| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_arm64.h" |
| |
| #include "arch/arm64/callee_save_frame_arm64.h" |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "code_generator_arm64.h" |
| #include "common_arm64.h" |
| #include "data_type-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string-inl.h" |
| #include "mirror/var_handle.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| #include "utils/arm64/assembler_arm64.h" |
| |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| |
| // TODO(VIXL): Make VIXL compile with -Wshadow. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wshadow" |
| #include "aarch64/disasm-aarch64.h" |
| #include "aarch64/macro-assembler-aarch64.h" |
| #pragma GCC diagnostic pop |
| |
| namespace art { |
| |
| namespace arm64 { |
| |
| using helpers::CPURegisterFrom; |
| using helpers::DRegisterFrom; |
| using helpers::HeapOperand; |
| using helpers::LocationFrom; |
| using helpers::InputCPURegisterOrZeroRegAt; |
| using helpers::IsConstantZeroBitPattern; |
| using helpers::OperandFrom; |
| using helpers::RegisterFrom; |
| using helpers::SRegisterFrom; |
| using helpers::WRegisterFrom; |
| using helpers::XRegisterFrom; |
| using helpers::HRegisterFrom; |
| using helpers::InputRegisterAt; |
| using helpers::OutputRegister; |
| |
| namespace { |
| |
| ALWAYS_INLINE inline MemOperand AbsoluteHeapOperandFrom(Location location, size_t offset = 0) { |
| return MemOperand(XRegisterFrom(location), offset); |
| } |
| |
| } // namespace |
| |
| MacroAssembler* IntrinsicCodeGeneratorARM64::GetVIXLAssembler() { |
| return codegen_->GetVIXLAssembler(); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorARM64::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| using IntrinsicSlowPathARM64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARM64, |
| SlowPathCodeARM64, |
| Arm64Assembler>; |
| |
| #define __ codegen->GetVIXLAssembler()-> |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierSystemArrayCopySlowPathARM64(HInstruction* instruction, Location tmp) |
| : SlowPathCodeARM64(instruction), tmp_(tmp) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen_in) override { |
| CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| const int32_t element_size = DataType::Size(DataType::Type::kReference); |
| |
| Register src_curr_addr = XRegisterFrom(locations->GetTemp(0)); |
| Register dst_curr_addr = XRegisterFrom(locations->GetTemp(1)); |
| Register src_stop_addr = XRegisterFrom(locations->GetTemp(2)); |
| Register tmp_reg = WRegisterFrom(tmp_); |
| |
| __ Bind(GetEntryLabel()); |
| vixl::aarch64::Label slow_copy_loop; |
| __ Bind(&slow_copy_loop); |
| __ Ldr(tmp_reg, MemOperand(src_curr_addr, element_size, PostIndex)); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(tmp_reg); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // tmp_reg = ReadBarrier::Mark(tmp_reg); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| // (See ReadBarrierMarkSlowPathARM64::EmitNativeCode for more |
| // explanations.) |
| DCHECK_NE(tmp_.reg(), LR); |
| DCHECK_NE(tmp_.reg(), WSP); |
| DCHECK_NE(tmp_.reg(), WZR); |
| // IP0 is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary (and not preserved). It thus cannot be used by |
| // any live register in this slow path. |
| DCHECK_NE(LocationFrom(src_curr_addr).reg(), IP0); |
| DCHECK_NE(LocationFrom(dst_curr_addr).reg(), IP0); |
| DCHECK_NE(LocationFrom(src_stop_addr).reg(), IP0); |
| DCHECK_NE(tmp_.reg(), IP0); |
| DCHECK(0 <= tmp_.reg() && tmp_.reg() < kNumberOfWRegisters) << tmp_.reg(); |
| // TODO: Load the entrypoint once before the loop, instead of |
| // loading it at every iteration. |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(tmp_.reg()); |
| // This runtime call does not require a stack map. |
| codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| codegen->GetAssembler()->MaybePoisonHeapReference(tmp_reg); |
| __ Str(tmp_reg, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&slow_copy_loop, ne); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathARM64"; } |
| |
| private: |
| Location tmp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM64); |
| }; |
| #undef __ |
| |
| bool IntrinsicLocationsBuilderARM64::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| #define __ masm-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, MacroAssembler* masm) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ Fmov(is64bit ? XRegisterFrom(output) : WRegisterFrom(output), |
| is64bit ? DRegisterFrom(input) : SRegisterFrom(input)); |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, MacroAssembler* masm) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ Fmov(is64bit ? DRegisterFrom(output) : SRegisterFrom(output), |
| is64bit ? XRegisterFrom(input) : WRegisterFrom(input)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler()); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler()); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void CreateIntIntToIntSlowPathCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Force kOutputOverlap; see comments in IntrinsicSlowPath::EmitNativeCode. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| static void GenerateReverseBytes(MacroAssembler* masm, |
| DataType::Type type, |
| CPURegister in, |
| CPURegister out) { |
| switch (type) { |
| case DataType::Type::kUint16: |
| __ Rev16(out.W(), in.W()); |
| break; |
| case DataType::Type::kInt16: |
| __ Rev16(out.W(), in.W()); |
| __ Sxth(out.W(), out.W()); |
| break; |
| case DataType::Type::kInt32: |
| __ Rev(out.W(), in.W()); |
| break; |
| case DataType::Type::kInt64: |
| __ Rev(out.X(), in.X()); |
| break; |
| case DataType::Type::kFloat32: |
| __ Rev(in.W(), in.W()); // Note: Clobbers `in`. |
| __ Fmov(out.S(), in.W()); |
| break; |
| case DataType::Type::kFloat64: |
| __ Rev(in.X(), in.X()); // Note: Clobbers `in`. |
| __ Fmov(out.D(), in.X()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for reverse-bytes: " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void GenReverseBytes(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| GenerateReverseBytes(masm, type, CPURegisterFrom(in, type), CPURegisterFrom(out, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitShortReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetVIXLAssembler()); |
| } |
| |
| static void GenNumberOfLeadingZeros(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Clz(RegisterFrom(out, type), RegisterFrom(in, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenNumberOfTrailingZeros(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Rbit(RegisterFrom(out, type), RegisterFrom(in, type)); |
| __ Clz(RegisterFrom(out, type), RegisterFrom(out, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenReverse(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Rbit(RegisterFrom(out, type), RegisterFrom(in, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerReverse(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerReverse(HInvoke* invoke) { |
| GenReverse(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongReverse(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongReverse(HInvoke* invoke) { |
| GenReverse(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenBitCount(HInvoke* instr, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(DataType::IsIntOrLongType(type)) << type; |
| DCHECK_EQ(instr->GetType(), DataType::Type::kInt32); |
| DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(instr, 0); |
| Register dst = RegisterFrom(instr->GetLocations()->Out(), type); |
| VRegister fpr = (type == DataType::Type::kInt64) ? temps.AcquireD() : temps.AcquireS(); |
| |
| __ Fmov(fpr, src); |
| __ Cnt(fpr.V8B(), fpr.V8B()); |
| __ Addv(fpr.B(), fpr.V8B()); |
| __ Fmov(dst, fpr); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongBitCount(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| static void GenHighestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(invoke, 0); |
| Register dst = RegisterFrom(invoke->GetLocations()->Out(), type); |
| Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW(); |
| size_t high_bit = (type == DataType::Type::kInt64) ? 63u : 31u; |
| size_t clz_high_bit = (type == DataType::Type::kInt64) ? 6u : 5u; |
| |
| __ Clz(temp, src); |
| __ Mov(dst, UINT64_C(1) << high_bit); // MOV (bitmask immediate) |
| __ Bic(dst, dst, Operand(temp, LSL, high_bit - clz_high_bit)); // Clear dst if src was 0. |
| __ Lsr(dst, dst, temp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongHighestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenLowestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(invoke, 0); |
| Register dst = RegisterFrom(invoke->GetLocations()->Out(), type); |
| Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW(); |
| |
| __ Neg(temp, src); |
| __ And(dst, temp, src); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Fsqrt(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCeil(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCeil(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintp(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathFloor(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathFloor(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintm(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRint(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRint(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintn(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| static void CreateFPToIntPlusFPTempLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| static void GenMathRound(HInvoke* invoke, bool is_double, vixl::aarch64::MacroAssembler* masm) { |
| // Java 8 API definition for Math.round(): |
| // Return the closest long or int to the argument, with ties rounding to positive infinity. |
| // |
| // There is no single instruction in ARMv8 that can support the above definition. |
| // We choose to use FCVTAS here, because it has closest semantic. |
| // FCVTAS performs rounding to nearest integer, ties away from zero. |
| // For most inputs (positive values, zero or NaN), this instruction is enough. |
| // We only need a few handling code after FCVTAS if the input is negative half value. |
| // |
| // The reason why we didn't choose FCVTPS instruction here is that |
| // although it performs rounding toward positive infinity, it doesn't perform rounding to nearest. |
| // For example, FCVTPS(-1.9) = -1 and FCVTPS(1.1) = 2. |
| // If we were using this instruction, for most inputs, more handling code would be needed. |
| LocationSummary* l = invoke->GetLocations(); |
| VRegister in_reg = is_double ? DRegisterFrom(l->InAt(0)) : SRegisterFrom(l->InAt(0)); |
| VRegister tmp_fp = is_double ? DRegisterFrom(l->GetTemp(0)) : SRegisterFrom(l->GetTemp(0)); |
| Register out_reg = is_double ? XRegisterFrom(l->Out()) : WRegisterFrom(l->Out()); |
| vixl::aarch64::Label done; |
| |
| // Round to nearest integer, ties away from zero. |
| __ Fcvtas(out_reg, in_reg); |
| |
| // For positive values, zero or NaN inputs, rounding is done. |
| __ Tbz(out_reg, out_reg.GetSizeInBits() - 1, &done); |
| |
| // Handle input < 0 cases. |
| // If input is negative but not a tie, previous result (round to nearest) is valid. |
| // If input is a negative tie, out_reg += 1. |
| __ Frinta(tmp_fp, in_reg); |
| __ Fsub(tmp_fp, in_reg, tmp_fp); |
| __ Fcmp(tmp_fp, 0.5); |
| __ Cinc(out_reg, out_reg, eq); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRoundDouble(HInvoke* invoke) { |
| CreateFPToIntPlusFPTempLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRoundDouble(HInvoke* invoke) { |
| GenMathRound(invoke, /* is_double= */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRoundFloat(HInvoke* invoke) { |
| CreateFPToIntPlusFPTempLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRoundFloat(HInvoke* invoke) { |
| GenMathRound(invoke, /* is_double= */ false, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekByte(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldrsb(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldr(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldr(XRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldrsh(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeByte(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Strb(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Str(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Str(XRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Strh(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitThreadCurrentThread(HInvoke* invoke) { |
| codegen_->Load(DataType::Type::kReference, WRegisterFrom(invoke->GetLocations()->Out()), |
| MemOperand(tr, Thread::PeerOffset<kArm64PointerSize>().Int32Value())); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| CodeGeneratorARM64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK((type == DataType::Type::kInt32) || |
| (type == DataType::Type::kInt64) || |
| (type == DataType::Type::kReference)); |
| Location base_loc = locations->InAt(1); |
| Register base = WRegisterFrom(base_loc); // Object pointer. |
| Location offset_loc = locations->InAt(2); |
| Register offset = XRegisterFrom(offset_loc); // Long offset. |
| Location trg_loc = locations->Out(); |
| Register trg = RegisterFrom(trg_loc, type); |
| |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // UnsafeGetObject/UnsafeGetObjectVolatile with Baker's read barrier case. |
| Register temp = WRegisterFrom(locations->GetTemp(0)); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| // Piggy-back on the field load path using introspection for the Baker read barrier. |
| __ Add(temp, base, offset.W()); // Offset should not exceed 32 bits. |
| codegen->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| trg_loc, |
| base, |
| MemOperand(temp.X()), |
| /* needs_null_check= */ false, |
| is_volatile); |
| } else { |
| // Other cases. |
| MemOperand mem_op(base.X(), offset); |
| if (is_volatile) { |
| codegen->LoadAcquire(invoke, type, trg, mem_op, /* needs_null_check= */ true); |
| } else { |
| codegen->Load(type, trg, mem_op); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| DCHECK(trg.IsW()); |
| codegen->MaybeGenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0u, offset_loc); |
| } |
| } |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || |
| invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier load in order to use |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(). |
| locations->AddTemp(FixedTempLocation()); |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_); |
| } |
| |
| static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| |
| static void GenUnsafePut(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| bool is_ordered, |
| CodeGeneratorARM64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| |
| Register base = WRegisterFrom(locations->InAt(1)); // Object pointer. |
| Register offset = XRegisterFrom(locations->InAt(2)); // Long offset. |
| Register value = RegisterFrom(locations->InAt(3), type); |
| Register source = value; |
| MemOperand mem_op(base.X(), offset); |
| |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| |
| if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp.W(), value.W()); |
| codegen->GetAssembler()->PoisonHeapReference(temp.W()); |
| source = temp; |
| } |
| |
| if (is_volatile || is_ordered) { |
| codegen->StoreRelease(invoke, type, source, mem_op, /* needs_null_check= */ false); |
| } else { |
| codegen->Store(type, source, mem_op); |
| } |
| } |
| |
| if (type == DataType::Type::kReference) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(base, value, value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| |
| static void CreateUnsafeCASLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void EmitLoadExclusive(CodeGeneratorARM64* codegen, |
| DataType::Type type, |
| Register ptr, |
| Register old_value, |
| bool use_load_acquire) { |
| Arm64Assembler* assembler = codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| if (use_load_acquire) { |
| __ Ldaxrb(old_value, MemOperand(ptr)); |
| } else { |
| __ Ldxrb(old_value, MemOperand(ptr)); |
| } |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| if (use_load_acquire) { |
| __ Ldaxrh(old_value, MemOperand(ptr)); |
| } else { |
| __ Ldxrh(old_value, MemOperand(ptr)); |
| } |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| case DataType::Type::kReference: |
| if (use_load_acquire) { |
| __ Ldaxr(old_value, MemOperand(ptr)); |
| } else { |
| __ Ldxr(old_value, MemOperand(ptr)); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type: " << type; |
| UNREACHABLE(); |
| } |
| switch (type) { |
| case DataType::Type::kInt8: |
| __ Sxtb(old_value, old_value); |
| break; |
| case DataType::Type::kInt16: |
| __ Sxth(old_value, old_value); |
| break; |
| case DataType::Type::kReference: |
| assembler->MaybeUnpoisonHeapReference(old_value); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void EmitStoreExclusive(CodeGeneratorARM64* codegen, |
| DataType::Type type, |
| Register ptr, |
| Register store_result, |
| Register new_value, |
| bool use_store_release) { |
| Arm64Assembler* assembler = codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybePoisonHeapReference(new_value); |
| } |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| if (use_store_release) { |
| __ Stlxrb(store_result, new_value, MemOperand(ptr)); |
| } else { |
| __ Stxrb(store_result, new_value, MemOperand(ptr)); |
| } |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| if (use_store_release) { |
| __ Stlxrh(store_result, new_value, MemOperand(ptr)); |
| } else { |
| __ Stxrh(store_result, new_value, MemOperand(ptr)); |
| } |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| case DataType::Type::kReference: |
| if (use_store_release) { |
| __ Stlxr(store_result, new_value, MemOperand(ptr)); |
| } else { |
