live_bitmap_->GetName();
live_bitmap_->SetName(mark_bitmap_->GetName());
mark_bitmap_->SetName(temp_name);
}
Object* AllocSpace::AllocWithoutGrowthLocked(size_t num_bytes) {
if (kDebugSpaces) {
num_bytes += sizeof(word);
}
Object* result = reinterpret_cast<Object*>(mspace_calloc(mspace_, 1, num_bytes));
if (kDebugSpaces && result != NULL) {
CHECK(Contains(result)) << "Allocation (" << reinterpret_cast<void*>(result)
<< ") not in bounds of allocation space " << *this;
// Put a magic pattern before and after the allocation.
*reinterpret_cast<word*>(reinterpret_cast<byte*>(result) + AllocationSize(result)
- sizeof(word) - kChunkOverhead) = kPaddingValue;
}
num_bytes_allocated_ += AllocationSize(result);
++num_objects_allocated_;
return result;
}
Object* AllocSpace::AllocWithoutGrowth(Thread* self, size_t num_bytes) {
MutexLock mu(self, lock_);
return AllocWithoutGrowthLocked(num_bytes);
}
Object* AllocSpace::AllocWithGrowth(Thread* self, size_t num_bytes) {
MutexLock mu(self, lock_);
// Grow as much as possible within the mspace.
size_t max_allowed = Capacity();
mspace_set_footprint_limit(mspace_, max_allowed);
// Try the allocation.
void* ptr = AllocWithoutGrowthLocked(num_bytes);
// Shrink back down as small as possible.
size_t footprint = mspace_footprint(mspace_);
mspace_set_footprint_limit(mspace_, footprint);
// Return the new allocation or NULL.
Object* result = reinterpret_cast<Object*>(ptr);
CHECK(!kDebugSpaces || result == NULL || Contains(result));
return result;
}
void AllocSpace::SetGrowthLimit(size_t growth_limit) {
growth_limit = RoundUp(growth_limit, kPageSize);
growth_limit_ = growth_limit;
if (Size() > growth_limit_) {
end_ = begin_ + growth_limit;
}
}
AllocSpace* AllocSpace::CreateZygoteSpace() {
end_ = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(end_), kPageSize));
DCHECK(IsAligned<CardTable::kCardSize>(begin_));
DCHECK(IsAligned<CardTable::kCardSize>(end_));
DCHECK(IsAligned<kPageSize>(begin_));
DCHECK(IsAligned<kPageSize>(end_));
size_t size = RoundUp(Size(), kPageSize);
// Trim the heap so that we minimize the size of the Zygote space.
Trim();
// Trim our mem-map to free unused pages.
GetMemMap()->UnMapAtEnd(end_);
// TODO: Not hardcode these in?
const size_t starting_size = kPageSize;
const size_t initial_size = 2 * MB;
// Remaining size is for the new alloc space.
const size_t growth_limit = growth_limit_ - size;
const size_t capacity = Capacity() - size;
VLOG(heap) << "Begin " << reinterpret_cast<const void*>(begin_) << "\n"
<< "End " << reinterpret_cast<const void*>(end_) << "\n"
<< "Size " << size << "\n"
<< "GrowthLimit " << growth_limit_ << "\n"
<< "Capacity " << Capacity();
SetGrowthLimit(RoundUp(size, kPageSize));
SetFootprintLimit(RoundUp(size, kPageSize));
// FIXME: Do we need reference counted pointers here?
// Make the two spaces share the same mark bitmaps since the bitmaps span both of the spaces.
VLOG(heap) << "Creating new AllocSpace: ";
VLOG(heap) << "Size " << GetMemMap()->Size();
VLOG(heap) << "GrowthLimit " << PrettySize(growth_limit);
VLOG(heap) << "Capacity " << PrettySize(capacity);
UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(GetName().c_str(), End(), capacity, PROT_READ | PROT_WRITE));
void* mspace = CreateMallocSpace(end_, starting_size, initial_size);
// Protect memory beyond the initial size.
