blob: 6b690aab40a5c657532988648d4198edd60f1093 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Test is in compiler, as it uses compiler related code.
#include "verifier/verifier_deps.h"
#include "class_linker.h"
#include "compiler/common_compiler_test.h"
#include "compiler/driver/compiler_options.h"
#include "compiler/driver/compiler_driver.h"
#include "compiler_callbacks.h"
#include "dex_file.h"
#include "handle_scope-inl.h"
#include "verifier/method_verifier-inl.h"
#include "mirror/class_loader.h"
#include "runtime.h"
#include "thread.h"
#include "scoped_thread_state_change-inl.h"
namespace art {
namespace verifier {
class VerifierDepsCompilerCallbacks : public CompilerCallbacks {
public:
explicit VerifierDepsCompilerCallbacks()
: CompilerCallbacks(CompilerCallbacks::CallbackMode::kCompileApp),
deps_(nullptr) {}
void MethodVerified(verifier::MethodVerifier* verifier ATTRIBUTE_UNUSED) OVERRIDE {}
void ClassRejected(ClassReference ref ATTRIBUTE_UNUSED) OVERRIDE {}
bool IsRelocationPossible() OVERRIDE { return false; }
verifier::VerifierDeps* GetVerifierDeps() const OVERRIDE { return deps_; }
void SetVerifierDeps(verifier::VerifierDeps* deps) { deps_ = deps; }
private:
verifier::VerifierDeps* deps_;
};
class VerifierDepsTest : public CommonCompilerTest {
public:
void SetUpRuntimeOptions(RuntimeOptions* options) {
CommonCompilerTest::SetUpRuntimeOptions(options);
callbacks_.reset(new VerifierDepsCompilerCallbacks());
}
mirror::Class* FindClassByName(const std::string& name, ScopedObjectAccess* soa)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(Thread::Current());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa->Decode<mirror::ClassLoader>(class_loader_)));
mirror::Class* klass = class_linker_->FindClass(Thread::Current(),
name.c_str(),
class_loader_handle);
if (klass == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
Thread::Current()->ClearException();
}
return klass;
}
void SetupCompilerDriver() {
compiler_options_->boot_image_ = false;
compiler_driver_->InitializeThreadPools();
}
void VerifyWithCompilerDriver(verifier::VerifierDeps* deps) {
TimingLogger timings("Verify", false, false);
// The compiler driver handles the verifier deps in the callbacks, so
// remove what this class did for unit testing.
verifier_deps_.reset(nullptr);
callbacks_->SetVerifierDeps(nullptr);
compiler_driver_->Verify(class_loader_, dex_files_, deps, &timings);
// The compiler driver may have updated the VerifierDeps in the callback object.
verifier_deps_.reset(callbacks_->GetVerifierDeps());
}
void SetVerifierDeps(const std::vector<const DexFile*>& dex_files) {
verifier_deps_.reset(new verifier::VerifierDeps(dex_files));
VerifierDepsCompilerCallbacks* callbacks =
reinterpret_cast<VerifierDepsCompilerCallbacks*>(callbacks_.get());
callbacks->SetVerifierDeps(verifier_deps_.get());
}
void LoadDexFile(ScopedObjectAccess* soa, const char* name1, const char* name2 = nullptr)
REQUIRES_SHARED(Locks::mutator_lock_) {
class_loader_ = (name2 == nullptr) ? LoadDex(name1) : LoadMultiDex(name1, name2);
dex_files_ = GetDexFiles(class_loader_);
primary_dex_file_ = dex_files_.front();
SetVerifierDeps(dex_files_);
StackHandleScope<1> hs(soa->Self());
Handle<mirror::ClassLoader> loader =
hs.NewHandle(soa->Decode<mirror::ClassLoader>(class_loader_));
for (const DexFile* dex_file : dex_files_) {
class_linker_->RegisterDexFile(*dex_file, loader.Get());
}
}
void LoadDexFile(ScopedObjectAccess* soa) REQUIRES_SHARED(Locks::mutator_lock_) {
LoadDexFile(soa, "VerifierDeps");
CHECK_EQ(dex_files_.size(), 1u);
klass_Main_ = FindClassByName("LMain;", soa);
CHECK(klass_Main_ != nullptr);
}
bool VerifyMethod(const std::string& method_name) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa);
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_)));
Handle<mirror::DexCache> dex_cache_handle(hs.NewHandle(klass_Main_->GetDexCache()));
const DexFile::ClassDef* class_def = klass_Main_->GetClassDef();
const uint8_t* class_data = primary_dex_file_->GetClassData(*class_def);
CHECK(class_data != nullptr);
ClassDataItemIterator it(*primary_dex_file_, class_data);
while (it.HasNextStaticField() || it.HasNextInstanceField()) {
it.Next();
}
ArtMethod* method = nullptr;
while (it.HasNextDirectMethod()) {
ArtMethod* resolved_method = class_linker_->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
*primary_dex_file_,
it.GetMemberIndex(),
dex_cache_handle,
class_loader_handle,
nullptr,
it.GetMethodInvokeType(*class_def));
CHECK(resolved_method != nullptr);
if (method_name == resolved_method->GetName()) {
method = resolved_method;
break;
}
it.Next();
}
CHECK(method != nullptr);
MethodVerifier verifier(Thread::Current(),
primary_dex_file_,
dex_cache_handle,
class_loader_handle,
*class_def,
it.GetMethodCodeItem(),
it.GetMemberIndex(),
method,
it.GetMethodAccessFlags(),
true /* can_load_classes */,
true /* allow_soft_failures */,
true /* need_precise_constants */,
false /* verify to dump */,
true /* allow_thread_suspension */);
verifier.Verify();
return !verifier.HasFailures();
}
void VerifyDexFile(const char* multidex = nullptr) {
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa, "VerifierDeps", multidex);
}
SetupCompilerDriver();
VerifyWithCompilerDriver(/* verifier_deps */ nullptr);
}
bool TestAssignabilityRecording(const std::string& dst,
const std::string& src,
bool is_strict,
bool is_assignable) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa);
mirror::Class* klass_dst = FindClassByName(dst, &soa);
DCHECK(klass_dst != nullptr);
mirror::Class* klass_src = FindClassByName(src, &soa);
DCHECK(klass_src != nullptr);
verifier_deps_->AddAssignability(*primary_dex_file_,
klass_dst,
klass_src,
is_strict,
is_assignable);
return true;
}
// Check that the status of classes in `class_loader_` match the
// expected status in `deps`.