| __ Stxr(store_result, new_value, MemOperand(ptr)); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type: " << type; |
| UNREACHABLE(); |
| } |
| if (type == DataType::Type::kReference) { |
| assembler->MaybeUnpoisonHeapReference(new_value); |
| } |
| } |
| |
| static void GenerateCompareAndSet(CodeGeneratorARM64* codegen, |
| DataType::Type type, |
| std::memory_order order, |
| bool strong, |
| vixl::aarch64::Label* cmp_failure, |
| Register ptr, |
| Register new_value, |
| Register old_value, |
| Register store_result, |
| Register expected, |
| Register expected2 = Register()) { |
| // The `expected2` is valid only for reference slow path and represents the unmarked old value |
| // from the main path attempt to emit CAS when the marked old value matched `expected`. |
| DCHECK(type == DataType::Type::kReference || !expected2.IsValid()); |
| |
| DCHECK(ptr.IsX()); |
| DCHECK_EQ(new_value.IsX(), type == DataType::Type::kInt64); |
| DCHECK_EQ(old_value.IsX(), type == DataType::Type::kInt64); |
| DCHECK(store_result.IsW()); |
| DCHECK_EQ(expected.IsX(), type == DataType::Type::kInt64); |
| DCHECK(!expected2.IsValid() || expected2.IsW()); |
| |
| Arm64Assembler* assembler = codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| |
| bool use_load_acquire = |
| (order == std::memory_order_acquire) || (order == std::memory_order_seq_cst); |
| bool use_store_release = |
| (order == std::memory_order_release) || (order == std::memory_order_seq_cst); |
| DCHECK(use_load_acquire || use_store_release || order == std::memory_order_relaxed); |
| |
| // repeat: { |
| // old_value = [ptr]; // Load exclusive. |
| // if (old_value != expected && old_value != expected2) goto cmp_failure; |
| // store_result = failed([ptr] <- new_value); // Store exclusive. |
| // } |
| // if (strong) { |
| // if (store_result) goto repeat; // Repeat until compare fails or store exclusive succeeds. |
| // } else { |
| // store_result = store_result ^ 1; // Report success as 1, failure as 0. |
| // } |
| // |
| // Flag Z indicates whether `old_value == expected || old_value == expected2`. |
| // (Is `expected2` is not valid, the `old_value == expected2` part is not emitted.) |
| |
| vixl::aarch64::Label loop_head; |
| if (strong) { |
| __ Bind(&loop_head); |
| } |
| EmitLoadExclusive(codegen, type, ptr, old_value, use_load_acquire); |
| __ Cmp(old_value, expected); |
| if (expected2.IsValid()) { |
| __ Ccmp(old_value, expected2, ZFlag, ne); |
| } |
| // If the comparison failed, the Z flag is cleared as we branch to the `cmp_failure` label. |
| // If the comparison succeeded, the Z flag is set and remains set after the end of the |
| // code emitted here, unless we retry the whole operation. |
| __ B(cmp_failure, ne); |
| EmitStoreExclusive(codegen, type, ptr, store_result, new_value, use_store_release); |
| if (strong) { |
| __ Cbnz(store_result, &loop_head); |
| } else { |
| // Flip the `store_result` register to indicate success by 1 and failure by 0. |
| __ Eor(store_result, store_result, 1); |
| } |
| } |
| |
| class ReadBarrierCasSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierCasSlowPathARM64(HInvoke* invoke, |
| std::memory_order order, |
| bool strong, |
| Register base, |
| Register offset, |
| Register expected, |
| Register new_value, |
| Register old_value, |
| Register old_value_temp, |
| Register store_result, |
| bool update_old_value, |
| CodeGeneratorARM64* arm64_codegen) |
| : SlowPathCodeARM64(invoke), |
| order_(order), |
| strong_(strong), |
| base_(base), |
| offset_(offset), |
| expected_(expected), |
| new_value_(new_value), |
| old_value_(old_value), |
| old_value_temp_(old_value_temp), |
| store_result_(store_result), |
| update_old_value_(update_old_value), |
| mark_old_value_slow_path_(nullptr), |
| update_old_value_slow_path_(nullptr) { |
| if (!kUseBakerReadBarrier) { |
| // We need to add the slow path now, it is too late when emitting slow path code. |
| mark_old_value_slow_path_ = arm64_codegen->AddReadBarrierSlowPath( |
| invoke, |
| Location::RegisterLocation(old_value_temp.GetCode()), |
| Location::RegisterLocation(old_value.GetCode()), |
| Location::RegisterLocation(base.GetCode()), |
| /*offset=*/ 0u, |
| /*index=*/ Location::RegisterLocation(offset.GetCode())); |
| if (update_old_value_) { |
| update_old_value_slow_path_ = arm64_codegen->AddReadBarrierSlowPath( |
| invoke, |
| Location::RegisterLocation(old_value.GetCode()), |
| Location::RegisterLocation(old_value_temp.GetCode()), |
| Location::RegisterLocation(base.GetCode()), |
| /*offset=*/ 0u, |
| /*index=*/ Location::RegisterLocation(offset.GetCode())); |
| } |
| } |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierCasSlowPathARM64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| Arm64Assembler* assembler = arm64_codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| __ Bind(GetEntryLabel()); |
| |
| // Mark the `old_value_` from the main path and compare with `expected_`. |
| if (kUseBakerReadBarrier) { |
| DCHECK(mark_old_value_slow_path_ == nullptr); |
| arm64_codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(old_value_temp_, old_value_); |
| } else { |
| DCHECK(mark_old_value_slow_path_ != nullptr); |
| __ B(mark_old_value_slow_path_->GetEntryLabel()); |
| __ Bind(mark_old_value_slow_path_->GetExitLabel()); |
| } |
| __ Cmp(old_value_temp_, expected_); |
| if (update_old_value_) { |
| // Update the old value if we're going to return from the slow path. |
| __ Csel(old_value_, old_value_temp_, old_value_, ne); |
| } |
| __ B(GetExitLabel(), ne); // If taken, Z=false indicates failure. |
| |
| // The `old_value` we have read did not match `expected` (which is always a to-space |
| // reference) but after the read barrier the marked to-space value matched, so the |
| // `old_value` must be a from-space reference to the same object. Do the same CAS loop |
| // as the main path but check for both `expected` and the unmarked old value |
| // representing the to-space and from-space references for the same object. |
| |
| UseScratchRegisterScope temps(masm); |
| DCHECK(!store_result_.IsValid() || !temps.IsAvailable(store_result_)); |
| Register tmp_ptr = temps.AcquireX(); |
| Register store_result = store_result_.IsValid() ? store_result_ : temps.AcquireW(); |
| |
| // Recalculate the `tmp_ptr` from main path clobbered by the read barrier above. |
| __ Add(tmp_ptr, base_.X(), Operand(offset_)); |
| |
| vixl::aarch64::Label mark_old_value; |
| GenerateCompareAndSet(arm64_codegen, |
| DataType::Type::kReference, |
| order_, |
| strong_, |
| /*cmp_failure=*/ update_old_value_ ? &mark_old_value : GetExitLabel(), |
| tmp_ptr, |
| new_value_, |
| /*old_value=*/ old_value_temp_, |
| store_result, |
| expected_, |
| /*expected2=*/ old_value_); |
| if (update_old_value_) { |
| // To reach this point, the `old_value_temp_` must be either a from-space or a to-space |
| // reference of the `expected_` object. Update the `old_value_` to the to-space reference. |
| __ Mov(old_value_, expected_); |
| } |
| |
| // Z=true from the CMP+CCMP in GenerateCompareAndSet() above indicates comparison success. |
| // For strong CAS, that's the overall success. For weak CAS, the code also needs |
| // to check the `store_result` after returning from the slow path. |
| __ B(GetExitLabel()); |
| |
| if (update_old_value_) { |
| __ Bind(&mark_old_value); |
| if (kUseBakerReadBarrier) { |
| DCHECK(update_old_value_slow_path_ == nullptr); |
| arm64_codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(old_value_, old_value_temp_); |
| } else { |
| // Note: We could redirect the `failure` above directly to the entry label and bind |
| // the exit label in the main path, but the main path would need to access the |
| // `update_old_value_slow_path_`. To keep the code simple, keep the extra jumps. |
| DCHECK(update_old_value_slow_path_ != nullptr); |
| __ B(update_old_value_slow_path_->GetEntryLabel()); |
| __ Bind(update_old_value_slow_path_->GetExitLabel()); |
| } |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| private: |
| std::memory_order order_; |
| bool strong_; |
| Register base_; |
| Register offset_; |
| Register expected_; |
| Register new_value_; |
| Register old_value_; |
| Register old_value_temp_; |
| Register store_result_; |
| bool update_old_value_; |
| SlowPathCodeARM64* mark_old_value_slow_path_; |
| SlowPathCodeARM64* update_old_value_slow_path_; |
| }; |
| |
| static void GenUnsafeCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARM64* codegen) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register out = WRegisterFrom(locations->Out()); // Boolean result. |
| Register base = WRegisterFrom(locations->InAt(1)); // Object pointer. |
| Register offset = XRegisterFrom(locations->InAt(2)); // Long offset. |
| Register expected = RegisterFrom(locations->InAt(3), type); // Expected. |
| Register new_value = RegisterFrom(locations->InAt(4), type); // New value. |
| |
| // This needs to be before the temp registers, as MarkGCCard also uses VIXL temps. |
| if (type == DataType::Type::kReference) { |
| // Mark card for object assuming new value is stored. |
| bool new_value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(base, new_value, new_value_can_be_null); |
| } |
| |
| UseScratchRegisterScope temps(masm); |
| Register tmp_ptr = temps.AcquireX(); // Pointer to actual memory. |
| Register old_value; // Value in memory. |
| |
| vixl::aarch64::Label exit_loop_label; |
| vixl::aarch64::Label* exit_loop = &exit_loop_label; |
| vixl::aarch64::Label* cmp_failure = &exit_loop_label; |
| |
| if (kEmitCompilerReadBarrier && type == DataType::Type::kReference) { |
| // We need to store the `old_value` in a non-scratch register to make sure |
| // the read barrier in the slow path does not clobber it. |
| old_value = WRegisterFrom(locations->GetTemp(0)); // The old value from main path. |
| // The `old_value_temp` is used first for the marked `old_value` and then for the unmarked |
| // reloaded old value for subsequent CAS in the slow path. It cannot be a scratch register. |
| Register old_value_temp = WRegisterFrom(locations->GetTemp(1)); |
| ReadBarrierCasSlowPathARM64* slow_path = |
| new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathARM64( |
| invoke, |
| std::memory_order_seq_cst, |
| /*strong=*/ true, |
| base, |
| offset, |
| expected, |
| new_value, |
| old_value, |
| old_value_temp, |
| /*store_result=*/ Register(), // Use a scratch register. |
| /*update_old_value=*/ false, |
| codegen); |
| codegen->AddSlowPath(slow_path); |
| exit_loop = slow_path->GetExitLabel(); |
| cmp_failure = slow_path->GetEntryLabel(); |
| } else { |
| old_value = temps.AcquireSameSizeAs(new_value); |
| } |
| |
| __ Add(tmp_ptr, base.X(), Operand(offset)); |
| |
| GenerateCompareAndSet(codegen, |
| type, |
| std::memory_order_seq_cst, |
| /*strong=*/ true, |
| cmp_failure, |
| tmp_ptr, |
| new_value, |
| old_value, |
| /*store_result=*/ old_value.W(), // Reuse `old_value` for ST*XR* result. |
| expected); |
| __ Bind(exit_loop); |
| __ Cset(out, eq); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASInt(HInvoke* invoke) { |
| CreateUnsafeCASLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASLong(HInvoke* invoke) { |
| CreateUnsafeCASLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. b/173104084 |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateUnsafeCASLocations(allocator_, invoke); |
| if (kEmitCompilerReadBarrier) { |
| // We need two non-scratch temporary registers for read barrier. |
| LocationSummary* locations = invoke->GetLocations(); |
| if (kUseBakerReadBarrier) { |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| // To preserve the old value across the non-Baker read barrier |
| // slow path, use a fixed callee-save register. |
| constexpr int first_callee_save = CTZ(kArm64CalleeSaveRefSpills); |
| locations->AddTemp(Location::RegisterLocation(first_callee_save)); |
| // To reduce the number of moves, request x0 as the second temporary. |
| DCHECK(InvokeRuntimeCallingConvention().GetReturnLocation(DataType::Type::kReference).Equals( |
| Location::RegisterLocation(x0.GetCode()))); |
| locations->AddTemp(Location::RegisterLocation(x0.GetCode())); |
| } |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASInt(HInvoke* invoke) { |
| GenUnsafeCas(invoke, DataType::Type::kInt32, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASLong(HInvoke* invoke) { |
| GenUnsafeCas(invoke, DataType::Type::kInt64, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASObject(HInvoke* invoke) { |
| GenUnsafeCas(invoke, DataType::Type::kReference, codegen_); |
| } |
| |
| enum class GetAndUpdateOp { |
| kSet, |
| kAdd, |
| kAddWithByteSwap, |
| kAnd, |
| kOr, |
| kXor |
| }; |
| |
| static void GenerateGetAndUpdate(CodeGeneratorARM64* codegen, |
| GetAndUpdateOp get_and_update_op, |
| DataType::Type load_store_type, |
| std::memory_order order, |
| Register ptr, |
| CPURegister arg, |
| CPURegister old_value) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| Register store_result = temps.AcquireW(); |
| |
| DCHECK_EQ(old_value.GetSizeInBits(), arg.GetSizeInBits()); |
| Register old_value_reg; |
| Register new_value; |
| switch (get_and_update_op) { |
| case GetAndUpdateOp::kSet: |
| old_value_reg = old_value.IsX() ? old_value.X() : old_value.W(); |
| new_value = arg.IsX() ? arg.X() : arg.W(); |
| break; |
| case GetAndUpdateOp::kAddWithByteSwap: |
| case GetAndUpdateOp::kAdd: |
| if (arg.IsVRegister()) { |
| old_value_reg = arg.IsD() ? temps.AcquireX() : temps.AcquireW(); |
| new_value = old_value_reg; // Use the same temporary. |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| case GetAndUpdateOp::kAnd: |
| case GetAndUpdateOp::kOr: |
| case GetAndUpdateOp::kXor: |
| old_value_reg = old_value.IsX() ? old_value.X() : old_value.W(); |
| new_value = old_value.IsX() ? temps.AcquireX() : temps.AcquireW(); |
| break; |
| } |
| |
| bool use_load_acquire = |
| (order == std::memory_order_acquire) || (order == std::memory_order_seq_cst); |
| bool use_store_release = |
| (order == std::memory_order_release) || (order == std::memory_order_seq_cst); |
| DCHECK(use_load_acquire || use_store_release); |
| |
| vixl::aarch64::Label loop_label; |
| __ Bind(&loop_label); |
| EmitLoadExclusive(codegen, load_store_type, ptr, old_value_reg, use_load_acquire); |
| switch (get_and_update_op) { |
| case GetAndUpdateOp::kSet: |
| break; |
| case GetAndUpdateOp::kAddWithByteSwap: |
| // To avoid unnecessary sign extension before REV16, the caller must specify `kUint16` |
| // instead of `kInt16` and do the sign-extension explicitly afterwards. |
| DCHECK_NE(load_store_type, DataType::Type::kInt16); |
| GenerateReverseBytes(masm, load_store_type, old_value_reg, old_value_reg); |
| FALLTHROUGH_INTENDED; |
| case GetAndUpdateOp::kAdd: |
| if (arg.IsVRegister()) { |
| VRegister old_value_vreg = old_value.IsD() ? old_value.D() : old_value.S(); |
| VRegister sum = temps.AcquireSameSizeAs(old_value_vreg); |
| __ Fmov(old_value_vreg, old_value_reg); |
| __ Fadd(sum, old_value_vreg, arg.IsD() ? arg.D() : arg.S()); |
| __ Fmov(new_value, sum); |
| } else { |
| __ Add(new_value, old_value_reg, arg.IsX() ? arg.X() : arg.W()); |
| } |
| if (get_and_update_op == GetAndUpdateOp::kAddWithByteSwap) { |
| GenerateReverseBytes(masm, load_store_type, new_value, new_value); |
| } |
| break; |
| case GetAndUpdateOp::kAnd: |
| __ And(new_value, old_value_reg, arg.IsX() ? arg.X() : arg.W()); |
| break; |
| case GetAndUpdateOp::kOr: |
| __ Orr(new_value, old_value_reg, arg.IsX() ? arg.X() : arg.W()); |
| break; |
| case GetAndUpdateOp::kXor: |
| __ Eor(new_value, old_value_reg, arg.IsX() ? arg.X() : arg.W()); |
| break; |
| } |
| EmitStoreExclusive(codegen, load_store_type, ptr, store_result, new_value, use_store_release); |
| __ Cbnz(store_result, &loop_label); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringCompareTo(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, |
| invoke->InputAt(1)->CanBeNull() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| // Need temporary registers for String compression's feature. |
| if (mirror::kUseStringCompression) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringCompareTo(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = InputRegisterAt(invoke, 0); |
| Register arg = InputRegisterAt(invoke, 1); |
| DCHECK(str.IsW()); |
| DCHECK(arg.IsW()); |
| Register out = OutputRegister(invoke); |
| |
| Register temp0 = WRegisterFrom(locations->GetTemp(0)); |
| Register temp1 = WRegisterFrom(locations->GetTemp(1)); |
| Register temp2 = WRegisterFrom(locations->GetTemp(2)); |
| Register temp3; |
| if (mirror::kUseStringCompression) { |
| temp3 = WRegisterFrom(locations->GetTemp(3)); |
| } |
| |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label find_char_diff; |
| vixl::aarch64::Label end; |
| vixl::aarch64::Label different_compression; |
| |
| // Get offsets of count and value fields within a string object. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Take slow path and throw if input can be and is null. |
| SlowPathCodeARM64* slow_path = nullptr; |
| const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); |
| if (can_slow_path) { |
| slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ Cbz(arg, slow_path->GetEntryLabel()); |
| } |
| |
| // Reference equality check, return 0 if same reference. |
| __ Subs(out, str, arg); |
| __ B(&end, eq); |
| |
| if (mirror::kUseStringCompression) { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp3, HeapOperand(str, count_offset)); |
| __ Ldr(temp2, HeapOperand(arg, count_offset)); |
| // Clean out compression flag from lengths. |
| __ Lsr(temp0, temp3, 1u); |
| __ Lsr(temp1, temp2, 1u); |
| } else { |
| // Load lengths of this and argument strings. |
| __ Ldr(temp0, HeapOperand(str, count_offset)); |
| __ Ldr(temp1, HeapOperand(arg, count_offset)); |
| } |
| // out = length diff. |
| __ Subs(out, temp0, temp1); |