byte* end = mem_map->Begin() + starting_size;
if (capacity - initial_size > 0) {
CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name_.c_str());
}
AllocSpace* alloc_space = new AllocSpace(name_, mem_map.release(), mspace, end_, end, growth_limit);
live_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End()));
CHECK_EQ(live_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End()));
mark_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End()));
CHECK_EQ(mark_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End()));
name_ += "-zygote-transformed";
VLOG(heap) << "zygote space creation done";
return alloc_space;
}
void AllocSpace::Free(Thread* self, Object* ptr) {
MutexLock mu(self, lock_);
if (kDebugSpaces) {
CHECK(ptr != NULL);
CHECK(Contains(ptr)) << "Free (" << ptr << ") not in bounds of heap " << *this;
CHECK_EQ(
*reinterpret_cast<word*>(reinterpret_cast<byte*>(ptr) + AllocationSize(ptr) -
sizeof(word) - kChunkOverhead), kPaddingValue);
}
num_bytes_allocated_ -= AllocationSize(ptr);
--num_objects_allocated_;
mspace_free(mspace_, ptr);
}
void AllocSpace::FreeList(Thread* self, size_t num_ptrs, Object** ptrs) {
MutexLock mu(self, lock_);
if (kDebugSpaces) {
CHECK(ptrs != NULL);
size_t num_broken_ptrs = 0;
for (size_t i = 0; i < num_ptrs; i++) {
if (!Contains(ptrs[i])) {
num_broken_ptrs++;
LOG(ERROR) << "FreeList[" << i << "] (" << ptrs[i] << ") not in bounds of heap " << *this;
} else {
size_t size = mspace_usable_size(ptrs[i]);
memset(ptrs[i], 0xEF, size);
}
}
CHECK_EQ(num_broken_ptrs, 0u);
}
for (size_t i = 0; i < num_ptrs; i++) {
num_bytes_allocated_ -= AllocationSize(ptrs[i]);
}
num_objects_allocated_ -= num_ptrs;
mspace_bulk_free(mspace_, reinterpret_cast<void**>(ptrs), num_ptrs);
}
// Callback from dlmalloc when it needs to increase the footprint
extern "C" void* art_heap_morecore(void* mspace, intptr_t increment) {
Heap* heap = Runtime::Current()->GetHeap();
DCHECK_EQ(heap->GetAllocSpace()->GetMspace(), mspace);
return heap->GetAllocSpace()->MoreCore(increment);
}
void* AllocSpace::MoreCore(intptr_t increment) {
lock_.AssertHeld(Thread::Current());
byte* original_end = end_;
if (increment != 0) {
VLOG(heap) << "AllocSpace::MoreCore " << PrettySize(increment);
byte* new_end = original_end + increment;
if (increment > 0) {
#if DEBUG_SPACES
// Should never be asked to increase the allocation beyond the capacity of the space. Enforced
// by mspace_set_footprint_limit.
CHECK_LE(new_end, Begin() + Capacity());
#endif
CHECK_MEMORY_CALL(mprotect, (original_end, increment, PROT_READ | PROT_WRITE), GetName());
} else {
#if DEBUG_SPACES
// Should never be asked for negative footprint (ie before begin)
CHECK_GT(original_end + increment, Begin());
#endif
// Advise we don't need the pages and protect them
// TODO: by removing permissions to the pages we may be causing TLB shoot-down which can be
// expensive (note the same isn't true for giving permissions to a page as the protected
// page shouldn't be in a TLB). We should investigate performance impact of just
// removing ignoring the memory protection change here and in Space::CreateAllocSpace. It's
// likely just a useful debug feature.
size_t size = -increment;
CHECK_MEMORY_CALL(madvise, (new_end, size, MADV_DONTNEED), GetName());
CHECK_MEMORY_CALL(mprotect, (new_end, size, PROT_NONE), GetName());
}
// Update end_
end_ = new_end;
}
return original_end;
}
size_t AllocSpace::AllocationSize(const Object* obj) {
return mspace_usable_size(const_cast<void*>(reinterpret_cast<const void*>(obj))) +
kChunkOverhead;
}
void MspaceMadviseCallback(void* start, void* end, size_t used_bytes, void* /* arg */) {
// Is this chunk in use?
if (used_bytes != 0) {
return;
}
// Do we have any whole pages to give back?
start = reinterpret_cast<void*>(RoundUp(reinterpret_cast<uintptr_t>(start), kPageSize));
end = reinterpret_cast<void*>(RoundDown(reinterpret_cast<uintptr_t>(end), kPageSize));
if (end > start) {
size_t length = reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start);
CHECK_MEMORY_CALL(madvise, (start, length, MADV_DONTNEED), "trim");
}
}
void AllocSpace::Trim() {
MutexLock mu(Thread::Current(), lock_);
// Trim to release memory at the end of the space.
mspace_trim(mspace_, 0);
// Visit space looking for page-sized holes to advise the kernel we don't need.
mspace_inspect_all(mspace_, MspaceMadviseCallback, NULL);
}
void AllocSpace::Walk(void(*callback)(void *start, void *end, size_t num_bytes, void* callback_arg),
void* arg) {
MutexLock mu(Thread::Current(), lock_);
mspace_inspect_all(mspace_, callback, arg);
callback(NULL, NULL, 0, arg); // Indicate end of a space.