void VerifyClassStatus(const verifier::VerifierDeps& deps) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_)));
MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr));
for (const DexFile* dex_file : dex_files_) {
const std::vector<uint16_t>& unverified_classes = deps.GetUnverifiedClasses(*dex_file);
std::set<uint16_t> set(unverified_classes.begin(), unverified_classes.end());
for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(i);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
cls.Assign(class_linker_->FindClass(soa.Self(), descriptor, class_loader_handle));
if (cls.Get() == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
} else if (set.find(class_def.class_idx_) == set.end()) {
ASSERT_EQ(cls->GetStatus(), mirror::Class::kStatusVerified);
} else {
ASSERT_LT(cls->GetStatus(), mirror::Class::kStatusVerified);
}
}
}
}
bool HasUnverifiedClass(const std::string& cls) {
const DexFile::TypeId* type_id = primary_dex_file_->FindTypeId(cls.c_str());
DCHECK(type_id != nullptr);
uint16_t index = primary_dex_file_->GetIndexForTypeId(*type_id);
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (const auto& dex_dep : verifier_deps_->dex_deps_) {
for (uint16_t entry : dex_dep.second->unverified_classes_) {
if (index == entry) {
return true;
}
}
}
return false;
}
// Iterates over all assignability records and tries to find an entry which
// matches the expected destination/source pair.
bool HasAssignable(const std::string& expected_destination,
const std::string& expected_source,
bool expected_is_assignable) {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (auto& dex_dep : verifier_deps_->dex_deps_) {
const DexFile& dex_file = *dex_dep.first;
auto& storage = expected_is_assignable ? dex_dep.second->assignable_types_
: dex_dep.second->unassignable_types_;
for (auto& entry : storage) {
std::string actual_destination =
verifier_deps_->GetStringFromId(dex_file, entry.GetDestination());
std::string actual_source = verifier_deps_->GetStringFromId(dex_file, entry.GetSource());
if ((expected_destination == actual_destination) && (expected_source == actual_source)) {
return true;
}
}
}
return false;
}
// Iterates over all class resolution records, finds an entry which matches
// the given class descriptor and tests its properties.
bool HasClass(const std::string& expected_klass,
bool expected_resolved,
const std::string& expected_access_flags = "") {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (auto& dex_dep : verifier_deps_->dex_deps_) {
for (auto& entry : dex_dep.second->classes_) {
if (expected_resolved != entry.IsResolved()) {
continue;
}
std::string actual_klass = dex_dep.first->StringByTypeIdx(entry.GetDexTypeIndex());
if (expected_klass != actual_klass) {
continue;
}
if (expected_resolved) {
// Test access flags. Note that PrettyJavaAccessFlags always appends
// a space after the modifiers. Add it to the expected access flags.
std::string actual_access_flags = PrettyJavaAccessFlags(entry.GetAccessFlags());
if (expected_access_flags + " " != actual_access_flags) {
continue;
}
}
return true;
}
}
return false;
}
// Iterates over all field resolution records, finds an entry which matches
// the given field class+name+type and tests its properties.
bool HasField(const std::string& expected_klass,
const std::string& expected_name,
const std::string& expected_type,
bool expected_resolved,
const std::string& expected_access_flags = "",
const std::string& expected_decl_klass = "") {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (auto& dex_dep : verifier_deps_->dex_deps_) {
for (auto& entry : dex_dep.second->fields_) {
if (expected_resolved != entry.IsResolved()) {
continue;
}
const DexFile::FieldId& field_id = dex_dep.first->GetFieldId(entry.GetDexFieldIndex());
std::string actual_klass = dex_dep.first->StringByTypeIdx(field_id.class_idx_);
if (expected_klass != actual_klass) {
continue;
}
std::string actual_name = dex_dep.first->StringDataByIdx(field_id.name_idx_);
if (expected_name != actual_name) {
continue;
}
std::string actual_type = dex_dep.first->StringByTypeIdx(field_id.type_idx_);
if (expected_type != actual_type) {
continue;
}
if (expected_resolved) {
// Test access flags. Note that PrettyJavaAccessFlags always appends
// a space after the modifiers. Add it to the expected access flags.
std::string actual_access_flags = PrettyJavaAccessFlags(entry.GetAccessFlags());
if (expected_access_flags + " " != actual_access_flags) {
continue;
}
std::string actual_decl_klass = verifier_deps_->GetStringFromId(
*dex_dep.first, entry.GetDeclaringClassIndex());
if (expected_decl_klass != actual_decl_klass) {
continue;
}
}
return true;
}
}
return false;
}
// Iterates over all method resolution records, finds an entry which matches
// the given field kind+class+name+signature and tests its properties.