| // temp0 = min(len(str), len(arg)). |
| __ Csel(temp0, temp1, temp0, ge); |
| // Shorter string is empty? |
| __ Cbz(temp0, &end); |
| |
| if (mirror::kUseStringCompression) { |
| // Check if both strings using same compression style to use this comparison loop. |
| __ Eor(temp2, temp2, Operand(temp3)); |
| // Interleave with compression flag extraction which is needed for both paths |
| // and also set flags which is needed only for the different compressions path. |
| __ Ands(temp3.W(), temp3.W(), Operand(1)); |
| __ Tbnz(temp2, 0, &different_compression); // Does not use flags. |
| } |
| // Store offset of string value in preparation for comparison loop. |
| __ Mov(temp1, value_offset); |
| if (mirror::kUseStringCompression) { |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. |
| __ Lsl(temp0, temp0, temp3); |
| } |
| |
| UseScratchRegisterScope scratch_scope(masm); |
| Register temp4 = scratch_scope.AcquireX(); |
| |
| // Assertions that must hold in order to compare strings 8 bytes at a time. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Promote temp2 to an X reg, ready for LDR. |
| temp2 = temp2.X(); |
| |
| // Loop to compare 4x16-bit characters at a time (ok because of string data alignment). |
| __ Bind(&loop); |
| __ Ldr(temp4, MemOperand(str.X(), temp1.X())); |
| __ Ldr(temp2, MemOperand(arg.X(), temp1.X())); |
| __ Cmp(temp4, temp2); |
| __ B(ne, &find_char_diff); |
| __ Add(temp1, temp1, char_size * 4); |
| // With string compression, we have compared 8 bytes, otherwise 4 chars. |
| __ Subs(temp0, temp0, (mirror::kUseStringCompression) ? 8 : 4); |
| __ B(&loop, hi); |
| __ B(&end); |
| |
| // Promote temp1 to an X reg, ready for EOR. |
| temp1 = temp1.X(); |
| |
| // Find the single character difference. |
| __ Bind(&find_char_diff); |
| // Get the bit position of the first character that differs. |
| __ Eor(temp1, temp2, temp4); |
| __ Rbit(temp1, temp1); |
| __ Clz(temp1, temp1); |
| |
| // If the number of chars remaining <= the index where the difference occurs (0-3), then |
| // the difference occurs outside the remaining string data, so just return length diff (out). |
| // Unlike ARM, we're doing the comparison in one go here, without the subtraction at the |
| // find_char_diff_2nd_cmp path, so it doesn't matter whether the comparison is signed or |
| // unsigned when string compression is disabled. |
| // When it's enabled, the comparison must be unsigned. |
| __ Cmp(temp0, Operand(temp1.W(), LSR, (mirror::kUseStringCompression) ? 3 : 4)); |
| __ B(ls, &end); |
| |
| // Extract the characters and calculate the difference. |
| if (mirror:: kUseStringCompression) { |
| __ Bic(temp1, temp1, 0x7); |
| __ Bic(temp1, temp1, Operand(temp3.X(), LSL, 3u)); |
| } else { |
| __ Bic(temp1, temp1, 0xf); |
| } |
| __ Lsr(temp2, temp2, temp1); |
| __ Lsr(temp4, temp4, temp1); |
| if (mirror::kUseStringCompression) { |
| // Prioritize the case of compressed strings and calculate such result first. |
| __ Uxtb(temp1, temp4); |
| __ Sub(out, temp1.W(), Operand(temp2.W(), UXTB)); |
| __ Tbz(temp3, 0u, &end); // If actually compressed, we're done. |
| } |
| __ Uxth(temp4, temp4); |
| __ Sub(out, temp4.W(), Operand(temp2.W(), UXTH)); |
| |
| if (mirror::kUseStringCompression) { |
| __ B(&end); |
| __ Bind(&different_compression); |
| |
| // Comparison for different compression style. |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| temp1 = temp1.W(); |
| temp2 = temp2.W(); |
| temp4 = temp4.W(); |
| |
| // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. |
| // Note that flags have been set by the `str` compression flag extraction to `temp3` |
| // before branching to the `different_compression` label. |
| __ Csel(temp1, str, arg, eq); // Pointer to the compressed string. |
| __ Csel(temp2, str, arg, ne); // Pointer to the uncompressed string. |
| |
| // We want to free up the temp3, currently holding `str` compression flag, for comparison. |
| // So, we move it to the bottom bit of the iteration count `temp0` which we then need to treat |
| // as unsigned. Start by freeing the bit with a LSL and continue further down by a SUB which |
| // will allow `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. |
| __ Lsl(temp0, temp0, 1u); |
| |
| // Adjust temp1 and temp2 from string pointers to data pointers. |
| __ Add(temp1, temp1, Operand(value_offset)); |
| __ Add(temp2, temp2, Operand(value_offset)); |
| |
| // Complete the move of the compression flag. |
| __ Sub(temp0, temp0, Operand(temp3)); |
| |
| vixl::aarch64::Label different_compression_loop; |
| vixl::aarch64::Label different_compression_diff; |
| |
| __ Bind(&different_compression_loop); |
| __ Ldrb(temp4, MemOperand(temp1.X(), c_char_size, PostIndex)); |
| __ Ldrh(temp3, MemOperand(temp2.X(), char_size, PostIndex)); |
| __ Subs(temp4, temp4, Operand(temp3)); |
| __ B(&different_compression_diff, ne); |
| __ Subs(temp0, temp0, 2); |
| __ B(&different_compression_loop, hi); |
| __ B(&end); |
| |
| // Calculate the difference. |
| __ Bind(&different_compression_diff); |
| __ Tst(temp0, Operand(1)); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Cneg(out, temp4, ne); |
| } |
| |
| __ Bind(&end); |
| |
| if (can_slow_path) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| // The cut off for unrolling the loop in String.equals() intrinsic for const strings. |
| // The normal loop plus the pre-header is 9 instructions without string compression and 12 |
| // instructions with string compression. We can compare up to 8 bytes in 4 instructions |
| // (LDR+LDR+CMP+BNE) and up to 16 bytes in 5 instructions (LDP+LDP+CMP+CCMP+BNE). Allow up |
| // to 10 instructions for the unrolled loop. |
| constexpr size_t kShortConstStringEqualsCutoffInBytes = 32; |
| |
| static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) { |
| if (candidate->IsLoadString()) { |
| HLoadString* load_string = candidate->AsLoadString(); |
| const DexFile& dex_file = load_string->GetDexFile(); |
| return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length); |
| } |
| return nullptr; |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringEquals(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // For the generic implementation and for long const strings we need a temporary. |
| // We do not need it for short const strings, up to 8 bytes, see code generation below. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| if (const_string == nullptr || const_string_length > (is_compressed ? 8u : 4u)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| // TODO: If the String.equals() is used only for an immediately following HIf, we can |
| // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks. |
| // Then we shall need an extra temporary register instead of the output register. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringEquals(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = WRegisterFrom(locations->InAt(0)); |
| Register arg = WRegisterFrom(locations->InAt(1)); |
| Register out = XRegisterFrom(locations->Out()); |
| |
| UseScratchRegisterScope scratch_scope(masm); |
| Register temp = scratch_scope.AcquireW(); |
| Register temp1 = scratch_scope.AcquireW(); |
| |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label end; |
| vixl::aarch64::Label return_true; |
| vixl::aarch64::Label return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| const int32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ Cbz(arg, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ Cmp(str, arg); |
| __ B(&return_true, eq); |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| // |
| // As the String class is expected to be non-movable, we can read the class |
| // field from String.equals' arguments without read barriers. |
| AssertNonMovableStringClass(); |
| // /* HeapReference<Class> */ temp = str->klass_ |
| __ Ldr(temp, MemOperand(str.X(), class_offset)); |
| // /* HeapReference<Class> */ temp1 = arg->klass_ |
| __ Ldr(temp1, MemOperand(arg.X(), class_offset)); |
| // Also, because we use the previously loaded class references only in the |
| // following comparison, we don't need to unpoison them. |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| |
| // Check if one of the inputs is a const string. Do not special-case both strings |
| // being const, such cases should be handled by constant folding if needed. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| if (const_string != nullptr) { |
| std::swap(str, arg); // Make sure the const string is in `str`. |
| } |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| |
| if (const_string != nullptr) { |
| // Load `count` field of the argument string and check if it matches the const string. |
| // Also compares the compression style, if differs return false. |
| __ Ldr(temp, MemOperand(arg.X(), count_offset)); |
| // Temporarily release temp1 as we may not be able to embed the flagged count in CMP immediate. |
| scratch_scope.Release(temp1); |
| __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed))); |
| temp1 = scratch_scope.AcquireW(); |
| __ B(&return_false, ne); |
| } else { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp, MemOperand(str.X(), count_offset)); |
| __ Ldr(temp1, MemOperand(arg.X(), count_offset)); |
| // Check if `count` fields are equal, return false if they're not. |
| // Also compares the compression style, if differs return false. |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| |
| // Assertions that must hold in order to compare strings 8 bytes at a time. |
| // Ok to do this because strings are zero-padded to kObjectAlignment. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| if (const_string != nullptr && |
| const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes |
| : kShortConstStringEqualsCutoffInBytes / 2u)) { |
| // Load and compare the contents. Though we know the contents of the short const string |
| // at compile time, materializing constants may be more code than loading from memory. |
| int32_t offset = value_offset; |
| size_t remaining_bytes = |
| RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 8u); |
| temp = temp.X(); |
| temp1 = temp1.X(); |
| while (remaining_bytes > sizeof(uint64_t)) { |
| Register temp2 = XRegisterFrom(locations->GetTemp(0)); |
| __ Ldp(temp, temp1, MemOperand(str.X(), offset)); |
| __ Ldp(temp2, out, MemOperand(arg.X(), offset)); |
| __ Cmp(temp, temp2); |
| __ Ccmp(temp1, out, NoFlag, eq); |
| __ B(&return_false, ne); |
| offset += 2u * sizeof(uint64_t); |
| remaining_bytes -= 2u * sizeof(uint64_t); |
| } |
| if (remaining_bytes != 0u) { |
| __ Ldr(temp, MemOperand(str.X(), offset)); |
| __ Ldr(temp1, MemOperand(arg.X(), offset)); |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| } else { |
| // Return true if both strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Cbz(temp, &return_true); |
| |
| if (mirror::kUseStringCompression) { |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp as unsigned. |
| __ And(temp1, temp, Operand(1)); // Extract compression flag. |
| __ Lsr(temp, temp, 1u); // Extract length. |
| __ Lsl(temp, temp, temp1); // Calculate number of bytes to compare. |
| } |
| |
| // Store offset of string value in preparation for comparison loop |
| __ Mov(temp1, value_offset); |
| |
| temp1 = temp1.X(); |
| Register temp2 = XRegisterFrom(locations->GetTemp(0)); |
| // Loop to compare strings 8 bytes at a time starting at the front of the string. |
| __ Bind(&loop); |
| __ Ldr(out, MemOperand(str.X(), temp1)); |
| __ Ldr(temp2, MemOperand(arg.X(), temp1)); |
| __ Add(temp1, temp1, Operand(sizeof(uint64_t))); |
| __ Cmp(out, temp2); |
| __ B(&return_false, ne); |
| // With string compression, we have compared 8 bytes, otherwise 4 chars. |
| __ Sub(temp, temp, Operand(mirror::kUseStringCompression ? 8 : 4), SetFlags); |
| __ B(&loop, hi); |
| } |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ Mov(out, 1); |
| __ B(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ Mov(out, 0); |
| __ Bind(&end); |
| } |
| |
| static void GenerateVisitStringIndexOf(HInvoke* invoke, |
| MacroAssembler* masm, |
| CodeGeneratorARM64* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCodeARM64* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > 0xFFFFU) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| Register char_reg = WRegisterFrom(locations->InAt(1)); |
| __ Tst(char_reg, 0xFFFF0000); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| |
| if (start_at_zero) { |
| // Start-index = 0. |
| Register tmp_reg = WRegisterFrom(locations->GetTemp(0)); |
| __ Mov(tmp_reg, 0); |
| } |
| |
| codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringIndexOf(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32)); |
| |
| // Need to send start_index=0. |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register byte_array = WRegisterFrom(locations->InAt(0)); |
| __ Cmp(byte_array, 0); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromString(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register string_to_copy = WRegisterFrom(locations->InAt(0)); |
| __ Cmp(string_to_copy, 0); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType())); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(1)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType())); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| QuickEntrypointEnum entry) { |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathPow(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); |
| |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. |
| Register srcObj = XRegisterFrom(locations->InAt(0)); |
| Register srcBegin = XRegisterFrom(locations->InAt(1)); |
| Register srcEnd = XRegisterFrom(locations->InAt(2)); |
| Register dstObj = XRegisterFrom(locations->InAt(3)); |
| Register dstBegin = XRegisterFrom(locations->InAt(4)); |
| |
| Register src_ptr = XRegisterFrom(locations->GetTemp(0)); |
| Register num_chr = XRegisterFrom(locations->GetTemp(1)); |
| Register tmp1 = XRegisterFrom(locations->GetTemp(2)); |
| |
| UseScratchRegisterScope temps(masm); |
| Register dst_ptr = temps.AcquireX(); |
| Register tmp2 = temps.AcquireX(); |
| |
| vixl::aarch64::Label done; |
| vixl::aarch64::Label compressed_string_vector_loop; |
| vixl::aarch64::Label compressed_string_remainder; |
| __ Sub(num_chr, srcEnd, srcBegin); |
| // Early out for valid zero-length retrievals. |
| __ Cbz(num_chr, &done); |
| |
| // dst address start to copy to. |
| __ Add(dst_ptr, dstObj, Operand(data_offset)); |
| __ Add(dst_ptr, dst_ptr, Operand(dstBegin, LSL, 1)); |
| |
| // src address to copy from. |
| __ Add(src_ptr, srcObj, Operand(value_offset)); |
| vixl::aarch64::Label compressed_string_preloop; |
| if (mirror::kUseStringCompression) { |
| // Location of count in string. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| // String's length. |
| __ Ldr(tmp2, MemOperand(srcObj, count_offset)); |
| __ Tbz(tmp2, 0, &compressed_string_preloop); |
| } |
| __ Add(src_ptr, src_ptr, Operand(srcBegin, LSL, 1)); |
| |
| // Do the copy. |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label remainder; |
| |
| // Save repairing the value of num_chr on the < 8 character path. |
| __ Subs(tmp1, num_chr, 8); |
| __ B(lt, &remainder); |
| |
| // Keep the result of the earlier subs, we are going to fetch at least 8 characters. |
| __ Mov(num_chr, tmp1); |
| |
| // Main loop used for longer fetches loads and stores 8x16-bit characters at a time. |
| // (Unaligned addresses are acceptable here and not worth inlining extra code to rectify.) |
| __ Bind(&loop); |
| __ Ldp(tmp1, tmp2, MemOperand(src_ptr, char_size * 8, PostIndex)); |
| __ Subs(num_chr, num_chr, 8); |
| __ Stp(tmp1, tmp2, MemOperand(dst_ptr, char_size * 8, PostIndex)); |
| __ B(ge, &loop); |
| |
| __ Adds(num_chr, num_chr, 8); |
| __ B(eq, &done); |
| |
| // Main loop for < 8 character case and remainder handling. Loads and stores one |
| // 16-bit Java character at a time. |
| __ Bind(&remainder); |
| __ Ldrh(tmp1, MemOperand(src_ptr, char_size, PostIndex)); |
| __ Subs(num_chr, num_chr, 1); |
| __ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex)); |
| __ B(gt, &remainder); |
| __ B(&done); |
| |
| if (mirror::kUseStringCompression) { |
| // For compressed strings, acquire a SIMD temporary register. |
| VRegister vtmp1 = temps.AcquireVRegisterOfSize(kQRegSize); |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| __ Bind(&compressed_string_preloop); |
| __ Add(src_ptr, src_ptr, Operand(srcBegin)); |
| |
| // Save repairing the value of num_chr on the < 8 character path. |
| __ Subs(tmp1, num_chr, 8); |
| __ B(lt, &compressed_string_remainder); |
| |
| // Keep the result of the earlier subs, we are going to fetch at least 8 characters. |
| __ Mov(num_chr, tmp1); |
| |
| // Main loop for compressed src, copying 8 characters (8-bit) to (16-bit) at a time. |
| // Uses SIMD instructions. |
| __ Bind(&compressed_string_vector_loop); |
| __ Ld1(vtmp1.V8B(), MemOperand(src_ptr, c_char_size * 8, PostIndex)); |
| __ Subs(num_chr, num_chr, 8); |
| __ Uxtl(vtmp1.V8H(), vtmp1.V8B()); |
| __ St1(vtmp1.V8H(), MemOperand(dst_ptr, char_size * 8, PostIndex)); |
| __ B(ge, &compressed_string_vector_loop); |
| |
| __ Adds(num_chr, num_chr, 8); |
| __ B(eq, &done); |
| |
| // Loop for < 8 character case and remainder handling with a compressed src. |
| // Copies 1 character (8-bit) to (16-bit) at a time. |
| __ Bind(&compressed_string_remainder); |
| __ Ldrb(tmp1, MemOperand(src_ptr, c_char_size, PostIndex)); |
| __ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex)); |
| __ Subs(num_chr, num_chr, Operand(1)); |
| __ B(gt, &compressed_string_remainder); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Mirrors ARRAYCOPY_SHORT_CHAR_ARRAY_THRESHOLD in libcore, so we can choose to use the native |
| // implementation there for longer copy lengths. |