}
size_t AllocSpace::GetFootprintLimit() {
MutexLock mu(Thread::Current(), lock_);
return mspace_footprint_limit(mspace_);
}
void AllocSpace::SetFootprintLimit(size_t new_size) {
MutexLock mu(Thread::Current(), lock_);
VLOG(heap) << "AllocSpace::SetFootprintLimit " << PrettySize(new_size);
// Compare against the actual footprint, rather than the Size(), because the heap may not have
// grown all the way to the allowed size yet.
size_t current_space_size = mspace_footprint(mspace_);
if (new_size < current_space_size) {
// Don't let the space grow any more.
new_size = current_space_size;
}
mspace_set_footprint_limit(mspace_, new_size);
}
size_t ImageSpace::bitmap_index_ = 0;
ImageSpace::ImageSpace(const std::string& name, MemMap* mem_map)
: MemMapSpace(name, mem_map, mem_map->Size(), kGcRetentionPolicyNeverCollect) {
const size_t bitmap_index = bitmap_index_++;
live_bitmap_.reset(SpaceBitmap::Create(
StringPrintf("imagespace-%s-live-bitmap-%d", name.c_str(), static_cast<int>(bitmap_index)),
Begin(), Capacity()));
DCHECK(live_bitmap_.get() != NULL) << "could not create imagespace live bitmap #" << bitmap_index;
}
ImageSpace* ImageSpace::Create(const std::string& image_file_name) {
CHECK(!image_file_name.empty());
uint64_t start_time = 0;
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
start_time = NanoTime();
LOG(INFO) << "Space::CreateImageSpace entering" << " image_file_name=" << image_file_name;
}
UniquePtr<File> file(OS::OpenFile(image_file_name.c_str(), false));
if (file.get() == NULL) {
LOG(ERROR) << "Failed to open " << image_file_name;
return NULL;
}
ImageHeader image_header;
bool success = file->ReadFully(&image_header, sizeof(image_header));
if (!success || !image_header.IsValid()) {
LOG(ERROR) << "Invalid image header " << image_file_name;
return NULL;
}
UniquePtr<MemMap> map(MemMap::MapFileAtAddress(image_header.GetImageBegin(),
file->Length(),
// TODO: selectively PROT_EXEC stubs
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_FIXED,
file->Fd(),
0));
if (map.get() == NULL) {
LOG(ERROR) << "Failed to map " << image_file_name;
return NULL;
}
CHECK_EQ(image_header.GetImageBegin(), map->Begin());
DCHECK_EQ(0, memcmp(&image_header, map->Begin(), sizeof(ImageHeader)));
Runtime* runtime = Runtime::Current();
Object* jni_stub_array = image_header.GetImageRoot(ImageHeader::kJniStubArray);
runtime->SetJniDlsymLookupStub(down_cast<ByteArray*>(jni_stub_array));
Object* ame_stub_array = image_header.GetImageRoot(ImageHeader::kAbstractMethodErrorStubArray);
runtime->SetAbstractMethodErrorStubArray(down_cast<ByteArray*>(ame_stub_array));
Object* resolution_stub_array =
image_header.GetImageRoot(ImageHeader::kStaticResolutionStubArray);
runtime->SetResolutionStubArray(
down_cast<ByteArray*>(resolution_stub_array), Runtime::kStaticMethod);
resolution_stub_array = image_header.GetImageRoot(ImageHeader::kUnknownMethodResolutionStubArray);
runtime->SetResolutionStubArray(
down_cast<ByteArray*>(resolution_stub_array), Runtime::kUnknownMethod);
Object* resolution_method = image_header.GetImageRoot(ImageHeader::kResolutionMethod);
runtime->SetResolutionMethod(down_cast<AbstractMethod*>(resolution_method));
Object* callee_save_method = image_header.GetImageRoot(ImageHeader::kCalleeSaveMethod);
runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kSaveAll);
callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsOnlySaveMethod);
runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kRefsOnly);
callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsAndArgsSaveMethod);
runtime->SetCalleeSaveMethod(down_cast<AbstractMethod*>(callee_save_method), Runtime::kRefsAndArgs);
ImageSpace* space = new ImageSpace(image_file_name, map.release());
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Space::CreateImageSpace exiting (" << PrettyDuration(NanoTime() - start_time)
<< ") " << *space;
}
return space;
}
void ImageSpace::RecordImageAllocations(SpaceBitmap* live_bitmap) const {
uint64_t start_time = 0;
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "ImageSpace::RecordImageAllocations entering";
start_time = NanoTime();
}
DCHECK(!Runtime::Current()->IsStarted());
CHECK(live_bitmap != NULL);
byte* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
byte* end = End();
while (current < end) {
DCHECK_ALIGNED(current, kObjectAlignment);
const Object* obj = reinterpret_cast<const Object*>(current);
live_bitmap->Set(obj);
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "ImageSpace::RecordImageAllocations exiting ("
<< PrettyDuration(NanoTime() - start_time) << ")";
}
}
std::ostream& operator<<(std::ostream& os, const Space& space) {
space.Dump(os);
return os;
}
void AllocSpace::Dump(std::ostream& os) const {
os << GetType()
<< "begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size()) << ",capacity=" << PrettySize(Capacity())
<< ",name=\"" << GetName() << "\"]";
}
void ImageSpace::Dump(std::ostream& os) const {
os << GetType()
<< "begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size())
<< ",name=\"" << GetName() << "\"]";
}
void LargeObjectSpace::SwapBitmaps() {
SpaceSetMap* temp_live_objects = live_objects_.release();
live_objects_.reset(mark_objects_.release());
mark_objects_.reset(temp_live_objects);
// Swap names to get more descriptive diagnostics.
