| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ |
| #define ART_COMPILER_OPTIMIZING_NODES_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <type_traits> |
| |
| #include "base/arena_bit_vector.h" |
| #include "base/arena_containers.h" |
| #include "base/arena_object.h" |
| #include "base/stl_util.h" |
| #include "dex/compiler_enums.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "handle.h" |
| #include "handle_scope.h" |
| #include "invoke_type.h" |
| #include "locations.h" |
| #include "method_reference.h" |
| #include "mirror/class.h" |
| #include "offsets.h" |
| #include "primitive.h" |
| #include "utils/array_ref.h" |
| |
| namespace art { |
| |
| class GraphChecker; |
| class HBasicBlock; |
| class HCurrentMethod; |
| class HDoubleConstant; |
| class HEnvironment; |
| class HFloatConstant; |
| class HGraphBuilder; |
| class HGraphVisitor; |
| class HInstruction; |
| class HIntConstant; |
| class HInvoke; |
| class HLongConstant; |
| class HNullConstant; |
| class HPhi; |
| class HSuspendCheck; |
| class HTryBoundary; |
| class LiveInterval; |
| class LocationSummary; |
| class SlowPathCode; |
| class SsaBuilder; |
| |
| namespace mirror { |
| class DexCache; |
| } // namespace mirror |
| |
| static const int kDefaultNumberOfBlocks = 8; |
| static const int kDefaultNumberOfSuccessors = 2; |
| static const int kDefaultNumberOfPredecessors = 2; |
| static const int kDefaultNumberOfExceptionalPredecessors = 0; |
| static const int kDefaultNumberOfDominatedBlocks = 1; |
| static const int kDefaultNumberOfBackEdges = 1; |
| |
| static constexpr uint32_t kMaxIntShiftValue = 0x1f; |
| static constexpr uint64_t kMaxLongShiftValue = 0x3f; |
| |
| static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); |
| static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); |
| |
| static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); |
| |
| static constexpr uint32_t kNoDexPc = -1; |
| |
| enum IfCondition { |
| // All types. |
| kCondEQ, // == |
| kCondNE, // != |
| // Signed integers and floating-point numbers. |
| kCondLT, // < |
| kCondLE, // <= |
| kCondGT, // > |
| kCondGE, // >= |
| // Unsigned integers. |
| kCondB, // < |
| kCondBE, // <= |
| kCondA, // > |
| kCondAE, // >= |
| }; |
| |
| enum GraphAnalysisResult { |
| kAnalysisInvalidBytecode, |
| kAnalysisFailThrowCatchLoop, |
| kAnalysisFailAmbiguousArrayOp, |
| kAnalysisSuccess, |
| }; |
| |
| class HInstructionList : public ValueObject { |
| public: |
| HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} |
| |
| void AddInstruction(HInstruction* instruction); |
| void RemoveInstruction(HInstruction* instruction); |
| |
| // Insert `instruction` before/after an existing instruction `cursor`. |
| void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); |
| void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); |
| |
| // Return true if this list contains `instruction`. |
| bool Contains(HInstruction* instruction) const; |
| |
| // Return true if `instruction1` is found before `instruction2` in |
| // this instruction list and false otherwise. Abort if none |
| // of these instructions is found. |
| bool FoundBefore(const HInstruction* instruction1, |
| const HInstruction* instruction2) const; |
| |
| bool IsEmpty() const { return first_instruction_ == nullptr; } |
| void Clear() { first_instruction_ = last_instruction_ = nullptr; } |
| |
| // Update the block of all instructions to be `block`. |
| void SetBlockOfInstructions(HBasicBlock* block) const; |
| |
| void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); |
| void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); |
| void Add(const HInstructionList& instruction_list); |
| |
| // Return the number of instructions in the list. This is an expensive operation. |
| size_t CountSize() const; |
| |
| private: |
| HInstruction* first_instruction_; |
| HInstruction* last_instruction_; |
| |
| friend class HBasicBlock; |
| friend class HGraph; |
| friend class HInstruction; |
| friend class HInstructionIterator; |
| friend class HBackwardInstructionIterator; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstructionList); |
| }; |
| |
| class ReferenceTypeInfo : ValueObject { |
| public: |
| typedef Handle<mirror::Class> TypeHandle; |
| |
| static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); |
| |
| static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { |
| return ReferenceTypeInfo(type_handle, is_exact); |
| } |
| |
| static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } |
| |
| static bool IsValidHandle(TypeHandle handle) { |
| return handle.GetReference() != nullptr; |
| } |
| |
| bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| return IsValidHandle(type_handle_); |
| } |
| |
| bool IsExact() const { return is_exact_; } |
| |
| bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsObjectClass(); |
| } |
| |
| bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsStringClass(); |
| } |
| |
| bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); |
| } |
| |
| bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsInterface(); |
| } |
| |
| bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsArrayClass(); |
| } |
| |
| bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsPrimitiveArray(); |
| } |
| |
| bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); |
| } |
| |
| bool CanArrayHold(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| if (!IsExact()) return false; |
| if (!IsArrayClass()) return false; |
| return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); |
| } |
| |
| bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| if (!IsExact()) return false; |
| if (!IsArrayClass()) return false; |
| if (!rti.IsArrayClass()) return false; |
| return GetTypeHandle()->GetComponentType()->IsAssignableFrom( |
| rti.GetTypeHandle()->GetComponentType()); |
| } |
| |
| Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } |
| |
| bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| DCHECK(rti.IsValid()); |
| return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); |
| } |
| |
| bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| DCHECK(rti.IsValid()); |
| return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && |
| GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); |
| } |
| |
| // Returns true if the type information provide the same amount of details. |
| // Note that it does not mean that the instructions have the same actual type |
| // (because the type can be the result of a merge). |
| bool IsEqual(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!IsValid() && !rti.IsValid()) { |
| // Invalid types are equal. |
| return true; |
| } |
| if (!IsValid() || !rti.IsValid()) { |
| // One is valid, the other not. |
| return false; |
| } |
| return IsExact() == rti.IsExact() |
| && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); |
| } |
| |
| private: |
| ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} |
| ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) |
| : type_handle_(type_handle), is_exact_(is_exact) { } |
| |
| // The class of the object. |
| TypeHandle type_handle_; |
| // Whether or not the type is exact or a superclass of the actual type. |
| // Whether or not we have any information about this type. |
| bool is_exact_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); |
| |
| // Control-flow graph of a method. Contains a list of basic blocks. |
| class HGraph : public ArenaObject<kArenaAllocGraph> { |
| public: |
| HGraph(ArenaAllocator* arena, |
| const DexFile& dex_file, |
| uint32_t method_idx, |
| bool should_generate_constructor_barrier, |
| InstructionSet instruction_set, |
| InvokeType invoke_type = kInvalidInvokeType, |
| bool debuggable = false, |
| bool osr = false, |
| int start_instruction_id = 0) |
| : arena_(arena), |
| blocks_(arena->Adapter(kArenaAllocBlockList)), |
| reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)), |
| linear_order_(arena->Adapter(kArenaAllocLinearOrder)), |
| entry_block_(nullptr), |
| exit_block_(nullptr), |
| maximum_number_of_out_vregs_(0), |
| number_of_vregs_(0), |
| number_of_in_vregs_(0), |
| temporaries_vreg_slots_(0), |
| has_bounds_checks_(false), |
| has_try_catch_(false), |
| has_irreducible_loops_(false), |
| debuggable_(debuggable), |
| current_instruction_id_(start_instruction_id), |
| dex_file_(dex_file), |
| method_idx_(method_idx), |
| invoke_type_(invoke_type), |
| in_ssa_form_(false), |
| should_generate_constructor_barrier_(should_generate_constructor_barrier), |
| instruction_set_(instruction_set), |
| cached_null_constant_(nullptr), |
| cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), |
| cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), |
| cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), |
| cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), |
| cached_current_method_(nullptr), |
| inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), |
| osr_(osr) { |
| blocks_.reserve(kDefaultNumberOfBlocks); |
| } |
| |
| // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. |
| void InitializeInexactObjectRTI(StackHandleScopeCollection* handles); |
| |
| ArenaAllocator* GetArena() const { return arena_; } |
| const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } |
| |
| bool IsInSsaForm() const { return in_ssa_form_; } |
| void SetInSsaForm() { in_ssa_form_ = true; } |
| |
| HBasicBlock* GetEntryBlock() const { return entry_block_; } |
| HBasicBlock* GetExitBlock() const { return exit_block_; } |
| bool HasExitBlock() const { return exit_block_ != nullptr; } |
| |
| void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } |
| void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } |
| |
| void AddBlock(HBasicBlock* block); |
| |
| void ComputeDominanceInformation(); |
| void ClearDominanceInformation(); |
| void ClearLoopInformation(); |
| void FindBackEdges(ArenaBitVector* visited); |
| GraphAnalysisResult BuildDominatorTree(); |
| void SimplifyCFG(); |
| void SimplifyCatchBlocks(); |
| |
| // Analyze all natural loops in this graph. Returns a code specifying that it |
| // was successful or the reason for failure. The method will fail if a loop |
| // is a throw-catch loop, i.e. the header is a catch block. |
| GraphAnalysisResult AnalyzeLoops() const; |
| |
| // Iterate over blocks to compute try block membership. Needs reverse post |
| // order and loop information. |
| void ComputeTryBlockInformation(); |
| |
| // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. |
| // Returns the instruction to replace the invoke expression or null if the |
| // invoke is for a void method. Note that the caller is responsible for replacing |
| // and removing the invoke instruction. |
| HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); |
| |
| // Update the loop and try membership of `block`, which was spawned from `reference`. |
| // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` |
| // should be the new back edge. |
| void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, |
| HBasicBlock* reference, |
| bool replace_if_back_edge); |
| |
| // Need to add a couple of blocks to test if the loop body is entered and |
| // put deoptimization instructions, etc. |
| void TransformLoopHeaderForBCE(HBasicBlock* header); |
| |
| // Removes `block` from the graph. Assumes `block` has been disconnected from |
| // other blocks and has no instructions or phis. |
| void DeleteDeadEmptyBlock(HBasicBlock* block); |
| |
| // Splits the edge between `block` and `successor` while preserving the |
| // indices in the predecessor/successor lists. If there are multiple edges |
| // between the blocks, the lowest indices are used. |
| // Returns the new block which is empty and has the same dex pc as `successor`. |
| HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); |
| |
| void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); |
| void SimplifyLoop(HBasicBlock* header); |
| |
| int32_t GetNextInstructionId() { |
| DCHECK_NE(current_instruction_id_, INT32_MAX); |
| return current_instruction_id_++; |
| } |
| |
| int32_t GetCurrentInstructionId() const { |
| return current_instruction_id_; |
| } |
| |
| void SetCurrentInstructionId(int32_t id) { |
| DCHECK_GE(id, current_instruction_id_); |
| current_instruction_id_ = id; |
| } |
| |
| uint16_t GetMaximumNumberOfOutVRegs() const { |
| return maximum_number_of_out_vregs_; |
| } |
| |
| void SetMaximumNumberOfOutVRegs(uint16_t new_value) { |
| maximum_number_of_out_vregs_ = new_value; |
| } |
| |
| void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { |
| maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); |
| } |
| |
| void UpdateTemporariesVRegSlots(size_t slots) { |
| temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); |
| } |
| |
| size_t GetTemporariesVRegSlots() const { |
| DCHECK(!in_ssa_form_); |
| return temporaries_vreg_slots_; |
| } |
| |
| void SetNumberOfVRegs(uint16_t number_of_vregs) { |
| number_of_vregs_ = number_of_vregs; |
| } |
| |
| uint16_t GetNumberOfVRegs() const { |
| return number_of_vregs_; |
| } |
| |
| void SetNumberOfInVRegs(uint16_t value) { |
| number_of_in_vregs_ = value; |
| } |
| |
| uint16_t GetNumberOfLocalVRegs() const { |
| DCHECK(!in_ssa_form_); |
| return number_of_vregs_ - number_of_in_vregs_; |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { |
| return reverse_post_order_; |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetLinearOrder() const { |
| return linear_order_; |
| } |
| |
| bool HasBoundsChecks() const { |
| return has_bounds_checks_; |
| } |
| |
| void SetHasBoundsChecks(bool value) { |
| has_bounds_checks_ = value; |
| } |
| |
| bool ShouldGenerateConstructorBarrier() const { |
| return should_generate_constructor_barrier_; |
| } |
| |
| bool IsDebuggable() const { return debuggable_; } |
| |
| // Returns a constant of the given type and value. If it does not exist |
| // already, it is created and inserted into the graph. This method is only for |
| // integral types. |
| HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); |
| |
| // TODO: This is problematic for the consistency of reference type propagation |
| // because it can be created anytime after the pass and thus it will be left |
| // with an invalid type. |
| HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); |
| |
| HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(value, &cached_int_constants_, dex_pc); |
| } |
| HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(value, &cached_long_constants_, dex_pc); |
| } |
| HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); |
| } |
| HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); |
| } |
| |
| HCurrentMethod* GetCurrentMethod(); |
| |
| const DexFile& GetDexFile() const { |
| return dex_file_; |
| } |
| |
| uint32_t GetMethodIdx() const { |
| return method_idx_; |
| } |
| |
| InvokeType GetInvokeType() const { |
| return invoke_type_; |
| } |
| |
| InstructionSet GetInstructionSet() const { |
| return instruction_set_; |
| } |
| |
| bool IsCompilingOsr() const { return osr_; } |
| |
| bool HasTryCatch() const { return has_try_catch_; } |
| void SetHasTryCatch(bool value) { has_try_catch_ = value; } |
| |
| bool HasIrreducibleLoops() const { return has_irreducible_loops_; } |
| void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } |
| |
| ArtMethod* GetArtMethod() const { return art_method_; } |
| void SetArtMethod(ArtMethod* method) { art_method_ = method; } |
| |
| // Returns an instruction with the opposite boolean value from 'cond'. |
| // The instruction has been inserted into the graph, either as a constant, or |
| // before cursor. |
| HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); |
| |
| private: |
| void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; |
| void RemoveDeadBlocks(const ArenaBitVector& visited); |
| |
| template <class InstructionType, typename ValueType> |
| InstructionType* CreateConstant(ValueType value, |
| ArenaSafeMap<ValueType, InstructionType*>* cache, |
| uint32_t dex_pc = kNoDexPc) { |
| // Try to find an existing constant of the given value. |
| InstructionType* constant = nullptr; |
| auto cached_constant = cache->find(value); |
| if (cached_constant != cache->end()) { |
| constant = cached_constant->second; |
| } |
| |
| // If not found or previously deleted, create and cache a new instruction. |
| // Don't bother reviving a previously deleted instruction, for simplicity. |
| if (constant == nullptr || constant->GetBlock() == nullptr) { |
| constant = new (arena_) InstructionType(value, dex_pc); |
| cache->Overwrite(value, constant); |
| InsertConstant(constant); |
| } |
| return constant; |
| } |
| |
| void InsertConstant(HConstant* instruction); |
| |
| // Cache a float constant into the graph. This method should only be |
| // called by the SsaBuilder when creating "equivalent" instructions. |
| void CacheFloatConstant(HFloatConstant* constant); |
| |
| // See CacheFloatConstant comment. |
| void CacheDoubleConstant(HDoubleConstant* constant); |
| |
| ArenaAllocator* const arena_; |
| |
| // List of blocks in insertion order. |
| ArenaVector<HBasicBlock*> blocks_; |
| |
| // List of blocks to perform a reverse post order tree traversal. |
| ArenaVector<HBasicBlock*> reverse_post_order_; |
| |
| // List of blocks to perform a linear order tree traversal. |
| ArenaVector<HBasicBlock*> linear_order_; |
| |
| HBasicBlock* entry_block_; |
| HBasicBlock* exit_block_; |
| |
| // The maximum number of virtual registers arguments passed to a HInvoke in this graph. |
| uint16_t maximum_number_of_out_vregs_; |
| |
| // The number of virtual registers in this method. Contains the parameters. |
| uint16_t number_of_vregs_; |
| |
| // The number of virtual registers used by parameters of this method. |
| uint16_t number_of_in_vregs_; |
| |
| // Number of vreg size slots that the temporaries use (used in baseline compiler). |
| size_t temporaries_vreg_slots_; |
| |
| // Has bounds checks. We can totally skip BCE if it's false. |
| bool has_bounds_checks_; |
| |
| // Flag whether there are any try/catch blocks in the graph. We will skip |
| // try/catch-related passes if false. |
| bool has_try_catch_; |
| |
| // Flag whether there are any irreducible loops in the graph. |
| bool has_irreducible_loops_; |
| |
| // Indicates whether the graph should be compiled in a way that |
| // ensures full debuggability. If false, we can apply more |
| // aggressive optimizations that may limit the level of debugging. |
| const bool debuggable_; |
| |
| // The current id to assign to a newly added instruction. See HInstruction.id_. |
| int32_t current_instruction_id_; |
| |
| // The dex file from which the method is from. |
| const DexFile& dex_file_; |
| |
| // The method index in the dex file. |
| const uint32_t method_idx_; |
| |
| // If inlined, this encodes how the callee is being invoked. |
| const InvokeType invoke_type_; |
| |
| // Whether the graph has been transformed to SSA form. Only used |
| // in debug mode to ensure we are not using properties only valid |
| // for non-SSA form (like the number of temporaries). |
| bool in_ssa_form_; |
| |
| const bool should_generate_constructor_barrier_; |
| |
| const InstructionSet instruction_set_; |
| |
| // Cached constants. |
| HNullConstant* cached_null_constant_; |
| ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; |
| ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; |
| ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; |
| ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; |
| |
| HCurrentMethod* cached_current_method_; |
| |
| // The ArtMethod this graph is for. Note that for AOT, it may be null, |
| // for example for methods whose declaring class could not be resolved |
| // (such as when the superclass could not be found). |
| ArtMethod* art_method_; |
| |
| // Keep the RTI of inexact Object to avoid having to pass stack handle |
| // collection pointer to passes which may create NullConstant. |
| ReferenceTypeInfo inexact_object_rti_; |
| |
| // Whether we are compiling this graph for on stack replacement: this will |
| // make all loops seen as irreducible and emit special stack maps to mark |
| // compiled code entries which the interpreter can directly jump to. |
| const bool osr_; |
| |
| friend class SsaBuilder; // For caching constants. |
| friend class SsaLivenessAnalysis; // For the linear order. |
| friend class HInliner; // For the reverse post order. |
| ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); |
| DISALLOW_COPY_AND_ASSIGN(HGraph); |
| }; |
| |
| class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { |
| public: |
| HLoopInformation(HBasicBlock* header, HGraph* graph) |
| : header_(header), |
| suspend_check_(nullptr), |
| irreducible_(false), |
| back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)), |
| // Make bit vector growable, as the number of blocks may change. |
| blocks_(graph->GetArena(), graph->GetBlocks().size(), true) { |
| back_edges_.reserve(kDefaultNumberOfBackEdges); |
| } |
| |
| bool IsIrreducible() const { return irreducible_; } |
| |
| void Dump(std::ostream& os); |
| |
| HBasicBlock* GetHeader() const { |
| return header_; |
| } |
| |
| void SetHeader(HBasicBlock* block) { |
| header_ = block; |
| } |
| |
| HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } |
| void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } |
| bool HasSuspendCheck() const { return suspend_check_ != nullptr; } |
| |
| void AddBackEdge(HBasicBlock* back_edge) { |
| back_edges_.push_back(back_edge); |
| } |
| |
| void RemoveBackEdge(HBasicBlock* back_edge) { |
| RemoveElement(back_edges_, back_edge); |
| } |
| |
| bool IsBackEdge(const HBasicBlock& block) const { |
| return ContainsElement(back_edges_, &block); |
| } |
| |
| size_t NumberOfBackEdges() const { |
| return back_edges_.size(); |
| } |
| |
| HBasicBlock* GetPreHeader() const; |
| |
| const ArenaVector<HBasicBlock*>& GetBackEdges() const { |
| return back_edges_; |
| } |
| |
| // Returns the lifetime position of the back edge that has the |
| // greatest lifetime position. |
| size_t GetLifetimeEnd() const; |
| |
| void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { |
| ReplaceElement(back_edges_, existing, new_back_edge); |
| } |
| |
| // Finds blocks that are part of this loop. |
| void Populate(); |
| |
| // Returns whether this loop information contains `block`. |
| // Note that this loop information *must* be populated before entering this function. |
| bool Contains(const HBasicBlock& block) const; |
| |
| // Returns whether this loop information is an inner loop of `other`. |
| // Note that `other` *must* be populated before entering this function. |
| bool IsIn(const HLoopInformation& other) const; |
| |
| // Returns true if instruction is not defined within this loop. |
| bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; |
| |
| const ArenaBitVector& GetBlocks() const { return blocks_; } |
| |
| void Add(HBasicBlock* block); |
| void Remove(HBasicBlock* block); |
| |
| void ClearAllBlocks() { |
| blocks_.ClearAllBits(); |
| } |
| |
| private: |
| // Internal recursive implementation of `Populate`. |
| void PopulateRecursive(HBasicBlock* block); |
| void PopulateIrreducibleRecursive(HBasicBlock* block); |
| |
| HBasicBlock* header_; |
| HSuspendCheck* suspend_check_; |
| bool irreducible_; |