| static constexpr int32_t kSystemArrayCopyCharThreshold = 32; |
| |
| static void SetSystemArrayCopyLocationRequires(LocationSummary* locations, |
| uint32_t at, |
| HInstruction* input) { |
| HIntConstant* const_input = input->AsIntConstant(); |
| if (const_input != nullptr && !vixl::aarch64::Assembler::IsImmAddSub(const_input->GetValue())) { |
| locations->SetInAt(at, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(at, Location::RegisterOrConstant(input)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dst_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dst_pos != nullptr && dst_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be >= 0 and not so long that we would (currently) prefer libcore's |
| // native implementation. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0 || len > kSystemArrayCopyCharThreshold) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(char[] src, int src_pos, char[] dst, int dst_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1)); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3)); |
| SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4)); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void CheckSystemArrayCopyPosition(MacroAssembler* masm, |
| const Location& pos, |
| const Register& input, |
| const Location& length, |
| SlowPathCodeARM64* slow_path, |
| const Register& temp, |
| bool length_is_input_length = false) { |
| const int32_t length_offset = mirror::Array::LengthOffset().Int32Value(); |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Cmp(temp, OperandFrom(length, DataType::Type::kInt32)); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_const); |
| __ B(slow_path->GetEntryLabel(), lt); |
| |
| // Check that (length(input) - pos) >= length. |
| __ Cmp(temp, OperandFrom(length, DataType::Type::kInt32)); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| __ Cbnz(WRegisterFrom(pos), slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| Register pos_reg = WRegisterFrom(pos); |
| __ Tbnz(pos_reg, pos_reg.GetSizeInBits() - 1, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input) && (length(input) - pos) >= length. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_reg); |
| // Ccmp if length(input) >= pos, else definitely bail to slow path (N!=V == lt). |
| __ Ccmp(temp, OperandFrom(length, DataType::Type::kInt32), NFlag, ge); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } |
| |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| static void GenSystemArrayCopyAddresses(MacroAssembler* masm, |
| DataType::Type type, |
| const Register& src, |
| const Location& src_pos, |
| const Register& dst, |
| const Location& dst_pos, |
| const Location& copy_length, |
| const Register& src_base, |
| const Register& dst_base, |
| const Register& src_end) { |
| // This routine is used by the SystemArrayCopy and the SystemArrayCopyChar intrinsics. |
| DCHECK(type == DataType::Type::kReference || type == DataType::Type::kUint16) |
| << "Unexpected element type: " << type; |
| const int32_t element_size = DataType::Size(type); |
| const int32_t element_size_shift = DataType::SizeShift(type); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(src_base, src, element_size * constant + data_offset); |
| } else { |
| __ Add(src_base, src, data_offset); |
| __ Add(src_base, src_base, Operand(XRegisterFrom(src_pos), LSL, element_size_shift)); |
| } |
| |
| if (dst_pos.IsConstant()) { |
| int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(dst_base, dst, element_size * constant + data_offset); |
| } else { |
| __ Add(dst_base, dst, data_offset); |
| __ Add(dst_base, dst_base, Operand(XRegisterFrom(dst_pos), LSL, element_size_shift)); |
| } |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(src_end, src_base, element_size * constant); |
| } else { |
| __ Add(src_end, src_base, Operand(XRegisterFrom(copy_length), LSL, element_size_shift)); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Register src = XRegisterFrom(locations->InAt(0)); |
| Location src_pos = locations->InAt(1); |
| Register dst = XRegisterFrom(locations->InAt(2)); |
| Location dst_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| // If source and destination are the same, take the slow path. Overlapping copy regions must be |
| // copied in reverse and we can't know in all cases if it's needed. |
| __ Cmp(src, dst); |
| __ B(slow_path->GetEntryLabel(), eq); |
| |
| // Bail out if the source is null. |
| __ Cbz(src, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ Cbz(dst, slow_path->GetEntryLabel()); |
| |
| if (!length.IsConstant()) { |
| // Merge the following two comparisons into one: |
| // If the length is negative, bail out (delegate to libcore's native implementation). |
| // If the length > 32 then (currently) prefer libcore's native implementation. |
| __ Cmp(WRegisterFrom(length), kSystemArrayCopyCharThreshold); |
| __ B(slow_path->GetEntryLabel(), hi); |
| } else { |
| // We have already checked in the LocationsBuilder for the constant case. |
| DCHECK_GE(length.GetConstant()->AsIntConstant()->GetValue(), 0); |
| DCHECK_LE(length.GetConstant()->AsIntConstant()->GetValue(), 32); |
| } |
| |
| Register src_curr_addr = WRegisterFrom(locations->GetTemp(0)); |
| Register dst_curr_addr = WRegisterFrom(locations->GetTemp(1)); |
| Register src_stop_addr = WRegisterFrom(locations->GetTemp(2)); |
| |
| CheckSystemArrayCopyPosition(masm, |
| src_pos, |
| src, |
| length, |
| slow_path, |
| src_curr_addr, |
| false); |
| |
| CheckSystemArrayCopyPosition(masm, |
| dst_pos, |
| dst, |
| length, |
| slow_path, |
| src_curr_addr, |
| false); |
| |
| src_curr_addr = src_curr_addr.X(); |
| dst_curr_addr = dst_curr_addr.X(); |
| src_stop_addr = src_stop_addr.X(); |
| |
| GenSystemArrayCopyAddresses(masm, |
| DataType::Type::kUint16, |
| src, |
| src_pos, |
| dst, |
| dst_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| |
| // Iterate over the arrays and do a raw copy of the chars. |
| const int32_t char_size = DataType::Size(DataType::Type::kUint16); |
| UseScratchRegisterScope temps(masm); |
| Register tmp = temps.AcquireW(); |
| vixl::aarch64::Label loop, done; |
| __ Bind(&loop); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&done, eq); |
| __ Ldrh(tmp, MemOperand(src_curr_addr, char_size, PostIndex)); |
| __ Strh(tmp, MemOperand(dst_curr_addr, char_size, PostIndex)); |
| __ B(&loop); |
| __ Bind(&done); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| // We can choose to use the native implementation there for longer copy lengths. |
| static constexpr int32_t kSystemArrayCopyThreshold = 128; |
| |
| // CodeGenerator::CreateSystemArrayCopyLocationSummary use three temporary registers. |
| // We want to use two temporary registers in order to reduce the register pressure in arm64. |
| // So we don't use the CodeGenerator::CreateSystemArrayCopyLocationSummary. |
| void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be >= 0. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0 || len >= kSystemArrayCopyThreshold) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| if (optimizations.GetDestinationIsSource()) { |
| if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) { |
| // We only support backward copying if source and destination are the same. |
| return; |
| } |
| } |
| |
| if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) { |
| // We currently don't intrinsify primitive copying. |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1)); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3)); |
| SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4)); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Temporary register IP0, obtained from the VIXL scratch register |
| // pool, cannot be used in ReadBarrierSystemArrayCopySlowPathARM64 |
| // (because that register is clobbered by ReadBarrierMarkRegX |
| // entry points). It cannot be used in calls to |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier |
| // either. For these reasons, get a third extra temporary register |
| // from the register allocator. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| // Cases other than Baker read barriers: the third temporary will |
| // be acquired from the VIXL scratch register pool. |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| Register src = XRegisterFrom(locations->InAt(0)); |
| Location src_pos = locations->InAt(1); |
| Register dest = XRegisterFrom(locations->InAt(2)); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Register temp1 = WRegisterFrom(locations->GetTemp(0)); |
| Location temp1_loc = LocationFrom(temp1); |
| Register temp2 = WRegisterFrom(locations->GetTemp(1)); |
| Location temp2_loc = LocationFrom(temp2); |
| |
| SlowPathCodeARM64* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| vixl::aarch64::Label conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ Cmp(src, dest); |
| __ B(intrinsic_slow_path->GetEntryLabel(), eq); |
| } |
| // Checked when building locations. |
| DCHECK(!optimizations.GetDestinationIsSource() |
| || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(&conditions_on_positions_validated, ne); |
| } |
| __ Cmp(WRegisterFrom(dest_pos), src_pos_constant); |
| __ B(intrinsic_slow_path->GetEntryLabel(), gt); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(&conditions_on_positions_validated, ne); |
| } |
| __ Cmp(RegisterFrom(src_pos, invoke->InputAt(1)->GetType()), |
| OperandFrom(dest_pos, invoke->InputAt(3)->GetType())); |
| __ B(intrinsic_slow_path->GetEntryLabel(), lt); |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ Cbz(src, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ Cbz(dest, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| // Merge the following two comparisons into one: |
| // If the length is negative, bail out (delegate to libcore's native implementation). |
| // If the length >= 128 then (currently) prefer native implementation. |
| __ Cmp(WRegisterFrom(length), kSystemArrayCopyThreshold); |
| __ B(intrinsic_slow_path->GetEntryLabel(), hs); |
| } |
| // Validity checks: source. |
| CheckSystemArrayCopyPosition(masm, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckSystemArrayCopyPosition(masm, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| Location temp3_loc; // Used only for Baker read barrier. |
| Register temp3; |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| temp3_loc = locations->GetTemp(2); |
| temp3 = WRegisterFrom(temp3_loc); |
| } else { |
| temp3 = temps.AcquireW(); |
| } |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| __ Cbz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp1` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_); |
| __ Ldrh(temp1, HeapOperand(temp1, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| dest.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); |
| __ Ldrh(temp2, HeapOperand(temp2, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| // Note: if heap poisoning is on, we are comparing two unpoisoned references here. |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl::aarch64::Label do_copy; |
| __ B(&do_copy, eq); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ Ldr(temp1, HeapOperand(temp1, super_offset)); |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(intrinsic_slow_path->GetEntryLabel(), ne); |
| } |
| } else { |
| // Non read barrier code. |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ Ldr(temp1, MemOperand(dest, class_offset)); |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| __ Ldr(temp2, MemOperand(src, class_offset)); |
| bool did_unpoison = false; |
| if (!optimizations.GetDestinationIsNonPrimitiveArray() || |
| !optimizations.GetSourceIsNonPrimitiveArray()) { |
| // One or two of the references need to be unpoisoned. Unpoison them |
| // both to make the identity check valid. |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| did_unpoison = true; |
| } |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp1->component_type_ |
| __ Ldr(temp3, HeapOperand(temp1, component_offset)); |
| __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, HeapOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp2->component_type_ |
| __ Ldr(temp3, HeapOperand(temp2, component_offset)); |
| __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, HeapOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl::aarch64::Label do_copy; |
| __ B(&do_copy, eq); |
| if (!did_unpoison) { |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| } |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ Ldr(temp1, HeapOperand(temp1, component_offset)); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ Ldr(temp1, HeapOperand(temp1, super_offset)); |
| // No need to unpoison the result, we're comparing against null. |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(intrinsic_slow_path->GetEntryLabel(), ne); |
| } |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ Ldr(temp1, HeapOperand(src.W(), class_offset)); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| __ Ldr(temp2, HeapOperand(temp1, component_offset)); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| } |
| // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); |
| __ Ldrh(temp2, HeapOperand(temp2, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| // Null constant length: not need to emit the loop code at all. |
| } else { |
| Register src_curr_addr = temp1.X(); |
| Register dst_curr_addr = temp2.X(); |
| Register src_stop_addr = temp3.X(); |
| vixl::aarch64::Label done; |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| if (length.IsRegister()) { |
| // Don't enter the copy loop if the length is null. |
| __ Cbz(WRegisterFrom(length), &done); |
| } |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // TODO: Also convert this intrinsic to the IsGcMarking strategy? |
| |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // do { |
| // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); |
| // } while (src_ptr != end_ptr) |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| |
| // Make sure `tmp` is not IP0, as it is clobbered by |
| // ReadBarrierMarkRegX entry points in |
| // ReadBarrierSystemArrayCopySlowPathARM64. |
| DCHECK(temps.IsAvailable(ip0)); |
| temps.Exclude(ip0); |
| Register tmp = temps.AcquireW(); |
| DCHECK_NE(LocationFrom(tmp).reg(), IP0); |
| // Put IP0 back in the pool so that VIXL has at least one |
| // scratch register available to emit macro-instructions (note |
| // that IP1 is already used for `tmp`). Indeed some |
| // macro-instructions used in GenSystemArrayCopyAddresses |
| // (invoked hereunder) may require a scratch register (for |
| // instance to emit a load with a large constant offset). |
| temps.Include(ip0); |
| |
| // /* int32_t */ monitor = src->monitor_ |
| __ Ldr(tmp, HeapOperand(src.W(), monitor_offset)); |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| // `src` is unchanged by this operation, but its value now depends |
| // on `tmp`. |
| __ Add(src.X(), src.X(), Operand(tmp.X(), LSR, 32)); |
| |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| // Note that `src_curr_addr` is computed from from `src` (and |
| // `src_pos`) here, and thus honors the artificial dependency |
| // of `src` on `tmp`. |
| GenSystemArrayCopyAddresses(masm, |
| type, |
| src, |
| src_pos, |
| dest, |
| dest_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| |
| // Slow path used to copy array when `src` is gray. |
| SlowPathCodeARM64* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARM64( |
| invoke, LocationFrom(tmp)); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbnz(tmp, LockWord::kReadBarrierStateShift, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); |
| __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&loop, ne); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| } else { |
| // Non read barrier code. |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| GenSystemArrayCopyAddresses(masm, |
| type, |
| src, |
| src_pos, |
| dest, |
| dest_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| { |
| Register tmp = temps.AcquireW(); |
| __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); |
| __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| } |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&loop, ne); |
| } |
| __ Bind(&done); |
| } |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(dest.W(), Register(), /* value_can_be_null= */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| static void GenIsInfinite(LocationSummary* locations, |
| bool is64bit, |
| MacroAssembler* masm) { |
| Operand infinity(0); |
| Operand tst_mask(0); |
| Register out; |
| |
| if (is64bit) { |
| infinity = Operand(kPositiveInfinityDouble); |
| tst_mask = MaskLeastSignificant<uint64_t>(63); |
| out = XRegisterFrom(locations->Out()); |
| } else { |
| infinity = Operand(kPositiveInfinityFloat); |
| tst_mask = MaskLeastSignificant<uint32_t>(31); |
| out = WRegisterFrom(locations->Out()); |
| } |
| |
| MoveFPToInt(locations, is64bit, masm); |
| // Checks whether exponent bits are all 1 and fraction bits are all 0. |
| __ Eor(out, out, infinity); |
| // TST bitmask is used to mask out the sign bit: either 0x7fffffff or 0x7fffffffffffffff |
| // depending on is64bit. |
| __ Tst(out, tst_mask); |
| __ Cset(out, eq); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFloatIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFloatIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit= */ false, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit= */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerValueOf(HInvoke* invoke) { |
| InvokeRuntimeCallingConvention calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| calling_convention.GetReturnLocation(DataType::Type::kReference), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerValueOf(HInvoke* invoke) { |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| |
