blob: 2fee27c06723ba0e6120028b923bbdd4cce4206e [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_
#define ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_
#include <assert.h>
#include <algorithm>
#include <functional>
#include <memory>
#include <numeric>
#include <type_traits>
#include <vector>
#include "android-base/strings.h"
#include "cmdline_parse_result.h"
#include "cmdline_types.h"
#include "token_range.h"
#include "unit.h"
namespace art {
// Implementation details for the parser. Do not look inside if you hate templates.
namespace detail {
// A non-templated base class for argument parsers. Used by the general parser
// to parse arguments, without needing to know the argument type at compile time.
//
// This is an application of the type erasure idiom.
struct CmdlineParseArgumentAny {
virtual ~CmdlineParseArgumentAny() {}
// Attempt to parse this argument starting at arguments[position].
// If the parsing succeeds, the parsed value will be saved as a side-effect.
//
// In most situations, the parsing will not match by returning kUnknown. In this case,
// no tokens were consumed and the position variable will not be updated.
//
// At other times, parsing may fail due to validation but the initial token was still matched
// (for example an out of range value, or passing in a string where an int was expected).
// In this case the tokens are still consumed, and the position variable will get incremented
// by all the consumed tokens.
//
// The # of tokens consumed by the parse attempt will be set as an out-parameter into
// consumed_tokens. The parser should skip this many tokens before parsing the next
// argument.
virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) = 0;
// How many tokens should be taken off argv for parsing this argument.
// For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space).
//
// A [min,max] range is returned to represent argument definitions with multiple
// value tokens. (e.g. {"-h", "-h " } would return [1,2]).
virtual std::pair<size_t, size_t> GetNumTokens() const = 0;
// Get the run-time typename of the argument type.
virtual const char* GetTypeName() const = 0;
// Try to do a close match, returning how many tokens were matched against this argument
// definition. More tokens is better.
//
// Do a quick match token-by-token, and see if they match.
// Any tokens with a wildcard in them are only matched up until the wildcard.
// If this is true, then the wildcard matching later on can still fail, so this is not
// a guarantee that the argument is correct, it's more of a strong hint that the
// user-provided input *probably* was trying to match this argument.
//
// Returns how many tokens were either matched (or ignored because there was a
// wildcard present). 0 means no match. If the Size() tokens are returned.
virtual size_t MaybeMatches(const TokenRange& tokens) = 0;
};
template <typename T>
using EnableIfNumeric = std::enable_if<std::is_arithmetic<T>::value>;
template <typename T>
using DisableIfNumeric = std::enable_if<!std::is_arithmetic<T>::value>;
// Argument definition information, created by an ArgumentBuilder and an UntypedArgumentBuilder.
template <typename TArg>
struct CmdlineParserArgumentInfo {
// This version will only be used if TArg is arithmetic and thus has the <= operators.
template <typename T = TArg> // Necessary to get SFINAE to kick in.
bool CheckRange(const TArg& value, typename EnableIfNumeric<T>::type* = 0) {
if (has_range_) {
return min_ <= value && value <= max_;
}
return true;
}
// This version will be used at other times when TArg is not arithmetic.
template <typename T = TArg>
bool CheckRange(const TArg&, typename DisableIfNumeric<T>::type* = 0) {
assert(!has_range_);
return true;
}
// Do a quick match token-by-token, and see if they match.
// Any tokens with a wildcard in them only match the prefix up until the wildcard.
//
// If this is true, then the wildcard matching later on can still fail, so this is not
// a guarantee that the argument is correct, it's more of a strong hint that the
// user-provided input *probably* was trying to match this argument.
size_t MaybeMatches(const TokenRange& token_list) const {
auto best_match = FindClosestMatch(token_list);
return best_match.second;
}
// Attempt to find the closest match (see MaybeMatches).