| ArenaVector<HBasicBlock*> back_edges_; |
| ArenaBitVector blocks_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoopInformation); |
| }; |
| |
| // Stores try/catch information for basic blocks. |
| // Note that HGraph is constructed so that catch blocks cannot simultaneously |
| // be try blocks. |
| class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { |
| public: |
| // Try block information constructor. |
| explicit TryCatchInformation(const HTryBoundary& try_entry) |
| : try_entry_(&try_entry), |
| catch_dex_file_(nullptr), |
| catch_type_index_(DexFile::kDexNoIndex16) { |
| DCHECK(try_entry_ != nullptr); |
| } |
| |
| // Catch block information constructor. |
| TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file) |
| : try_entry_(nullptr), |
| catch_dex_file_(&dex_file), |
| catch_type_index_(catch_type_index) {} |
| |
| bool IsTryBlock() const { return try_entry_ != nullptr; } |
| |
| const HTryBoundary& GetTryEntry() const { |
| DCHECK(IsTryBlock()); |
| return *try_entry_; |
| } |
| |
| bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } |
| |
| bool IsCatchAllTypeIndex() const { |
| DCHECK(IsCatchBlock()); |
| return catch_type_index_ == DexFile::kDexNoIndex16; |
| } |
| |
| uint16_t GetCatchTypeIndex() const { |
| DCHECK(IsCatchBlock()); |
| return catch_type_index_; |
| } |
| |
| const DexFile& GetCatchDexFile() const { |
| DCHECK(IsCatchBlock()); |
| return *catch_dex_file_; |
| } |
| |
| private: |
| // One of possibly several TryBoundary instructions entering the block's try. |
| // Only set for try blocks. |
| const HTryBoundary* try_entry_; |
| |
| // Exception type information. Only set for catch blocks. |
| const DexFile* catch_dex_file_; |
| const uint16_t catch_type_index_; |
| }; |
| |
| static constexpr size_t kNoLifetime = -1; |
| static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); |
| |
| // A block in a method. Contains the list of instructions represented |
| // as a double linked list. Each block knows its predecessors and |
| // successors. |
| |
| class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { |
| public: |
| HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) |
| : graph_(graph), |
| predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)), |
| successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)), |
| loop_information_(nullptr), |
| dominator_(nullptr), |
| dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)), |
| block_id_(kInvalidBlockId), |
| dex_pc_(dex_pc), |
| lifetime_start_(kNoLifetime), |
| lifetime_end_(kNoLifetime), |
| try_catch_information_(nullptr) { |
| predecessors_.reserve(kDefaultNumberOfPredecessors); |
| successors_.reserve(kDefaultNumberOfSuccessors); |
| dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetPredecessors() const { |
| return predecessors_; |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetSuccessors() const { |
| return successors_; |
| } |
| |
| ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; |
| ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; |
| |
| bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { |
| return ContainsElement(successors_, block, start_from); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { |
| return dominated_blocks_; |
| } |
| |
| bool IsEntryBlock() const { |
| return graph_->GetEntryBlock() == this; |
| } |
| |
| bool IsExitBlock() const { |
| return graph_->GetExitBlock() == this; |
| } |
| |
| bool IsSingleGoto() const; |
| bool IsSingleTryBoundary() const; |
| |
| // Returns true if this block emits nothing but a jump. |
| bool IsSingleJump() const { |
| HLoopInformation* loop_info = GetLoopInformation(); |
| return (IsSingleGoto() || IsSingleTryBoundary()) |
| // Back edges generate a suspend check. |
| && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); |
| } |
| |
| void AddBackEdge(HBasicBlock* back_edge) { |
| if (loop_information_ == nullptr) { |
| loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_); |
| } |
| DCHECK_EQ(loop_information_->GetHeader(), this); |
| loop_information_->AddBackEdge(back_edge); |
| } |
| |
| HGraph* GetGraph() const { return graph_; } |
| void SetGraph(HGraph* graph) { graph_ = graph; } |
| |
| uint32_t GetBlockId() const { return block_id_; } |
| void SetBlockId(int id) { block_id_ = id; } |
| uint32_t GetDexPc() const { return dex_pc_; } |
| |
| HBasicBlock* GetDominator() const { return dominator_; } |
| void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } |
| void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } |
| |
| void RemoveDominatedBlock(HBasicBlock* block) { |
| RemoveElement(dominated_blocks_, block); |
| } |
| |
| void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { |
| ReplaceElement(dominated_blocks_, existing, new_block); |
| } |
| |
| void ClearDominanceInformation(); |
| |
| int NumberOfBackEdges() const { |
| return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; |
| } |
| |
| HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } |
| HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } |
| const HInstructionList& GetInstructions() const { return instructions_; } |
| HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } |
| HInstruction* GetLastPhi() const { return phis_.last_instruction_; } |
| const HInstructionList& GetPhis() const { return phis_; } |
| |
| HInstruction* GetFirstInstructionDisregardMoves() const; |
| |
| void AddSuccessor(HBasicBlock* block) { |
| successors_.push_back(block); |
| block->predecessors_.push_back(this); |
| } |
| |
| void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { |
| size_t successor_index = GetSuccessorIndexOf(existing); |
| existing->RemovePredecessor(this); |
| new_block->predecessors_.push_back(this); |
| successors_[successor_index] = new_block; |
| } |
| |
| void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { |
| size_t predecessor_index = GetPredecessorIndexOf(existing); |
| existing->RemoveSuccessor(this); |
| new_block->successors_.push_back(this); |
| predecessors_[predecessor_index] = new_block; |
| } |
| |
| // Insert `this` between `predecessor` and `successor. This method |
| // preserves the indicies, and will update the first edge found between |
| // `predecessor` and `successor`. |
| void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { |
| size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); |
| size_t successor_index = predecessor->GetSuccessorIndexOf(successor); |
| successor->predecessors_[predecessor_index] = this; |
| predecessor->successors_[successor_index] = this; |
| successors_.push_back(successor); |
| predecessors_.push_back(predecessor); |
| } |
| |
| void RemovePredecessor(HBasicBlock* block) { |
| predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); |
| } |
| |
| void RemoveSuccessor(HBasicBlock* block) { |
| successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); |
| } |
| |
| void ClearAllPredecessors() { |
| predecessors_.clear(); |
| } |
| |
| void AddPredecessor(HBasicBlock* block) { |
| predecessors_.push_back(block); |
| block->successors_.push_back(this); |
| } |
| |
| void SwapPredecessors() { |
| DCHECK_EQ(predecessors_.size(), 2u); |
| std::swap(predecessors_[0], predecessors_[1]); |
| } |
| |
| void SwapSuccessors() { |
| DCHECK_EQ(successors_.size(), 2u); |
| std::swap(successors_[0], successors_[1]); |
| } |
| |
| size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { |
| return IndexOfElement(predecessors_, predecessor); |
| } |
| |
| size_t GetSuccessorIndexOf(HBasicBlock* successor) const { |
| return IndexOfElement(successors_, successor); |
| } |
| |
| HBasicBlock* GetSinglePredecessor() const { |
| DCHECK_EQ(GetPredecessors().size(), 1u); |
| return GetPredecessors()[0]; |
| } |
| |
| HBasicBlock* GetSingleSuccessor() const { |
| DCHECK_EQ(GetSuccessors().size(), 1u); |
| return GetSuccessors()[0]; |
| } |
| |
| // Returns whether the first occurrence of `predecessor` in the list of |
| // predecessors is at index `idx`. |
| bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { |
| DCHECK_EQ(GetPredecessors()[idx], predecessor); |
| return GetPredecessorIndexOf(predecessor) == idx; |
| } |
| |
| // Create a new block between this block and its predecessors. The new block |
| // is added to the graph, all predecessor edges are relinked to it and an edge |
| // is created to `this`. Returns the new empty block. Reverse post order or |
| // loop and try/catch information are not updated. |
| HBasicBlock* CreateImmediateDominator(); |
| |
| // Split the block into two blocks just before `cursor`. Returns the newly |
| // created, latter block. Note that this method will add the block to the |
| // graph, create a Goto at the end of the former block and will create an edge |
| // between the blocks. It will not, however, update the reverse post order or |
| // loop and try/catch information. |
| HBasicBlock* SplitBefore(HInstruction* cursor); |
| |
| // Split the block into two blocks just before `cursor`. Returns the newly |
| // created block. Note that this method just updates raw block information, |
| // like predecessors, successors, dominators, and instruction list. It does not |
| // update the graph, reverse post order, loop information, nor make sure the |
| // blocks are consistent (for example ending with a control flow instruction). |
| HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); |
| |
| // Similar to `SplitBeforeForInlining` but does it after `cursor`. |
| HBasicBlock* SplitAfterForInlining(HInstruction* cursor); |
| |
| // Split catch block into two blocks after the original move-exception bytecode |
| // instruction, or at the beginning if not present. Returns the newly created, |
| // latter block, or nullptr if such block could not be created (must be dead |
| // in that case). Note that this method just updates raw block information, |
| // like predecessors, successors, dominators, and instruction list. It does not |
| // update the graph, reverse post order, loop information, nor make sure the |
| // blocks are consistent (for example ending with a control flow instruction). |
| HBasicBlock* SplitCatchBlockAfterMoveException(); |
| |
| // Merge `other` at the end of `this`. Successors and dominated blocks of |
| // `other` are changed to be successors and dominated blocks of `this`. Note |
| // that this method does not update the graph, reverse post order, loop |
| // information, nor make sure the blocks are consistent (for example ending |
| // with a control flow instruction). |
| void MergeWithInlined(HBasicBlock* other); |
| |
| // Replace `this` with `other`. Predecessors, successors, and dominated blocks |
| // of `this` are moved to `other`. |
| // Note that this method does not update the graph, reverse post order, loop |
| // information, nor make sure the blocks are consistent (for example ending |
| // with a control flow instruction). |
| void ReplaceWith(HBasicBlock* other); |
| |
| // Merge `other` at the end of `this`. This method updates loops, reverse post |
| // order, links to predecessors, successors, dominators and deletes the block |
| // from the graph. The two blocks must be successive, i.e. `this` the only |
| // predecessor of `other` and vice versa. |
| void MergeWith(HBasicBlock* other); |
| |
| // Disconnects `this` from all its predecessors, successors and dominator, |
| // removes it from all loops it is included in and eventually from the graph. |
| // The block must not dominate any other block. Predecessors and successors |
| // are safely updated. |
| void DisconnectAndDelete(); |
| |
| void AddInstruction(HInstruction* instruction); |
| // Insert `instruction` before/after an existing instruction `cursor`. |
| void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); |
| void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); |
| // Replace instruction `initial` with `replacement` within this block. |
| void ReplaceAndRemoveInstructionWith(HInstruction* initial, |
| HInstruction* replacement); |
| void MoveInstructionBefore(HInstruction* insn, HInstruction* cursor); |
| void AddPhi(HPhi* phi); |
| void InsertPhiAfter(HPhi* instruction, HPhi* cursor); |
| // RemoveInstruction and RemovePhi delete a given instruction from the respective |
| // instruction list. With 'ensure_safety' set to true, it verifies that the |
| // instruction is not in use and removes it from the use lists of its inputs. |
| void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); |
| void RemovePhi(HPhi* phi, bool ensure_safety = true); |
| void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); |
| |
| bool IsLoopHeader() const { |
| return IsInLoop() && (loop_information_->GetHeader() == this); |
| } |
| |
| bool IsLoopPreHeaderFirstPredecessor() const { |
| DCHECK(IsLoopHeader()); |
| return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); |
| } |
| |
| bool IsFirstPredecessorBackEdge() const { |
| DCHECK(IsLoopHeader()); |
| return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); |
| } |
| |
| HLoopInformation* GetLoopInformation() const { |
| return loop_information_; |
| } |
| |
| // Set the loop_information_ on this block. Overrides the current |
| // loop_information if it is an outer loop of the passed loop information. |
| // Note that this method is called while creating the loop information. |
| void SetInLoop(HLoopInformation* info) { |
| if (IsLoopHeader()) { |
| // Nothing to do. This just means `info` is an outer loop. |
| } else if (!IsInLoop()) { |
| loop_information_ = info; |
| } else if (loop_information_->Contains(*info->GetHeader())) { |
| // Block is currently part of an outer loop. Make it part of this inner loop. |
| // Note that a non loop header having a loop information means this loop information |
| // has already been populated |
| loop_information_ = info; |
| } else { |
| // Block is part of an inner loop. Do not update the loop information. |
| // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` |
| // at this point, because this method is being called while populating `info`. |
| } |
| } |
| |
| // Raw update of the loop information. |
| void SetLoopInformation(HLoopInformation* info) { |
| loop_information_ = info; |
| } |
| |
| bool IsInLoop() const { return loop_information_ != nullptr; } |
| |
| TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } |
| |
| void SetTryCatchInformation(TryCatchInformation* try_catch_information) { |
| try_catch_information_ = try_catch_information; |
| } |
| |
| bool IsTryBlock() const { |
| return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); |
| } |
| |
| bool IsCatchBlock() const { |
| return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); |
| } |
| |
| // Returns the try entry that this block's successors should have. They will |
| // be in the same try, unless the block ends in a try boundary. In that case, |
| // the appropriate try entry will be returned. |
| const HTryBoundary* ComputeTryEntryOfSuccessors() const; |
| |
| bool HasThrowingInstructions() const; |
| |
| // Returns whether this block dominates the blocked passed as parameter. |
| bool Dominates(HBasicBlock* block) const; |
| |
| size_t GetLifetimeStart() const { return lifetime_start_; } |
| size_t GetLifetimeEnd() const { return lifetime_end_; } |
| |
| void SetLifetimeStart(size_t start) { lifetime_start_ = start; } |
| void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } |
| |
| bool EndsWithControlFlowInstruction() const; |
| bool EndsWithIf() const; |
| bool EndsWithTryBoundary() const; |
| bool HasSinglePhi() const; |
| |
| private: |
| HGraph* graph_; |
| ArenaVector<HBasicBlock*> predecessors_; |
| ArenaVector<HBasicBlock*> successors_; |
| HInstructionList instructions_; |
| HInstructionList phis_; |
| HLoopInformation* loop_information_; |
| HBasicBlock* dominator_; |
| ArenaVector<HBasicBlock*> dominated_blocks_; |
| uint32_t block_id_; |
| // The dex program counter of the first instruction of this block. |
| const uint32_t dex_pc_; |
| size_t lifetime_start_; |
| size_t lifetime_end_; |
| TryCatchInformation* try_catch_information_; |
| |
| friend class HGraph; |
| friend class HInstruction; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBasicBlock); |
| }; |
| |
| // Iterates over the LoopInformation of all loops which contain 'block' |
| // from the innermost to the outermost. |
| class HLoopInformationOutwardIterator : public ValueObject { |
| public: |
| explicit HLoopInformationOutwardIterator(const HBasicBlock& block) |
| : current_(block.GetLoopInformation()) {} |
| |
| bool Done() const { return current_ == nullptr; } |
| |
| void Advance() { |
| DCHECK(!Done()); |
| current_ = current_->GetPreHeader()->GetLoopInformation(); |
| } |
| |
| HLoopInformation* Current() const { |
| DCHECK(!Done()); |
| return current_; |
| } |
| |
| private: |
| HLoopInformation* current_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); |
| }; |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ |
| M(Above, Condition) \ |
| M(AboveOrEqual, Condition) \ |
| M(Add, BinaryOperation) \ |
| M(And, BinaryOperation) \ |
| M(ArrayGet, Instruction) \ |
| M(ArrayLength, Instruction) \ |
| M(ArraySet, Instruction) \ |
| M(Below, Condition) \ |
| M(BelowOrEqual, Condition) \ |
| M(BooleanNot, UnaryOperation) \ |
| M(BoundsCheck, Instruction) \ |
| M(BoundType, Instruction) \ |
| M(CheckCast, Instruction) \ |
| M(ClassTableGet, Instruction) \ |
| M(ClearException, Instruction) \ |
| M(ClinitCheck, Instruction) \ |
| M(Compare, BinaryOperation) \ |
| M(CurrentMethod, Instruction) \ |
| M(Deoptimize, Instruction) \ |
| M(Div, BinaryOperation) \ |
| M(DivZeroCheck, Instruction) \ |
| M(DoubleConstant, Constant) \ |
| M(Equal, Condition) \ |
| M(Exit, Instruction) \ |
| M(FloatConstant, Constant) \ |
| M(Goto, Instruction) \ |
| M(GreaterThan, Condition) \ |
| M(GreaterThanOrEqual, Condition) \ |
| M(If, Instruction) \ |
| M(InstanceFieldGet, Instruction) \ |
| M(InstanceFieldSet, Instruction) \ |
| M(InstanceOf, Instruction) \ |
| M(IntConstant, Constant) \ |
| M(InvokeUnresolved, Invoke) \ |
| M(InvokeInterface, Invoke) \ |
| M(InvokeStaticOrDirect, Invoke) \ |
| M(InvokeVirtual, Invoke) \ |
| M(LessThan, Condition) \ |
| M(LessThanOrEqual, Condition) \ |
| M(LoadClass, Instruction) \ |
| M(LoadException, Instruction) \ |
| M(LoadLocal, Instruction) \ |
| M(LoadString, Instruction) \ |
| M(Local, Instruction) \ |
| M(LongConstant, Constant) \ |
| M(MemoryBarrier, Instruction) \ |
| M(MonitorOperation, Instruction) \ |
| M(Mul, BinaryOperation) \ |
| M(NativeDebugInfo, Instruction) \ |
| M(Neg, UnaryOperation) \ |
| M(NewArray, Instruction) \ |
| M(NewInstance, Instruction) \ |
| M(Not, UnaryOperation) \ |
| M(NotEqual, Condition) \ |
| M(NullConstant, Instruction) \ |
| M(NullCheck, Instruction) \ |
| M(Or, BinaryOperation) \ |
| M(PackedSwitch, Instruction) \ |
| M(ParallelMove, Instruction) \ |
| M(ParameterValue, Instruction) \ |
| M(Phi, Instruction) \ |
| M(Rem, BinaryOperation) \ |
| M(Return, Instruction) \ |
| M(ReturnVoid, Instruction) \ |
| M(Ror, BinaryOperation) \ |
| M(Shl, BinaryOperation) \ |
| M(Shr, BinaryOperation) \ |
| M(StaticFieldGet, Instruction) \ |
| M(StaticFieldSet, Instruction) \ |
| M(UnresolvedInstanceFieldGet, Instruction) \ |
| M(UnresolvedInstanceFieldSet, Instruction) \ |
| M(UnresolvedStaticFieldGet, Instruction) \ |
| M(UnresolvedStaticFieldSet, Instruction) \ |
| M(Select, Instruction) \ |
| M(StoreLocal, Instruction) \ |
| M(Sub, BinaryOperation) \ |
| M(SuspendCheck, Instruction) \ |
| M(Throw, Instruction) \ |
| M(TryBoundary, Instruction) \ |
| M(TypeConversion, Instruction) \ |
| M(UShr, BinaryOperation) \ |
| M(Xor, BinaryOperation) \ |
| |
| /* |
| * Instructions, shared across several (not all) architectures. |
| */ |
| #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) |
| #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ |
| M(MultiplyAccumulate, Instruction) |
| #endif |
| |
| #ifndef ART_ENABLE_CODEGEN_arm |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ |
| M(ArmDexCacheArraysBase, Instruction) |
| #endif |
| |
| #ifndef ART_ENABLE_CODEGEN_arm64 |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ |
| M(Arm64BitwiseNegatedRight, Instruction) \ |
| M(Arm64DataProcWithShifterOp, Instruction) \ |
| M(Arm64IntermediateAddress, Instruction) |
| #endif |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) |
| |
| #ifndef ART_ENABLE_CODEGEN_x86 |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ |
| M(X86ComputeBaseMethodAddress, Instruction) \ |
| M(X86LoadFromConstantTable, Instruction) \ |
| M(X86FPNeg, Instruction) \ |
| M(X86PackedSwitch, Instruction) |
| #endif |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) |
| |
| #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ |
| M(Condition, BinaryOperation) \ |
| M(Constant, Instruction) \ |
| M(UnaryOperation, Instruction) \ |
| M(BinaryOperation, Instruction) \ |
| M(Invoke, Instruction) |
| |
| #define FOR_EACH_INSTRUCTION(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION(M) \ |
| FOR_EACH_ABSTRACT_INSTRUCTION(M) |
| |
| #define FORWARD_DECLARATION(type, super) class H##type; |
| FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) |
| #undef FORWARD_DECLARATION |
| |
| #define DECLARE_INSTRUCTION(type) \ |
| InstructionKind GetKindInternal() const OVERRIDE { return k##type; } \ |
| const char* DebugName() const OVERRIDE { return #type; } \ |
| bool InstructionTypeEquals(HInstruction* other) const OVERRIDE { \ |
| return other->Is##type(); \ |
| } \ |
| void Accept(HGraphVisitor* visitor) OVERRIDE |
| |
| #define DECLARE_ABSTRACT_INSTRUCTION(type) \ |
| bool Is##type() const { return As##type() != nullptr; } \ |
| const H##type* As##type() const { return this; } \ |
| H##type* As##type() { return this; } |
| |
| template <typename T> class HUseList; |
| |
| template <typename T> |
| class HUseListNode : public ArenaObject<kArenaAllocUseListNode> { |
| public: |
| HUseListNode* GetPrevious() const { return prev_; } |
| HUseListNode* GetNext() const { return next_; } |
| T GetUser() const { return user_; } |
| size_t GetIndex() const { return index_; } |
| void SetIndex(size_t index) { index_ = index; } |
| |
| private: |
| HUseListNode(T user, size_t index) |
| : user_(user), index_(index), prev_(nullptr), next_(nullptr) {} |
| |
| T const user_; |
| size_t index_; |
| HUseListNode<T>* prev_; |
| HUseListNode<T>* next_; |
| |
| friend class HUseList<T>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUseListNode); |
| }; |
| |
| template <typename T> |
| class HUseList : public ValueObject { |
| public: |
| HUseList() : first_(nullptr) {} |
| |
| void Clear() { |
| first_ = nullptr; |
| } |
| |
| // Adds a new entry at the beginning of the use list and returns |
| // the newly created node. |
| HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) { |
| HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index); |
| if (IsEmpty()) { |
| first_ = new_node; |
| } else { |
| first_->prev_ = new_node; |
| new_node->next_ = first_; |
| first_ = new_node; |
| } |
| return new_node; |
| } |
| |
| HUseListNode<T>* GetFirst() const { |
| return first_; |
| } |
| |
| void Remove(HUseListNode<T>* node) { |
| DCHECK(node != nullptr); |
| DCHECK(Contains(node)); |
| |
| if (node->prev_ != nullptr) { |
| node->prev_->next_ = node->next_; |
| } |
| if (node->next_ != nullptr) { |