| Register out = RegisterFrom(locations->Out(), DataType::Type::kReference); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| auto allocate_instance = [&]() { |
| DCHECK(out.X().Is(InvokeRuntimeCallingConvention().GetRegisterAt(0))); |
| codegen_->LoadIntrinsicDeclaringClass(out, invoke); |
| codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| }; |
| if (invoke->InputAt(0)->IsConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| allocate_instance(); |
| __ Mov(temp.W(), value); |
| __ Str(temp.W(), HeapOperand(out.W(), info.value_offset)); |
| // Class pointer and `value` final field stores require a barrier before publication. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| Register in = RegisterFrom(locations->InAt(0), DataType::Type::kInt32); |
| // Check bounds of our cache. |
| __ Add(out.W(), in.W(), -info.low); |
| __ Cmp(out.W(), info.length); |
| vixl::aarch64::Label allocate, done; |
| __ B(&allocate, hs); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference); |
| MemOperand source = HeapOperand( |
| temp, out.X(), LSL, DataType::SizeShift(DataType::Type::kReference)); |
| codegen_->Load(DataType::Type::kReference, out, source); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(out); |
| __ B(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| allocate_instance(); |
| __ Str(in.W(), HeapOperand(out.W(), info.value_offset)); |
| // Class pointer and `value` final field stores require a barrier before publication. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitReferenceGetReferent(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_); |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && invoke->GetLocations() != nullptr) { |
| invoke->GetLocations()->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitReferenceGetReferent(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Location obj = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| SlowPathCodeARM64* slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (kEmitCompilerReadBarrier) { |
| // Check self->GetWeakRefAccessEnabled(). |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| __ Ldr(temp, |
| MemOperand(tr, Thread::WeakRefAccessEnabledOffset<kArm64PointerSize>().Uint32Value())); |
| __ Cbz(temp, slow_path->GetEntryLabel()); |
| } |
| |
| { |
| // Load the java.lang.ref.Reference class. |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| codegen_->LoadIntrinsicDeclaringClass(temp, invoke); |
| |
| // Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together. |
| MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset(); |
| DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u); |
| DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u, |
| IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value()); |
| __ Ldrh(temp, HeapOperand(temp, disable_intrinsic_offset.Uint32Value())); |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| } |
| |
| // Load the value from the field. |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| out, |
| WRegisterFrom(obj), |
| referent_offset, |
| /*maybe_temp=*/ locations->GetTemp(0), |
| /*needs_null_check=*/ true, |
| /*use_load_acquire=*/ true); |
| } else { |
| MemOperand field = HeapOperand(WRegisterFrom(obj), referent_offset); |
| codegen_->LoadAcquire( |
| invoke, DataType::Type::kReference, WRegisterFrom(out), field, /*needs_null_check=*/ true); |
| codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset); |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitReferenceRefersTo(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceRefersToLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitReferenceRefersTo(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen_->GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| Register obj = WRegisterFrom(locations->InAt(0)); |
| Register other = WRegisterFrom(locations->InAt(1)); |
| Register out = WRegisterFrom(locations->Out()); |
| Register tmp = temps.AcquireW(); |
| |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| MemOperand field = HeapOperand(obj, referent_offset); |
| codegen_->LoadAcquire(invoke, DataType::Type::kReference, tmp, field, /*needs_null_check=*/ true); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(tmp); |
| |
| __ Cmp(tmp, other); |
| |
| if (kEmitCompilerReadBarrier) { |
| DCHECK(kUseBakerReadBarrier); |
| |
| vixl::aarch64::Label calculate_result; |
| |
| // If the GC is not marking, the comparison result is final. |
| __ Cbz(mr, &calculate_result); |
| |
| __ B(&calculate_result, eq); // ZF set if taken. |
| |
| // Check if the loaded reference is null. |
| __ Cbz(tmp, &calculate_result); // ZF clear if taken. |
| |
| // For correct memory visibility, we need a barrier before loading the lock word. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // Load the lockword and check if it is a forwarding address. |
| static_assert(LockWord::kStateShift == 30u); |
| static_assert(LockWord::kStateForwardingAddress == 3u); |
| __ Ldr(tmp, HeapOperand(tmp, monitor_offset)); |
| __ Cmp(tmp, Operand(0xc0000000)); |
| __ B(&calculate_result, lo); // ZF clear if taken. |
| |
| // Extract the forwarding address and compare with `other`. |
| __ Cmp(other, Operand(tmp, LSL, LockWord::kForwardingAddressShift)); |
| |
| __ Bind(&calculate_result); |
| } |
| |
| // Convert ZF into the Boolean result. |
| __ Cset(out, eq); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitThreadInterrupted(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| Register out = RegisterFrom(invoke->GetLocations()->Out(), DataType::Type::kInt32); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| |
| __ Add(temp, tr, Thread::InterruptedOffset<kArm64PointerSize>().Int32Value()); |
| __ Ldar(out.W(), MemOperand(temp)); |
| |
| vixl::aarch64::Label done; |
| __ Cbz(out.W(), &done); |
| __ Stlr(wzr, MemOperand(temp)); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| void IntrinsicLocationsBuilderARM64::VisitCRC32Update(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasCRC()) { |
| return; |
| } |
| |
| LocationSummary* locations = new (allocator_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| // Lower the invoke of CRC32.update(int crc, int b). |
| void IntrinsicCodeGeneratorARM64::VisitCRC32Update(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasCRC()); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| |
| Register crc = InputRegisterAt(invoke, 0); |
| Register val = InputRegisterAt(invoke, 1); |
| Register out = OutputRegister(invoke); |
| |
| // The general algorithm of the CRC32 calculation is: |
| // crc = ~crc |
| // result = crc32_for_byte(crc, b) |
| // crc = ~result |
| // It is directly lowered to three instructions. |
| |
| UseScratchRegisterScope temps(masm); |
| Register tmp = temps.AcquireSameSizeAs(out); |
| |
| __ Mvn(tmp, crc); |
| __ Crc32b(tmp, tmp, val); |
| __ Mvn(out, tmp); |
| } |
| |
| // Generate code using CRC32 instructions which calculates |
| // a CRC32 value of a byte. |
| // |
| // Parameters: |
| // masm - VIXL macro assembler |
| // crc - a register holding an initial CRC value |
| // ptr - a register holding a memory address of bytes |
| // length - a register holding a number of bytes to process |
| // out - a register to put a result of calculation |
| static void GenerateCodeForCalculationCRC32ValueOfBytes(MacroAssembler* masm, |
| const Register& crc, |
| const Register& ptr, |
| const Register& length, |
| const Register& out) { |
| // The algorithm of CRC32 of bytes is: |
| // crc = ~crc |
| // process a few first bytes to make the array 8-byte aligned |
| // while array has 8 bytes do: |
| // crc = crc32_of_8bytes(crc, 8_bytes(array)) |
| // if array has 4 bytes: |
| // crc = crc32_of_4bytes(crc, 4_bytes(array)) |
| // if array has 2 bytes: |
| // crc = crc32_of_2bytes(crc, 2_bytes(array)) |
| // if array has a byte: |
| // crc = crc32_of_byte(crc, 1_byte(array)) |
| // crc = ~crc |
| |
| vixl::aarch64::Label loop, done; |
| vixl::aarch64::Label process_4bytes, process_2bytes, process_1byte; |
| vixl::aarch64::Label aligned2, aligned4, aligned8; |
| |
| // Use VIXL scratch registers as the VIXL macro assembler won't use them in |
| // instructions below. |
| UseScratchRegisterScope temps(masm); |
| Register len = temps.AcquireW(); |
| Register array_elem = temps.AcquireW(); |
| |
| __ Mvn(out, crc); |
| __ Mov(len, length); |
| |
| __ Tbz(ptr, 0, &aligned2); |
| __ Subs(len, len, 1); |
| __ B(&done, lo); |
| __ Ldrb(array_elem, MemOperand(ptr, 1, PostIndex)); |
| __ Crc32b(out, out, array_elem); |
| |
| __ Bind(&aligned2); |
| __ Tbz(ptr, 1, &aligned4); |
| __ Subs(len, len, 2); |
| __ B(&process_1byte, lo); |
| __ Ldrh(array_elem, MemOperand(ptr, 2, PostIndex)); |
| __ Crc32h(out, out, array_elem); |
| |
| __ Bind(&aligned4); |
| __ Tbz(ptr, 2, &aligned8); |
| __ Subs(len, len, 4); |
| __ B(&process_2bytes, lo); |
| __ Ldr(array_elem, MemOperand(ptr, 4, PostIndex)); |
| __ Crc32w(out, out, array_elem); |
| |
| __ Bind(&aligned8); |
| __ Subs(len, len, 8); |
| // If len < 8 go to process data by 4 bytes, 2 bytes and a byte. |
| __ B(&process_4bytes, lo); |
| |
| // The main loop processing data by 8 bytes. |
| __ Bind(&loop); |
| __ Ldr(array_elem.X(), MemOperand(ptr, 8, PostIndex)); |
| __ Subs(len, len, 8); |
| __ Crc32x(out, out, array_elem.X()); |
| // if len >= 8, process the next 8 bytes. |
| __ B(&loop, hs); |
| |
| // Process the data which is less than 8 bytes. |
| // The code generated below works with values of len |
| // which come in the range [-8, 0]. |
| // The first three bits are used to detect whether 4 bytes or 2 bytes or |
| // a byte can be processed. |
| // The checking order is from bit 2 to bit 0: |
| // bit 2 is set: at least 4 bytes available |
| // bit 1 is set: at least 2 bytes available |
| // bit 0 is set: at least a byte available |
| __ Bind(&process_4bytes); |
| // Goto process_2bytes if less than four bytes available |
| __ Tbz(len, 2, &process_2bytes); |
| __ Ldr(array_elem, MemOperand(ptr, 4, PostIndex)); |
| __ Crc32w(out, out, array_elem); |
| |
| __ Bind(&process_2bytes); |
| // Goto process_1bytes if less than two bytes available |
| __ Tbz(len, 1, &process_1byte); |
| __ Ldrh(array_elem, MemOperand(ptr, 2, PostIndex)); |
| __ Crc32h(out, out, array_elem); |
| |
| __ Bind(&process_1byte); |
| // Goto done if no bytes available |
| __ Tbz(len, 0, &done); |
| __ Ldrb(array_elem, MemOperand(ptr)); |
| __ Crc32b(out, out, array_elem); |
| |
| __ Bind(&done); |
| __ Mvn(out, out); |
| } |
| |
| // The threshold for sizes of arrays to use the library provided implementation |
| // of CRC32.updateBytes instead of the intrinsic. |
| static constexpr int32_t kCRC32UpdateBytesThreshold = 64 * 1024; |
| |
| void IntrinsicLocationsBuilderARM64::VisitCRC32UpdateBytes(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasCRC()) { |
| return; |
| } |
| |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RegisterOrConstant(invoke->InputAt(2))); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| // Lower the invoke of CRC32.updateBytes(int crc, byte[] b, int off, int len) |
| // |
| // Note: The intrinsic is not used if len exceeds a threshold. |
| void IntrinsicCodeGeneratorARM64::VisitCRC32UpdateBytes(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasCRC()); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| Register length = WRegisterFrom(locations->InAt(3)); |
| __ Cmp(length, kCRC32UpdateBytesThreshold); |
| __ B(slow_path->GetEntryLabel(), hi); |
| |
| const uint32_t array_data_offset = |
| mirror::Array::DataOffset(Primitive::kPrimByte).Uint32Value(); |
| Register ptr = XRegisterFrom(locations->GetTemp(0)); |
| Register array = XRegisterFrom(locations->InAt(1)); |
| Location offset = locations->InAt(2); |
| if (offset.IsConstant()) { |
| int32_t offset_value = offset.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(ptr, array, array_data_offset + offset_value); |
| } else { |
| __ Add(ptr, array, array_data_offset); |
| __ Add(ptr, ptr, XRegisterFrom(offset)); |
| } |
| |
| Register crc = WRegisterFrom(locations->InAt(0)); |
| Register out = WRegisterFrom(locations->Out()); |
| |
| GenerateCodeForCalculationCRC32ValueOfBytes(masm, crc, ptr, length, out); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitCRC32UpdateByteBuffer(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasCRC()) { |
| return; |
| } |
| |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| // Lower the invoke of CRC32.updateByteBuffer(int crc, long addr, int off, int len) |
| // |
| // There is no need to generate code checking if addr is 0. |
| // The method updateByteBuffer is a private method of java.util.zip.CRC32. |
| // This guarantees no calls outside of the CRC32 class. |
| // An address of DirectBuffer is always passed to the call of updateByteBuffer. |
| // It might be an implementation of an empty DirectBuffer which can use a zero |
| // address but it must have the length to be zero. The current generated code |
| // correctly works with the zero length. |
| void IntrinsicCodeGeneratorARM64::VisitCRC32UpdateByteBuffer(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasCRC()); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register addr = XRegisterFrom(locations->InAt(1)); |
| Register ptr = XRegisterFrom(locations->GetTemp(0)); |
| __ Add(ptr, addr, XRegisterFrom(locations->InAt(2))); |
| |
| Register crc = WRegisterFrom(locations->InAt(0)); |
| Register length = WRegisterFrom(locations->InAt(3)); |
| Register out = WRegisterFrom(locations->Out()); |
| GenerateCodeForCalculationCRC32ValueOfBytes(masm, crc, ptr, length, out); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16ToFloat(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| LocationSummary* locations = new (allocator_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16ToFloat(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasFP16()); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope scratch_scope(masm); |
| Register bits = InputRegisterAt(invoke, 0); |
| VRegister out = SRegisterFrom(invoke->GetLocations()->Out()); |
| VRegister half = scratch_scope.AcquireH(); |
| __ Fmov(half, bits); // ARMv8.2 |
| __ Fcvt(out, half); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16ToHalf(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| LocationSummary* locations = new (allocator_) LocationSummary(invoke, |
| LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16ToHalf(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasFP16()); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope scratch_scope(masm); |
| VRegister in = SRegisterFrom(invoke->GetLocations()->InAt(0)); |
| VRegister half = scratch_scope.AcquireH(); |
| Register out = WRegisterFrom(invoke->GetLocations()->Out()); |
| __ Fcvt(half, in); |
| __ Fmov(out, half); |
| __ Sxth(out, out); // sign extend due to returning a short type. |
| } |
| |
| template<typename OP> |
| void GenerateFP16Round(HInvoke* invoke, |
| CodeGeneratorARM64* const codegen_, |
| MacroAssembler* masm, |
| const OP roundOp) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasFP16()); |
| LocationSummary* locations = invoke->GetLocations(); |
| UseScratchRegisterScope scratch_scope(masm); |
| Register out = WRegisterFrom(locations->Out()); |
| VRegister half = scratch_scope.AcquireH(); |
| __ Fmov(half, WRegisterFrom(locations->InAt(0))); |
| roundOp(half, half); |
| __ Fmov(out, half); |
| __ Sxth(out, out); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16Floor(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16Floor(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| auto roundOp = [masm](const VRegister& out, const VRegister& in) { |
| __ Frintm(out, in); // Round towards Minus infinity |
| }; |
| GenerateFP16Round(invoke, codegen_, masm, roundOp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16Ceil(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16Ceil(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| auto roundOp = [masm](const VRegister& out, const VRegister& in) { |
| __ Frintp(out, in); // Round towards Plus infinity |
| }; |
| GenerateFP16Round(invoke, codegen_, masm, roundOp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16Rint(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16Rint(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| auto roundOp = [masm](const VRegister& out, const VRegister& in) { |
| __ Frintn(out, in); // Round to nearest, with ties to even |
| }; |
| GenerateFP16Round(invoke, codegen_, masm, roundOp); |
| } |
| |
| template<typename OP> |
| void GenerateFP16Compare(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| MacroAssembler* masm, |
| const OP compareOp) { |
| DCHECK(codegen->GetInstructionSetFeatures().HasFP16()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Register out = WRegisterFrom(locations->Out()); |
| VRegister half0 = HRegisterFrom(locations->GetTemp(0)); |
| VRegister half1 = HRegisterFrom(locations->GetTemp(1)); |
| __ Fmov(half0, WRegisterFrom(locations->InAt(0))); |
| __ Fmov(half1, WRegisterFrom(locations->InAt(1))); |
| compareOp(out, half0, half1); |
| } |
| |
| static inline void GenerateFP16Compare(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| MacroAssembler* masm, |
| vixl::aarch64::Condition cond) { |
| auto compareOp = [masm, cond](const Register out, const VRegister& in0, const VRegister& in1) { |
| __ Fcmp(in0, in1); |
| __ Cset(out, cond); |
| }; |