//
// Returns the token range that was the closest match and the # of tokens that
// this range was matched up until.
std::pair<const TokenRange*, size_t> FindClosestMatch(const TokenRange& token_list) const {
const TokenRange* best_match_ptr = nullptr;
size_t best_match = 0;
for (auto&& token_range : tokenized_names_) {
size_t this_match = token_range.MaybeMatches(token_list, std::string("_"));
if (this_match > best_match) {
best_match_ptr = &token_range;
best_match = this_match;
}
}
return std::make_pair(best_match_ptr, best_match);
}
// Mark the argument definition as completed, do not mutate the object anymore after this
// call is done.
//
// Performs several sanity checks and token calculations.
void CompleteArgument() {
assert(names_.size() >= 1);
assert(!is_completed_);
is_completed_ = true;
size_t blank_count = 0;
size_t token_count = 0;
size_t global_blank_count = 0;
size_t global_token_count = 0;
for (auto&& name : names_) {
std::string s(name);
size_t local_blank_count = std::count(s.begin(), s.end(), '_');
size_t local_token_count = std::count(s.begin(), s.end(), ' ');
if (global_blank_count != 0) {
assert(local_blank_count == global_blank_count
&& "Every argument descriptor string must have same amount of blanks (_)");
}
if (local_blank_count != 0) {
global_blank_count = local_blank_count;
blank_count++;
assert(local_blank_count == 1 && "More than one blank is not supported");
assert(s.back() == '_' && "The blank character must only be at the end of the string");
}
if (global_token_count != 0) {
assert(local_token_count == global_token_count
&& "Every argument descriptor string must have same amount of tokens (spaces)");
}
if (local_token_count != 0) {
global_token_count = local_token_count;
token_count++;
}
// Tokenize every name, turning it from a string to a token list.
tokenized_names_.clear();
for (auto&& name1 : names_) {
// Split along ' ' only, removing any duplicated spaces.
tokenized_names_.push_back(
TokenRange::Split(name1, {' '}).RemoveToken(" "));
}
// remove the _ character from each of the token ranges
// we will often end up with an empty token (i.e. ["-XX", "_"] -> ["-XX", ""]
// and this is OK because we still need an empty token to simplify
// range comparisons
simple_names_.clear();
for (auto&& tokenized_name : tokenized_names_) {
simple_names_.push_back(tokenized_name.RemoveCharacter('_'));
}
}
if (token_count != 0) {
assert(("Every argument descriptor string must have equal amount of tokens (spaces)" &&
token_count == names_.size()));
}
if (blank_count != 0) {
assert(("Every argument descriptor string must have an equal amount of blanks (_)" &&
blank_count == names_.size()));
}
using_blanks_ = blank_count > 0;
{
size_t smallest_name_token_range_size =
std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), ~(0u),
[](size_t min, const TokenRange& cur) {
return std::min(min, cur.Size());
});
size_t largest_name_token_range_size =
std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), 0u,
[](size_t max, const TokenRange& cur) {
return std::max(max, cur.Size());
});
token_range_size_ = std::make_pair(smallest_name_token_range_size,
largest_name_token_range_size);
}
if (has_value_list_) {
assert(names_.size() == value_list_.size()
&& "Number of arg descriptors must match number of values");
assert(!has_value_map_);
}
if (has_value_map_) {
if (!using_blanks_) {
assert(names_.size() == value_map_.size() &&
"Since no blanks were specified, each arg is mapped directly into a mapped "
"value without parsing; sizes must match");
}
assert(!has_value_list_);
}
if (!using_blanks_ && !CmdlineType<TArg>::kCanParseBlankless) {
assert((has_value_map_ || has_value_list_) &&
"Arguments without a blank (_) must provide either a value map or a value list");
}
TypedCheck();
}
// List of aliases for a single argument definition, e.g. {"-Xdex2oat", "-Xnodex2oat"}.
std::vector<const char*> names_;
// Is there at least 1 wildcard '_' in the argument definition?
bool using_blanks_ = false;
// [min, max] token counts in each arg def
std::pair<size_t, size_t> token_range_size_;
// contains all the names in a tokenized form, i.e. as a space-delimited list
std::vector<TokenRange> tokenized_names_;
// contains the tokenized names, but with the _ character stripped
std::vector<TokenRange> simple_names_;
// For argument definitions created with '.AppendValues()'
// Meaning that parsing should mutate the existing value in-place if possible.
bool appending_values_ = false;
// For argument definitions created with '.WithRange(min, max)'
bool has_range_ = false;
TArg min_;
TArg max_;
// For argument definitions created with '.WithValueMap'
bool has_value_map_ = false;
std::vector<std::pair<const char*, TArg>> value_map_;
// For argument definitions created with '.WithValues'
bool has_value_list_ = false;
std::vector<TArg> value_list_;
// Make sure there's a default constructor.