| node->next_->prev_ = node->prev_; |
| } |
| if (node == first_) { |
| first_ = node->next_; |
| } |
| } |
| |
| bool Contains(const HUseListNode<T>* node) const { |
| if (node == nullptr) { |
| return false; |
| } |
| for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) { |
| if (current == node) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool IsEmpty() const { |
| return first_ == nullptr; |
| } |
| |
| bool HasOnlyOneUse() const { |
| return first_ != nullptr && first_->next_ == nullptr; |
| } |
| |
| size_t SizeSlow() const { |
| size_t count = 0; |
| for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) { |
| ++count; |
| } |
| return count; |
| } |
| |
| private: |
| HUseListNode<T>* first_; |
| }; |
| |
| template<typename T> |
| class HUseIterator : public ValueObject { |
| public: |
| explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {} |
| |
| bool Done() const { return current_ == nullptr; } |
| |
| void Advance() { |
| DCHECK(!Done()); |
| current_ = current_->GetNext(); |
| } |
| |
| HUseListNode<T>* Current() const { |
| DCHECK(!Done()); |
| return current_; |
| } |
| |
| private: |
| HUseListNode<T>* current_; |
| |
| friend class HValue; |
| }; |
| |
| // This class is used by HEnvironment and HInstruction classes to record the |
| // instructions they use and pointers to the corresponding HUseListNodes kept |
| // by the used instructions. |
| template <typename T> |
| class HUserRecord : public ValueObject { |
| public: |
| HUserRecord() : instruction_(nullptr), use_node_(nullptr) {} |
| explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {} |
| |
| HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node) |
| : instruction_(old_record.instruction_), use_node_(use_node) { |
| DCHECK(instruction_ != nullptr); |
| DCHECK(use_node_ != nullptr); |
| DCHECK(old_record.use_node_ == nullptr); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| HUseListNode<T>* GetUseNode() const { return use_node_; } |
| |
| private: |
| // Instruction used by the user. |
| HInstruction* instruction_; |
| |
| // Corresponding entry in the use list kept by 'instruction_'. |
| HUseListNode<T>* use_node_; |
| }; |
| |
| /** |
| * Side-effects representation. |
| * |
| * For write/read dependences on fields/arrays, the dependence analysis uses |
| * type disambiguation (e.g. a float field write cannot modify the value of an |
| * integer field read) and the access type (e.g. a reference array write cannot |
| * modify the value of a reference field read [although it may modify the |
| * reference fetch prior to reading the field, which is represented by its own |
| * write/read dependence]). The analysis makes conservative points-to |
| * assumptions on reference types (e.g. two same typed arrays are assumed to be |
| * the same, and any reference read depends on any reference read without |
| * further regard of its type). |
| * |
| * The internal representation uses 38-bit and is described in the table below. |
| * The first line indicates the side effect, and for field/array accesses the |
| * second line indicates the type of the access (in the order of the |
| * Primitive::Type enum). |
| * The two numbered lines below indicate the bit position in the bitfield (read |
| * vertically). |
| * |
| * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | |
| * +-------------+---------+---------+--------------+---------+---------+ |
| * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| |
| * | 3 |333333322|222222221| 1 |111111110|000000000| |
| * | 7 |654321098|765432109| 8 |765432109|876543210| |
| * |
| * Note that, to ease the implementation, 'changes' bits are least significant |
| * bits, while 'dependency' bits are most significant bits. |
| */ |
| class SideEffects : public ValueObject { |
| public: |
| SideEffects() : flags_(0) {} |
| |
| static SideEffects None() { |
| return SideEffects(0); |
| } |
| |
| static SideEffects All() { |
| return SideEffects(kAllChangeBits | kAllDependOnBits); |
| } |
| |
| static SideEffects AllChanges() { |
| return SideEffects(kAllChangeBits); |
| } |
| |
| static SideEffects AllDependencies() { |
| return SideEffects(kAllDependOnBits); |
| } |
| |
| static SideEffects AllExceptGCDependency() { |
| return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); |
| } |
| |
| static SideEffects AllWritesAndReads() { |
| return SideEffects(kAllWrites | kAllReads); |
| } |
| |
| static SideEffects AllWrites() { |
| return SideEffects(kAllWrites); |
| } |
| |
| static SideEffects AllReads() { |
| return SideEffects(kAllReads); |
| } |
| |
| static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) { |
| return is_volatile |
| ? AllWritesAndReads() |
| : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset)); |
| } |
| |
| static SideEffects ArrayWriteOfType(Primitive::Type type) { |
| return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset)); |
| } |
| |
| static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) { |
| return is_volatile |
| ? AllWritesAndReads() |
| : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset)); |
| } |
| |
| static SideEffects ArrayReadOfType(Primitive::Type type) { |
| return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset)); |
| } |
| |
| static SideEffects CanTriggerGC() { |
| return SideEffects(1ULL << kCanTriggerGCBit); |
| } |
| |
| static SideEffects DependsOnGC() { |
| return SideEffects(1ULL << kDependsOnGCBit); |
| } |
| |
| // Combines the side-effects of this and the other. |
| SideEffects Union(SideEffects other) const { |
| return SideEffects(flags_ | other.flags_); |
| } |
| |
| SideEffects Exclusion(SideEffects other) const { |
| return SideEffects(flags_ & ~other.flags_); |
| } |
| |
| void Add(SideEffects other) { |
| flags_ |= other.flags_; |
| } |
| |
| bool Includes(SideEffects other) const { |
| return (other.flags_ & flags_) == other.flags_; |
| } |
| |
| bool HasSideEffects() const { |
| return (flags_ & kAllChangeBits); |
| } |
| |
| bool HasDependencies() const { |
| return (flags_ & kAllDependOnBits); |
| } |
| |
| // Returns true if there are no side effects or dependencies. |
| bool DoesNothing() const { |
| return flags_ == 0; |
| } |
| |
| // Returns true if something is written. |
| bool DoesAnyWrite() const { |
| return (flags_ & kAllWrites); |
| } |
| |
| // Returns true if something is read. |
| bool DoesAnyRead() const { |
| return (flags_ & kAllReads); |
| } |
| |
| // Returns true if potentially everything is written and read |
| // (every type and every kind of access). |
| bool DoesAllReadWrite() const { |
| return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); |
| } |
| |
| bool DoesAll() const { |
| return flags_ == (kAllChangeBits | kAllDependOnBits); |
| } |
| |
| // Returns true if `this` may read something written by `other`. |
| bool MayDependOn(SideEffects other) const { |
| const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; |
| return (other.flags_ & depends_on_flags); |
| } |
| |
| // Returns string representation of flags (for debugging only). |
| // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| |
| std::string ToString() const { |
| std::string flags = "|"; |
| for (int s = kLastBit; s >= 0; s--) { |
| bool current_bit_is_set = ((flags_ >> s) & 1) != 0; |
| if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { |
| // This is a bit for the GC side effect. |
| if (current_bit_is_set) { |
| flags += "GC"; |
| } |
| flags += "|"; |
| } else { |
| // This is a bit for the array/field analysis. |
| // The underscore character stands for the 'can trigger GC' bit. |
| static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; |
| if (current_bit_is_set) { |
| flags += kDebug[s]; |
| } |
| if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || |
| (s == kFieldReadOffset) || (s == kArrayReadOffset)) { |
| flags += "|"; |
| } |
| } |
| } |
| return flags; |
| } |
| |
| bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } |
| |
| private: |
| static constexpr int kFieldArrayAnalysisBits = 9; |
| |
| static constexpr int kFieldWriteOffset = 0; |
| static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; |
| static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; |
| static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; |
| |
| static constexpr int kChangeBits = kCanTriggerGCBit + 1; |
| |
| static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; |
| static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; |
| static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; |
| static constexpr int kDependsOnGCBit = kLastBitForReads + 1; |
| |
| static constexpr int kLastBit = kDependsOnGCBit; |
| static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; |
| |
| // Aliases. |
| |
| static_assert(kChangeBits == kDependOnBits, |
| "the 'change' bits should match the 'depend on' bits."); |
| |
| static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); |
| static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; |
| static constexpr uint64_t kAllWrites = |
| ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; |
| static constexpr uint64_t kAllReads = |
| ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; |
| |
| // Work around the fact that HIR aliases I/F and J/D. |
| // TODO: remove this interceptor once HIR types are clean |
| static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) { |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimFloat: |
| return TypeFlag(Primitive::kPrimInt, offset) | |
| TypeFlag(Primitive::kPrimFloat, offset); |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| return TypeFlag(Primitive::kPrimLong, offset) | |
| TypeFlag(Primitive::kPrimDouble, offset); |
| default: |
| return TypeFlag(type, offset); |
| } |
| } |
| |
| // Translates type to bit flag. |
| static uint64_t TypeFlag(Primitive::Type type, int offset) { |
| CHECK_NE(type, Primitive::kPrimVoid); |
| const uint64_t one = 1; |
| const int shift = type; // 0-based consecutive enum |
| DCHECK_LE(kFieldWriteOffset, shift); |
| DCHECK_LT(shift, kArrayWriteOffset); |
| return one << (type + offset); |
| } |
| |
| // Private constructor on direct flags value. |
| explicit SideEffects(uint64_t flags) : flags_(flags) {} |
| |
| uint64_t flags_; |
| }; |
| |
| // A HEnvironment object contains the values of virtual registers at a given location. |
| class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { |
| public: |
| HEnvironment(ArenaAllocator* arena, |
| size_t number_of_vregs, |
| const DexFile& dex_file, |
| uint32_t method_idx, |
| uint32_t dex_pc, |
| InvokeType invoke_type, |
| HInstruction* holder) |
| : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)), |
| locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)), |
| parent_(nullptr), |
| dex_file_(dex_file), |
| method_idx_(method_idx), |
| dex_pc_(dex_pc), |
| invoke_type_(invoke_type), |
| holder_(holder) { |
| } |
| |
| HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder) |
| : HEnvironment(arena, |
| to_copy.Size(), |
| to_copy.GetDexFile(), |
| to_copy.GetMethodIdx(), |
| to_copy.GetDexPc(), |
| to_copy.GetInvokeType(), |
| holder) {} |
| |
| void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { |
| if (parent_ != nullptr) { |
| parent_->SetAndCopyParentChain(allocator, parent); |
| } else { |
| parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); |
| parent_->CopyFrom(parent); |
| if (parent->GetParent() != nullptr) { |
| parent_->SetAndCopyParentChain(allocator, parent->GetParent()); |
| } |
| } |
| } |
| |
| void CopyFrom(const ArenaVector<HInstruction*>& locals); |
| void CopyFrom(HEnvironment* environment); |
| |
| // Copy from `env`. If it's a loop phi for `loop_header`, copy the first |
| // input to the loop phi instead. This is for inserting instructions that |
| // require an environment (like HDeoptimization) in the loop pre-header. |
| void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); |
| |
| void SetRawEnvAt(size_t index, HInstruction* instruction) { |
| vregs_[index] = HUserRecord<HEnvironment*>(instruction); |
| } |
| |
| HInstruction* GetInstructionAt(size_t index) const { |
| return vregs_[index].GetInstruction(); |
| } |
| |
| void RemoveAsUserOfInput(size_t index) const; |
| |
| size_t Size() const { return vregs_.size(); } |
| |
| HEnvironment* GetParent() const { return parent_; } |
| |
| void SetLocationAt(size_t index, Location location) { |
| locations_[index] = location; |
| } |
| |
| Location GetLocationAt(size_t index) const { |
| return locations_[index]; |
| } |
| |
| uint32_t GetDexPc() const { |
| return dex_pc_; |
| } |
| |
| uint32_t GetMethodIdx() const { |
| return method_idx_; |
| } |
| |
| InvokeType GetInvokeType() const { |
| return invoke_type_; |
| } |
| |
| const DexFile& GetDexFile() const { |
| return dex_file_; |
| } |
| |
| HInstruction* GetHolder() const { |
| return holder_; |
| } |
| |
| |
| bool IsFromInlinedInvoke() const { |
| return GetParent() != nullptr; |
| } |
| |
| private: |
| // Record instructions' use entries of this environment for constant-time removal. |
| // It should only be called by HInstruction when a new environment use is added. |
| void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) { |
| DCHECK(env_use->GetUser() == this); |
| size_t index = env_use->GetIndex(); |
| vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use); |
| } |
| |
| ArenaVector<HUserRecord<HEnvironment*>> vregs_; |
| ArenaVector<Location> locations_; |
| HEnvironment* parent_; |
| const DexFile& dex_file_; |
| const uint32_t method_idx_; |
| const uint32_t dex_pc_; |
| const InvokeType invoke_type_; |
| |
| // The instruction that holds this environment. |
| HInstruction* const holder_; |
| |
| friend class HInstruction; |
| |
| DISALLOW_COPY_AND_ASSIGN(HEnvironment); |
| }; |
| |
| class HInstruction : public ArenaObject<kArenaAllocInstruction> { |
| public: |
| HInstruction(SideEffects side_effects, uint32_t dex_pc) |
| : previous_(nullptr), |
| next_(nullptr), |
| block_(nullptr), |
| dex_pc_(dex_pc), |
| id_(-1), |
| ssa_index_(-1), |
| packed_fields_(0u), |
| environment_(nullptr), |
| locations_(nullptr), |
| live_interval_(nullptr), |
| lifetime_position_(kNoLifetime), |
| side_effects_(side_effects), |
| reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { |
| SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); |
| } |
| |
| virtual ~HInstruction() {} |
| |
| #define DECLARE_KIND(type, super) k##type, |
| enum InstructionKind { |
| FOR_EACH_INSTRUCTION(DECLARE_KIND) |
| }; |
| #undef DECLARE_KIND |
| |
| HInstruction* GetNext() const { return next_; } |
| HInstruction* GetPrevious() const { return previous_; } |
| |
| HInstruction* GetNextDisregardingMoves() const; |
| HInstruction* GetPreviousDisregardingMoves() const; |
| |
| HBasicBlock* GetBlock() const { return block_; } |
| ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); } |
| void SetBlock(HBasicBlock* block) { block_ = block; } |
| bool IsInBlock() const { return block_ != nullptr; } |
| bool IsInLoop() const { return block_->IsInLoop(); } |
| bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } |
| bool IsIrreducibleLoopHeaderPhi() const { |
| return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); |
| } |
| |
| virtual size_t InputCount() const = 0; |
| HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } |
| |
| virtual void Accept(HGraphVisitor* visitor) = 0; |
| virtual const char* DebugName() const = 0; |
| |
| virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; } |
| void SetRawInputAt(size_t index, HInstruction* input) { |
| SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); |
| } |
| |
| virtual bool NeedsEnvironment() const { return false; } |
| |
| uint32_t GetDexPc() const { return dex_pc_; } |
| |
| virtual bool IsControlFlow() const { return false; } |
| |
| virtual bool CanThrow() const { return false; } |
| bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } |
| |
| bool HasSideEffects() const { return side_effects_.HasSideEffects(); } |
| bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } |
| |
| // Does not apply for all instructions, but having this at top level greatly |
| // simplifies the null check elimination. |
| // TODO: Consider merging can_be_null into ReferenceTypeInfo. |
| virtual bool CanBeNull() const { |
| DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types"; |
| return true; |
| } |
| |
| virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { |
| return false; |
| } |
| |
| virtual bool IsActualObject() const { |
| return GetType() == Primitive::kPrimNot; |
| } |
| |
| void SetReferenceTypeInfo(ReferenceTypeInfo rti); |
| |
| ReferenceTypeInfo GetReferenceTypeInfo() const { |
| DCHECK_EQ(GetType(), Primitive::kPrimNot); |
| return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, |
| GetPackedFlag<kFlagReferenceTypeIsExact>());; |
| } |
| |
| void AddUseAt(HInstruction* user, size_t index) { |
| DCHECK(user != nullptr); |
| HUseListNode<HInstruction*>* use = |
| uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena()); |
| user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use)); |
| } |
| |
| void AddEnvUseAt(HEnvironment* user, size_t index) { |
| DCHECK(user != nullptr); |
| HUseListNode<HEnvironment*>* env_use = |
| env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena()); |
| user->RecordEnvUse(env_use); |
| } |
| |
| void RemoveAsUserOfInput(size_t input) { |
| HUserRecord<HInstruction*> input_use = InputRecordAt(input); |
| input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode()); |
| } |
| |
| const HUseList<HInstruction*>& GetUses() const { return uses_; } |
| const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } |
| |
| bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); } |
| bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); } |
| bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); } |
| bool HasOnlyOneNonEnvironmentUse() const { |
| return !HasEnvironmentUses() && GetUses().HasOnlyOneUse(); |
| } |
| |
| // Does this instruction strictly dominate `other_instruction`? |
| // Returns false if this instruction and `other_instruction` are the same. |
| // Aborts if this instruction and `other_instruction` are both phis. |
| bool StrictlyDominates(HInstruction* other_instruction) const; |
| |
| int GetId() const { return id_; } |
| void SetId(int id) { id_ = id; } |
| |
| int GetSsaIndex() const { return ssa_index_; } |
| void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } |
| bool HasSsaIndex() const { return ssa_index_ != -1; } |
| |
| bool HasEnvironment() const { return environment_ != nullptr; } |
| HEnvironment* GetEnvironment() const { return environment_; } |
| // Set the `environment_` field. Raw because this method does not |
| // update the uses lists. |
| void SetRawEnvironment(HEnvironment* environment) { |
| DCHECK(environment_ == nullptr); |
| DCHECK_EQ(environment->GetHolder(), this); |
| environment_ = environment; |
| } |
| |
| // Set the environment of this instruction, copying it from `environment`. While |
| // copying, the uses lists are being updated. |
| void CopyEnvironmentFrom(HEnvironment* environment) { |
| DCHECK(environment_ == nullptr); |
| ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); |
| environment_ = new (allocator) HEnvironment(allocator, *environment, this); |
| environment_->CopyFrom(environment); |
| if (environment->GetParent() != nullptr) { |
| environment_->SetAndCopyParentChain(allocator, environment->GetParent()); |
| } |
| } |
| |
| void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, |
| HBasicBlock* block) { |
| DCHECK(environment_ == nullptr); |
| ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); |
| environment_ = new (allocator) HEnvironment(allocator, *environment, this); |
| environment_->CopyFromWithLoopPhiAdjustment(environment, block); |
| if (environment->GetParent() != nullptr) { |
| environment_->SetAndCopyParentChain(allocator, environment->GetParent()); |
| } |
| } |
| |
| // Returns the number of entries in the environment. Typically, that is the |
| // number of dex registers in a method. It could be more in case of inlining. |
| size_t EnvironmentSize() const; |
| |
| LocationSummary* GetLocations() const { return locations_; } |
| void SetLocations(LocationSummary* locations) { locations_ = locations; } |
| |
| void ReplaceWith(HInstruction* instruction); |
| void ReplaceInput(HInstruction* replacement, size_t index); |
| |
| // This is almost the same as doing `ReplaceWith()`. But in this helper, the |
| // uses of this instruction by `other` are *not* updated. |
| void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { |
| ReplaceWith(other); |
| other->ReplaceInput(this, use_index); |
| } |
| |
| // Move `this` instruction before `cursor`. |
| void MoveBefore(HInstruction* cursor); |
| |
| // Move `this` before its first user and out of any loops. If there is no |
| // out-of-loop user that dominates all other users, move the instruction |
| // to the end of the out-of-loop common dominator of the user's blocks. |
| // |
| // This can be used only on non-throwing instructions with no side effects that |
| // have at least one use but no environment uses. |
| void MoveBeforeFirstUserAndOutOfLoops(); |
| |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| bool Is##type() const; \ |
| const H##type* As##type() const; \ |
| H##type* As##type(); |
| |
| FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| bool Is##type() const { return (As##type() != nullptr); } \ |
| virtual const H##type* As##type() const { return nullptr; } \ |
| virtual H##type* As##type() { return nullptr; } |
| FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| |
| // Returns whether the instruction can be moved within the graph. |
| virtual bool CanBeMoved() const { return false; } |
| |
| // Returns whether the two instructions are of the same kind. |
| virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const { |
| return false; |
| } |
| |
| // Returns whether any data encoded in the two instructions is equal. |
| // This method does not look at the inputs. Both instructions must be |
| // of the same type, otherwise the method has undefined behavior. |
| virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const { |
| return false; |
| } |
| |
| // Returns whether two instructions are equal, that is: |
| // 1) They have the same type and contain the same data (InstructionDataEquals). |
| // 2) Their inputs are identical. |
| bool Equals(HInstruction* other) const; |
| |
| // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744) |
| // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide |
| // the virtual function because the __attribute__((__pure__)) doesn't really |
| // apply the strong requirement for virtual functions, preventing optimizations. |
| InstructionKind GetKind() const PURE; |
| virtual InstructionKind GetKindInternal() const = 0; |
| |
| virtual size_t ComputeHashCode() const { |
| size_t result = GetKind(); |
| for (size_t i = 0, e = InputCount(); i < e; ++i) { |
| result = (result * 31) + InputAt(i)->GetId(); |
| } |
| return result; |
| } |
| |
| SideEffects GetSideEffects() const { return side_effects_; } |
| void SetSideEffects(SideEffects other) { side_effects_ = other; } |
| void AddSideEffects(SideEffects other) { side_effects_.Add(other); } |