| GenerateFP16Compare(invoke, codegen, masm, compareOp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16Greater(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntIntToIntLocations(allocator_, invoke); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16Greater(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| GenerateFP16Compare(invoke, codegen_, masm, gt); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16GreaterEquals(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntIntToIntLocations(allocator_, invoke); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16GreaterEquals(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| GenerateFP16Compare(invoke, codegen_, masm, ge); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16Less(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntIntToIntLocations(allocator_, invoke); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16Less(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| GenerateFP16Compare(invoke, codegen_, masm, mi); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFP16LessEquals(HInvoke* invoke) { |
| if (!codegen_->GetInstructionSetFeatures().HasFP16()) { |
| return; |
| } |
| |
| CreateIntIntToIntLocations(allocator_, invoke); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFP16LessEquals(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| GenerateFP16Compare(invoke, codegen_, masm, ls); |
| } |
| |
| static void GenerateDivideUnsigned(HInvoke* invoke, CodeGeneratorARM64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| DataType::Type type = invoke->GetType(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Register dividend = RegisterFrom(locations->InAt(0), type); |
| Register divisor = RegisterFrom(locations->InAt(1), type); |
| Register out = RegisterFrom(locations->Out(), type); |
| |
| // Check if divisor is zero, bail to managed implementation to handle. |
| SlowPathCodeARM64* slow_path = |
| new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ Cbz(divisor, slow_path->GetEntryLabel()); |
| |
| __ Udiv(out, dividend, divisor); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| CreateIntIntToIntSlowPathCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| GenerateDivideUnsigned(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongDivideUnsigned(HInvoke* invoke) { |
| CreateIntIntToIntSlowPathCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongDivideUnsigned(HInvoke* invoke) { |
| GenerateDivideUnsigned(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathMultiplyHigh(HInvoke* invoke) { |
| CreateIntIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathMultiplyHigh(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen_->GetVIXLAssembler(); |
| DataType::Type type = invoke->GetType(); |
| DCHECK(type == DataType::Type::kInt64); |
| |
| Register x = RegisterFrom(locations->InAt(0), type); |
| Register y = RegisterFrom(locations->InAt(1), type); |
| Register out = RegisterFrom(locations->Out(), type); |
| |
| __ Smulh(out, x, y); |
| } |
| |
| class VarHandleSlowPathARM64 : public IntrinsicSlowPathARM64 { |
| public: |
| VarHandleSlowPathARM64(HInvoke* invoke, std::memory_order order) |
| : IntrinsicSlowPathARM64(invoke), |
| order_(order), |
| return_success_(false), |
| strong_(false), |
| get_and_update_op_(GetAndUpdateOp::kAdd) { |
| } |
| |
| vixl::aarch64::Label* GetByteArrayViewCheckLabel() { |
| return &byte_array_view_check_label_; |
| } |
| |
| vixl::aarch64::Label* GetNativeByteOrderLabel() { |
| return &native_byte_order_label_; |
| } |
| |
| void SetCompareAndSetOrExchangeArgs(bool return_success, bool strong) { |
| if (return_success) { |
| DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndSet); |
| } else { |
| DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange); |
| } |
| return_success_ = return_success; |
| strong_ = strong; |
| } |
| |
| void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) { |
| DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kGetAndUpdate); |
| get_and_update_op_ = get_and_update_op; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen_in) override { |
| if (GetByteArrayViewCheckLabel()->IsLinked()) { |
| EmitByteArrayViewCode(codegen_in); |
| } |
| IntrinsicSlowPathARM64::EmitNativeCode(codegen_in); |
| } |
| |
| private: |
| HInvoke* GetInvoke() const { |
| return GetInstruction()->AsInvoke(); |
| } |
| |
| mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const { |
| return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic()); |
| } |
| |
| void EmitByteArrayViewCode(CodeGenerator* codegen_in); |
| |
| vixl::aarch64::Label byte_array_view_check_label_; |
| vixl::aarch64::Label native_byte_order_label_; |
| // Shared parameter for all VarHandle intrinsics. |
| std::memory_order order_; |
| // Extra arguments for GenerateVarHandleCompareAndSetOrExchange(). |
| bool return_success_; |
| bool strong_; |
| // Extra argument for GenerateVarHandleGetAndUpdate(). |
| GetAndUpdateOp get_and_update_op_; |
| }; |
| |
| // Generate subtype check without read barriers. |
| static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorARM64* codegen, |
| SlowPathCodeARM64* slow_path, |
| Register object, |
| Register type, |
| bool object_can_be_null = true) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| |
| const MemberOffset class_offset = mirror::Object::ClassOffset(); |
| const MemberOffset super_class_offset = mirror::Class::SuperClassOffset(); |
| |
| vixl::aarch64::Label success; |
| if (object_can_be_null) { |
| __ Cbz(object, &success); |
| } |
| |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| |
| __ Ldr(temp, HeapOperand(object, class_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| __ Cmp(type, temp); |
| __ B(&success, eq); |
| __ Ldr(temp, HeapOperand(temp, super_class_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| __ Cbz(temp, slow_path->GetEntryLabel()); |
| __ B(&loop); |
| __ Bind(&success); |
| } |
| |
| // Check access mode and the primitive type from VarHandle.varType. |
| // Check reference arguments against the VarHandle.varType; for references this is a subclass |
| // check without read barrier, so it can have false negatives which we handle in the slow path. |
| static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| SlowPathCodeARM64* slow_path, |
| DataType::Type type) { |
| mirror::VarHandle::AccessMode access_mode = |
| mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic()); |
| Primitive::Type primitive_type = DataTypeToPrimitive(type); |
| |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| |
| const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset(); |
| const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset(); |
| const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); |
| |
| UseScratchRegisterScope temps(masm); |
| Register var_type_no_rb = temps.AcquireW(); |
| Register temp2 = temps.AcquireW(); |
| |
| // Check that the operation is permitted and the primitive type of varhandle.varType. |
| // We do not need a read barrier when loading a reference only for loading constant |
| // primitive field through the reference. Use LDP to load the fields together. |
| DCHECK_EQ(var_type_offset.Int32Value() + 4, access_mode_bit_mask_offset.Int32Value()); |
| __ Ldp(var_type_no_rb, temp2, HeapOperand(varhandle, var_type_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(var_type_no_rb); |
| __ Tbz(temp2, static_cast<uint32_t>(access_mode), slow_path->GetEntryLabel()); |
| __ Ldrh(temp2, HeapOperand(var_type_no_rb, primitive_type_offset.Int32Value())); |
| if (primitive_type == Primitive::kPrimNot) { |
| static_assert(Primitive::kPrimNot == 0); |
| __ Cbnz(temp2, slow_path->GetEntryLabel()); |
| } else { |
| __ Cmp(temp2, static_cast<uint16_t>(primitive_type)); |
| __ B(slow_path->GetEntryLabel(), ne); |
| } |
| |
| temps.Release(temp2); |
| |
| if (type == DataType::Type::kReference) { |
| // Check reference arguments against the varType. |
| // False negatives due to varType being an interface or array type |
| // or due to the missing read barrier are handled by the slow path. |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { |
| HInstruction* arg = invoke->InputAt(arg_index); |
| DCHECK_EQ(arg->GetType(), DataType::Type::kReference); |
| if (!arg->IsNullConstant()) { |
| Register arg_reg = WRegisterFrom(invoke->GetLocations()->InAt(arg_index)); |
| GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, var_type_no_rb); |
| } |
| } |
| } |
| } |
| |
| static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| SlowPathCodeARM64* slow_path) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| |
| // Check that the VarHandle references a static field by checking that coordinateType0 == null. |
| // Do not emit read barrier (or unpoison the reference) for comparing to null. |
| __ Ldr(temp, HeapOperand(varhandle, coordinate_type0_offset.Int32Value())); |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| SlowPathCodeARM64* slow_path) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| Register object = InputRegisterAt(invoke, 1); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); |
| |
| // Null-check the object. |
| __ Cbz(object, slow_path->GetEntryLabel()); |
| |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| Register temp2 = temps.AcquireW(); |
| |
| // Check that the VarHandle references an instance field by checking that |
| // coordinateType1 == null. coordinateType0 should not be null, but this is handled by the |
| // type compatibility check with the source object's type, which will fail for null. |
| DCHECK_EQ(coordinate_type0_offset.Int32Value() + 4, coordinate_type1_offset.Int32Value()); |
| __ Ldp(temp, temp2, HeapOperand(varhandle, coordinate_type0_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. |
| __ Cbnz(temp2, slow_path->GetEntryLabel()); |
| |
| // Check that the object has the correct type. |
| // We deliberately avoid the read barrier, letting the slow path handle the false negatives. |
| temps.Release(temp2); // Needed by GenerateSubTypeObjectCheckNoReadBarrier(). |
| GenerateSubTypeObjectCheckNoReadBarrier( |
| codegen, slow_path, object, temp, /*object_can_be_null=*/ false); |
| } |
| |
| static DataType::Type GetVarHandleExpectedValueType(HInvoke* invoke, |
| size_t expected_coordinates_count) { |
| DCHECK_EQ(expected_coordinates_count, GetExpectedVarHandleCoordinatesCount(invoke)); |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| DCHECK_GE(number_of_arguments, /* VarHandle object */ 1u + expected_coordinates_count); |
| if (number_of_arguments == /* VarHandle object */ 1u + expected_coordinates_count) { |
| return invoke->GetType(); |
| } else { |
| return GetDataTypeFromShorty(invoke, number_of_arguments - 1u); |
| } |
| } |
| |
| static void GenerateVarHandleArrayChecks(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| VarHandleSlowPathARM64* slow_path) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| Register object = InputRegisterAt(invoke, 1); |
| Register index = InputRegisterAt(invoke, 2); |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| Primitive::Type primitive_type = DataTypeToPrimitive(value_type); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); |
| const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset(); |
| const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); |
| const MemberOffset class_offset = mirror::Object::ClassOffset(); |
| const MemberOffset array_length_offset = mirror::Array::LengthOffset(); |
| |
| // Null-check the object. |
| __ Cbz(object, slow_path->GetEntryLabel()); |
| |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| Register temp2 = temps.AcquireW(); |
| |
| // Check that the VarHandle references an array, byte array view or ByteBuffer by checking |
| // that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and |
| // coordinateType0 shall not be null but we do not explicitly verify that. |
| DCHECK_EQ(coordinate_type0_offset.Int32Value() + 4, coordinate_type1_offset.Int32Value()); |
| __ Ldp(temp, temp2, HeapOperand(varhandle, coordinate_type0_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. |
| __ Cbz(temp2, slow_path->GetEntryLabel()); |
| |
| // Check object class against componentType0. |
| // |
| // This is an exact check and we defer other cases to the runtime. This includes |
| // conversion to array of superclass references, which is valid but subsequently |
| // requires all update operations to check that the value can indeed be stored. |
| // We do not want to perform such extra checks in the intrinsified code. |
| // |
| // We do this check without read barrier, so there can be false negatives which we |
| // defer to the slow path. There shall be no false negatives for array classes in the |
| // boot image (including Object[] and primitive arrays) because they are non-movable. |
| __ Ldr(temp2, HeapOperand(object, class_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| __ Cmp(temp, temp2); |
| __ B(slow_path->GetEntryLabel(), ne); |
| |
| // Check that the coordinateType0 is an array type. We do not need a read barrier |
| // for loading constant reference fields (or chains of them) for comparison with null, |
| // nor for finally loading a constant primitive field (primitive type) below. |
| __ Ldr(temp2, HeapOperand(temp, component_type_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| __ Cbz(temp2, slow_path->GetEntryLabel()); |
| |
| // Check that the array component type matches the primitive type. |
| __ Ldrh(temp2, HeapOperand(temp2, primitive_type_offset.Int32Value())); |
| if (primitive_type == Primitive::kPrimNot) { |
| static_assert(Primitive::kPrimNot == 0); |
| __ Cbnz(temp2, slow_path->GetEntryLabel()); |
| } else { |
| // With the exception of `kPrimNot` (handled above), `kPrimByte` and `kPrimBoolean`, |
| // we shall check for a byte array view in the slow path. |
| // The check requires the ByteArrayViewVarHandle.class to be in the boot image, |
| // so we cannot emit that if we're JITting without boot image. |
| bool boot_image_available = |
| codegen->GetCompilerOptions().IsBootImage() || |
| !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty(); |
| DCHECK(boot_image_available || codegen->GetCompilerOptions().IsJitCompiler()); |
| size_t can_be_view = (DataType::Size(value_type) != 1u) && boot_image_available; |
| vixl::aarch64::Label* slow_path_label = |
| can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel(); |
| __ Cmp(temp2, static_cast<uint16_t>(primitive_type)); |
| __ B(slow_path_label, ne); |
| } |
| |
| // Check for array index out of bounds. |
| __ Ldr(temp, HeapOperand(object, array_length_offset.Int32Value())); |
| __ Cmp(index, temp); |
| __ B(slow_path->GetEntryLabel(), hs); |
| } |
| |
| static void GenerateVarHandleCoordinateChecks(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| VarHandleSlowPathARM64* slow_path) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 0u) { |
| GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path); |
| } else if (expected_coordinates_count == 1u) { |
| GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path); |
| } else { |
| DCHECK_EQ(expected_coordinates_count, 2u); |
| GenerateVarHandleArrayChecks(invoke, codegen, slow_path); |
| } |
| } |
| |
| static VarHandleSlowPathARM64* GenerateVarHandleChecks(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| std::memory_order order, |
| DataType::Type type) { |
| VarHandleSlowPathARM64* slow_path = |
| new (codegen->GetScopedAllocator()) VarHandleSlowPathARM64(invoke, order); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type); |
| GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path); |
| |
| return slow_path; |
| } |
| |
| struct VarHandleTarget { |
| Register object; // The object holding the value to operate on. |
| Register offset; // The offset of the value to operate on. |
| }; |
| |
| static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| VarHandleTarget target; |
| // The temporary allocated for loading the offset. |
| target.offset = WRegisterFrom(locations->GetTemp(0u)); |
| // The reference to the object that holds the value to operate on. |
| target.object = (expected_coordinates_count == 0u) |
| ? WRegisterFrom(locations->GetTemp(1u)) |
| : InputRegisterAt(invoke, 1); |
| return target; |
| } |
| |
| static void GenerateVarHandleTarget(HInvoke* invoke, |
| const VarHandleTarget& target, |
| CodeGeneratorARM64* codegen) { |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| |
| if (expected_coordinates_count <= 1u) { |
| // For static fields, we need to fill the `target.object` with the declaring class, |
| // so we can use `target.object` as temporary for the `ArtMethod*`. For instance fields, |
| // we do not need the declaring class, so we can forget the `ArtMethod*` when |
| // we load the `target.offset`, so use the `target.offset` to hold the `ArtMethod*`. |
| Register method = (expected_coordinates_count == 0) ? target.object : target.offset; |
| |
| const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset(); |
| const MemberOffset offset_offset = ArtField::OffsetOffset(); |
| |
| // Load the ArtField, the offset and, if needed, declaring class. |
| __ Ldr(method.X(), HeapOperand(varhandle, art_field_offset.Int32Value())); |
| __ Ldr(target.offset, MemOperand(method.X(), offset_offset.Int32Value())); |
| if (expected_coordinates_count == 0u) { |
| codegen->GenerateGcRootFieldLoad(invoke, |
| LocationFrom(target.object), |
| method.X(), |
| ArtField::DeclaringClassOffset().Int32Value(), |
| /*fixup_label=*/ nullptr, |
| kCompilerReadBarrierOption); |
| } |
| } else { |
| DCHECK_EQ(expected_coordinates_count, 2u); |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| size_t size_shift = DataType::SizeShift(value_type); |
| MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type)); |
| |
| Register index = InputRegisterAt(invoke, 2); |
| Register shifted_index = index; |
| if (size_shift != 0u) { |
| shifted_index = target.offset; |
| __ Lsl(shifted_index, index, size_shift); |
| } |
| __ Add(target.offset, shifted_index, data_offset.Int32Value()); |
| } |
| } |
| |
| static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count > 2u) { |
| // Invalid coordinate count. This invoke shall throw at runtime. |
| return false; |
| } |