std::string temp_name = live_objects_->GetName();
live_objects_->SetName(mark_objects_->GetName());
mark_objects_->SetName(temp_name);
}
DiscontinuousSpace::DiscontinuousSpace(const std::string& name,
GcRetentionPolicy gc_retention_policy)
: Space(name, gc_retention_policy) {
}
LargeObjectSpace::LargeObjectSpace(const std::string& name)
: DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
num_bytes_allocated_(0),
num_objects_allocated_(0) {
live_objects_.reset(new SpaceSetMap("large live objects"));
mark_objects_.reset(new SpaceSetMap("large marked objects"));
}
void LargeObjectSpace::CopyLiveToMarked() {
mark_objects_->CopyFrom(*live_objects_.get());
}
LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
: LargeObjectSpace(name),
lock_("large object space lock", kAllocSpaceLock)
{
}
LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
return new LargeObjectMapSpace(name);
}
Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes) {
MemMap* mem_map = MemMap::MapAnonymous("allocation", NULL, num_bytes, PROT_READ | PROT_WRITE);
if (mem_map == NULL) {
return NULL;
}
MutexLock mu(self, lock_);
Object* obj = reinterpret_cast<Object*>(mem_map->Begin());
large_objects_.push_back(obj);
mem_maps_.Put(obj, mem_map);
num_bytes_allocated_ += mem_map->Size();
++num_objects_allocated_;
return obj;
}
void LargeObjectMapSpace::Free(Thread* self, Object* ptr) {
MutexLock mu(self, lock_);
MemMaps::iterator found = mem_maps_.find(ptr);
CHECK(found != mem_maps_.end()) << "Attempted to free large object which was not live";
DCHECK_GE(num_bytes_allocated_, found->second->Size());
num_bytes_allocated_ -= found->second->Size();
--num_objects_allocated_;
delete found->second;
mem_maps_.erase(found);
}
size_t LargeObjectMapSpace::AllocationSize(const Object* obj) {
MutexLock mu(Thread::Current(), lock_);
MemMaps::iterator found = mem_maps_.find(const_cast<Object*>(obj));
CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
return found->second->Size();
}
void LargeObjectMapSpace::Walk(AllocSpace::WalkCallback callback, void* arg) {
MutexLock mu(Thread::Current(), lock_);
for (MemMaps::iterator it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
MemMap* mem_map = it->second;
callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
callback(NULL, NULL, 0, arg);
}
}
bool LargeObjectMapSpace::Contains(const Object* obj) const {
MutexLock mu(Thread::Current(), lock_);
return mem_maps_.find(const_cast<Object*>(obj)) != mem_maps_.end();
}
FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
CHECK(size % kAlignment == 0);
MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
PROT_READ | PROT_WRITE);
CHECK(mem_map != NULL) << "Failed to allocate large object space mem map";
return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
}
FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
: LargeObjectSpace(name),
begin_(begin),
end_(end),
mem_map_(mem_map),
lock_("free list space lock", kAllocSpaceLock) {
chunks_.resize(Size() / kAlignment + 1);
// Add a dummy chunk so we don't need to handle chunks having no next chunk.
chunks_.back().SetSize(kAlignment, false);
// Start out with one large free chunk.