bool HasMethod(const std::string& expected_kind,
const std::string& expected_klass,
const std::string& expected_name,
const std::string& expected_signature,
bool expected_resolved,
const std::string& expected_access_flags = "",
const std::string& expected_decl_klass = "") {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
for (auto& dex_dep : verifier_deps_->dex_deps_) {
auto& storage = (expected_kind == "direct") ? dex_dep.second->direct_methods_
: (expected_kind == "virtual") ? dex_dep.second->virtual_methods_
: dex_dep.second->interface_methods_;
for (auto& entry : storage) {
if (expected_resolved != entry.IsResolved()) {
continue;
}
const DexFile::MethodId& method_id = dex_dep.first->GetMethodId(entry.GetDexMethodIndex());
std::string actual_klass = dex_dep.first->StringByTypeIdx(method_id.class_idx_);
if (expected_klass != actual_klass) {
continue;
}
std::string actual_name = dex_dep.first->StringDataByIdx(method_id.name_idx_);
if (expected_name != actual_name) {
continue;
}
std::string actual_signature = dex_dep.first->GetMethodSignature(method_id).ToString();
if (expected_signature != actual_signature) {
continue;
}
if (expected_resolved) {
// Test access flags. Note that PrettyJavaAccessFlags always appends
// a space after the modifiers. Add it to the expected access flags.
std::string actual_access_flags = PrettyJavaAccessFlags(entry.GetAccessFlags());
if (expected_access_flags + " " != actual_access_flags) {
continue;
}
std::string actual_decl_klass = verifier_deps_->GetStringFromId(
*dex_dep.first, entry.GetDeclaringClassIndex());
if (expected_decl_klass != actual_decl_klass) {
continue;
}
}
return true;
}
}
return false;
}
size_t NumberOfCompiledDexFiles() {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
return verifier_deps_->dex_deps_.size();
}
size_t HasEachKindOfRecord() {
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
bool has_strings = false;
bool has_assignability = false;
bool has_classes = false;
bool has_fields = false;
bool has_methods = false;
bool has_unverified_classes = false;
for (auto& entry : verifier_deps_->dex_deps_) {
has_strings |= !entry.second->strings_.empty();
has_assignability |= !entry.second->assignable_types_.empty();
has_assignability |= !entry.second->unassignable_types_.empty();
has_classes |= !entry.second->classes_.empty();
has_fields |= !entry.second->fields_.empty();
has_methods |= !entry.second->direct_methods_.empty();
has_methods |= !entry.second->virtual_methods_.empty();
has_methods |= !entry.second->interface_methods_.empty();
has_unverified_classes |= !entry.second->unverified_classes_.empty();
}
return has_strings &&
has_assignability &&
has_classes &&
has_fields &&
has_methods &&
has_unverified_classes;
}
static std::set<VerifierDeps::MethodResolution>* GetMethods(
VerifierDeps::DexFileDeps* deps, MethodResolutionKind resolution_kind) {
if (resolution_kind == kDirectMethodResolution) {
return &deps->direct_methods_;
} else if (resolution_kind == kVirtualMethodResolution) {
return &deps->virtual_methods_;
} else {
DCHECK_EQ(resolution_kind, kInterfaceMethodResolution);
return &deps->interface_methods_;
}
}
std::unique_ptr<verifier::VerifierDeps> verifier_deps_;
std::vector<const DexFile*> dex_files_;
const DexFile* primary_dex_file_;
jobject class_loader_;
mirror::Class* klass_Main_;
};
TEST_F(VerifierDepsTest, StringToId) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa);
MutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
uint32_t id_Main1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;");
ASSERT_LT(id_Main1, primary_dex_file_->NumStringIds());
ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main1));
uint32_t id_Main2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;");
ASSERT_LT(id_Main2, primary_dex_file_->NumStringIds());
ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main2));
uint32_t id_Lorem1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum");
ASSERT_GE(id_Lorem1, primary_dex_file_->NumStringIds());
ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem1));
uint32_t id_Lorem2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum");
ASSERT_GE(id_Lorem2, primary_dex_file_->NumStringIds());
ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem2));
ASSERT_EQ(id_Main1, id_Main2);
ASSERT_EQ(id_Lorem1, id_Lorem2);
ASSERT_NE(id_Main1, id_Lorem1);
}
TEST_F(VerifierDepsTest, Assignable_BothInBoot) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/util/TimeZone;",
/* src */ "Ljava/util/SimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;", true));
}
TEST_F(VerifierDepsTest, Assignable_DestinationInBoot1) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/net/Socket;",
/* src */ "LMySSLSocket;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/net/Socket;", "LMySSLSocket;", true));
}
TEST_F(VerifierDepsTest, Assignable_DestinationInBoot2) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/util/TimeZone;",
/* src */ "LMySimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "LMySimpleTimeZone;", true));
}
TEST_F(VerifierDepsTest, Assignable_DestinationInBoot3) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/util/Collection;",
/* src */ "LMyThreadSet;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/util/Collection;", "LMyThreadSet;", true));
}
TEST_F(VerifierDepsTest, Assignable_BothArrays_Resolved) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "[[Ljava/util/TimeZone;",
/* src */ "[[Ljava/util/SimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ true));
// If the component types of both arrays are resolved, we optimize the list of
// dependencies by recording a dependency on the component types.
ASSERT_FALSE(HasAssignable("[[Ljava/util/TimeZone;", "[[Ljava/util/SimpleTimeZone;", true));
ASSERT_FALSE(HasAssignable("[Ljava/util/TimeZone;", "[Ljava/util/SimpleTimeZone;", true));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;", true));
}
TEST_F(VerifierDepsTest, Assignable_BothArrays_Erroneous) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "[[Ljava/util/TimeZone;",
/* src */ "[[LMyErroneousTimeZone;",
/* is_strict */ true,
/* is_assignable */ true));
// If the component type of an array is erroneous, we record the dependency on
// the array type.
ASSERT_FALSE(HasAssignable("[[Ljava/util/TimeZone;", "[[LMyErroneousTimeZone;", true));
ASSERT_TRUE(HasAssignable("[Ljava/util/TimeZone;", "[LMyErroneousTimeZone;", true));
ASSERT_FALSE(HasAssignable("Ljava/util/TimeZone;", "LMyErroneousTimeZone;", true));
}
// We test that VerifierDeps does not try to optimize by storing assignability
// of the component types. This is due to the fact that the component type may
// be an erroneous class, even though the array type has resolved status.