| |
| size_t GetLifetimePosition() const { return lifetime_position_; } |
| void SetLifetimePosition(size_t position) { lifetime_position_ = position; } |
| LiveInterval* GetLiveInterval() const { return live_interval_; } |
| void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } |
| bool HasLiveInterval() const { return live_interval_ != nullptr; } |
| |
| bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } |
| |
| // Returns whether the code generation of the instruction will require to have access |
| // to the current method. Such instructions are: |
| // (1): Instructions that require an environment, as calling the runtime requires |
| // to walk the stack and have the current method stored at a specific stack address. |
| // (2): Object literals like classes and strings, that are loaded from the dex cache |
| // fields of the current method. |
| bool NeedsCurrentMethod() const { |
| return NeedsEnvironment() || IsLoadClass() || IsLoadString(); |
| } |
| |
| // Returns whether the code generation of the instruction will require to have access |
| // to the dex cache of the current method's declaring class via the current method. |
| virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } |
| |
| // Does this instruction have any use in an environment before |
| // control flow hits 'other'? |
| bool HasAnyEnvironmentUseBefore(HInstruction* other); |
| |
| // Remove all references to environment uses of this instruction. |
| // The caller must ensure that this is safe to do. |
| void RemoveEnvironmentUsers(); |
| |
| bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } |
| void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } |
| |
| protected: |
| // If set, the machine code for this instruction is assumed to be generated by |
| // its users. Used by liveness analysis to compute use positions accordingly. |
| static constexpr size_t kFlagEmittedAtUseSite = 0u; |
| static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; |
| static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1; |
| static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; |
| |
| virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0; |
| virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0; |
| |
| uint32_t GetPackedFields() const { |
| return packed_fields_; |
| } |
| |
| template <size_t flag> |
| bool GetPackedFlag() const { |
| return (packed_fields_ & (1u << flag)) != 0u; |
| } |
| |
| template <size_t flag> |
| void SetPackedFlag(bool value = true) { |
| packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); |
| } |
| |
| template <typename BitFieldType> |
| typename BitFieldType::value_type GetPackedField() const { |
| return BitFieldType::Decode(packed_fields_); |
| } |
| |
| template <typename BitFieldType> |
| void SetPackedField(typename BitFieldType::value_type value) { |
| DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); |
| packed_fields_ = BitFieldType::Update(value, packed_fields_); |
| } |
| |
| private: |
| void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); } |
| |
| HInstruction* previous_; |
| HInstruction* next_; |
| HBasicBlock* block_; |
| const uint32_t dex_pc_; |
| |
| // An instruction gets an id when it is added to the graph. |
| // It reflects creation order. A negative id means the instruction |
| // has not been added to the graph. |
| int id_; |
| |
| // When doing liveness analysis, instructions that have uses get an SSA index. |
| int ssa_index_; |
| |
| // Packed fields. |
| uint32_t packed_fields_; |
| |
| // List of instructions that have this instruction as input. |
| HUseList<HInstruction*> uses_; |
| |
| // List of environments that contain this instruction. |
| HUseList<HEnvironment*> env_uses_; |
| |
| // The environment associated with this instruction. Not null if the instruction |
| // might jump out of the method. |
| HEnvironment* environment_; |
| |
| // Set by the code generator. |
| LocationSummary* locations_; |
| |
| // Set by the liveness analysis. |
| LiveInterval* live_interval_; |
| |
| // Set by the liveness analysis, this is the position in a linear |
| // order of blocks where this instruction's live interval start. |
| size_t lifetime_position_; |
| |
| SideEffects side_effects_; |
| |
| // The reference handle part of the reference type info. |
| // The IsExact() flag is stored in packed fields. |
| // TODO: for primitive types this should be marked as invalid. |
| ReferenceTypeInfo::TypeHandle reference_type_handle_; |
| |
| friend class GraphChecker; |
| friend class HBasicBlock; |
| friend class HEnvironment; |
| friend class HGraph; |
| friend class HInstructionList; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstruction); |
| }; |
| std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); |
| |
| class HInputIterator : public ValueObject { |
| public: |
| explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {} |
| |
| bool Done() const { return index_ == instruction_->InputCount(); } |
| HInstruction* Current() const { return instruction_->InputAt(index_); } |
| void Advance() { index_++; } |
| |
| private: |
| HInstruction* instruction_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInputIterator); |
| }; |
| |
| class HInstructionIterator : public ValueObject { |
| public: |
| explicit HInstructionIterator(const HInstructionList& instructions) |
| : instruction_(instructions.first_instruction_) { |
| next_ = Done() ? nullptr : instruction_->GetNext(); |
| } |
| |
| bool Done() const { return instruction_ == nullptr; } |
| HInstruction* Current() const { return instruction_; } |
| void Advance() { |
| instruction_ = next_; |
| next_ = Done() ? nullptr : instruction_->GetNext(); |
| } |
| |
| private: |
| HInstruction* instruction_; |
| HInstruction* next_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); |
| }; |
| |
| class HBackwardInstructionIterator : public ValueObject { |
| public: |
| explicit HBackwardInstructionIterator(const HInstructionList& instructions) |
| : instruction_(instructions.last_instruction_) { |
| next_ = Done() ? nullptr : instruction_->GetPrevious(); |
| } |
| |
| bool Done() const { return instruction_ == nullptr; } |
| HInstruction* Current() const { return instruction_; } |
| void Advance() { |
| instruction_ = next_; |
| next_ = Done() ? nullptr : instruction_->GetPrevious(); |
| } |
| |
| private: |
| HInstruction* instruction_; |
| HInstruction* next_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); |
| }; |
| |
| template<size_t N> |
| class HTemplateInstruction: public HInstruction { |
| public: |
| HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc) |
| : HInstruction(side_effects, dex_pc), inputs_() {} |
| virtual ~HTemplateInstruction() {} |
| |
| size_t InputCount() const OVERRIDE { return N; } |
| |
| protected: |
| const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { |
| DCHECK_LT(i, N); |
| return inputs_[i]; |
| } |
| |
| void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE { |
| DCHECK_LT(i, N); |
| inputs_[i] = input; |
| } |
| |
| private: |
| std::array<HUserRecord<HInstruction*>, N> inputs_; |
| |
| friend class SsaBuilder; |
| }; |
| |
| // HTemplateInstruction specialization for N=0. |
| template<> |
| class HTemplateInstruction<0>: public HInstruction { |
| public: |
| explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc) |
| : HInstruction(side_effects, dex_pc) {} |
| |
| virtual ~HTemplateInstruction() {} |
| |
| size_t InputCount() const OVERRIDE { return 0; } |
| |
| protected: |
| const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED, |
| const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE { |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| private: |
| friend class SsaBuilder; |
| }; |
| |
| template<intptr_t N> |
| class HExpression : public HTemplateInstruction<N> { |
| public: |
| HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc) |
| : HTemplateInstruction<N>(side_effects, dex_pc) { |
| this->template SetPackedField<TypeField>(type); |
| } |
| virtual ~HExpression() {} |
| |
| Primitive::Type GetType() const OVERRIDE { |
| return TypeField::Decode(this->GetPackedFields()); |
| } |
| |
| protected: |
| static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize; |
| static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; |
| }; |
| |
| // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow |
| // instruction that branches to the exit block. |
| class HReturnVoid : public HTemplateInstruction<0> { |
| public: |
| explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc) {} |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(ReturnVoid); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HReturnVoid); |
| }; |
| |
| // Represents dex's RETURN opcodes. A HReturn is a control flow |
| // instruction that branches to the exit block. |
| class HReturn : public HTemplateInstruction<1> { |
| public: |
| explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(Return); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HReturn); |
| }; |
| |
| // The exit instruction is the only instruction of the exit block. |
| // Instructions aborting the method (HThrow and HReturn) must branch to the |
| // exit block. |
| class HExit : public HTemplateInstruction<0> { |
| public: |
| explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(Exit); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HExit); |
| }; |
| |
| // Jumps from one block to another. |
| class HGoto : public HTemplateInstruction<0> { |
| public: |
| explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| HBasicBlock* GetSuccessor() const { |
| return GetBlock()->GetSingleSuccessor(); |
| } |
| |
| DECLARE_INSTRUCTION(Goto); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HGoto); |
| }; |
| |
| class HConstant : public HExpression<0> { |
| public: |
| explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc) |
| : HExpression(type, SideEffects::None(), dex_pc) {} |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| virtual bool IsMinusOne() const { return false; } |
| virtual bool IsZero() const { return false; } |
| virtual bool IsOne() const { return false; } |
| |
| virtual uint64_t GetValueAsUint64() const = 0; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Constant); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HConstant); |
| }; |
| |
| class HNullConstant : public HConstant { |
| public: |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| uint64_t GetValueAsUint64() const OVERRIDE { return 0; } |
| |
| size_t ComputeHashCode() const OVERRIDE { return 0; } |
| |
| DECLARE_INSTRUCTION(NullConstant); |
| |
| private: |
| explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {} |
| |
| friend class HGraph; |
| DISALLOW_COPY_AND_ASSIGN(HNullConstant); |
| }; |
| |
| // Constants of the type int. Those can be from Dex instructions, or |
| // synthesized (for example with the if-eqz instruction). |
| class HIntConstant : public HConstant { |
| public: |
| int32_t GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const OVERRIDE { |
| return static_cast<uint64_t>(static_cast<uint32_t>(value_)); |
| } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsIntConstant()) << other->DebugName(); |
| return other->AsIntConstant()->value_ == value_; |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return GetValue(); } |
| |
| bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } |
| bool IsZero() const OVERRIDE { return GetValue() == 0; } |
| bool IsOne() const OVERRIDE { return GetValue() == 1; } |
| |
| DECLARE_INSTRUCTION(IntConstant); |
| |
| private: |
| explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {} |
| explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {} |
| |
| const int32_t value_; |
| |
| friend class HGraph; |
| ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); |
| ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); |
| DISALLOW_COPY_AND_ASSIGN(HIntConstant); |
| }; |
| |
| class HLongConstant : public HConstant { |
| public: |
| int64_t GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const OVERRIDE { return value_; } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsLongConstant()) << other->DebugName(); |
| return other->AsLongConstant()->value_ == value_; |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } |
| bool IsZero() const OVERRIDE { return GetValue() == 0; } |
| bool IsOne() const OVERRIDE { return GetValue() == 1; } |
| |
| DECLARE_INSTRUCTION(LongConstant); |
| |
| private: |
| explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {} |
| |
| const int64_t value_; |
| |
| friend class HGraph; |
| DISALLOW_COPY_AND_ASSIGN(HLongConstant); |
| }; |
| |
| class HFloatConstant : public HConstant { |
| public: |
| float GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const OVERRIDE { |
| return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); |
| } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsFloatConstant()) << other->DebugName(); |
| return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const OVERRIDE { |
| return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); |
| } |
| bool IsZero() const OVERRIDE { |
| return value_ == 0.0f; |
| } |
| bool IsOne() const OVERRIDE { |
| return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); |
| } |
| bool IsNaN() const { |
| return std::isnan(value_); |
| } |
| |
| DECLARE_INSTRUCTION(FloatConstant); |
| |
| private: |
| explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {} |
| explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {} |
| |
| const float value_; |
| |
| // Only the SsaBuilder and HGraph can create floating-point constants. |
| friend class SsaBuilder; |
| friend class HGraph; |
| DISALLOW_COPY_AND_ASSIGN(HFloatConstant); |
| }; |
| |
| class HDoubleConstant : public HConstant { |
| public: |
| double GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsDoubleConstant()) << other->DebugName(); |
| return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const OVERRIDE { |
| return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); |
| } |
| bool IsZero() const OVERRIDE { |
| return value_ == 0.0; |
| } |
| bool IsOne() const OVERRIDE { |
| return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); |
| } |
| bool IsNaN() const { |
| return std::isnan(value_); |
| } |
| |
| DECLARE_INSTRUCTION(DoubleConstant); |
| |
| private: |
| explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {} |
| explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {} |
| |
| const double value_; |
| |
| // Only the SsaBuilder and HGraph can create floating-point constants. |
| friend class SsaBuilder; |
| friend class HGraph; |
| DISALLOW_COPY_AND_ASSIGN(HDoubleConstant); |
| }; |
| |
| // Conditional branch. A block ending with an HIf instruction must have |
| // two successors. |
| class HIf : public HTemplateInstruction<1> { |
| public: |
| explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, input); |
| } |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| HBasicBlock* IfTrueSuccessor() const { |
| return GetBlock()->GetSuccessors()[0]; |
| } |
| |
| HBasicBlock* IfFalseSuccessor() const { |
| return GetBlock()->GetSuccessors()[1]; |
| } |
| |
| DECLARE_INSTRUCTION(If); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HIf); |
| }; |
| |
| |
| // Abstract instruction which marks the beginning and/or end of a try block and |
| // links it to the respective exception handlers. Behaves the same as a Goto in |
| // non-exceptional control flow. |
| // Normal-flow successor is stored at index zero, exception handlers under |
| // higher indices in no particular order. |
| class HTryBoundary : public HTemplateInstruction<0> { |
| public: |
| enum class BoundaryKind { |
| kEntry, |
| kExit, |
| kLast = kExit |
| }; |
| |
| explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc) { |
| SetPackedField<BoundaryKindField>(kind); |
| } |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| // Returns the block's non-exceptional successor (index zero). |
| HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } |
| |
| ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { |
| return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); |
| } |
| |
| // Returns whether `handler` is among its exception handlers (non-zero index |
| // successors). |
| bool HasExceptionHandler(const HBasicBlock& handler) const { |
| DCHECK(handler.IsCatchBlock()); |
| return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); |
| } |
| |
| // If not present already, adds `handler` to its block's list of exception |
| // handlers. |
| void AddExceptionHandler(HBasicBlock* handler) { |
| if (!HasExceptionHandler(*handler)) { |
| GetBlock()->AddSuccessor(handler); |
| } |
| } |
| |
| BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } |
| bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } |
| |
| bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; |
| |
| DECLARE_INSTRUCTION(TryBoundary); |
| |
| private: |
| static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldBoundaryKindSize = |
| MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); |
| static constexpr size_t kNumberOfTryBoundaryPackedBits = |
| kFieldBoundaryKind + kFieldBoundaryKindSize; |
| static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HTryBoundary); |
| }; |
| |
| // Deoptimize to interpreter, upon checking a condition. |
| class HDeoptimize : public HTemplateInstruction<1> { |
| public: |
| // We set CanTriggerGC to prevent any intermediate address to be live |
| // at the point of the `HDeoptimize`. |
| HDeoptimize(HInstruction* cond, uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, cond); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(Deoptimize); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HDeoptimize); |
| }; |
| |
| // Represents the ArtMethod that was passed as a first argument to |
| // the method. It is used by instructions that depend on it, like |
| // instructions that work with the dex cache. |
| class HCurrentMethod : public HExpression<0> { |
| public: |
| explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc) |
| : HExpression(type, SideEffects::None(), dex_pc) {} |
| |
| DECLARE_INSTRUCTION(CurrentMethod); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HCurrentMethod); |
| }; |
| |
| // Fetches an ArtMethod from the virtual table or the interface method table |
| // of a class. |
| class HClassTableGet : public HExpression<1> { |
| public: |
| enum class TableKind { |
| kVTable, |
| kIMTable, |
| kLast = kIMTable |
| }; |
| HClassTableGet(HInstruction* cls, |
| Primitive::Type type, |
| TableKind kind, |
| size_t index, |
| uint32_t dex_pc) |
| : HExpression(type, SideEffects::None(), dex_pc), |
| index_(index) { |
| SetPackedField<TableKindField>(kind); |
| SetRawInputAt(0, cls); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| return other->AsClassTableGet()->GetIndex() == index_ && |
| other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); |
| } |
| |
| TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } |
| size_t GetIndex() const { return index_; } |
| |
| DECLARE_INSTRUCTION(ClassTableGet); |
| |
| private: |
| static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFieldTableKindSize = |
| MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); |
| static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; |
| static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; |
| |
| // The index of the ArtMethod in the table. |
| const size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HClassTableGet); |
| }; |
| |
| // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will |
| // have one successor for each entry in the switch table, and the final successor |
| // will be the block containing the next Dex opcode. |
| class HPackedSwitch : public HTemplateInstruction<1> { |
| public: |
| HPackedSwitch(int32_t start_value, |
| uint32_t num_entries, |
| HInstruction* input, |
| uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc), |
| start_value_(start_value), |
| num_entries_(num_entries) { |
| SetRawInputAt(0, input); |
| } |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| int32_t GetStartValue() const { return start_value_; } |
| |
| uint32_t GetNumEntries() const { return num_entries_; } |
| |
| HBasicBlock* GetDefaultBlock() const { |
| // Last entry is the default block. |
| return GetBlock()->GetSuccessors()[num_entries_]; |
| } |
| DECLARE_INSTRUCTION(PackedSwitch); |
| |
| private: |
| const int32_t start_value_; |
| const uint32_t num_entries_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HPackedSwitch); |
| }; |
| |
| class HUnaryOperation : public HExpression<1> { |
| public: |
| HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HExpression(result_type, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, input); |
| } |
| |
| HInstruction* GetInput() const { return InputAt(0); } |
| Primitive::Type GetResultType() const { return GetType(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| // Try to statically evaluate `this` and return a HConstant |
| // containing the result of this evaluation. If `this` cannot |
| // be evaluated as a constant, return null. |
| HConstant* TryStaticEvaluation() const; |
| |
| // Apply this operation to `x`. |
| virtual HConstant* Evaluate(HIntConstant* x) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x) const = 0; |
| virtual HConstant* Evaluate(HFloatConstant* x) const = 0; |
| virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HUnaryOperation); |
| }; |
| |
| class HBinaryOperation : public HExpression<2> { |
| public: |
| HBinaryOperation(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| SideEffects side_effects = SideEffects::None(), |
| uint32_t dex_pc = kNoDexPc) |
| : HExpression(result_type, side_effects, dex_pc) { |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| |
| HInstruction* GetLeft() const { return InputAt(0); } |
| HInstruction* GetRight() const { return InputAt(1); } |
| Primitive::Type GetResultType() const { return GetType(); } |
| |
| virtual bool IsCommutative() const { return false; } |
| |
| // Put constant on the right. |
| // Returns whether order is changed. |
| bool OrderInputsWithConstantOnTheRight() { |
| HInstruction* left = InputAt(0); |
| HInstruction* right = InputAt(1); |
| if (left->IsConstant() && !right->IsConstant()) { |
| ReplaceInput(right, 0); |
| ReplaceInput(left, 1); |
| return true; |
| } |
| return false; |
| } |
| |
| // Order inputs by instruction id, but favor constant on the right side. |
| // This helps GVN for commutative ops. |
| void OrderInputs() { |
| DCHECK(IsCommutative()); |
| HInstruction* left = InputAt(0); |
| HInstruction* right = InputAt(1); |
| if (left == right || (!left->IsConstant() && right->IsConstant())) { |
| return; |
| } |
| if (OrderInputsWithConstantOnTheRight()) { |
| return; |
| } |
| // Order according to instruction id. |
| if (left->GetId() > right->GetId()) { |
| ReplaceInput(right, 0); |
| ReplaceInput(left, 1); |
| } |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| // Try to statically evaluate `this` and return a HConstant |
| // containing the result of this evaluation. If `this` cannot |
| // be evaluated as a constant, return null. |
| HConstant* TryStaticEvaluation() const; |
| |
| // Apply this operation to `x` and `y`. |
| virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const { |
| LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; |
| UNREACHABLE(); |
| } |
| virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, |
| HIntConstant* y ATTRIBUTE_UNUSED) const { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; |
| UNREACHABLE(); |
| } |
| virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; |
| virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; |
| |
| // Returns an input that can legally be used as the right input and is |
| // constant, or null. |
| HConstant* GetConstantRight() const; |
| |
| // If `GetConstantRight()` returns one of the input, this returns the other |
| // one. Otherwise it returns null. |
| HInstruction* GetLeastConstantLeft() const; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HBinaryOperation); |
| }; |
| |
| // The comparison bias applies for floating point operations and indicates how NaN |
| // comparisons are treated: |
| enum class ComparisonBias { |
| kNoBias, // bias is not applicable (i.e. for long operation) |
| kGtBias, // return 1 for NaN comparisons |
| kLtBias, // return -1 for NaN comparisons |
| kLast = kLtBias |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); |
| |
| class HCondition : public HBinaryOperation { |
| public: |
| HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) { |
| SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); |
| } |
| |
| // For code generation purposes, returns whether this instruction is just before |
| // `instruction`, and disregard moves in between. |
| bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Condition); |
| |
| virtual IfCondition GetCondition() const = 0; |
| |
| virtual IfCondition GetOppositeCondition() const = 0; |
| |
| bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } |
| ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } |
| void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| return GetPackedFields() == other->AsCondition()->GetPackedFields(); |
| } |
| |
| bool IsFPConditionTrueIfNaN() const { |
| DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| IfCondition if_cond = GetCondition(); |
| return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE); |
| } |
| |
| bool IsFPConditionFalseIfNaN() const { |
| DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| IfCondition if_cond = GetCondition(); |
| return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ); |
| } |
| |
| protected: |
| // Needed if we merge a HCompare into a HCondition. |
| static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFieldComparisonBiasSize = |
| MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); |
| static constexpr size_t kNumberOfConditionPackedBits = |
| kFieldComparisonBias + kFieldComparisonBiasSize; |
| static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ComparisonBiasField = |
| BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; |
| |
| template <typename T> |
| int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } |
| |
| template <typename T> |
| int32_t CompareFP(T x, T y) const { |
| DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| DCHECK_NE(GetBias(), ComparisonBias::kNoBias); |
| // Handle the bias. |
| return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); |
| } |
| |
| // Return an integer constant containing the result of a condition evaluated at compile time. |
| HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { |
| return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HCondition); |
| }; |
| |
| // Instruction to check if two inputs are equal to each other. |
| class HEqual : public HCondition { |
| public: |
| HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| return MakeConstantCondition(true, GetDexPc()); |
| } |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HEqual instruction; evaluate it as |
| // `Compare(x, y) == 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), |
| GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Equal); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondEQ; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondNE; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x == y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HEqual); |
| }; |
| |
| class HNotEqual : public HCondition { |
| public: |
| HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| return MakeConstantCondition(false, GetDexPc()); |
| } |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HNotEqual instruction; evaluate it as |
| // `Compare(x, y) != 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(NotEqual); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondNE; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondEQ; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x != y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HNotEqual); |
| }; |
| |
| class HLessThan : public HCondition { |
| public: |
| HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HLessThan instruction; evaluate it as |
| // `Compare(x, y) < 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(LessThan); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondLT; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondGE; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x < y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HLessThan); |
| }; |
| |
| class HLessThanOrEqual : public HCondition { |
| public: |
| HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HLessThanOrEqual instruction; evaluate it as |
| // `Compare(x, y) <= 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(LessThanOrEqual); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondLE; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondGT; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x <= y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual); |
| }; |
| |
| class HGreaterThan : public HCondition { |
| public: |
| HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HGreaterThan instruction; evaluate it as |
| // `Compare(x, y) > 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(GreaterThan); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondGT; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondLE; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x > y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HGreaterThan); |
| }; |
| |
| class HGreaterThanOrEqual : public HCondition { |
| public: |
| HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HGreaterThanOrEqual instruction; evaluate it as |
| // `Compare(x, y) >= 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(GreaterThanOrEqual); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondGE; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondLT; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { return x >= y; } |
| |
| DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual); |
| }; |
| |
| class HBelow : public HCondition { |
| public: |
| HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Below); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondB; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondAE; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { |
| return MakeUnsigned(x) < MakeUnsigned(y); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(HBelow); |
| }; |
| |
| class HBelowOrEqual : public HCondition { |
| public: |
| HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(BelowOrEqual); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondBE; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondA; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { |
| return MakeUnsigned(x) <= MakeUnsigned(y); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual); |
| }; |
| |
| class HAbove : public HCondition { |
| public: |
| HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Above); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondA; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondBE; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { |
| return MakeUnsigned(x) > MakeUnsigned(y); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(HAbove); |
| }; |
| |
| class HAboveOrEqual : public HCondition { |
| public: |
| HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(first, second, dex_pc) {} |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(AboveOrEqual); |
| |
| IfCondition GetCondition() const OVERRIDE { |
| return kCondAE; |
| } |
| |
| IfCondition GetOppositeCondition() const OVERRIDE { |
| return kCondB; |
| } |
| |
| private: |
| template <typename T> bool Compute(T x, T y) const { |
| return MakeUnsigned(x) >= MakeUnsigned(y); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual); |
| }; |
| |
| // Instruction to check how two inputs compare to each other. |
| // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. |
| class HCompare : public HBinaryOperation { |
| public: |
| HCompare(Primitive::Type type, |
| HInstruction* first, |
| HInstruction* second, |
| ComparisonBias bias, |
| uint32_t dex_pc) |
| : HBinaryOperation(Primitive::kPrimInt, |
| first, |
| second, |
| SideEffectsForArchRuntimeCalls(type), |
| dex_pc) { |
| SetPackedField<ComparisonBiasField>(bias); |
| DCHECK_EQ(type, first->GetType()); |
| DCHECK_EQ(type, second->GetType()); |
| } |
| |
| template <typename T> |
| int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } |
| |
| template <typename T> |
| int32_t ComputeFP(T x, T y) const { |
| DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| DCHECK_NE(GetBias(), ComparisonBias::kNoBias); |
| // Handle the bias. |
| return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| // Note that there is no "cmp-int" Dex instruction so we shouldn't |
| // reach this code path when processing a freshly built HIR |
| // graph. However HCompare integer instructions can be synthesized |
| // by the instruction simplifier to implement IntegerCompare and |
| // IntegerSignum intrinsics, so we have to handle this case. |
| return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| return GetPackedFields() == other->AsCompare()->GetPackedFields(); |
| } |
| |
| ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } |
| |
| // Does this compare instruction have a "gt bias" (vs an "lt bias")? |
| // Only meaningful for floating-point comparisons. |
| bool IsGtBias() const { |
| DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| return GetBias() == ComparisonBias::kGtBias; |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) { |
| // MIPS64 uses a runtime call for FP comparisons. |
| return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(Compare); |
| |
| protected: |
| static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFieldComparisonBiasSize = |
| MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); |
| static constexpr size_t kNumberOfComparePackedBits = |
| kFieldComparisonBias + kFieldComparisonBiasSize; |
| static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ComparisonBiasField = |
| BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; |
| |
| // Return an integer constant containing the result of a comparison evaluated at compile time. |
| HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { |
| DCHECK(value == -1 || value == 0 || value == 1) << value; |
| return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HCompare); |
| }; |
| |
| // A local in the graph. Corresponds to a Dex register. |
| class HLocal : public HTemplateInstruction<0> { |
| public: |
| explicit HLocal(uint16_t reg_number) |
| : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {} |
| |
| DECLARE_INSTRUCTION(Local); |
| |
| uint16_t GetRegNumber() const { return reg_number_; } |
| |
| private: |
| // The Dex register number. |
| const uint16_t reg_number_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLocal); |
| }; |
| |
| // Load a given local. The local is an input of this instruction. |
| class HLoadLocal : public HExpression<1> { |
| public: |
| HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc) |
| : HExpression(type, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, local); |
| } |
| |
| HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); } |
| |
| DECLARE_INSTRUCTION(LoadLocal); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HLoadLocal); |
| }; |
| |
| // Store a value in a given local. This instruction has two inputs: the value |
| // and the local. |
| class HStoreLocal : public HTemplateInstruction<2> { |
| public: |
| HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, local); |
| SetRawInputAt(1, value); |
| } |
| |
| HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); } |
| |
| DECLARE_INSTRUCTION(StoreLocal); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HStoreLocal); |
| }; |
| |
| class HNewInstance : public HExpression<2> { |
| public: |
| HNewInstance(HInstruction* cls, |
| HCurrentMethod* current_method, |
| uint32_t dex_pc, |
| uint16_t type_index, |
| const DexFile& dex_file, |
| bool can_throw, |
| bool finalizable, |
| QuickEntrypointEnum entrypoint) |
| : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), |
| type_index_(type_index), |
| dex_file_(dex_file), |
| entrypoint_(entrypoint) { |
| SetPackedFlag<kFlagCanThrow>(can_throw); |
| SetPackedFlag<kFlagFinalizable>(finalizable); |
| SetRawInputAt(0, cls); |
| SetRawInputAt(1, current_method); |
| } |
| |
| uint16_t GetTypeIndex() const { return type_index_; } |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| // Calls runtime so needs an environment. |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| // It may throw when called on type that's not instantiable/accessible. |
| // It can throw OOME. |
| // TODO: distinguish between the two cases so we can for example allow allocation elimination. |
| bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>() || true; } |
| |
| bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } |
| |
| bool CanBeNull() const OVERRIDE { return false; } |
| |
| QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } |
| |
| void SetEntrypoint(QuickEntrypointEnum entrypoint) { |
| entrypoint_ = entrypoint; |
| } |
| |
| bool IsStringAlloc() const; |
| |
| DECLARE_INSTRUCTION(NewInstance); |
| |
| private: |
| static constexpr size_t kFlagCanThrow = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFlagFinalizable = kFlagCanThrow + 1; |
| static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; |
| static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const uint16_t type_index_; |
| const DexFile& dex_file_; |
| QuickEntrypointEnum entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HNewInstance); |
| }; |
| |
| enum class Intrinsics { |
| #define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \ |
| k ## Name, |
| #include "intrinsics_list.h" |
| kNone, |
| INTRINSICS_LIST(OPTIMIZING_INTRINSICS) |
| #undef INTRINSICS_LIST |
| #undef OPTIMIZING_INTRINSICS |
| }; |
| std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic); |
| |
| enum IntrinsicNeedsEnvironmentOrCache { |
| kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache. |
| kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache. |
| }; |
| |
| enum IntrinsicSideEffects { |
| kNoSideEffects, // Intrinsic does not have any heap memory side effects. |
| kReadSideEffects, // Intrinsic may read heap memory. |
| kWriteSideEffects, // Intrinsic may write heap memory. |
| kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. |
| }; |
| |
| enum IntrinsicExceptions { |
| kNoThrow, // Intrinsic does not throw any exceptions. |
| kCanThrow // Intrinsic may throw exceptions. |
| }; |
| |
| class HInvoke : public HInstruction { |
| public: |
| size_t InputCount() const OVERRIDE { return inputs_.size(); } |
| |
| bool NeedsEnvironment() const OVERRIDE; |
| |
| void SetArgumentAt(size_t index, HInstruction* argument) { |
| SetRawInputAt(index, argument); |
| } |
| |
| // Return the number of arguments. This number can be lower than |
| // the number of inputs returned by InputCount(), as some invoke |
| // instructions (e.g. HInvokeStaticOrDirect) can have non-argument |
| // inputs at the end of their list of inputs. |
| uint32_t GetNumberOfArguments() const { return number_of_arguments_; } |
| |
| Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); } |
| |
| uint32_t GetDexMethodIndex() const { return dex_method_index_; } |
| const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); } |
| |
| InvokeType GetOriginalInvokeType() const { |
| return GetPackedField<OriginalInvokeTypeField>(); |
| } |
| |
| Intrinsics GetIntrinsic() const { |
| return intrinsic_; |
| } |
| |
| void SetIntrinsic(Intrinsics intrinsic, |
| IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, |
| IntrinsicSideEffects side_effects, |
| IntrinsicExceptions exceptions); |
| |
| bool IsFromInlinedInvoke() const { |
| return GetEnvironment()->IsFromInlinedInvoke(); |
| } |
| |
| bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); } |
| |
| bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; |
| } |
| |
| uint32_t* GetIntrinsicOptimizations() { |
| return &intrinsic_optimizations_; |
| } |
| |
| const uint32_t* GetIntrinsicOptimizations() const { |
| return &intrinsic_optimizations_; |
| } |
| |
| bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Invoke); |
| |
| protected: |
| static constexpr size_t kFieldOriginalInvokeType = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldOriginalInvokeTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); |
| static constexpr size_t kFieldReturnType = |
| kFieldOriginalInvokeType + kFieldOriginalInvokeTypeSize; |
| static constexpr size_t kFieldReturnTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize; |
| static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1; |
| static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using OriginalInvokeTypeField = |
| BitField<InvokeType, kFieldOriginalInvokeType, kFieldOriginalInvokeTypeSize>; |
| using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>; |
| |
| HInvoke(ArenaAllocator* arena, |
| uint32_t number_of_arguments, |
| uint32_t number_of_other_inputs, |
| Primitive::Type return_type, |
| uint32_t dex_pc, |
| uint32_t dex_method_index, |
| InvokeType original_invoke_type) |
| : HInstruction( |
| SideEffects::AllExceptGCDependency(), dex_pc), // Assume write/read on all fields/arrays. |
| number_of_arguments_(number_of_arguments), |
| inputs_(number_of_arguments + number_of_other_inputs, |
| arena->Adapter(kArenaAllocInvokeInputs)), |
| dex_method_index_(dex_method_index), |
| intrinsic_(Intrinsics::kNone), |
| intrinsic_optimizations_(0) { |
| SetPackedField<ReturnTypeField>(return_type); |
| SetPackedField<OriginalInvokeTypeField>(original_invoke_type); |
| SetPackedFlag<kFlagCanThrow>(true); |
| } |
| |
| const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { |
| return inputs_[index]; |
| } |
| |
| void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { |
| inputs_[index] = input; |
| } |
| |
| void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } |
| |
| uint32_t number_of_arguments_; |
| ArenaVector<HUserRecord<HInstruction*>> inputs_; |
| const uint32_t dex_method_index_; |
| Intrinsics intrinsic_; |
| |
| // A magic word holding optimizations for intrinsics. See intrinsics.h. |
| uint32_t intrinsic_optimizations_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HInvoke); |
| }; |
| |
| class HInvokeUnresolved : public HInvoke { |
| public: |
| HInvokeUnresolved(ArenaAllocator* arena, |
| uint32_t number_of_arguments, |
| Primitive::Type return_type, |
| uint32_t dex_pc, |
| uint32_t dex_method_index, |
| InvokeType invoke_type) |
| : HInvoke(arena, |
| number_of_arguments, |
| 0u /* number_of_other_inputs */, |
| return_type, |
| dex_pc, |
| dex_method_index, |
| invoke_type) { |
| } |
| |
| DECLARE_INSTRUCTION(InvokeUnresolved); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved); |
| }; |
| |
| class HInvokeStaticOrDirect : public HInvoke { |
| public: |
| // Requirements of this method call regarding the class |
| // initialization (clinit) check of its declaring class. |
| enum class ClinitCheckRequirement { |
| kNone, // Class already initialized. |
| kExplicit, // Static call having explicit clinit check as last input. |
| kImplicit, // Static call implicitly requiring a clinit check. |
| kLast = kImplicit |
| }; |
| |
| // Determines how to load the target ArtMethod*. |
| enum class MethodLoadKind { |
| // Use a String init ArtMethod* loaded from Thread entrypoints. |
| kStringInit, |
| |
| // Use the method's own ArtMethod* loaded by the register allocator. |
| kRecursive, |
| |
| // Use ArtMethod* at a known address, embed the direct address in the code. |
| // Used for app->boot calls with non-relocatable image and for JIT-compiled calls. |
| kDirectAddress, |
| |
| // Use ArtMethod* at an address that will be known at link time, embed the direct |
| // address in the code. If the image is relocatable, emit .patch_oat entry. |
| // Used for app->boot calls with relocatable image and boot->boot calls, whether |
| // the image relocatable or not. |
| kDirectAddressWithFixup, |
| |
| // Load from resolved methods array in the dex cache using a PC-relative load. |
| // Used when we need to use the dex cache, for example for invoke-static that |
| // may cause class initialization (the entry may point to a resolution method), |
| // and we know that we can access the dex cache arrays using a PC-relative load. |
| kDexCachePcRelative, |
| |
| // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*. |
| // Used for JIT when we need to use the dex cache. This is also the last-resort-kind |
| // used when other kinds are unavailable (say, dex cache arrays are not PC-relative) |
| // or unimplemented or impractical (i.e. slow) on a particular architecture. |
| kDexCacheViaMethod, |
| }; |
| |
| // Determines the location of the code pointer. |
| enum class CodePtrLocation { |
| // Recursive call, use local PC-relative call instruction. |
| kCallSelf, |
| |
| // Use PC-relative call instruction patched at link time. |
| // Used for calls within an oat file, boot->boot or app->app. |
| kCallPCRelative, |
| |
| // Call to a known target address, embed the direct address in code. |
| // Used for app->boot call with non-relocatable image and for JIT-compiled calls. |
| kCallDirect, |
| |
| // Call to a target address that will be known at link time, embed the direct |
| // address in code. If the image is relocatable, emit .patch_oat entry. |
| // Used for app->boot calls with relocatable image and boot->boot calls, whether |
| // the image relocatable or not. |
| kCallDirectWithFixup, |
| |
| // Use code pointer from the ArtMethod*. |
| // Used when we don't know the target code. This is also the last-resort-kind used when |
| // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. |
| kCallArtMethod, |
| }; |
| |
| struct DispatchInfo { |
| MethodLoadKind method_load_kind; |
| CodePtrLocation code_ptr_location; |
| // The method load data holds |
| // - thread entrypoint offset for kStringInit method if this is a string init invoke. |
| // Note that there are multiple string init methods, each having its own offset. |
| // - the method address for kDirectAddress |
| // - the dex cache arrays offset for kDexCachePcRel. |
| uint64_t method_load_data; |
| uint64_t direct_code_ptr; |
| }; |
| |