CmdlineParserArgumentInfo() = default;
// Ensure there's a default move constructor.
CmdlineParserArgumentInfo(CmdlineParserArgumentInfo&&) = default;
private:
// Perform type-specific checks at runtime.
template <typename T = TArg>
void TypedCheck(typename std::enable_if<std::is_same<Unit, T>::value>::type* = 0) {
assert(!using_blanks_ &&
"Blanks are not supported in Unit arguments; since a Unit has no parse-able value");
}
void TypedCheck() {}
bool is_completed_ = false;
};
// A virtual-implementation of the necessary argument information in order to
// be able to parse arguments.
template <typename TArg>
struct CmdlineParseArgument : CmdlineParseArgumentAny {
CmdlineParseArgument(CmdlineParserArgumentInfo<TArg>&& argument_info,
std::function<void(TArg&)>&& save_argument,
std::function<TArg&(void)>&& load_argument)
: argument_info_(std::forward<decltype(argument_info)>(argument_info)),
save_argument_(std::forward<decltype(save_argument)>(save_argument)),
load_argument_(std::forward<decltype(load_argument)>(load_argument)) {
}
using UserTypeInfo = CmdlineType<TArg>;
virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) {
assert(arguments.Size() > 0);
assert(consumed_tokens != nullptr);
auto closest_match_res = argument_info_.FindClosestMatch(arguments);
size_t best_match_size = closest_match_res.second;
const TokenRange* best_match_arg_def = closest_match_res.first;
if (best_match_size > arguments.Size()) {
// The best match has more tokens than were provided.
// Shouldn't happen in practice since the outer parser does this check.
return CmdlineResult(CmdlineResult::kUnknown, "Size mismatch");
}
assert(best_match_arg_def != nullptr);
*consumed_tokens = best_match_arg_def->Size();
if (!argument_info_.using_blanks_) {
return ParseArgumentSingle(arguments.Join(' '));
}
// Extract out the blank value from arguments
// e.g. for a def of "foo:_" and input "foo:bar", blank_value == "bar"
std::string blank_value = "";
size_t idx = 0;
for (auto&& def_token : *best_match_arg_def) {
auto&& arg_token = arguments[idx];
// Does this definition-token have a wildcard in it?
if (def_token.find('_') == std::string::npos) {
// No, regular token. Match 1:1 against the argument token.
bool token_match = def_token == arg_token;
if (!token_match) {
return CmdlineResult(CmdlineResult::kFailure,
std::string("Failed to parse ") + best_match_arg_def->GetToken(0)
+ " at token " + std::to_string(idx));
}
} else {
// This is a wild-carded token.
TokenRange def_split_wildcards = TokenRange::Split(def_token, {'_'});
// Extract the wildcard contents out of the user-provided arg_token.
std::unique_ptr<TokenRange> arg_matches =
def_split_wildcards.MatchSubstrings(arg_token, "_");
if (arg_matches == nullptr) {
return CmdlineResult(CmdlineResult::kFailure,
std::string("Failed to parse ") + best_match_arg_def->GetToken(0)
+ ", with a wildcard pattern " + def_token
+ " at token " + std::to_string(idx));
}
// Get the corresponding wildcard tokens from arg_matches,
// and concatenate it to blank_value.