TEST_F(VerifierDepsTest, Assignable_ArrayToInterface1) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/io/Serializable;",
/* src */ "[Ljava/util/TimeZone;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/io/Serializable;", "[Ljava/util/TimeZone;", true));
}
TEST_F(VerifierDepsTest, Assignable_ArrayToInterface2) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/io/Serializable;",
/* src */ "[LMyThreadSet;",
/* is_strict */ true,
/* is_assignable */ true));
ASSERT_TRUE(HasAssignable("Ljava/io/Serializable;", "[LMyThreadSet;", true));
}
TEST_F(VerifierDepsTest, NotAssignable_BothInBoot) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/lang/Exception;",
/* src */ "Ljava/util/SimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ false));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/util/SimpleTimeZone;", false));
}
TEST_F(VerifierDepsTest, NotAssignable_DestinationInBoot1) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/lang/Exception;",
/* src */ "LMySSLSocket;",
/* is_strict */ true,
/* is_assignable */ false));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "LMySSLSocket;", false));
}
TEST_F(VerifierDepsTest, NotAssignable_DestinationInBoot2) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "Ljava/lang/Exception;",
/* src */ "LMySimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ false));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "LMySimpleTimeZone;", false));
}
TEST_F(VerifierDepsTest, NotAssignable_BothArrays) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst */ "[Ljava/lang/Exception;",
/* src */ "[Ljava/util/SimpleTimeZone;",
/* is_strict */ true,
/* is_assignable */ false));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/util/SimpleTimeZone;", false));
}
TEST_F(VerifierDepsTest, ArgumentType_ResolvedClass) {
ASSERT_TRUE(VerifyMethod("ArgumentType_ResolvedClass"));
ASSERT_TRUE(HasClass("Ljava/lang/Thread;", true, "public"));
}
TEST_F(VerifierDepsTest, ArgumentType_ResolvedReferenceArray) {
ASSERT_TRUE(VerifyMethod("ArgumentType_ResolvedReferenceArray"));
ASSERT_TRUE(HasClass("[Ljava/lang/Thread;", true, "public final abstract"));
}
TEST_F(VerifierDepsTest, ArgumentType_ResolvedPrimitiveArray) {
ASSERT_TRUE(VerifyMethod("ArgumentType_ResolvedPrimitiveArray"));
ASSERT_TRUE(HasClass("[B", true, "public final abstract"));
}
TEST_F(VerifierDepsTest, ArgumentType_UnresolvedClass) {
ASSERT_TRUE(VerifyMethod("ArgumentType_UnresolvedClass"));
ASSERT_TRUE(HasClass("LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, ArgumentType_UnresolvedSuper) {
ASSERT_TRUE(VerifyMethod("ArgumentType_UnresolvedSuper"));
ASSERT_TRUE(HasClass("LMySetWithUnresolvedSuper;", false));
}
TEST_F(VerifierDepsTest, ReturnType_Reference) {
ASSERT_TRUE(VerifyMethod("ReturnType_Reference"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;", true));
}
TEST_F(VerifierDepsTest, ReturnType_Array) {
ASSERT_FALSE(VerifyMethod("ReturnType_Array"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Integer;", "Ljava/lang/IllegalStateException;", false));
}
TEST_F(VerifierDepsTest, InvokeArgumentType) {
ASSERT_TRUE(VerifyMethod("InvokeArgumentType"));
ASSERT_TRUE(HasClass("Ljava/text/SimpleDateFormat;", true, "public"));
ASSERT_TRUE(HasClass("Ljava/util/SimpleTimeZone;", true, "public"));
ASSERT_TRUE(HasMethod("virtual",
"Ljava/text/SimpleDateFormat;",
"setTimeZone",
"(Ljava/util/TimeZone;)V",
true,
"public",
"Ljava/text/DateFormat;"));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;", true));
}
TEST_F(VerifierDepsTest, MergeTypes_RegisterLines) {
ASSERT_TRUE(VerifyMethod("MergeTypes_RegisterLines"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "LMySocketTimeoutException;", true));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;", true));
}
TEST_F(VerifierDepsTest, MergeTypes_IfInstanceOf) {
ASSERT_TRUE(VerifyMethod("MergeTypes_IfInstanceOf"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;", true));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;", true));
ASSERT_TRUE(HasAssignable("Ljava/net/SocketTimeoutException;", "Ljava/lang/Exception;", false));
}
TEST_F(VerifierDepsTest, MergeTypes_Unresolved) {
ASSERT_TRUE(VerifyMethod("MergeTypes_Unresolved"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;", true));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;", true));
}
TEST_F(VerifierDepsTest, ConstClass_Resolved) {
ASSERT_TRUE(VerifyMethod("ConstClass_Resolved"));
ASSERT_TRUE(HasClass("Ljava/lang/IllegalStateException;", true, "public"));
}
TEST_F(VerifierDepsTest, ConstClass_Unresolved) {
ASSERT_TRUE(VerifyMethod("ConstClass_Unresolved"));
ASSERT_TRUE(HasClass("LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, CheckCast_Resolved) {
ASSERT_TRUE(VerifyMethod("CheckCast_Resolved"));
ASSERT_TRUE(HasClass("Ljava/lang/IllegalStateException;", true, "public"));
}
TEST_F(VerifierDepsTest, CheckCast_Unresolved) {
ASSERT_TRUE(VerifyMethod("CheckCast_Unresolved"));
ASSERT_TRUE(HasClass("LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, InstanceOf_Resolved) {
ASSERT_TRUE(VerifyMethod("InstanceOf_Resolved"));
ASSERT_TRUE(HasClass("Ljava/lang/IllegalStateException;", true, "public"));
}
TEST_F(VerifierDepsTest, InstanceOf_Unresolved) {
ASSERT_TRUE(VerifyMethod("InstanceOf_Unresolved"));
ASSERT_TRUE(HasClass("LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, NewInstance_Resolved) {
ASSERT_TRUE(VerifyMethod("NewInstance_Resolved"));
ASSERT_TRUE(HasClass("Ljava/lang/IllegalStateException;", true, "public"));
}
TEST_F(VerifierDepsTest, NewInstance_Unresolved) {
ASSERT_TRUE(VerifyMethod("NewInstance_Unresolved"));
ASSERT_TRUE(HasClass("LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, NewArray_Resolved) {
ASSERT_TRUE(VerifyMethod("NewArray_Resolved"));
ASSERT_TRUE(HasClass("[Ljava/lang/IllegalStateException;", true, "public final abstract"));
}
TEST_F(VerifierDepsTest, NewArray_Unresolved) {
ASSERT_TRUE(VerifyMethod("NewArray_Unresolved"));
ASSERT_TRUE(HasClass("[LUnresolvedClass;", false));
}
TEST_F(VerifierDepsTest, Throw) {
ASSERT_TRUE(VerifyMethod("Throw"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;", true));
}
TEST_F(VerifierDepsTest, MoveException_Resolved) {
ASSERT_TRUE(VerifyMethod("MoveException_Resolved"));
ASSERT_TRUE(HasClass("Ljava/io/InterruptedIOException;", true, "public"));
ASSERT_TRUE(HasClass("Ljava/net/SocketTimeoutException;", true, "public"));
ASSERT_TRUE(HasClass("Ljava/util/zip/ZipException;", true, "public"));
// Testing that all exception types are assignable to Throwable.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/InterruptedIOException;", true));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/net/SocketTimeoutException;", true));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/util/zip/ZipException;", true));
// Testing that the merge type is assignable to Throwable.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/IOException;", true));
// Merging of exception types.
ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/io/InterruptedIOException;", true));
ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/util/zip/ZipException;", true));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "Ljava/net/SocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, MoveException_Unresolved) {
ASSERT_FALSE(VerifyMethod("MoveException_Unresolved"));
ASSERT_TRUE(HasClass("LUnresolvedException;", false));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/lang/System;", true, "public final"));
ASSERT_TRUE(HasField("Ljava/lang/System;",
"out",
"Ljava/io/PrintStream;",
true,
"public final static",
"Ljava/lang/System;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasClass("Ljava/util/SimpleTimeZone;", true, "public"));
ASSERT_TRUE(HasField(
"Ljava/util/SimpleTimeZone;", "LONG", "I", true, "public final static", "Ljava/util/TimeZone;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInSuperclass2) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasField(
"LMySimpleTimeZone;", "SHORT", "I", true, "public final static", "Ljava/util/TimeZone;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInInterface1) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInInterface1"));
ASSERT_TRUE(HasClass("Ljavax/xml/transform/dom/DOMResult;", true, "public"));
ASSERT_TRUE(HasField("Ljavax/xml/transform/dom/DOMResult;",
"PI_ENABLE_OUTPUT_ESCAPING",
"Ljava/lang/String;",
true,
"public final static",
"Ljavax/xml/transform/Result;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInInterface2) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInInterface2"));
ASSERT_TRUE(HasField("LMyDOMResult;",
"PI_ENABLE_OUTPUT_ESCAPING",
"Ljava/lang/String;",
true,
"public final static",
"Ljavax/xml/transform/Result;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInInterface3) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInInterface3"));
ASSERT_TRUE(HasField("LMyResult;",
"PI_ENABLE_OUTPUT_ESCAPING",
"Ljava/lang/String;",
true,
"public final static",
"Ljavax/xml/transform/Result;"));
}
TEST_F(VerifierDepsTest, StaticField_Resolved_DeclaredInInterface4) {
ASSERT_TRUE(VerifyMethod("StaticField_Resolved_DeclaredInInterface4"));
ASSERT_TRUE(HasField("LMyDocument;",
"ELEMENT_NODE",
"S",
true,
"public final static",
"Lorg/w3c/dom/Node;"));
}
TEST_F(VerifierDepsTest, StaticField_Unresolved_ReferrerInBoot) {
ASSERT_TRUE(VerifyMethod("StaticField_Unresolved_ReferrerInBoot"));
ASSERT_TRUE(HasClass("Ljava/util/TimeZone;", true, "public abstract"));
ASSERT_TRUE(HasField("Ljava/util/TimeZone;", "x", "I", false));
}
TEST_F(VerifierDepsTest, StaticField_Unresolved_ReferrerInDex) {
ASSERT_TRUE(VerifyMethod("StaticField_Unresolved_ReferrerInDex"));
ASSERT_TRUE(HasField("LMyThreadSet;", "x", "I", false));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/io/InterruptedIOException;", true, "public"));
ASSERT_TRUE(HasField("Ljava/io/InterruptedIOException;",
"bytesTransferred",
"I",
true,
"public",
"Ljava/io/InterruptedIOException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasClass("Ljava/net/SocketTimeoutException;", true, "public"));
ASSERT_TRUE(HasField("Ljava/net/SocketTimeoutException;",
"bytesTransferred",
"I",
true,
"public",
"Ljava/io/InterruptedIOException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass2) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasField("LMySocketTimeoutException;",
"bytesTransferred",
"I",
true,
"public",
"Ljava/io/InterruptedIOException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, InstanceField_Unresolved_ReferrerInBoot) {
ASSERT_TRUE(VerifyMethod("InstanceField_Unresolved_ReferrerInBoot"));
ASSERT_TRUE(HasClass("Ljava/io/InterruptedIOException;", true, "public"));
ASSERT_TRUE(HasField("Ljava/io/InterruptedIOException;", "x", "I", false));
}
TEST_F(VerifierDepsTest, InstanceField_Unresolved_ReferrerInDex) {
ASSERT_TRUE(VerifyMethod("InstanceField_Unresolved_ReferrerInDex"));
ASSERT_TRUE(HasField("LMyThreadSet;", "x", "I", false));
}
TEST_F(VerifierDepsTest, InvokeStatic_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InvokeStatic_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/net/Socket;", true, "public"));
ASSERT_TRUE(HasMethod("direct",
"Ljava/net/Socket;",
"setSocketImplFactory",
"(Ljava/net/SocketImplFactory;)V",
true,
"public static",
"Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeStatic_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("InvokeStatic_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasClass("Ljavax/net/ssl/SSLSocket;", true, "public abstract"));
ASSERT_TRUE(HasMethod("direct",
"Ljavax/net/ssl/SSLSocket;",
"setSocketImplFactory",
"(Ljava/net/SocketImplFactory;)V",
true,
"public static",
"Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeStatic_Resolved_DeclaredInSuperclass2) {
ASSERT_TRUE(VerifyMethod("InvokeStatic_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasMethod("direct",
"LMySSLSocket;",
"setSocketImplFactory",