| if (expected_coordinates_count != 0u && |
| invoke->InputAt(1)->GetType() != DataType::Type::kReference) { |
| // Except for static fields (no coordinates), the first coordinate must be a reference. |
| return false; |
| } |
| if (expected_coordinates_count == 2u) { |
| // For arrays and views, the second coordinate must be convertible to `int`. |
| // In this context, `boolean` is not convertible but we have to look at the shorty |
| // as compiler transformations can give the invoke a valid boolean input. |
| DataType::Type index_type = GetDataTypeFromShorty(invoke, 2); |
| if (index_type == DataType::Type::kBool || |
| DataType::Kind(index_type) != DataType::Type::kInt32) { |
| return false; |
| } |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| DataType::Type return_type = invoke->GetType(); |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| // The return type should be the same as varType, so it shouldn't be void. |
| if (return_type == DataType::Type::kVoid) { |
| return false; |
| } |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| if (return_type != DataType::Type::kVoid) { |
| return false; |
| } |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: { |
| if (return_type != DataType::Type::kBool) { |
| return false; |
| } |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| if (expected_value_type != new_value_type) { |
| return false; |
| } |
| break; |
| } |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: { |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| if (expected_value_type != new_value_type || return_type != expected_value_type) { |
| return false; |
| } |
| break; |
| } |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: { |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1); |
| if (IsVarHandleGetAndAdd(invoke) && |
| (value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) { |
| // We should only add numerical types. |
| return false; |
| } else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) { |
| // We can only apply operators to bitwise integral types. |
| // Note that bitwise VarHandle operations accept a non-integral boolean type and |
| // perform the appropriate logical operation. However, the result is the same as |
| // using the bitwise operation on our boolean representation and this fits well |
| // with DataType::IsIntegralType() treating the compiler type kBool as integral. |
| return false; |
| } |
| if (value_type != return_type) { |
| return false; |
| } |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| DataType::Type return_type = invoke->GetType(); |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // Require coordinates in registers. These are the object holding the value |
| // to operate on (except for static fields) and index (for arrays and views). |
| for (size_t i = 0; i != expected_coordinates_count; ++i) { |
| locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister()); |
| } |
| if (return_type != DataType::Type::kVoid) { |
| if (DataType::IsFloatingPointType(return_type)) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| } |
| uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { |
| HInstruction* arg = invoke->InputAt(arg_index); |
| if (IsConstantZeroBitPattern(arg)) { |
| locations->SetInAt(arg_index, Location::ConstantLocation(arg->AsConstant())); |
| } else if (DataType::IsFloatingPointType(arg->GetType())) { |
| locations->SetInAt(arg_index, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(arg_index, Location::RequiresRegister()); |
| } |
| } |
| |
| // Add a temporary for offset. |
| if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && |
| GetExpectedVarHandleCoordinatesCount(invoke) == 0u) { // For static fields. |
| // To preserve the offset value across the non-Baker read barrier slow path |
| // for loading the declaring class, use a fixed callee-save register. |
| constexpr int first_callee_save = CTZ(kArm64CalleeSaveRefSpills); |
| locations->AddTemp(Location::RegisterLocation(first_callee_save)); |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| if (expected_coordinates_count == 0u) { |
| // Add a temporary to hold the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| return locations; |
| } |
| |
| static void CreateVarHandleGetLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && |
| invoke->GetType() == DataType::Type::kReference && |
| invoke->GetIntrinsic() != Intrinsics::kVarHandleGet && |
| invoke->GetIntrinsic() != Intrinsics::kVarHandleGetOpaque) { |
| // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores |
| // the passed reference and reloads it from the field. This gets the memory visibility |
| // wrong for Acquire/Volatile operations. b/173104084 |
| return; |
| } |
| |
| CreateVarHandleCommonLocations(invoke); |
| } |
| |
| static void GenerateVarHandleGet(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| std::memory_order order, |
| bool byte_swap = false) { |
| DataType::Type type = invoke->GetType(); |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| CPURegister out = helpers::OutputCPURegister(invoke); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathARM64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, order, type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| |
| // ARM64 load-acquire instructions are implicitly sequentially consistent. |
| bool use_load_acquire = |
| (order == std::memory_order_acquire) || (order == std::memory_order_seq_cst); |
| DCHECK(use_load_acquire || order == std::memory_order_relaxed); |
| |
| // Load the value from the target location. |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Piggy-back on the field load path using introspection for the Baker read barrier. |
| // The `target.offset` is a temporary, use it for field address. |
| Register tmp_ptr = target.offset.X(); |
| __ Add(tmp_ptr, target.object.X(), target.offset.X()); |
| codegen->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| locations->Out(), |
| target.object, |
| MemOperand(tmp_ptr), |
| /*needs_null_check=*/ false, |
| use_load_acquire); |
| DCHECK(!byte_swap); |
| } else { |
| MemOperand address(target.object.X(), target.offset.X()); |
| CPURegister load_reg = out; |
| DataType::Type load_type = type; |
| UseScratchRegisterScope temps(masm); |
| if (byte_swap) { |
| if (type == DataType::Type::kInt16) { |
| // Avoid unnecessary sign extension before REV16. |
| load_type = DataType::Type::kUint16; |
| } else if (type == DataType::Type::kFloat32) { |
| load_type = DataType::Type::kInt32; |
| load_reg = target.offset.W(); |
| } else if (type == DataType::Type::kFloat64) { |
| load_type = DataType::Type::kInt64; |
| load_reg = target.offset.X(); |
| } |
| } |
| if (use_load_acquire) { |
| codegen->LoadAcquire(invoke, load_type, load_reg, address, /*needs_null_check=*/ false); |
| } else { |
| codegen->Load(load_type, load_reg, address); |
| } |
| if (type == DataType::Type::kReference) { |
| DCHECK(!byte_swap); |
| DCHECK(out.IsW()); |
| Location out_loc = locations->Out(); |
| Location object_loc = LocationFrom(target.object); |
| Location offset_loc = LocationFrom(target.offset); |
| codegen->MaybeGenerateReadBarrierSlow(invoke, out_loc, out_loc, object_loc, 0u, offset_loc); |
| } else if (byte_swap) { |
| GenerateReverseBytes(masm, type, load_reg, out); |
| } |
| } |
| |
| if (!byte_swap) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGet(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGet(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_, std::memory_order_seq_cst); |
| } |
| |
| static void CreateVarHandleSetLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| CreateVarHandleCommonLocations(invoke); |
| } |
| |
| static void GenerateVarHandleSet(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| std::memory_order order, |
| bool byte_swap = false) { |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| CPURegister value = InputCPURegisterOrZeroRegAt(invoke, value_index); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathARM64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| |
| // ARM64 store-release instructions are implicitly sequentially consistent. |
| bool use_store_release = |
| (order == std::memory_order_release) || (order == std::memory_order_seq_cst); |
| DCHECK(use_store_release || order == std::memory_order_relaxed); |
| |
| // Store the value to the target location. |
| { |
| CPURegister source = value; |
| UseScratchRegisterScope temps(masm); |
| if (kPoisonHeapReferences && value_type == DataType::Type::kReference) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp, value.W()); |
| codegen->GetAssembler()->PoisonHeapReference(temp); |
| source = temp; |
| } |
| if (byte_swap) { |
| DCHECK(!source.IsZero()); // We use the main path for zero as it does not need a byte swap. |
| Register temp = source.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| if (value_type == DataType::Type::kInt16) { |
| // Avoid unnecessary sign extension before storing. |
| value_type = DataType::Type::kUint16; |
| } else if (DataType::IsFloatingPointType(value_type)) { |
| __ Fmov(temp, source.Is64Bits() ? source.D() : source.S()); |
| value_type = source.Is64Bits() ? DataType::Type::kInt64 : DataType::Type::kInt32; |
| source = temp; // Source for the `GenerateReverseBytes()` below. |
| } |
| GenerateReverseBytes(masm, value_type, source, temp); |
| source = temp; |
| } |
| MemOperand address(target.object.X(), target.offset.X()); |
| if (use_store_release) { |
| codegen->StoreRelease(invoke, value_type, source, address, /*needs_null_check=*/ false); |
| } else { |
| codegen->Store(value_type, source, address); |
| } |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(value_index))) { |
| codegen->MarkGCCard(target.object, Register(value), /*value_can_be_null=*/ true); |
| } |
| |
| if (!byte_swap) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleSet(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleSet(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleSetRelease(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleSetRelease(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, std::memory_order_release); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, std::memory_order_seq_cst); |
| } |
| |
| static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke, bool return_success) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1u); |
| if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && |
| value_type == DataType::Type::kReference) { |
| // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores |
| // the passed reference and reloads it from the field. This breaks the read barriers |
| // in slow path in different ways. The marked old value may not actually be a to-space |
| // reference to the same object as `old_value`, breaking slow path assumptions. And |
| // for CompareAndExchange, marking the old value after comparison failure may actually |
| // return the reference to `expected`, erroneously indicating success even though we |
| // did not set the new value. (And it also gets the memory visibility wrong.) b/173104084 |
| return; |
| } |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| // We need callee-save registers for both the class object and offset instead of |
| // the temporaries reserved in CreateVarHandleCommonLocations(). |
| static_assert(POPCOUNT(kArm64CalleeSaveRefSpills) >= 2u); |
| uint32_t first_callee_save = CTZ(kArm64CalleeSaveRefSpills); |
| uint32_t second_callee_save = CTZ(kArm64CalleeSaveRefSpills ^ (1u << first_callee_save)); |
| if (GetExpectedVarHandleCoordinatesCount(invoke) == 0u) { // For static fields. |
| DCHECK_EQ(locations->GetTempCount(), 2u); |
| DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister())); |
| DCHECK(locations->GetTemp(1u).Equals(Location::RegisterLocation(first_callee_save))); |
| locations->SetTempAt(0u, Location::RegisterLocation(second_callee_save)); |
| } else { |
| DCHECK_EQ(locations->GetTempCount(), 1u); |
| DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister())); |
| locations->SetTempAt(0u, Location::RegisterLocation(first_callee_save)); |
| } |
| } |
| size_t old_temp_count = locations->GetTempCount(); |
| DCHECK_EQ(old_temp_count, (GetExpectedVarHandleCoordinatesCount(invoke) == 0) ? 2u : 1u); |
| if (!return_success) { |
| if (DataType::IsFloatingPointType(value_type)) { |
| // Add a temporary for old value and exclusive store result if floating point |
| // `expected` and/or `new_value` take scratch registers. |
| size_t available_scratch_registers = |
| (IsConstantZeroBitPattern(invoke->InputAt(number_of_arguments - 1u)) ? 1u : 0u) + |
| (IsConstantZeroBitPattern(invoke->InputAt(number_of_arguments - 2u)) ? 1u : 0u); |
| size_t temps_needed = /* pointer, old value, store result */ 3u - available_scratch_registers; |
| // We can reuse the declaring class (if present) and offset temporary. |
| if (temps_needed > old_temp_count) { |
| locations->AddRegisterTemps(temps_needed - old_temp_count); |
| } |
| } else if ((value_type != DataType::Type::kReference && DataType::Size(value_type) != 1u) && |
| !IsConstantZeroBitPattern(invoke->InputAt(number_of_arguments - 2u)) && |
| !IsConstantZeroBitPattern(invoke->InputAt(number_of_arguments - 1u)) && |
| GetExpectedVarHandleCoordinatesCount(invoke) == 2u) { |
| // Allocate a normal temporary for store result in the non-native byte order path |
| // because scratch registers are used by the byte-swapped `expected` and `new_value`. |
| DCHECK_EQ(old_temp_count, 1u); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { |
| // Add a temporary for the `old_value_temp` in slow path. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| static Register MoveToTempIfFpRegister(const CPURegister& cpu_reg, |
| DataType::Type type, |
| MacroAssembler* masm, |
| UseScratchRegisterScope* temps) { |
| if (cpu_reg.IsS()) { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| Register reg = temps->AcquireW(); |
| __ Fmov(reg, cpu_reg.S()); |
| return reg; |
| } else if (cpu_reg.IsD()) { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| Register reg = temps->AcquireX(); |
| __ Fmov(reg, cpu_reg.D()); |
| return reg; |
| } else { |
| return DataType::Is64BitType(type) ? cpu_reg.X() : cpu_reg.W(); |
| } |
| } |
| |
| static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| std::memory_order order, |
| bool return_success, |
| bool strong, |
| bool byte_swap = false) { |
| DCHECK(return_success || strong); |
| |
| uint32_t expected_index = invoke->GetNumberOfArguments() - 2; |
| uint32_t new_value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, expected_index)); |
| |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| CPURegister expected = InputCPURegisterOrZeroRegAt(invoke, expected_index); |
| CPURegister new_value = InputCPURegisterOrZeroRegAt(invoke, new_value_index); |
| CPURegister out = helpers::OutputCPURegister(invoke); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathARM64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); |
| slow_path->SetCompareAndSetOrExchangeArgs(return_success, strong); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| |
| // This needs to be before the temp registers, as MarkGCCard also uses VIXL temps. |
| if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(new_value_index))) { |
| // Mark card for object assuming new value is stored. |
| bool new_value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(target.object, new_value.W(), new_value_can_be_null); |
| } |
| |
| // Reuse the `offset` temporary for the pointer to the target location, |
| // except for references that need the offset for the read barrier. |
| UseScratchRegisterScope temps(masm); |
| Register tmp_ptr = target.offset.X(); |
| if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { |
| tmp_ptr = temps.AcquireX(); |
| } |
| __ Add(tmp_ptr, target.object.X(), target.offset.X()); |
| |
| // Move floating point values to scratch registers. |
| // Note that float/double CAS uses bitwise comparison, rather than the operator==. |
| Register expected_reg = MoveToTempIfFpRegister(expected, value_type, masm, &temps); |
| Register new_value_reg = MoveToTempIfFpRegister(new_value, value_type, masm, &temps); |
| bool is_fp = DataType::IsFloatingPointType(value_type); |
| DataType::Type cas_type = is_fp |
| ? ((value_type == DataType::Type::kFloat64) ? DataType::Type::kInt64 : DataType::Type::kInt32) |
| : value_type; |
| // Avoid sign extension in the CAS loop by zero-extending `expected` before the loop. This adds |
| // one instruction for CompareAndExchange as we shall need to sign-extend the returned value. |
| if (value_type == DataType::Type::kInt16 && !expected.IsZero()) { |
| Register temp = temps.AcquireW(); |
| __ Uxth(temp, expected_reg); |
| expected_reg = temp; |
| cas_type = DataType::Type::kUint16; |
| } else if (value_type == DataType::Type::kInt8 && !expected.IsZero()) { |
| Register temp = temps.AcquireW(); |
| __ Uxtb(temp, expected_reg); |
| expected_reg = temp; |
| cas_type = DataType::Type::kUint8; |
| } |
| |
| if (byte_swap) { |
| // Do the byte swap and move values to scratch registers if needed. |
| // Non-zero FP values and non-zero `expected` for `kInt16` are already in scratch registers. |
| DCHECK_NE(value_type, DataType::Type::kInt8); |
| if (!expected.IsZero()) { |
| bool is_scratch = is_fp || (value_type == DataType::Type::kInt16); |
| Register temp = is_scratch ? expected_reg : temps.AcquireSameSizeAs(expected_reg); |
| GenerateReverseBytes(masm, cas_type, expected_reg, temp); |
| expected_reg = temp; |
| } |
| if (!new_value.IsZero()) { |
| Register temp = is_fp ? new_value_reg : temps.AcquireSameSizeAs(new_value_reg); |
| GenerateReverseBytes(masm, cas_type, new_value_reg, temp); |
| new_value_reg = temp; |
| } |
| } |
| |
| // Prepare registers for old value and the result of the exclusive store. |