| HInvokeStaticOrDirect(ArenaAllocator* arena, |
| uint32_t number_of_arguments, |
| Primitive::Type return_type, |
| uint32_t dex_pc, |
| uint32_t method_index, |
| MethodReference target_method, |
| DispatchInfo dispatch_info, |
| InvokeType original_invoke_type, |
| InvokeType optimized_invoke_type, |
| ClinitCheckRequirement clinit_check_requirement) |
| : HInvoke(arena, |
| number_of_arguments, |
| // There is potentially one extra argument for the HCurrentMethod node, and |
| // potentially one other if the clinit check is explicit, and potentially |
| // one other if the method is a string factory. |
| (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + |
| (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) + |
| (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u), |
| return_type, |
| dex_pc, |
| method_index, |
| original_invoke_type), |
| target_method_(target_method), |
| dispatch_info_(dispatch_info) { |
| SetPackedField<OptimizedInvokeTypeField>(optimized_invoke_type); |
| SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); |
| } |
| |
| void SetDispatchInfo(const DispatchInfo& dispatch_info) { |
| bool had_current_method_input = HasCurrentMethodInput(); |
| bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); |
| |
| // Using the current method is the default and once we find a better |
| // method load kind, we should not go back to using the current method. |
| DCHECK(had_current_method_input || !needs_current_method_input); |
| |
| if (had_current_method_input && !needs_current_method_input) { |
| DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); |
| RemoveInputAt(GetSpecialInputIndex()); |
| } |
| dispatch_info_ = dispatch_info; |
| } |
| |
| void AddSpecialInput(HInstruction* input) { |
| // We allow only one special input. |
| DCHECK(!IsStringInit() && !HasCurrentMethodInput()); |
| DCHECK(InputCount() == GetSpecialInputIndex() || |
| (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); |
| InsertInputAt(GetSpecialInputIndex(), input); |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { |
| // We access the method via the dex cache so we can't do an implicit null check. |
| // TODO: for intrinsics we can generate implicit null checks. |
| return false; |
| } |
| |
| bool CanBeNull() const OVERRIDE { |
| return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit(); |
| } |
| |
| // Get the index of the special input, if any. |
| // |
| // If the invoke HasCurrentMethodInput(), the "special input" is the current |
| // method pointer; otherwise there may be one platform-specific special input, |
| // such as PC-relative addressing base. |
| uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } |
| bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } |
| |
| InvokeType GetOptimizedInvokeType() const { |
| return GetPackedField<OptimizedInvokeTypeField>(); |
| } |
| |
| void SetOptimizedInvokeType(InvokeType invoke_type) { |
| SetPackedField<OptimizedInvokeTypeField>(invoke_type); |
| } |
| |
| MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } |
| CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } |
| bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } |
| bool NeedsDexCacheOfDeclaringClass() const OVERRIDE; |
| bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } |
| bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; } |
| bool HasPcRelativeDexCache() const { |
| return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; |
| } |
| bool HasCurrentMethodInput() const { |
| // This function can be called only after the invoke has been fully initialized by the builder. |
| if (NeedsCurrentMethodInput(GetMethodLoadKind())) { |
| DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); |
| return true; |
| } else { |
| DCHECK(InputCount() == GetSpecialInputIndex() || |
| !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); |
| return false; |
| } |
| } |
| bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; } |
| MethodReference GetTargetMethod() const { return target_method_; } |
| void SetTargetMethod(MethodReference method) { target_method_ = method; } |
| |
| int32_t GetStringInitOffset() const { |
| DCHECK(IsStringInit()); |
| return dispatch_info_.method_load_data; |
| } |
| |
| uint64_t GetMethodAddress() const { |
| DCHECK(HasMethodAddress()); |
| return dispatch_info_.method_load_data; |
| } |
| |
| uint32_t GetDexCacheArrayOffset() const { |
| DCHECK(HasPcRelativeDexCache()); |
| return dispatch_info_.method_load_data; |
| } |
| |
| uint64_t GetDirectCodePtr() const { |
| DCHECK(HasDirectCodePtr()); |
| return dispatch_info_.direct_code_ptr; |
| } |
| |
| ClinitCheckRequirement GetClinitCheckRequirement() const { |
| return GetPackedField<ClinitCheckRequirementField>(); |
| } |
| |
| // Is this instruction a call to a static method? |
| bool IsStatic() const { |
| return GetOriginalInvokeType() == kStatic; |
| } |
| |
| // Remove the HClinitCheck or the replacement HLoadClass (set as last input by |
| // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) |
| // instruction; only relevant for static calls with explicit clinit check. |
| void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { |
| DCHECK(IsStaticWithExplicitClinitCheck()); |
| size_t last_input_index = InputCount() - 1; |
| HInstruction* last_input = InputAt(last_input_index); |
| DCHECK(last_input != nullptr); |
| DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); |
| RemoveAsUserOfInput(last_input_index); |
| inputs_.pop_back(); |
| SetPackedField<ClinitCheckRequirementField>(new_requirement); |
| DCHECK(!IsStaticWithExplicitClinitCheck()); |
| } |
| |
| HInstruction* GetAndRemoveThisArgumentOfStringInit() { |
| DCHECK(IsStringInit()); |
| size_t index = InputCount() - 1; |
| HInstruction* input = InputAt(index); |
| RemoveAsUserOfInput(index); |
| inputs_.pop_back(); |
| return input; |
| } |
| |
| // Is this a call to a static method whose declaring class has an |
| // explicit initialization check in the graph? |
| bool IsStaticWithExplicitClinitCheck() const { |
| return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); |
| } |
| |
| // Is this a call to a static method whose declaring class has an |
| // implicit intialization check requirement? |
| bool IsStaticWithImplicitClinitCheck() const { |
| return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); |
| } |
| |
| // Does this method load kind need the current method as an input? |
| static bool NeedsCurrentMethodInput(MethodLoadKind kind) { |
| return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod; |
| } |
| |
| DECLARE_INSTRUCTION(InvokeStaticOrDirect); |
| |
| protected: |
| const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { |
| const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i); |
| if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) { |
| HInstruction* input = input_record.GetInstruction(); |
| // `input` is the last input of a static invoke marked as having |
| // an explicit clinit check. It must either be: |
| // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or |
| // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. |
| DCHECK(input != nullptr); |
| DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName(); |
| } |
| return input_record; |
| } |
| |
| void InsertInputAt(size_t index, HInstruction* input); |
| void RemoveInputAt(size_t index); |
| |
| private: |
| static constexpr size_t kFieldOptimizedInvokeType = kNumberOfInvokePackedBits; |
| static constexpr size_t kFieldOptimizedInvokeTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); |
| static constexpr size_t kFieldClinitCheckRequirement = |
| kFieldOptimizedInvokeType + kFieldOptimizedInvokeTypeSize; |
| static constexpr size_t kFieldClinitCheckRequirementSize = |
| MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); |
| static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = |
| kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; |
| static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using OptimizedInvokeTypeField = |
| BitField<InvokeType, kFieldOptimizedInvokeType, kFieldOptimizedInvokeTypeSize>; |
| using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, |
| kFieldClinitCheckRequirement, |
| kFieldClinitCheckRequirementSize>; |
| |
| // The target method may refer to different dex file or method index than the original |
| // invoke. This happens for sharpened calls and for calls where a method was redeclared |
| // in derived class to increase visibility. |
| MethodReference target_method_; |
| DispatchInfo dispatch_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect); |
| }; |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); |
| |
| class HInvokeVirtual : public HInvoke { |
| public: |
| HInvokeVirtual(ArenaAllocator* arena, |
| uint32_t number_of_arguments, |
| Primitive::Type return_type, |
| uint32_t dex_pc, |
| uint32_t dex_method_index, |
| uint32_t vtable_index) |
| : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual), |
| vtable_index_(vtable_index) {} |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { |
| // TODO: Add implicit null checks in intrinsics. |
| return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); |
| } |
| |
| uint32_t GetVTableIndex() const { return vtable_index_; } |
| |
| DECLARE_INSTRUCTION(InvokeVirtual); |
| |
| private: |
| const uint32_t vtable_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual); |
| }; |
| |
| class HInvokeInterface : public HInvoke { |
| public: |
| HInvokeInterface(ArenaAllocator* arena, |
| uint32_t number_of_arguments, |
| Primitive::Type return_type, |
| uint32_t dex_pc, |
| uint32_t dex_method_index, |
| uint32_t imt_index) |
| : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface), |
| imt_index_(imt_index) {} |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { |
| // TODO: Add implicit null checks in intrinsics. |
| return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); |
| } |
| |
| uint32_t GetImtIndex() const { return imt_index_; } |
| uint32_t GetDexMethodIndex() const { return dex_method_index_; } |
| |
| DECLARE_INSTRUCTION(InvokeInterface); |
| |
| private: |
| const uint32_t imt_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInvokeInterface); |
| }; |
| |
| class HNeg : public HUnaryOperation { |
| public: |
| HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(result_type, input, dex_pc) {} |
| |
| template <typename T> T Compute(T x) const { return -x; } |
| |
| HConstant* Evaluate(HIntConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Neg); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HNeg); |
| }; |
| |
| class HNewArray : public HExpression<2> { |
| public: |
| HNewArray(HInstruction* length, |
| HCurrentMethod* current_method, |
| uint32_t dex_pc, |
| uint16_t type_index, |
| const DexFile& dex_file, |
| QuickEntrypointEnum entrypoint) |
| : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), |
| type_index_(type_index), |
| dex_file_(dex_file), |
| entrypoint_(entrypoint) { |
| SetRawInputAt(0, length); |
| SetRawInputAt(1, current_method); |
| } |
| |
| uint16_t GetTypeIndex() const { return type_index_; } |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| // Calls runtime so needs an environment. |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| // May throw NegativeArraySizeException, OutOfMemoryError, etc. |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| bool CanBeNull() const OVERRIDE { return false; } |
| |
| QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } |
| |
| DECLARE_INSTRUCTION(NewArray); |
| |
| private: |
| const uint16_t type_index_; |
| const DexFile& dex_file_; |
| const QuickEntrypointEnum entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HNewArray); |
| }; |
| |
| class HAdd : public HBinaryOperation { |
| public: |
| HAdd(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| template <typename T> T Compute(T x, T y) const { return x + y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Add); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HAdd); |
| }; |
| |
| class HSub : public HBinaryOperation { |
| public: |
| HSub(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| template <typename T> T Compute(T x, T y) const { return x - y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Sub); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HSub); |
| }; |
| |
| class HMul : public HBinaryOperation { |
| public: |
| HMul(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| template <typename T> T Compute(T x, T y) const { return x * y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Mul); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HMul); |
| }; |
| |
| class HDiv : public HBinaryOperation { |
| public: |
| HDiv(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} |
| |
| template <typename T> |
| T ComputeIntegral(T x, T y) const { |
| DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); |
| // Our graph structure ensures we never have 0 for `y` during |
| // constant folding. |
| DCHECK_NE(y, 0); |
| // Special case -1 to avoid getting a SIGFPE on x86(_64). |
| return (y == -1) ? -x : x / y; |
| } |
| |
| template <typename T> |
| T ComputeFP(T x, T y) const { |
| DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); |
| return x / y; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| // The generated code can use a runtime call. |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| DECLARE_INSTRUCTION(Div); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HDiv); |
| }; |
| |
| class HRem : public HBinaryOperation { |
| public: |
| HRem(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} |
| |
| template <typename T> |
| T ComputeIntegral(T x, T y) const { |
| DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); |
| // Our graph structure ensures we never have 0 for `y` during |
| // constant folding. |
| DCHECK_NE(y, 0); |
| // Special case -1 to avoid getting a SIGFPE on x86(_64). |
| return (y == -1) ? 0 : x % y; |
| } |
| |
| template <typename T> |
| T ComputeFP(T x, T y) const { |
| DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); |
| return std::fmod(x, y); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| DECLARE_INSTRUCTION(Rem); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HRem); |
| }; |
| |
| class HDivZeroCheck : public HExpression<1> { |
| public: |
| // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` |
| // constructor. |
| HDivZeroCheck(HInstruction* value, uint32_t dex_pc) |
| : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(DivZeroCheck); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck); |
| }; |
| |
| class HShl : public HBinaryOperation { |
| public: |
| HShl(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| template <typename T, typename U, typename V> |
| T Compute(T x, U y, V max_shift_value) const { |
| static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, |
| "V is not the unsigned integer type corresponding to T"); |
| return x << (y & max_shift_value); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Shl); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HShl); |
| }; |
| |
| class HShr : public HBinaryOperation { |
| public: |
| HShr(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| template <typename T, typename U, typename V> |
| T Compute(T x, U y, V max_shift_value) const { |
| static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, |
| "V is not the unsigned integer type corresponding to T"); |
| return x >> (y & max_shift_value); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Shr); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HShr); |
| }; |
| |
| class HUShr : public HBinaryOperation { |
| public: |
| HUShr(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| template <typename T, typename U, typename V> |
| T Compute(T x, U y, V max_shift_value) const { |
| static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, |
| "V is not the unsigned integer type corresponding to T"); |
| V ux = static_cast<V>(x); |
| return static_cast<T>(ux >> (y & max_shift_value)); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(UShr); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HUShr); |
| }; |
| |
| class HAnd : public HBinaryOperation { |
| public: |
| HAnd(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| template <typename T> T Compute(T x, T y) const { return x & y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(And); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HAnd); |
| }; |
| |
| class HOr : public HBinaryOperation { |
| public: |
| HOr(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| template <typename T> T Compute(T x, T y) const { return x | y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Or); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HOr); |
| }; |
| |
| class HXor : public HBinaryOperation { |
| public: |
| HXor(Primitive::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const OVERRIDE { return true; } |
| |
| template <typename T> T Compute(T x, T y) const { return x ^ y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Xor); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HXor); |
| }; |
| |
| class HRor : public HBinaryOperation { |
| public: |
| HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance) |
| : HBinaryOperation(result_type, value, distance) {} |
| |
| template <typename T, typename U, typename V> |
| T Compute(T x, U y, V max_shift_value) const { |
| static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, |
| "V is not the unsigned integer type corresponding to T"); |
| V ux = static_cast<V>(x); |
| if ((y & max_shift_value) == 0) { |
| return static_cast<T>(ux); |
| } else { |
| const V reg_bits = sizeof(T) * 8; |
| return static_cast<T>(ux >> (y & max_shift_value)) | |
| (x << (reg_bits - (y & max_shift_value))); |
| } |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Ror); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HRor); |
| }; |
| |
| // The value of a parameter in this method. Its location depends on |
| // the calling convention. |
| class HParameterValue : public HExpression<0> { |
| public: |
| HParameterValue(const DexFile& dex_file, |
| uint16_t type_index, |
| uint8_t index, |
| Primitive::Type parameter_type, |
| bool is_this = false) |
| : HExpression(parameter_type, SideEffects::None(), kNoDexPc), |
| dex_file_(dex_file), |
| type_index_(type_index), |
| index_(index) { |
| SetPackedFlag<kFlagIsThis>(is_this); |
| SetPackedFlag<kFlagCanBeNull>(!is_this); |
| } |
| |
| const DexFile& GetDexFile() const { return dex_file_; } |
| uint16_t GetTypeIndex() const { return type_index_; } |
| uint8_t GetIndex() const { return index_; } |
| bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } |
| |
| bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } |
| void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } |
| |
| DECLARE_INSTRUCTION(ParameterValue); |
| |
| private: |
| // Whether or not the parameter value corresponds to 'this' argument. |
| static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; |
| static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const DexFile& dex_file_; |
| const uint16_t type_index_; |
| // The index of this parameter in the parameters list. Must be less |
| // than HGraph::number_of_in_vregs_. |
| const uint8_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HParameterValue); |
| }; |
| |
| class HNot : public HUnaryOperation { |
| public: |
| HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(result_type, input, dex_pc) {} |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| template <typename T> T Compute(T x) const { return ~x; } |
| |
| HConstant* Evaluate(HIntConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Not); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HNot); |
| }; |
| |
| class HBooleanNot : public HUnaryOperation { |
| public: |
| explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {} |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| template <typename T> bool Compute(T x) const { |
| DCHECK(IsUint<1>(x)) << x; |
| return !x; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x) const OVERRIDE { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for long values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(BooleanNot); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HBooleanNot); |
| }; |
| |
| class HTypeConversion : public HExpression<1> { |
| public: |
| // Instantiate a type conversion of `input` to `result_type`. |
| HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc) |
| : HExpression(result_type, |
| SideEffectsForArchRuntimeCalls(input->GetType(), result_type), |
| dex_pc) { |
| SetRawInputAt(0, input); |
| DCHECK_NE(input->GetType(), result_type); |
| } |
| |
| HInstruction* GetInput() const { return InputAt(0); } |
| Primitive::Type GetInputType() const { return GetInput()->GetType(); } |
| Primitive::Type GetResultType() const { return GetType(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } |
| |
| // Try to statically evaluate the conversion and return a HConstant |
| // containing the result. If the input cannot be converted, return nullptr. |
| HConstant* TryStaticEvaluation() const; |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type, |
| Primitive::Type result_type) { |
| // Some architectures may not require the 'GC' side effects, but at this point |
| // in the compilation process we do not know what architecture we will |
| // generate code for, so we must be conservative. |
| if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type)) |
| || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) { |
| return SideEffects::CanTriggerGC(); |
| } |
| return SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(TypeConversion); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HTypeConversion); |
| }; |
| |
| static constexpr uint32_t kNoRegNumber = -1; |
| |
| class HPhi : public HInstruction { |
| public: |
| HPhi(ArenaAllocator* arena, |
| uint32_t reg_number, |
| size_t number_of_inputs, |
| Primitive::Type type, |
| uint32_t dex_pc = kNoDexPc) |
| : HInstruction(SideEffects::None(), dex_pc), |
| inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)), |
| reg_number_(reg_number) { |
| SetPackedField<TypeField>(ToPhiType(type)); |
| DCHECK_NE(GetType(), Primitive::kPrimVoid); |
| // Phis are constructed live and marked dead if conflicting or unused. |
| // Individual steps of SsaBuilder should assume that if a phi has been |
| // marked dead, it can be ignored and will be removed by SsaPhiElimination. |
| SetPackedFlag<kFlagIsLive>(true); |
| SetPackedFlag<kFlagCanBeNull>(true); |
| } |
| |
| // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. |
| static Primitive::Type ToPhiType(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| return Primitive::kPrimInt; |
| default: |
| return type; |
| } |
| } |
| |
| bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } |
| |
| size_t InputCount() const OVERRIDE { return inputs_.size(); } |
| |
| void AddInput(HInstruction* input); |
| void RemoveInputAt(size_t index); |
| |
| Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); } |
| void SetType(Primitive::Type new_type) { |
| // Make sure that only valid type changes occur. The following are allowed: |
| // (1) int -> float/ref (primitive type propagation), |