"(Ljava/net/SocketImplFactory;)V",
true,
"public static",
"Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeStatic_DeclaredInInterface1) {
ASSERT_TRUE(VerifyMethod("InvokeStatic_DeclaredInInterface1"));
ASSERT_TRUE(HasClass("Ljava/util/Map$Entry;", true, "public abstract interface"));
ASSERT_TRUE(HasMethod("direct",
"Ljava/util/Map$Entry;",
"comparingByKey",
"()Ljava/util/Comparator;",
true,
"public static",
"Ljava/util/Map$Entry;"));
}
TEST_F(VerifierDepsTest, InvokeStatic_DeclaredInInterface2) {
ASSERT_FALSE(VerifyMethod("InvokeStatic_DeclaredInInterface2"));
ASSERT_TRUE(HasClass("Ljava/util/AbstractMap$SimpleEntry;", true, "public"));
ASSERT_TRUE(HasMethod("direct",
"Ljava/util/AbstractMap$SimpleEntry;",
"comparingByKey",
"()Ljava/util/Comparator;",
false));
}
TEST_F(VerifierDepsTest, InvokeStatic_Unresolved1) {
ASSERT_FALSE(VerifyMethod("InvokeStatic_Unresolved1"));
ASSERT_TRUE(HasClass("Ljavax/net/ssl/SSLSocket;", true, "public abstract"));
ASSERT_TRUE(HasMethod("direct", "Ljavax/net/ssl/SSLSocket;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeStatic_Unresolved2) {
ASSERT_FALSE(VerifyMethod("InvokeStatic_Unresolved2"));
ASSERT_TRUE(HasMethod("direct", "LMySSLSocket;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeDirect_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InvokeDirect_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/net/Socket;", true, "public"));
ASSERT_TRUE(HasMethod(
"direct", "Ljava/net/Socket;", "<init>", "()V", true, "public", "Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeDirect_Resolved_DeclaredInSuperclass1) {
ASSERT_FALSE(VerifyMethod("InvokeDirect_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasClass("Ljavax/net/ssl/SSLSocket;", true, "public abstract"));
ASSERT_TRUE(HasMethod("direct",
"Ljavax/net/ssl/SSLSocket;",
"checkOldImpl",
"()V",
true,
"private",
"Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeDirect_Resolved_DeclaredInSuperclass2) {
ASSERT_FALSE(VerifyMethod("InvokeDirect_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasMethod(
"direct", "LMySSLSocket;", "checkOldImpl", "()V", true, "private", "Ljava/net/Socket;"));
}
TEST_F(VerifierDepsTest, InvokeDirect_Unresolved1) {
ASSERT_FALSE(VerifyMethod("InvokeDirect_Unresolved1"));
ASSERT_TRUE(HasClass("Ljavax/net/ssl/SSLSocket;", true, "public abstract"));
ASSERT_TRUE(HasMethod("direct", "Ljavax/net/ssl/SSLSocket;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeDirect_Unresolved2) {
ASSERT_FALSE(VerifyMethod("InvokeDirect_Unresolved2"));
ASSERT_TRUE(HasMethod("direct", "LMySSLSocket;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/lang/Throwable;", true, "public"));
ASSERT_TRUE(HasMethod("virtual",
"Ljava/lang/Throwable;",
"getMessage",
"()Ljava/lang/String;",
true,
"public",
"Ljava/lang/Throwable;"));
// Type dependency on `this` argument.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasClass("Ljava/io/InterruptedIOException;", true, "public"));
ASSERT_TRUE(HasMethod("virtual",
"Ljava/io/InterruptedIOException;",
"getMessage",
"()Ljava/lang/String;",
true,
"public",
"Ljava/lang/Throwable;"));
// Type dependency on `this` argument.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;", true));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInSuperclass2) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasMethod("virtual",
"LMySocketTimeoutException;",
"getMessage",
"()Ljava/lang/String;",
true,
"public",
"Ljava/lang/Throwable;"));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInSuperinterface) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInSuperinterface"));
ASSERT_TRUE(HasMethod("virtual",
"LMyThreadSet;",
"size",
"()I",
true,
"public abstract",
"Ljava/util/Set;"));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Unresolved1) {
ASSERT_FALSE(VerifyMethod("InvokeVirtual_Unresolved1"));
ASSERT_TRUE(HasClass("Ljava/io/InterruptedIOException;", true, "public"));
ASSERT_TRUE(HasMethod("virtual", "Ljava/io/InterruptedIOException;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Unresolved2) {
ASSERT_FALSE(VerifyMethod("InvokeVirtual_Unresolved2"));
ASSERT_TRUE(HasMethod("virtual", "LMySocketTimeoutException;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeVirtual_ActuallyDirect) {
ASSERT_FALSE(VerifyMethod("InvokeVirtual_ActuallyDirect"));
ASSERT_TRUE(HasMethod("virtual", "LMyThread;", "activeCount", "()I", false));
ASSERT_TRUE(HasMethod("direct",
"LMyThread;",
"activeCount",
"()I",
true,
"public static",
"Ljava/lang/Thread;"));
}
TEST_F(VerifierDepsTest, InvokeInterface_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InvokeInterface_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasClass("Ljava/lang/Runnable;", true, "public abstract interface"));
ASSERT_TRUE(HasMethod("interface",
"Ljava/lang/Runnable;",
"run",
"()V",
true,
"public abstract",
"Ljava/lang/Runnable;"));
}
TEST_F(VerifierDepsTest, InvokeInterface_Resolved_DeclaredInSuperclass) {
ASSERT_FALSE(VerifyMethod("InvokeInterface_Resolved_DeclaredInSuperclass"));