| Register old_value; |
| Register store_result; |
| if (return_success) { |
| // Use the output register for both old value and exclusive store result. |
| old_value = (cas_type == DataType::Type::kInt64) ? out.X() : out.W(); |
| store_result = out.W(); |
| } else if (DataType::IsFloatingPointType(value_type)) { |
| // We need two temporary registers but we have already used scratch registers for |
| // holding the expected and new value unless they are zero bit pattern (+0.0f or |
| // +0.0). We have allocated sufficient normal temporaries to handle that. |
| size_t next_temp = 1u; |
| if (expected.IsZero()) { |
| old_value = (cas_type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW(); |
| } else { |
| Location temp = locations->GetTemp(next_temp); |
| ++next_temp; |
| old_value = (cas_type == DataType::Type::kInt64) ? XRegisterFrom(temp) : WRegisterFrom(temp); |
| } |
| store_result = |
| new_value.IsZero() ? temps.AcquireW() : WRegisterFrom(locations->GetTemp(next_temp)); |
| DCHECK(!old_value.Is(tmp_ptr)); |
| DCHECK(!store_result.Is(tmp_ptr)); |
| } else { |
| // Use the output register for the old value. |
| old_value = (cas_type == DataType::Type::kInt64) ? out.X() : out.W(); |
| // Use scratch register for the store result, except when we have used up |
| // scratch registers for byte-swapped `expected` and `new_value`. |
| // In that case, we have allocated a normal temporary. |
| store_result = (byte_swap && !expected.IsZero() && !new_value.IsZero()) |
| ? WRegisterFrom(locations->GetTemp(1)) |
| : temps.AcquireW(); |
| DCHECK(!store_result.Is(tmp_ptr)); |
| } |
| |
| vixl::aarch64::Label exit_loop_label; |
| vixl::aarch64::Label* exit_loop = &exit_loop_label; |
| vixl::aarch64::Label* cmp_failure = &exit_loop_label; |
| |
| if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { |
| // The `old_value_temp` is used first for the marked `old_value` and then for the unmarked |
| // reloaded old value for subsequent CAS in the slow path. It cannot be a scratch register. |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| Register old_value_temp = |
| WRegisterFrom(locations->GetTemp((expected_coordinates_count == 0u) ? 2u : 1u)); |
| // For strong CAS, use a scratch register for the store result in slow path. |
| // For weak CAS, we need to check the store result, so store it in `store_result`. |
| Register slow_path_store_result = strong ? Register() : store_result; |
| ReadBarrierCasSlowPathARM64* rb_slow_path = |
| new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathARM64( |
| invoke, |
| order, |
| strong, |
| target.object, |
| target.offset.X(), |
| expected_reg, |
| new_value_reg, |
| old_value, |
| old_value_temp, |
| slow_path_store_result, |
| /*update_old_value=*/ !return_success, |
| codegen); |
| codegen->AddSlowPath(rb_slow_path); |
| exit_loop = rb_slow_path->GetExitLabel(); |
| cmp_failure = rb_slow_path->GetEntryLabel(); |
| } |
| |
| GenerateCompareAndSet(codegen, |
| cas_type, |
| order, |
| strong, |
| cmp_failure, |
| tmp_ptr, |
| new_value_reg, |
| old_value, |
| store_result, |
| expected_reg); |
| __ Bind(exit_loop); |
| |
| if (return_success) { |
| if (strong) { |
| __ Cset(out.W(), eq); |
| } else { |
| // On success, the Z flag is set and the store result is 1, see GenerateCompareAndSet(). |
| // On failure, either the Z flag is clear or the store result is 0. |
| // Determine the final success value with a CSEL. |
| __ Csel(out.W(), store_result, wzr, eq); |
| } |
| } else if (byte_swap) { |
| // Also handles moving to FP registers. |
| GenerateReverseBytes(masm, value_type, old_value, out); |
| } else if (DataType::IsFloatingPointType(value_type)) { |
| __ Fmov((value_type == DataType::Type::kFloat64) ? out.D() : out.S(), old_value); |
| } else if (value_type == DataType::Type::kInt8) { |
| __ Sxtb(out.W(), old_value); |
| } else if (value_type == DataType::Type::kInt16) { |
| __ Sxth(out.W(), old_value); |
| } |
| |
| if (!byte_swap) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ false, /*strong=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_acquire, /*return_success=*/ false, /*strong=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_release, /*return_success=*/ false, /*strong=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_acquire, /*return_success=*/ true, /*strong=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_relaxed, /*return_success=*/ true, /*strong=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen_, std::memory_order_release, /*return_success=*/ true, /*strong=*/ false); |
| } |
| |
| static void CreateVarHandleGetAndUpdateLocations(HInvoke* invoke, |
| GetAndUpdateOp get_and_update_op) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && |
| invoke->GetType() == DataType::Type::kReference) { |
| // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores |
| // the passed reference and reloads it from the field, thus seeing the new value |
| // that we have just stored. (And it also gets the memory visibility wrong.) b/173104084 |
| return; |
| } |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| size_t old_temp_count = locations->GetTempCount(); |
| DCHECK_EQ(old_temp_count, (GetExpectedVarHandleCoordinatesCount(invoke) == 0) ? 2u : 1u); |
| if (DataType::IsFloatingPointType(invoke->GetType())) { |
| if (get_and_update_op == GetAndUpdateOp::kAdd) { |
| // For ADD, do not use ZR for zero bit pattern (+0.0f or +0.0). |
| locations->SetInAt(invoke->GetNumberOfArguments() - 1u, Location::RequiresFpuRegister()); |
| } else { |
| DCHECK(get_and_update_op == GetAndUpdateOp::kSet); |
| // We can reuse the declaring class temporary if present. |
| if (old_temp_count == 1u && |
| !IsConstantZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) { |
| // Add a temporary for `old_value` if floating point `new_value` takes a scratch register. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| // We need a temporary for the byte-swap path for bitwise operations unless the argument is a |
| // zero which does not need a byte-swap. We can reuse the declaring class temporary if present. |
| if (old_temp_count == 1u && |
| (get_and_update_op != GetAndUpdateOp::kSet && get_and_update_op != GetAndUpdateOp::kAdd) && |
| GetExpectedVarHandleCoordinatesCount(invoke) == 2u && |
| !IsConstantZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) { |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| if (value_type != DataType::Type::kReference && DataType::Size(value_type) != 1u) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| static void GenerateVarHandleGetAndUpdate(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| GetAndUpdateOp get_and_update_op, |
| std::memory_order order, |
| bool byte_swap = false) { |
| uint32_t arg_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, arg_index); |
| |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| CPURegister arg = InputCPURegisterOrZeroRegAt(invoke, arg_index); |
| CPURegister out = helpers::OutputCPURegister(invoke); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathARM64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); |
| slow_path->SetGetAndUpdateOp(get_and_update_op); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| |
| // This needs to be before the temp registers, as MarkGCCard also uses VIXL temps. |
| if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(arg_index))) { |
| DCHECK(get_and_update_op == GetAndUpdateOp::kSet); |
| // Mark card for object, the new value shall be stored. |
| bool new_value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(target.object, arg.W(), new_value_can_be_null); |
| } |
| |
| // Reuse the `target.offset` temporary for the pointer to the target location, |
| // except for references that need the offset for the non-Baker read barrier. |
| UseScratchRegisterScope temps(masm); |
| Register tmp_ptr = target.offset.X(); |
| if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && |
| value_type == DataType::Type::kReference) { |
| tmp_ptr = temps.AcquireX(); |
| } |
| __ Add(tmp_ptr, target.object.X(), target.offset.X()); |
| |
| // The load/store type is never floating point. |
| bool is_fp = DataType::IsFloatingPointType(value_type); |
| DataType::Type load_store_type = is_fp |
| ? ((value_type == DataType::Type::kFloat32) ? DataType::Type::kInt32 : DataType::Type::kInt64) |
| : value_type; |
| // Avoid sign extension in the CAS loop. Sign-extend after the loop. |
| // Note: Using unsigned values yields the same value to store (we do not store higher bits). |
| if (value_type == DataType::Type::kInt8) { |
| load_store_type = DataType::Type::kUint8; |
| } else if (value_type == DataType::Type::kInt16) { |
| load_store_type = DataType::Type::kUint16; |
| } |
| |
| // Prepare register for old value. |
| CPURegister old_value = out; |
| if (get_and_update_op == GetAndUpdateOp::kSet) { |
| // For floating point GetAndSet, do the GenerateGetAndUpdate() with core registers, |
| // rather than moving between core and FP registers in the loop. |
| arg = MoveToTempIfFpRegister(arg, value_type, masm, &temps); |
| if (DataType::IsFloatingPointType(value_type) && !arg.IsZero()) { |
| // We need a temporary register but we have already used a scratch register for |
| // the new value unless it is zero bit pattern (+0.0f or +0.0) and need another one |
| // in GenerateGetAndUpdate(). We have allocated a normal temporary to handle that. |
| old_value = CPURegisterFrom(locations->GetTemp(1u), load_store_type); |
| } else if ((kEmitCompilerReadBarrier && kUseBakerReadBarrier) && |
| value_type == DataType::Type::kReference) { |
| // Load the old value initially to a scratch register. |
| // We shall move it to `out` later with a read barrier. |
| old_value = temps.AcquireW(); |
| } |
| } |
| |
| if (byte_swap) { |
| DCHECK_NE(value_type, DataType::Type::kReference); |
| DCHECK_NE(DataType::Size(value_type), 1u); |
| if (get_and_update_op == GetAndUpdateOp::kAdd) { |
| // We need to do the byte swapping in the CAS loop for GetAndAdd. |
| get_and_update_op = GetAndUpdateOp::kAddWithByteSwap; |
| } else if (!arg.IsZero()) { |
| // For other operations, avoid byte swap inside the CAS loop by providing an adjusted `arg`. |
| // For GetAndSet use a scratch register; FP argument is already in a scratch register. |
| // For bitwise operations GenerateGetAndUpdate() needs both scratch registers; |
| // we have allocated a normal temporary to handle that. |
| CPURegister temp = (get_and_update_op == GetAndUpdateOp::kSet) |
| ? (is_fp ? arg : (arg.Is64Bits() ? temps.AcquireX() : temps.AcquireW())) |
| : CPURegisterFrom(locations->GetTemp(1u), load_store_type); |
| GenerateReverseBytes(masm, load_store_type, arg, temp); |
| arg = temp; |
| } |
| } |
| |
| GenerateGetAndUpdate(codegen, get_and_update_op, load_store_type, order, tmp_ptr, arg, old_value); |
| |
| if (get_and_update_op == GetAndUpdateOp::kAddWithByteSwap) { |
| // The only adjustment needed is sign-extension for `kInt16`. |
| // Everything else has been done by the `GenerateGetAndUpdate()`. |
| DCHECK(byte_swap); |
| if (value_type == DataType::Type::kInt16) { |
| DCHECK_EQ(load_store_type, DataType::Type::kUint16); |
| __ Sxth(out.W(), old_value.W()); |
| } |
| } else if (byte_swap) { |
| // Also handles moving to FP registers. |
| GenerateReverseBytes(masm, value_type, old_value, out); |
| } else if (get_and_update_op == GetAndUpdateOp::kSet && value_type == DataType::Type::kFloat64) { |
| __ Fmov(out.D(), old_value.X()); |
| } else if (get_and_update_op == GetAndUpdateOp::kSet && value_type == DataType::Type::kFloat32) { |
| __ Fmov(out.S(), old_value.W()); |
| } else if (value_type == DataType::Type::kInt8) { |
| __ Sxtb(out.W(), old_value.W()); |
| } else if (value_type == DataType::Type::kInt16) { |
| __ Sxth(out.W(), old_value.W()); |
| } else if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { |
| if (kUseBakerReadBarrier) { |
| codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(out.W(), old_value.W()); |
| } else { |
| codegen->GenerateReadBarrierSlow( |
| invoke, |
| Location::RegisterLocation(out.GetCode()), |
| Location::RegisterLocation(old_value.GetCode()), |
| Location::RegisterLocation(target.object.GetCode()), |
| /*offset=*/ 0u, |
| /*index=*/ Location::RegisterLocation(target.offset.GetCode())); |
| } |
| } |
| |
| if (!byte_swap) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_seq_cst); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_release); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_seq_cst); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_release); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_seq_cst); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_release); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_seq_cst); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_release); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_seq_cst); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_acquire); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_release); |
| } |
| |
| void VarHandleSlowPathARM64::EmitByteArrayViewCode(CodeGenerator* codegen_in) { |
| DCHECK(GetByteArrayViewCheckLabel()->IsLinked()); |
| CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| HInvoke* invoke = GetInvoke(); |
| mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate(); |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| DCHECK_NE(value_type, DataType::Type::kReference); |
| size_t size = DataType::Size(value_type); |
| DCHECK_GT(size, 1u); |
| Register varhandle = InputRegisterAt(invoke, 0); |
| Register object = InputRegisterAt(invoke, 1); |
| Register index = InputRegisterAt(invoke, 2); |
| |
| MemberOffset class_offset = mirror::Object::ClassOffset(); |
| MemberOffset array_length_offset = mirror::Array::LengthOffset(); |
| MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte); |
| MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset(); |
| |
| __ Bind(GetByteArrayViewCheckLabel()); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| Register temp2 = temps.AcquireW(); |
| |
| // The main path checked that the coordinateType0 is an array class that matches |
| // the class of the actual coordinate argument but it does not match the value type. |
| // Check if the `varhandle` references a ByteArrayViewVarHandle instance. |
| __ Ldr(temp, HeapOperand(varhandle, class_offset.Int32Value())); |
| codegen->LoadClassRootForIntrinsic(temp2, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle); |
| __ Cmp(temp, temp2); |
| __ B(GetEntryLabel(), ne); |
| |
| // Check for array index out of bounds. |
| __ Ldr(temp, HeapOperand(object, array_length_offset.Int32Value())); |
| __ Subs(temp, temp, index); |
| __ Ccmp(temp, size, NoFlag, hs); // If SUBS yields LO (C=false), keep the C flag clear. |
| __ B(GetEntryLabel(), lo); |
| |
| // Construct the target. |
| __ Add(target.offset, index, data_offset.Int32Value()); |
| |
| // Alignment check. For unaligned access, go to the runtime. |
| DCHECK(IsPowerOfTwo(size)); |
| if (size == 2u) { |
| __ Tbnz(target.offset, 0, GetEntryLabel()); |
| } else { |
| __ Tst(target.offset, size - 1u); |
| __ B(GetEntryLabel(), ne); |
| } |
| |
| // Byte order check. For native byte order return to the main path. |
| if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet && |
| IsConstantZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) { |
| // There is no reason to differentiate between native byte order and byte-swap |
| // for setting a zero bit pattern. Just return to the main path. |
| __ B(GetNativeByteOrderLabel()); |
| return; |
| } |
| __ Ldr(temp, HeapOperand(varhandle, native_byte_order_offset.Int32Value())); |
| __ Cbnz(temp, GetNativeByteOrderLabel()); |
| } |
| |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| GenerateVarHandleGet(invoke, codegen, order_, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| GenerateVarHandleSet(invoke, codegen, order_, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen, order_, return_success_, strong_, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: |
| GenerateVarHandleGetAndUpdate( |
| invoke, codegen, get_and_update_op_, order_, /*byte_swap=*/ true); |
| break; |
| } |
| __ B(GetExitLabel()); |
| } |
| |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOf); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOfAfter); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferAppend); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferLength); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferToString); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendObject); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendString); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendCharSequence); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendCharArray); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendBoolean); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendChar); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendInt); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendLong); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendFloat); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppendDouble); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderLength); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderToString); |
| |
| // 1.8. |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddInt) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddLong) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetInt) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetLong) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetObject) |
| |
| UNIMPLEMENTED_INTRINSIC(ARM64, MethodHandleInvokeExact) |
| UNIMPLEMENTED_INTRINSIC(ARM64, MethodHandleInvoke) |
| |
| UNREACHABLE_INTRINSICS(ARM64) |
| |
| #undef __ |
| |
| } // namespace arm64 |
| } // namespace art |