| // (2) long -> double (primitive type propagation). |
| DCHECK(GetType() == new_type || |
| (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) || |
| (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) || |
| (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } |
| void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } |
| |
| uint32_t GetRegNumber() const { return reg_number_; } |
| |
| void SetDead() { SetPackedFlag<kFlagIsLive>(false); } |
| void SetLive() { SetPackedFlag<kFlagIsLive>(true); } |
| bool IsDead() const { return !IsLive(); } |
| bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } |
| |
| bool IsVRegEquivalentOf(HInstruction* other) const { |
| return other != nullptr |
| && other->IsPhi() |
| && other->AsPhi()->GetBlock() == GetBlock() |
| && other->AsPhi()->GetRegNumber() == GetRegNumber(); |
| } |
| |
| // Returns the next equivalent phi (starting from the current one) or null if there is none. |
| // An equivalent phi is a phi having the same dex register and type. |
| // It assumes that phis with the same dex register are adjacent. |
| HPhi* GetNextEquivalentPhiWithSameType() { |
| HInstruction* next = GetNext(); |
| while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { |
| if (next->GetType() == GetType()) { |
| return next->AsPhi(); |
| } |
| next = next->GetNext(); |
| } |
| return nullptr; |
| } |
| |
| DECLARE_INSTRUCTION(Phi); |
| |
| protected: |
| const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { |
| return inputs_[index]; |
| } |
| |
| void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { |
| inputs_[index] = input; |
| } |
| |
| private: |
| static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize; |
| static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; |
| static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; |
| |
| ArenaVector<HUserRecord<HInstruction*> > inputs_; |
| const uint32_t reg_number_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HPhi); |
| }; |
| |
| class HNullCheck : public HExpression<1> { |
| public: |
| // `HNullCheck` can trigger GC, as it may call the `NullPointerException` |
| // constructor. |
| HNullCheck(HInstruction* value, uint32_t dex_pc) |
| : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| bool CanBeNull() const OVERRIDE { return false; } |
| |
| |
| DECLARE_INSTRUCTION(NullCheck); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HNullCheck); |
| }; |
| |
| class FieldInfo : public ValueObject { |
| public: |
| FieldInfo(MemberOffset field_offset, |
| Primitive::Type field_type, |
| bool is_volatile, |
| uint32_t index, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache) |
| : field_offset_(field_offset), |
| field_type_(field_type), |
| is_volatile_(is_volatile), |
| index_(index), |
| declaring_class_def_index_(declaring_class_def_index), |
| dex_file_(dex_file), |
| dex_cache_(dex_cache) {} |
| |
| MemberOffset GetFieldOffset() const { return field_offset_; } |
| Primitive::Type GetFieldType() const { return field_type_; } |
| uint32_t GetFieldIndex() const { return index_; } |
| uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} |
| const DexFile& GetDexFile() const { return dex_file_; } |
| bool IsVolatile() const { return is_volatile_; } |
| Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; } |
| |
| private: |
| const MemberOffset field_offset_; |
| const Primitive::Type field_type_; |
| const bool is_volatile_; |
| const uint32_t index_; |
| const uint16_t declaring_class_def_index_; |
| const DexFile& dex_file_; |
| const Handle<mirror::DexCache> dex_cache_; |
| }; |
| |
| class HInstanceFieldGet : public HExpression<1> { |
| public: |
| HInstanceFieldGet(HInstruction* value, |
| Primitive::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| uint32_t dex_pc) |
| : HExpression(field_type, |
| SideEffects::FieldReadOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file, |
| dex_cache) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); |
| return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { |
| return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { |
| return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); |
| } |
| |
| const FieldInfo& GetFieldInfo() const { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| DECLARE_INSTRUCTION(InstanceFieldGet); |
| |
| private: |
| const FieldInfo field_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet); |
| }; |
| |
| class HInstanceFieldSet : public HTemplateInstruction<2> { |
| public: |
| HInstanceFieldSet(HInstruction* object, |
| HInstruction* value, |
| Primitive::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file, |
| dex_cache) { |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetRawInputAt(0, object); |
| SetRawInputAt(1, value); |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { |
| return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; |
| } |
| |
| const FieldInfo& GetFieldInfo() const { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| HInstruction* GetValue() const { return InputAt(1); } |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } |
| |
| DECLARE_INSTRUCTION(InstanceFieldSet); |
| |
| private: |
| static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; |
| static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const FieldInfo field_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet); |
| }; |
| |
| class HArrayGet : public HExpression<2> { |
| public: |
| HArrayGet(HInstruction* array, |
| HInstruction* index, |
| Primitive::Type type, |
| uint32_t dex_pc, |
| SideEffects additional_side_effects = SideEffects::None()) |
| : HExpression(type, |
| SideEffects::ArrayReadOfType(type).Union(additional_side_effects), |
| dex_pc) { |
| SetRawInputAt(0, array); |
| SetRawInputAt(1, index); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { |
| // TODO: We can be smarter here. |
| // Currently, the array access is always preceded by an ArrayLength or a NullCheck |
| // which generates the implicit null check. There are cases when these can be removed |
| // to produce better code. If we ever add optimizations to do so we should allow an |
| // implicit check here (as long as the address falls in the first page). |
| return false; |
| } |
| |
| bool IsEquivalentOf(HArrayGet* other) const { |
| bool result = (GetDexPc() == other->GetDexPc()); |
| if (kIsDebugBuild && result) { |
| DCHECK_EQ(GetBlock(), other->GetBlock()); |
| DCHECK_EQ(GetArray(), other->GetArray()); |
| DCHECK_EQ(GetIndex(), other->GetIndex()); |
| if (Primitive::IsIntOrLongType(GetType())) { |
| DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType(); |
| } else { |
| DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); |
| DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType(); |
| } |
| } |
| return result; |
| } |
| |
| HInstruction* GetArray() const { return InputAt(0); } |
| HInstruction* GetIndex() const { return InputAt(1); } |
| |
| DECLARE_INSTRUCTION(ArrayGet); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HArrayGet); |
| }; |
| |
| class HArraySet : public HTemplateInstruction<3> { |
| public: |
| HArraySet(HInstruction* array, |
| HInstruction* index, |
| HInstruction* value, |
| Primitive::Type expected_component_type, |
| uint32_t dex_pc, |
| SideEffects additional_side_effects = SideEffects::None()) |
| : HTemplateInstruction( |
| SideEffects::ArrayWriteOfType(expected_component_type).Union( |
| SideEffectsForArchRuntimeCalls(value->GetType())).Union( |
| additional_side_effects), |
| dex_pc) { |
| SetPackedField<ExpectedComponentTypeField>(expected_component_type); |
| SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot); |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); |
| SetRawInputAt(0, array); |
| SetRawInputAt(1, index); |
| SetRawInputAt(2, value); |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| // We call a runtime method to throw ArrayStoreException. |
| return NeedsTypeCheck(); |
| } |
| |
| // Can throw ArrayStoreException. |
| bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { |
| // TODO: Same as for ArrayGet. |
| return false; |
| } |
| |
| void ClearNeedsTypeCheck() { |
| SetPackedFlag<kFlagNeedsTypeCheck>(false); |
| } |
| |
| void ClearValueCanBeNull() { |
| SetPackedFlag<kFlagValueCanBeNull>(false); |
| } |
| |
| void SetStaticTypeOfArrayIsObjectArray() { |
| SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); |
| } |
| |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } |
| bool StaticTypeOfArrayIsObjectArray() const { |
| return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); |
| } |
| |
| HInstruction* GetArray() const { return InputAt(0); } |
| HInstruction* GetIndex() const { return InputAt(1); } |
| HInstruction* GetValue() const { return InputAt(2); } |
| |
| Primitive::Type GetComponentType() const { |
| // The Dex format does not type floating point index operations. Since the |
| // `expected_component_type_` is set during building and can therefore not |
| // be correct, we also check what is the value type. If it is a floating |
| // point type, we must use that type. |
| Primitive::Type value_type = GetValue()->GetType(); |
| return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble)) |
| ? value_type |
| : GetRawExpectedComponentType(); |
| } |
| |
| Primitive::Type GetRawExpectedComponentType() const { |
| return GetPackedField<ExpectedComponentTypeField>(); |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) { |
| return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(ArraySet); |
| |
| private: |
| static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldExpectedComponentTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kFlagNeedsTypeCheck = |
| kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; |
| static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; |
| // Cached information for the reference_type_info_ so that codegen |
| // does not need to inspect the static type. |
| static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; |
| static constexpr size_t kNumberOfArraySetPackedBits = |
| kFlagStaticTypeOfArrayIsObjectArray + 1; |
| static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ExpectedComponentTypeField = |
| BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HArraySet); |
| }; |
| |
| class HArrayLength : public HExpression<1> { |
| public: |
| HArrayLength(HInstruction* array, uint32_t dex_pc) |
| : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) { |
| // Note that arrays do not change length, so the instruction does not |
| // depend on any write. |
| SetRawInputAt(0, array); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { |
| return obj == InputAt(0); |
| } |
| |
| DECLARE_INSTRUCTION(ArrayLength); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HArrayLength); |
| }; |
| |
| class HBoundsCheck : public HExpression<2> { |
| public: |
| // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` |
| // constructor. |
| HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc) |
| : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) { |
| DCHECK(index->GetType() == Primitive::kPrimInt); |
| SetRawInputAt(0, index); |
| SetRawInputAt(1, length); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| HInstruction* GetIndex() const { return InputAt(0); } |
| |
| DECLARE_INSTRUCTION(BoundsCheck); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HBoundsCheck); |
| }; |
| |
| class HSuspendCheck : public HTemplateInstruction<0> { |
| public: |
| explicit HSuspendCheck(uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {} |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| return true; |
| } |
| |
| void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } |
| SlowPathCode* GetSlowPath() const { return slow_path_; } |
| |
| DECLARE_INSTRUCTION(SuspendCheck); |
| |
| private: |
| // Only used for code generation, in order to share the same slow path between back edges |
| // of a same loop. |
| SlowPathCode* slow_path_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HSuspendCheck); |
| }; |
| |
| // Pseudo-instruction which provides the native debugger with mapping information. |
| // It ensures that we can generate line number and local variables at this point. |
| class HNativeDebugInfo : public HTemplateInstruction<0> { |
| public: |
| explicit HNativeDebugInfo(uint32_t dex_pc) |
| : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {} |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| return true; |
| } |
| |
| DECLARE_INSTRUCTION(NativeDebugInfo); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo); |
| }; |
| |
| /** |
| * Instruction to load a Class object. |
| */ |
| class HLoadClass : public HExpression<1> { |
| public: |
| HLoadClass(HCurrentMethod* current_method, |
| uint16_t type_index, |
| const DexFile& dex_file, |
| bool is_referrers_class, |
| uint32_t dex_pc, |
| bool needs_access_check, |
| bool is_in_dex_cache) |
| : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), |
| type_index_(type_index), |
| dex_file_(dex_file), |
| loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) { |
| // Referrers class should not need access check. We never inline unverified |
| // methods so we can't possibly end up in this situation. |
| DCHECK(!is_referrers_class || !needs_access_check); |
| |
| SetPackedFlag<kFlagIsReferrersClass>(is_referrers_class); |
| SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); |
| SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache); |
| SetPackedFlag<kFlagGenerateClInitCheck>(false); |
| SetRawInputAt(0, current_method); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| // Note that we don't need to test for generate_clinit_check_. |
| // Whether or not we need to generate the clinit check is processed in |
| // prepare_for_register_allocator based on existing HInvokes and HClinitChecks. |
| return other->AsLoadClass()->type_index_ == type_index_ && |
| other->AsLoadClass()->GetPackedFields() == GetPackedFields(); |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return type_index_; } |
| |
| uint16_t GetTypeIndex() const { return type_index_; } |
| bool CanBeNull() const OVERRIDE { return false; } |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| return CanCallRuntime(); |
| } |
| |
| void SetMustGenerateClinitCheck(bool generate_clinit_check) { |
| // The entrypoint the code generator is going to call does not do |
| // clinit of the class. |
| DCHECK(!NeedsAccessCheck()); |
| SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); |
| } |
| |
| bool CanCallRuntime() const { |
| return MustGenerateClinitCheck() || |
| (!IsReferrersClass() && !IsInDexCache()) || |
| NeedsAccessCheck(); |
| } |
| |
| |
| bool CanThrow() const OVERRIDE { |
| return CanCallRuntime(); |
| } |
| |
| ReferenceTypeInfo GetLoadedClassRTI() { |
| return loaded_class_rti_; |
| } |
| |
| void SetLoadedClassRTI(ReferenceTypeInfo rti) { |
| // Make sure we only set exact types (the loaded class should never be merged). |
| DCHECK(rti.IsExact()); |
| loaded_class_rti_ = rti; |
| } |
| |
| const DexFile& GetDexFile() { return dex_file_; } |
| |
| bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| bool IsReferrersClass() const { return GetPackedFlag<kFlagIsReferrersClass>(); } |
| bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } |
| bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } |
| bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } |
| |
| DECLARE_INSTRUCTION(LoadClass); |
| |
| private: |
| static constexpr size_t kFlagIsReferrersClass = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFlagNeedsAccessCheck = kFlagIsReferrersClass + 1; |
| static constexpr size_t kFlagIsInDexCache = kFlagNeedsAccessCheck + 1; |
| // Whether this instruction must generate the initialization check. |
| // Used for code generation. |
| static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInDexCache + 1; |
| static constexpr size_t kNumberOfLoadClassPackedBits = kFlagGenerateClInitCheck + 1; |
| static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); |
| |
| const uint16_t type_index_; |
| const DexFile& dex_file_; |
| |
| ReferenceTypeInfo loaded_class_rti_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoadClass); |
| }; |
| |
| class HLoadString : public HExpression<1> { |
| public: |
| HLoadString(HCurrentMethod* current_method, |
| uint32_t string_index, |
| uint32_t dex_pc, |
| bool is_in_dex_cache) |
| : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), |
| string_index_(string_index) { |
| SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache); |
| SetRawInputAt(0, current_method); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| return other->AsLoadString()->string_index_ == string_index_; |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { return string_index_; } |
| |
| uint32_t GetStringIndex() const { return string_index_; } |
| |
| // Will call the runtime if the string is not already in the dex cache. |
| bool NeedsEnvironment() const OVERRIDE { return !IsInDexCache(); } |
| |
| bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; } |
| bool CanBeNull() const OVERRIDE { return false; } |
| bool CanThrow() const OVERRIDE { return !IsInDexCache(); } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } |
| |
| DECLARE_INSTRUCTION(LoadString); |
| |
| private: |
| static constexpr size_t kFlagIsInDexCache = kNumberOfExpressionPackedBits; |
| static constexpr size_t kNumberOfLoadStringPackedBits = kFlagIsInDexCache + 1; |
| static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| |
| const uint32_t string_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoadString); |
| }; |
| |
| /** |
| * Performs an initialization check on its Class object input. |
| */ |
| class HClinitCheck : public HExpression<1> { |
| public: |
| HClinitCheck(HLoadClass* constant, uint32_t dex_pc) |
| : HExpression( |
| Primitive::kPrimNot, |
| SideEffects::AllChanges(), // Assume write/read on all fields/arrays. |
| dex_pc) { |
| SetRawInputAt(0, constant); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| // May call runtime to initialize the class. |
| return true; |
| } |
| |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); } |
| |
| DECLARE_INSTRUCTION(ClinitCheck); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HClinitCheck); |
| }; |
| |
| class HStaticFieldGet : public HExpression<1> { |
| public: |
| HStaticFieldGet(HInstruction* cls, |
| Primitive::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| uint32_t dex_pc) |
| : HExpression(field_type, |
| SideEffects::FieldReadOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file, |
| dex_cache) { |
| SetRawInputAt(0, cls); |
| } |
| |
| |
| bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } |
| |
| bool InstructionDataEquals(HInstruction* other) const OVERRIDE { |
| HStaticFieldGet* other_get = other->AsStaticFieldGet(); |
| return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); |
| } |
| |
| size_t ComputeHashCode() const OVERRIDE { |
| return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); |
| } |
| |
| const FieldInfo& GetFieldInfo() const { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| DECLARE_INSTRUCTION(StaticFieldGet); |
| |
| private: |
| const FieldInfo field_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet); |
| }; |
| |
| class HStaticFieldSet : public HTemplateInstruction<2> { |
| public: |
| HStaticFieldSet(HInstruction* cls, |
| HInstruction* value, |
| Primitive::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache, |
| uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file, |
| dex_cache) { |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetRawInputAt(0, cls); |
| SetRawInputAt(1, value); |
| } |
| |
| const FieldInfo& GetFieldInfo() const { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| HInstruction* GetValue() const { return InputAt(1); } |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } |
| |
| DECLARE_INSTRUCTION(StaticFieldSet); |
| |
| private: |
| static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; |
| static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const FieldInfo field_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet); |
| }; |
| |
| class HUnresolvedInstanceFieldGet : public HExpression<1> { |
| public: |
| HUnresolvedInstanceFieldGet(HInstruction* obj, |
| Primitive::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| SetRawInputAt(0, obj); |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| Primitive::Type GetFieldType() const { return GetType(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); |
| |
| private: |
| const uint32_t field_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet); |
| }; |
| |
| class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> { |
| public: |
| HUnresolvedInstanceFieldSet(HInstruction* obj, |
| HInstruction* value, |
| Primitive::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| SetPackedField<FieldTypeField>(field_type); |
| DCHECK_EQ(field_type, value->GetType()); |
| SetRawInputAt(0, obj); |
| SetRawInputAt(1, value); |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); |
| |
| private: |
| static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = |
| kFieldFieldType + kFieldFieldTypeSize; |
| static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; |
| |
| const uint32_t field_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet); |
| }; |
| |
| class HUnresolvedStaticFieldGet : public HExpression<0> { |
| public: |
| HUnresolvedStaticFieldGet(Primitive::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| Primitive::Type GetFieldType() const { return GetType(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); |
| |
| private: |
| const uint32_t field_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet); |
| }; |
| |
| class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> { |
| public: |
| HUnresolvedStaticFieldSet(HInstruction* value, |
| Primitive::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| SetPackedField<FieldTypeField>(field_type); |
| DCHECK_EQ(field_type, value->GetType()); |
| SetRawInputAt(0, value); |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); |
| |
| private: |
| static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = |
| kFieldFieldType + kFieldFieldTypeSize; |
| static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; |
| |
| const uint32_t field_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet); |
| }; |
| |
| // Implement the move-exception DEX instruction. |
| class HLoadException : public HExpression<0> { |
| public: |
| explicit HLoadException(uint32_t dex_pc = kNoDexPc) |
| : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {} |
| |
| bool CanBeNull() const OVERRIDE { return false; } |
| |
| DECLARE_INSTRUCTION(LoadException); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HLoadException); |
| }; |
| |
| // Implicit part of move-exception which clears thread-local exception storage. |
| // Must not be removed because the runtime expects the TLS to get cleared. |
| class HClearException : public HTemplateInstruction<0> { |
| public: |
| explicit HClearException(uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {} |
| |
| DECLARE_INSTRUCTION(ClearException); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HClearException); |
| }; |
| |
| class HThrow : public HTemplateInstruction<1> { |