for (size_t sub_idx = 0;
sub_idx < def_split_wildcards.Size() && sub_idx < arg_matches->Size(); ++sub_idx) {
if (def_split_wildcards[sub_idx] == "_") {
blank_value += arg_matches->GetToken(sub_idx);
}
}
}
++idx;
}
return ParseArgumentSingle(blank_value);
}
private:
virtual CmdlineResult ParseArgumentSingle(const std::string& argument) {
// TODO: refactor to use LookupValue for the value lists/maps
// Handle the 'WithValueMap(...)' argument definition
if (argument_info_.has_value_map_) {
for (auto&& value_pair : argument_info_.value_map_) {
const char* name = value_pair.first;
if (argument == name) {
return SaveArgument(value_pair.second);
}
}
// Error case: Fail, telling the user what the allowed values were.
std::vector<std::string> allowed_values;
for (auto&& value_pair : argument_info_.value_map_) {
const char* name = value_pair.first;
allowed_values.push_back(name);
}
std::string allowed_values_flat = android::base::Join(allowed_values, ',');
return CmdlineResult(CmdlineResult::kFailure,
"Argument value '" + argument + "' does not match any of known valid"
"values: {" + allowed_values_flat + "}");
}
// Handle the 'WithValues(...)' argument definition
if (argument_info_.has_value_list_) {
size_t arg_def_idx = 0;
for (auto&& value : argument_info_.value_list_) {
auto&& arg_def_token = argument_info_.names_[arg_def_idx];
if (arg_def_token == argument) {
return SaveArgument(value);
}
++arg_def_idx;
}
assert(arg_def_idx + 1 == argument_info_.value_list_.size() &&
"Number of named argument definitions must match number of values defined");
// Error case: Fail, telling the user what the allowed values were.
std::vector<std::string> allowed_values;
for (auto&& arg_name : argument_info_.names_) {
allowed_values.push_back(arg_name);
}
std::string allowed_values_flat = android::base::Join(allowed_values, ',');
return CmdlineResult(CmdlineResult::kFailure,
"Argument value '" + argument + "' does not match any of known valid"
"values: {" + allowed_values_flat + "}");
}
// Handle the regular case where we parsed an unknown value from a blank.
UserTypeInfo type_parser;
if (argument_info_.appending_values_) {
TArg& existing = load_argument_();
CmdlineParseResult<TArg> result = type_parser.ParseAndAppend(argument, existing);
assert(!argument_info_.has_range_);
return result;
}
CmdlineParseResult<TArg> result = type_parser.Parse(argument);
if (result.IsSuccess()) {
TArg& value = result.GetValue();
// Do a range check for 'WithRange(min,max)' argument definition.
if (!argument_info_.CheckRange(value)) {
return CmdlineParseResult<TArg>::OutOfRange(
value, argument_info_.min_, argument_info_.max_);
}
return SaveArgument(value);
}
// Some kind of type-specific parse error. Pass the result as-is.
CmdlineResult raw_result = std::move(result);
return raw_result;
}
public:
virtual const char* GetTypeName() const {
// TODO: Obviate the need for each type specialization to hardcode the type name
return UserTypeInfo::Name();
}
// How many tokens should be taken off argv for parsing this argument.
// For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space).
//
// A [min,max] range is returned to represent argument definitions with multiple
// value tokens. (e.g. {"-h", "-h " } would return [1,2]).
virtual std::pair<size_t, size_t> GetNumTokens() const {
return argument_info_.token_range_size_;
}
// See if this token range might begin the same as the argument definition.
virtual size_t MaybeMatches(const TokenRange& tokens) {
return argument_info_.MaybeMatches(tokens);
}
private:
CmdlineResult SaveArgument(const TArg& value) {
assert(!argument_info_.appending_values_
&& "If the values are being appended, then the updated parse value is "
"updated by-ref as a side effect and shouldn't be stored directly");
TArg val = value;
save_argument_(val);
return CmdlineResult(CmdlineResult::kSuccess);
}
CmdlineParserArgumentInfo<TArg> argument_info_;
std::function<void(TArg&)> save_argument_;
std::function<TArg&(void)> load_argument_;
};
} // namespace detail // NOLINT [readability/namespace] [5]
} // namespace art
#endif // ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_