AddFreeChunk(begin_, end_ - begin_, NULL);
}
FreeListSpace::~FreeListSpace() {
}
void FreeListSpace::AddFreeChunk(void* address, size_t size, Chunk* previous) {
Chunk* chunk = ChunkFromAddr(address);
chunk->SetSize(size, true);
chunk->SetPrevious(previous);
Chunk* next_chunk = GetNextChunk(chunk);
next_chunk->SetPrevious(chunk);
free_chunks_.insert(chunk);
}
FreeListSpace::Chunk* FreeListSpace::ChunkFromAddr(void* address) {
size_t offset = reinterpret_cast<byte*>(address) - Begin();
DCHECK(IsAligned<kAlignment>(offset));
DCHECK_LT(offset, Size());
return &chunks_[offset / kAlignment];
}
void* FreeListSpace::AddrFromChunk(Chunk* chunk) {
return reinterpret_cast<void*>(Begin() + (chunk - &chunks_.front()) * kAlignment);
}
void FreeListSpace::RemoveFreeChunk(Chunk* chunk) {
// TODO: C++0x
// TODO: Improve performance, this might be slow.
std::pair<FreeChunks::iterator, FreeChunks::iterator> range = free_chunks_.equal_range(chunk);
for (FreeChunks::iterator it = range.first; it != range.second; ++it) {
if (*it == chunk) {
free_chunks_.erase(it);
return;
}
}
}
void FreeListSpace::Walk(AllocSpace::WalkCallback callback, void* arg) {
MutexLock mu(Thread::Current(), lock_);
for (Chunk* chunk = &chunks_.front(); chunk < &chunks_.back(); ) {
if (!chunk->IsFree()) {
size_t size = chunk->GetSize();
void* begin = AddrFromChunk(chunk);
void* end = reinterpret_cast<void*>(reinterpret_cast<byte*>(begin) + size);
callback(begin, end, size, arg);
callback(NULL, NULL, 0, arg);
}
chunk = GetNextChunk(chunk);
}
}
void FreeListSpace::Free(Thread* self, Object* obj) {
MutexLock mu(self, lock_);
CHECK(Contains(obj));
// Check adjacent chunks to see if we need to combine.
Chunk* chunk = ChunkFromAddr(obj);
CHECK(!chunk->IsFree());
size_t allocation_size = chunk->GetSize();
madvise(obj, allocation_size, MADV_DONTNEED);
num_objects_allocated_--;
num_bytes_allocated_ -= allocation_size;
Chunk* prev = chunk->GetPrevious();
Chunk* next = GetNextChunk(chunk);
// Combine any adjacent free chunks
size_t extra_size = chunk->GetSize();
if (next->IsFree()) {
extra_size += next->GetSize();
RemoveFreeChunk(next);
}
if (prev != NULL && prev->IsFree()) {
RemoveFreeChunk(prev);
AddFreeChunk(AddrFromChunk(prev), prev->GetSize() + extra_size, prev->GetPrevious());
} else {
AddFreeChunk(AddrFromChunk(chunk), extra_size, prev);
}
}
bool FreeListSpace::Contains(const Object* obj) const {
return mem_map_->HasAddress(obj);
}
FreeListSpace::Chunk* FreeListSpace::GetNextChunk(Chunk* chunk) {
return chunk + chunk->GetSize() / kAlignment;
}
size_t FreeListSpace::AllocationSize(const Object* obj) {
Chunk* chunk = ChunkFromAddr(const_cast<Object*>(obj));
CHECK(!chunk->IsFree());
return chunk->GetSize();
}
Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes) {
MutexLock mu(self, lock_);
num_bytes = RoundUp(num_bytes, kAlignment);
Chunk temp;
temp.SetSize(num_bytes);
// Find the smallest chunk at least num_bytes in size.
FreeChunks::iterator found = free_chunks_.lower_bound(&temp);
if (found == free_chunks_.end()) {
// Out of memory, or too much fragmentation.
return NULL;
}
Chunk* chunk = *found;
free_chunks_.erase(found);
CHECK(chunk->IsFree());
void* addr = AddrFromChunk(chunk);
size_t chunk_size = chunk->GetSize();
chunk->SetSize(num_bytes);
if (chunk_size > num_bytes) {
// Split the chunk into two chunks.
Chunk* new_chunk = GetNextChunk(chunk);
AddFreeChunk(AddrFromChunk(new_chunk), chunk_size - num_bytes, chunk);
}
num_objects_allocated_++;
num_bytes_allocated_ += num_bytes;
return reinterpret_cast<Object*>(addr);
}
void FreeListSpace::FreeList(Thread* self, size_t num_ptrs, Object** ptrs) {
for (size_t i = 0; i < num_ptrs; ++i) {
Free(self, ptrs[i]);
}
}
} // namespace art