ASSERT_TRUE(HasMethod("interface", "LMyThread;", "join", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeInterface_Resolved_DeclaredInSuperinterface1) {
ASSERT_FALSE(VerifyMethod("InvokeInterface_Resolved_DeclaredInSuperinterface1"));
ASSERT_TRUE(HasMethod("interface",
"LMyThreadSet;",
"run",
"()V",
true,
"public abstract",
"Ljava/lang/Runnable;"));
}
TEST_F(VerifierDepsTest, InvokeInterface_Resolved_DeclaredInSuperinterface2) {
ASSERT_FALSE(VerifyMethod("InvokeInterface_Resolved_DeclaredInSuperinterface2"));
ASSERT_TRUE(HasMethod("interface",
"LMyThreadSet;",
"isEmpty",
"()Z",
true,
"public abstract",
"Ljava/util/Set;"));
}
TEST_F(VerifierDepsTest, InvokeInterface_Unresolved1) {
ASSERT_FALSE(VerifyMethod("InvokeInterface_Unresolved1"));
ASSERT_TRUE(HasClass("Ljava/lang/Runnable;", true, "public abstract interface"));
ASSERT_TRUE(HasMethod("interface", "Ljava/lang/Runnable;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeInterface_Unresolved2) {
ASSERT_FALSE(VerifyMethod("InvokeInterface_Unresolved2"));
ASSERT_TRUE(HasMethod("interface", "LMyThreadSet;", "x", "()V", false));
}
TEST_F(VerifierDepsTest, InvokeSuper_ThisAssignable) {
ASSERT_TRUE(VerifyMethod("InvokeSuper_ThisAssignable"));
ASSERT_TRUE(HasClass("Ljava/lang/Runnable;", true, "public abstract interface"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Runnable;", "LMain;", true));
ASSERT_TRUE(HasMethod("interface",
"Ljava/lang/Runnable;",
"run",
"()V",
true,
"public abstract",
"Ljava/lang/Runnable;"));
}
TEST_F(VerifierDepsTest, InvokeSuper_ThisNotAssignable) {
ASSERT_FALSE(VerifyMethod("InvokeSuper_ThisNotAssignable"));
ASSERT_TRUE(HasClass("Ljava/lang/Integer;", true, "public final"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Integer;", "LMain;", false));
ASSERT_TRUE(HasMethod(
"virtual", "Ljava/lang/Integer;", "intValue", "()I", true, "public", "Ljava/lang/Integer;"));
}
TEST_F(VerifierDepsTest, EncodeDecode) {
VerifyDexFile();
ASSERT_EQ(1u, NumberOfCompiledDexFiles());
ASSERT_TRUE(HasEachKindOfRecord());
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
ASSERT_TRUE(verifier_deps_->Equals(decoded_deps));
}
TEST_F(VerifierDepsTest, EncodeDecodeMulti) {
VerifyDexFile("MultiDex");
ASSERT_GT(NumberOfCompiledDexFiles(), 1u);
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
// Create new DexFile, to mess with std::map order: the verifier deps used
// to iterate over the map, which doesn't guarantee insertion order. We fixed
// this by passing the expected order when encoding/decoding.
std::vector<std::unique_ptr<const DexFile>> first_dex_files = OpenTestDexFiles("VerifierDeps");
std::vector<std::unique_ptr<const DexFile>> second_dex_files = OpenTestDexFiles("MultiDex");
std::vector<const DexFile*> dex_files;
for (auto& dex_file : first_dex_files) {
dex_files.push_back(dex_file.get());
}
for (auto& dex_file : second_dex_files) {
dex_files.push_back(dex_file.get());
}
// Dump the new verifier deps to ensure it can properly read the data.
VerifierDeps decoded_deps(dex_files, ArrayRef<const uint8_t>(buffer));
std::ostringstream stream;
VariableIndentationOutputStream os(&stream);
decoded_deps.Dump(&os);
}
TEST_F(VerifierDepsTest, UnverifiedClasses) {
VerifyDexFile();
ASSERT_FALSE(HasUnverifiedClass("LMyThread;"));
// Test that a class with a soft failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMain;"));
// Test that a class with hard failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMyVerificationFailure;"));
// Test that a class with unresolved super is recorded.
ASSERT_FALSE(HasUnverifiedClass("LMyClassWithNoSuper;"));
// Test that a class with unresolved super and hard failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMyClassWithNoSuperButFailures;"));
}
// Returns the next resolution kind in the enum.
static MethodResolutionKind GetNextResolutionKind(MethodResolutionKind resolution_kind) {
if (resolution_kind == kDirectMethodResolution) {
return kVirtualMethodResolution;
} else if (resolution_kind == kVirtualMethodResolution) {
return kInterfaceMethodResolution;
} else {
DCHECK_EQ(resolution_kind, kInterfaceMethodResolution);
return kDirectMethodResolution;
}
}
TEST_F(VerifierDepsTest, VerifyDeps) {
VerifyDexFile();
ASSERT_EQ(1u, NumberOfCompiledDexFiles());
ASSERT_TRUE(HasEachKindOfRecord());
// When validating, we create a new class loader, as
// the existing `class_loader_` may contain erroneous classes,
// that ClassLinker::FindClass won't return.
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
MutableHandle<mirror::ClassLoader> new_class_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
{
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_TRUE(verifier_deps_->ValidateDependencies(new_class_loader, soa.Self()));
}
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_TRUE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
// Fiddle with the dependencies to make sure we catch any change and fail to verify.