| public: |
| HThrow(HInstruction* exception, uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, exception); |
| } |
| |
| bool IsControlFlow() const OVERRIDE { return true; } |
| |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| |
| DECLARE_INSTRUCTION(Throw); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HThrow); |
| }; |
| |
| /** |
| * Implementation strategies for the code generator of a HInstanceOf |
| * or `HCheckCast`. |
| */ |
| enum class TypeCheckKind { |
| kUnresolvedCheck, // Check against an unresolved type. |
| kExactCheck, // Can do a single class compare. |
| kClassHierarchyCheck, // Can just walk the super class chain. |
| kAbstractClassCheck, // Can just walk the super class chain, starting one up. |
| kInterfaceCheck, // No optimization yet when checking against an interface. |
| kArrayObjectCheck, // Can just check if the array is not primitive. |
| kArrayCheck, // No optimization yet when checking against a generic array. |
| kLast = kArrayCheck |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); |
| |
| class HInstanceOf : public HExpression<2> { |
| public: |
| HInstanceOf(HInstruction* object, |
| HLoadClass* constant, |
| TypeCheckKind check_kind, |
| uint32_t dex_pc) |
| : HExpression(Primitive::kPrimBoolean, |
| SideEffectsForArchRuntimeCalls(check_kind), |
| dex_pc) { |
| SetPackedField<TypeCheckKindField>(check_kind); |
| SetPackedFlag<kFlagMustDoNullCheck>(true); |
| SetRawInputAt(0, object); |
| SetRawInputAt(1, constant); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| return CanCallRuntime(GetTypeCheckKind()); |
| } |
| |
| // Used only in code generation. |
| bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } |
| void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } |
| TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } |
| bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } |
| |
| static bool CanCallRuntime(TypeCheckKind check_kind) { |
| // Mips currently does runtime calls for any other checks. |
| return check_kind != TypeCheckKind::kExactCheck; |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { |
| return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(InstanceOf); |
| |
| private: |
| static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFieldTypeCheckKindSize = |
| MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); |
| static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; |
| static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1; |
| static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstanceOf); |
| }; |
| |
| class HBoundType : public HExpression<1> { |
| public: |
| HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc), |
| upper_bound_(ReferenceTypeInfo::CreateInvalid()) { |
| SetPackedFlag<kFlagUpperCanBeNull>(true); |
| SetPackedFlag<kFlagCanBeNull>(true); |
| DCHECK_EQ(input->GetType(), Primitive::kPrimNot); |
| SetRawInputAt(0, input); |
| } |
| |
| // {Get,Set}Upper* should only be used in reference type propagation. |
| const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } |
| bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } |
| void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); |
| |
| void SetCanBeNull(bool can_be_null) { |
| DCHECK(GetUpperCanBeNull() || !can_be_null); |
| SetPackedFlag<kFlagCanBeNull>(can_be_null); |
| } |
| |
| bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } |
| |
| DECLARE_INSTRUCTION(BoundType); |
| |
| private: |
| // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this |
| // is false then CanBeNull() cannot be true). |
| static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits; |
| static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; |
| static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| |
| // Encodes the most upper class that this instruction can have. In other words |
| // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). |
| // It is used to bound the type in cases like: |
| // if (x instanceof ClassX) { |
| // // uper_bound_ will be ClassX |
| // } |
| ReferenceTypeInfo upper_bound_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBoundType); |
| }; |
| |
| class HCheckCast : public HTemplateInstruction<2> { |
| public: |
| HCheckCast(HInstruction* object, |
| HLoadClass* constant, |
| TypeCheckKind check_kind, |
| uint32_t dex_pc) |
| : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { |
| SetPackedField<TypeCheckKindField>(check_kind); |
| SetPackedFlag<kFlagMustDoNullCheck>(true); |
| SetRawInputAt(0, object); |
| SetRawInputAt(1, constant); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const OVERRIDE { |
| // Instruction may throw a CheckCastError. |
| return true; |
| } |
| |
| bool CanThrow() const OVERRIDE { return true; } |
| |
| bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } |
| void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } |
| TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } |
| bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } |
| |
| DECLARE_INSTRUCTION(CheckCast); |
| |
| private: |
| static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTypeCheckKindSize = |
| MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); |
| static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; |
| static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1; |
| static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HCheckCast); |
| }; |
| |
| class HMemoryBarrier : public HTemplateInstruction<0> { |
| public: |
| explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction( |
| SideEffects::AllWritesAndReads(), dex_pc) { // Assume write/read on all fields/arrays. |
| SetPackedField<BarrierKindField>(barrier_kind); |
| } |
| |
| MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } |
| |
| DECLARE_INSTRUCTION(MemoryBarrier); |
| |
| private: |
| static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldBarrierKindSize = |
| MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); |
| static constexpr size_t kNumberOfMemoryBarrierPackedBits = |
| kFieldBarrierKind + kFieldBarrierKindSize; |
| static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; |
| |
| DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier); |
| }; |
| |
| class HMonitorOperation : public HTemplateInstruction<1> { |
| public: |
| enum class OperationKind { |
| kEnter, |
| kExit, |
| kLast = kExit |
| }; |
| |
| HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) |
| : HTemplateInstruction( |
| SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. |
| dex_pc) { |
| SetPackedField<OperationKindField>(kind); |
| SetRawInputAt(0, object); |
| } |
| |
| // Instruction may go into runtime, so we need an environment. |
| bool NeedsEnvironment() const OVERRIDE { return true; } |
| |
| bool CanThrow() const OVERRIDE { |
| // Verifier guarantees that monitor-exit cannot throw. |
| // This is important because it allows the HGraphBuilder to remove |
| // a dead throw-catch loop generated for `synchronized` blocks/methods. |
| return IsEnter(); |
| } |
| |
| OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } |
| bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } |
| |
| DECLARE_INSTRUCTION(MonitorOperation); |
| |
| private: |
| static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldOperationKindSize = |
| MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); |
| static constexpr size_t kNumberOfMonitorOperationPackedBits = |
| kFieldOperationKind + kFieldOperationKindSize; |
| static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HMonitorOperation); |
| }; |
| |
| class HSelect : public HExpression<3> { |
| public: |
| HSelect(HInstruction* condition, |
| HInstruction* true_value, |
| HInstruction* false_value, |
| uint32_t dex_pc) |
| : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { |
| DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); |
| |
| // First input must be `true_value` or `false_value` to allow codegens to |
| // use the SameAsFirstInput allocation policy. We make it `false_value`, so |
| // that architectures which implement HSelect as a conditional move also |
| // will not need to invert the condition. |
| SetRawInputAt(0, false_value); |
| SetRawInputAt(1, true_value); |
| SetRawInputAt(2, condition); |
| } |
| |
| HInstruction* GetFalseValue() const { return InputAt(0); } |
| HInstruction* GetTrueValue() const { return InputAt(1); } |
| HInstruction* GetCondition() const { return InputAt(2); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } |
| |
| bool CanBeNull() const OVERRIDE { |
| return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); |
| } |
| |
| DECLARE_INSTRUCTION(Select); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HSelect); |
| }; |
| |
| class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { |
| public: |
| MoveOperands(Location source, |
| Location destination, |
| Primitive::Type type, |
| HInstruction* instruction) |
| : source_(source), destination_(destination), type_(type), instruction_(instruction) {} |
| |
| Location GetSource() const { return source_; } |
| Location GetDestination() const { return destination_; } |
| |
| void SetSource(Location value) { source_ = value; } |
| void SetDestination(Location value) { destination_ = value; } |
| |
| // The parallel move resolver marks moves as "in-progress" by clearing the |
| // destination (but not the source). |
| Location MarkPending() { |
| DCHECK(!IsPending()); |
| Location dest = destination_; |
| destination_ = Location::NoLocation(); |
| return dest; |
| } |
| |
| void ClearPending(Location dest) { |
| DCHECK(IsPending()); |
| destination_ = dest; |
| } |
| |
| bool IsPending() const { |
| DCHECK(source_.IsValid() || destination_.IsInvalid()); |
| return destination_.IsInvalid() && source_.IsValid(); |
| } |
| |
| // True if this blocks a move from the given location. |
| bool Blocks(Location loc) const { |
| return !IsEliminated() && source_.OverlapsWith(loc); |
| } |
| |
| // A move is redundant if it's been eliminated, if its source and |
| // destination are the same, or if its destination is unneeded. |
| bool IsRedundant() const { |
| return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); |
| } |
| |
| // We clear both operands to indicate move that's been eliminated. |
| void Eliminate() { |
| source_ = destination_ = Location::NoLocation(); |
| } |
| |
| bool IsEliminated() const { |
| DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); |
| return source_.IsInvalid(); |
| } |
| |
| Primitive::Type GetType() const { return type_; } |
| |
| bool Is64BitMove() const { |
| return Primitive::Is64BitType(type_); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| |
| private: |
| Location source_; |
| Location destination_; |
| // The type this move is for. |
| Primitive::Type type_; |
| // The instruction this move is assocatied with. Null when this move is |
| // for moving an input in the expected locations of user (including a phi user). |
| // This is only used in debug mode, to ensure we do not connect interval siblings |
| // in the same parallel move. |
| HInstruction* instruction_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); |
| |
| static constexpr size_t kDefaultNumberOfMoves = 4; |
| |
| class HParallelMove : public HTemplateInstruction<0> { |
| public: |
| explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc) |
| : HTemplateInstruction(SideEffects::None(), dex_pc), |
| moves_(arena->Adapter(kArenaAllocMoveOperands)) { |
| moves_.reserve(kDefaultNumberOfMoves); |
| } |
| |
| void AddMove(Location source, |
| Location destination, |
| Primitive::Type type, |
| HInstruction* instruction) { |
| DCHECK(source.IsValid()); |
| DCHECK(destination.IsValid()); |
| if (kIsDebugBuild) { |
| if (instruction != nullptr) { |
| for (const MoveOperands& move : moves_) { |
| if (move.GetInstruction() == instruction) { |
| // Special case the situation where the move is for the spill slot |
| // of the instruction. |
| if ((GetPrevious() == instruction) |
| || ((GetPrevious() == nullptr) |
| && instruction->IsPhi() |
| && instruction->GetBlock() == GetBlock())) { |
| DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) |
| << "Doing parallel moves for the same instruction."; |
| } else { |
| DCHECK(false) << "Doing parallel moves for the same instruction."; |
| } |
| } |
| } |
| } |
| for (const MoveOperands& move : moves_) { |
| DCHECK(!destination.OverlapsWith(move.GetDestination())) |
| << "Overlapped destination for two moves in a parallel move: " |
| << move.GetSource() << " ==> " << move.GetDestination() << " and " |
| << source << " ==> " << destination; |
| } |
| } |
| moves_.emplace_back(source, destination, type, instruction); |
| } |
| |
| MoveOperands* MoveOperandsAt(size_t index) { |
| return &moves_[index]; |
| } |
| |
| size_t NumMoves() const { return moves_.size(); } |
| |
| DECLARE_INSTRUCTION(ParallelMove); |
| |
| private: |
| ArenaVector<MoveOperands> moves_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HParallelMove); |
| }; |
| |
| } // namespace art |
| |
| #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) |
| #include "nodes_shared.h" |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm |
| #include "nodes_arm.h" |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| #include "nodes_arm64.h" |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| #include "nodes_x86.h" |
| #endif |
| |
| namespace art { |
| |
| class HGraphVisitor : public ValueObject { |
| public: |
| explicit HGraphVisitor(HGraph* graph) : graph_(graph) {} |
| virtual ~HGraphVisitor() {} |
| |
| virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} |
| virtual void VisitBasicBlock(HBasicBlock* block); |
| |
| // Visit the graph following basic block insertion order. |
| void VisitInsertionOrder(); |
| |
| // Visit the graph following dominator tree reverse post-order. |
| void VisitReversePostOrder(); |
| |
| HGraph* GetGraph() const { return graph_; } |
| |
| // Visit functions for instruction classes. |
| #define DECLARE_VISIT_INSTRUCTION(name, super) \ |
| virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } |
| |
| FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) |
| |
| #undef DECLARE_VISIT_INSTRUCTION |
| |
| private: |
| HGraph* const graph_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); |
| }; |
| |
| class HGraphDelegateVisitor : public HGraphVisitor { |
| public: |
| explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {} |
| virtual ~HGraphDelegateVisitor() {} |
| |
| // Visit functions that delegate to to super class. |
| #define DECLARE_VISIT_INSTRUCTION(name, super) \ |
| void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); } |
| |
| FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) |
| |
| #undef DECLARE_VISIT_INSTRUCTION |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); |
| }; |
| |
| class HInsertionOrderIterator : public ValueObject { |
| public: |
| explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {} |
| |
| bool Done() const { return index_ == graph_.GetBlocks().size(); } |
| HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; } |
| void Advance() { ++index_; } |
| |
| private: |
| const HGraph& graph_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator); |
| }; |
| |
| class HReversePostOrderIterator : public ValueObject { |
| public: |
| explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) { |
| // Check that reverse post order of the graph has been built. |
| DCHECK(!graph.GetReversePostOrder().empty()); |
| } |
| |
| bool Done() const { return index_ == graph_.GetReversePostOrder().size(); } |
| HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; } |
| void Advance() { ++index_; } |
| |
| private: |
| const HGraph& graph_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator); |
| }; |
| |
| class HPostOrderIterator : public ValueObject { |
| public: |
| explicit HPostOrderIterator(const HGraph& graph) |
| : graph_(graph), index_(graph_.GetReversePostOrder().size()) { |
| // Check that reverse post order of the graph has been built. |
| DCHECK(!graph.GetReversePostOrder().empty()); |
| } |
| |
| bool Done() const { return index_ == 0; } |
| HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; } |
| void Advance() { --index_; } |
| |
| private: |
| const HGraph& graph_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator); |
| }; |
| |
| class HLinearPostOrderIterator : public ValueObject { |
| public: |
| explicit HLinearPostOrderIterator(const HGraph& graph) |
| : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {} |
| |
| bool Done() const { return index_ == 0; } |
| |
| HBasicBlock* Current() const { return order_[index_ - 1u]; } |
| |
| void Advance() { |
| --index_; |
| DCHECK_GE(index_, 0U); |
| } |
| |
| private: |
| const ArenaVector<HBasicBlock*>& order_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator); |
| }; |
| |
| class HLinearOrderIterator : public ValueObject { |
| public: |
| explicit HLinearOrderIterator(const HGraph& graph) |
| : order_(graph.GetLinearOrder()), index_(0) {} |
| |
| bool Done() const { return index_ == order_.size(); } |
| HBasicBlock* Current() const { return order_[index_]; } |
| void Advance() { ++index_; } |
| |
| private: |
| const ArenaVector<HBasicBlock*>& order_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator); |
| }; |
| |
| // Iterator over the blocks that art part of the loop. Includes blocks part |
| // of an inner loop. The order in which the blocks are iterated is on their |
| // block id. |
| class HBlocksInLoopIterator : public ValueObject { |
| public: |
| explicit HBlocksInLoopIterator(const HLoopInformation& info) |
| : blocks_in_loop_(info.GetBlocks()), |
| blocks_(info.GetHeader()->GetGraph()->GetBlocks()), |
| index_(0) { |
| if (!blocks_in_loop_.IsBitSet(index_)) { |
| Advance(); |
| } |
| } |
| |
| bool Done() const { return index_ == blocks_.size(); } |
| HBasicBlock* Current() const { return blocks_[index_]; } |
| void Advance() { |
| ++index_; |
| for (size_t e = blocks_.size(); index_ < e; ++index_) { |
| if (blocks_in_loop_.IsBitSet(index_)) { |
| break; |
| } |
| } |
| } |
| |
| private: |
| const BitVector& blocks_in_loop_; |
| const ArenaVector<HBasicBlock*>& blocks_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); |
| }; |
| |
| // Iterator over the blocks that art part of the loop. Includes blocks part |
| // of an inner loop. The order in which the blocks are iterated is reverse |
| // post order. |
| class HBlocksInLoopReversePostOrderIterator : public ValueObject { |
| public: |
| explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) |
| : blocks_in_loop_(info.GetBlocks()), |
| blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), |
| index_(0) { |
| if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { |
| Advance(); |
| } |
| } |
| |
| bool Done() const { return index_ == blocks_.size(); } |
| HBasicBlock* Current() const { return blocks_[index_]; } |
| void Advance() { |
| ++index_; |
| for (size_t e = blocks_.size(); index_ < e; ++index_) { |
| if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { |
| break; |
| } |
| } |
| } |
| |
| private: |
| const BitVector& blocks_in_loop_; |
| const ArenaVector<HBasicBlock*>& blocks_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); |
| }; |
| |
| inline int64_t Int64FromConstant(HConstant* constant) { |
| if (constant->IsIntConstant()) { |
| return constant->AsIntConstant()->GetValue(); |
| } else if (constant->IsLongConstant()) { |
| return constant->AsLongConstant()->GetValue(); |
| } else { |
| DCHECK(constant->IsNullConstant()) << constant->DebugName(); |
| return 0; |
| } |
| } |
| |
| inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { |
| // For the purposes of the compiler, the dex files must actually be the same object |
| // if we want to safely treat them as the same. This is especially important for JIT |
| // as custom class loaders can open the same underlying file (or memory) multiple |
| // times and provide different class resolution but no two class loaders should ever |
| // use the same DexFile object - doing so is an unsupported hack that can lead to |
| // all sorts of weird failures. |
| return &lhs == &rhs; |
| } |
| |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| inline bool HInstruction::Is##type() const { return GetKind() == k##type; } \ |
| inline const H##type* HInstruction::As##type() const { \ |
| return Is##type() ? down_cast<const H##type*>(this) : nullptr; \ |
| } \ |
| inline H##type* HInstruction::As##type() { \ |
| return Is##type() ? static_cast<H##type*>(this) : nullptr; \ |
| } |
| |
| FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| |
| class SwitchTable : public ValueObject { |
| public: |
| SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse) |
| : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) { |
| int32_t table_offset = instruction.VRegB_31t(); |
| const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset; |
| if (sparse) { |
| CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature)); |
| } else { |
| CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature)); |
| } |
| num_entries_ = table[1]; |
| values_ = reinterpret_cast<const int32_t*>(&table[2]); |
| } |
| |
| uint16_t GetNumEntries() const { |
| return num_entries_; |
| } |
| |
| void CheckIndex(size_t index) const { |
| if (sparse_) { |
| // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order. |
| DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_)); |
| } else { |
| // In a packed table, we have the starting key and num_entries_ values. |
| DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_)); |
| } |
| } |
| |
| int32_t GetEntryAt(size_t index) const { |
| CheckIndex(index); |
| return values_[index]; |
| } |
| |
| uint32_t GetDexPcForIndex(size_t index) const { |
| CheckIndex(index); |
| return dex_pc_ + |
| (reinterpret_cast<const int16_t*>(values_ + index) - |
| reinterpret_cast<const int16_t*>(&instruction_)); |
| } |
| |
| // Index of the first value in the table. |
| size_t GetFirstValueIndex() const { |
| if (sparse_) { |
| // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order. |
| return num_entries_; |
| } else { |
| // In a packed table, we have the starting key and num_entries_ values. |
| return 1; |
| } |
| } |
| |
| private: |
| const Instruction& instruction_; |
| const uint32_t dex_pc_; |
| |
| // Whether this is a sparse-switch table (or a packed-switch one). |
| const bool sparse_; |
| |
| // This can't be const as it needs to be computed off of the given instruction, and complicated |
| // expressions in the initializer list seemed very ugly. |
| uint16_t num_entries_; |
| |
| const int32_t* values_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SwitchTable); |
| }; |
| |
| // Create space in `blocks` for adding `number_of_new_blocks` entries |
| // starting at location `at`. Blocks after `at` are moved accordingly. |
| inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, |
| size_t number_of_new_blocks, |
| size_t after) { |
| DCHECK_LT(after, blocks->size()); |
| size_t old_size = blocks->size(); |
| size_t new_size = old_size + number_of_new_blocks; |
| blocks->resize(new_size); |
| std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); |
| } |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_NODES_H_ |