{
// Mess up with the assignable_types.
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
deps->assignable_types_.insert(*deps->unassignable_types_.begin());
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
// Mess up with the unassignable_types.
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
deps->unassignable_types_.insert(*deps->assignable_types_.begin());
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
// Mess up with classes.
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->classes_) {
if (entry.IsResolved()) {
deps->classes_.insert(VerifierDeps::ClassResolution(
entry.GetDexTypeIndex(), VerifierDeps::kUnresolvedMarker));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->classes_) {
if (!entry.IsResolved()) {
deps->classes_.insert(VerifierDeps::ClassResolution(
entry.GetDexTypeIndex(), VerifierDeps::kUnresolvedMarker - 1));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->classes_) {
if (entry.IsResolved()) {
deps->classes_.insert(VerifierDeps::ClassResolution(
entry.GetDexTypeIndex(), entry.GetAccessFlags() - 1));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
// Mess up with fields.
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->fields_) {
if (entry.IsResolved()) {
deps->fields_.insert(VerifierDeps::FieldResolution(entry.GetDexFieldIndex(),
VerifierDeps::kUnresolvedMarker,
entry.GetDeclaringClassIndex()));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->fields_) {
if (!entry.IsResolved()) {
deps->fields_.insert(VerifierDeps::FieldResolution(0 /* we know there is a field there */,
VerifierDeps::kUnresolvedMarker - 1,
0 /* we know there is a class there */));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->fields_) {
if (entry.IsResolved()) {
deps->fields_.insert(VerifierDeps::FieldResolution(entry.GetDexFieldIndex(),
entry.GetAccessFlags() - 1,
entry.GetDeclaringClassIndex()));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->fields_) {
static constexpr uint32_t kNewTypeIndex = 0;
if (entry.GetDeclaringClassIndex() != kNewTypeIndex) {
deps->fields_.insert(VerifierDeps::FieldResolution(entry.GetDexFieldIndex(),
entry.GetAccessFlags(),
kNewTypeIndex));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
// Mess up with methods.
for (MethodResolutionKind resolution_kind :
{ kDirectMethodResolution, kVirtualMethodResolution, kInterfaceMethodResolution }) {
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
if (entry.IsResolved()) {
methods->insert(VerifierDeps::MethodResolution(entry.GetDexMethodIndex(),
VerifierDeps::kUnresolvedMarker,
entry.GetDeclaringClassIndex()));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
if (!entry.IsResolved()) {
methods->insert(VerifierDeps::MethodResolution(0 /* we know there is a method there */,
VerifierDeps::kUnresolvedMarker - 1,
0 /* we know there is a class there */));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
if (entry.IsResolved()) {
methods->insert(VerifierDeps::MethodResolution(entry.GetDexMethodIndex(),
entry.GetAccessFlags() - 1,
entry.GetDeclaringClassIndex()));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
static constexpr uint32_t kNewTypeIndex = 0;
if (entry.IsResolved() && entry.GetDeclaringClassIndex() != kNewTypeIndex) {
methods->insert(VerifierDeps::MethodResolution(entry.GetDexMethodIndex(),
entry.GetAccessFlags(),
kNewTypeIndex));
found = true;
break;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
if (entry.IsResolved()) {
GetMethods(deps, GetNextResolutionKind(resolution_kind))->insert(
VerifierDeps::MethodResolution(entry.GetDexMethodIndex(),
entry.GetAccessFlags(),
entry.GetDeclaringClassIndex()));
found = true;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
{
VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
std::set<VerifierDeps::MethodResolution>* methods = GetMethods(deps, resolution_kind);
for (const auto& entry : *methods) {
if (entry.IsResolved()) {
GetMethods(deps, GetNextResolutionKind(GetNextResolutionKind(resolution_kind)))->insert(
VerifierDeps::MethodResolution(entry.GetDexMethodIndex(),
entry.GetAccessFlags(),
entry.GetDeclaringClassIndex()));
found = true;
}
}
ASSERT_TRUE(found);
new_class_loader.Assign(soa.Decode<mirror::ClassLoader>(LoadDex("VerifierDeps")));
ASSERT_FALSE(decoded_deps.ValidateDependencies(new_class_loader, soa.Self()));
}
}
}
TEST_F(VerifierDepsTest, CompilerDriver) {
SetupCompilerDriver();
// Test both multi-dex and single-dex configuration.
for (const char* multi : { "MultiDex", static_cast<const char*>(nullptr) }) {
// Test that the compiler driver behaves as expected when the dependencies
// verify and when they don't verify.
for (bool verify_failure : { false, true }) {
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa, "VerifierDeps", multi);
}
VerifyWithCompilerDriver(/* verifier_deps */ nullptr);
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(&soa, "VerifierDeps", multi);
}
verifier::VerifierDeps decoded_deps(dex_files_, ArrayRef<const uint8_t>(buffer));
if (verify_failure) {
// Just taint the decoded VerifierDeps with one invalid entry.
VerifierDeps::DexFileDeps* deps = decoded_deps.GetDexFileDeps(*primary_dex_file_);
bool found = false;
for (const auto& entry : deps->classes_) {
if (entry.IsResolved()) {
deps->classes_.insert(VerifierDeps::ClassResolution(
entry.GetDexTypeIndex(), VerifierDeps::kUnresolvedMarker));
found = true;
break;
}
}
ASSERT_TRUE(found);
}
VerifyWithCompilerDriver(&decoded_deps);
if (verify_failure) {
ASSERT_FALSE(verifier_deps_ == nullptr);
ASSERT_FALSE(verifier_deps_->Equals(decoded_deps));
} else {
ASSERT_TRUE(verifier_deps_ == nullptr);
VerifyClassStatus(decoded_deps);
}
}
}
}
} // namespace verifier
} // namespace art