blob: 6138411b1185752410e1ba5585a253fc53a0d9cb [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "oat_writer.h"
#include <zlib.h>
#include "base/allocator.h"
#include "base/bit_vector.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "compiled_class.h"
#include "dex_file-inl.h"
#include "dex/verification_results.h"
#include "gc/space/space.h"
#include "image_writer.h"
#include "mirror/art_method-inl.h"
#include "mirror/array.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "os.h"
#include "output_stream.h"
#include "safe_map.h"
#include "scoped_thread_state_change.h"
#include "handle_scope-inl.h"
#include "utils/arm/assembler_thumb2.h"
#include "utils/arm64/assembler_arm64.h"
#include "verifier/method_verifier.h"
namespace art {
class OatWriter::RelativeCallPatcher {
public:
virtual ~RelativeCallPatcher() { }
// Reserve space for relative call thunks if needed, return adjusted offset.
// After all methods have been processed it's call one last time with compiled_method == nullptr.
virtual uint32_t ReserveSpace(uint32_t offset, const CompiledMethod* compiled_method) = 0;
// Write relative call thunks if needed, return adjusted offset.
virtual uint32_t WriteThunks(OutputStream* out, uint32_t offset) = 0;
// Patch method code. The input displacement is relative to the patched location,
// the patcher may need to adjust it if the correct base is different.
virtual void Patch(std::vector<uint8_t>* code, uint32_t literal_offset, uint32_t patch_offset,
uint32_t target_offset) = 0;
protected:
RelativeCallPatcher() { }
private:
DISALLOW_COPY_AND_ASSIGN(RelativeCallPatcher);
};
class OatWriter::NoRelativeCallPatcher FINAL : public RelativeCallPatcher {
public:
NoRelativeCallPatcher() { }
uint32_t ReserveSpace(uint32_t offset,
const CompiledMethod* compiled_method ATTRIBUTE_UNUSED) OVERRIDE {
return offset; // No space reserved; no patches expected.
}
uint32_t WriteThunks(OutputStream* out ATTRIBUTE_UNUSED, uint32_t offset) OVERRIDE {
return offset; // No thunks added; no patches expected.
}
void Patch(std::vector<uint8_t>* code ATTRIBUTE_UNUSED, uint32_t literal_offset ATTRIBUTE_UNUSED,
uint32_t patch_offset ATTRIBUTE_UNUSED,
uint32_t target_offset ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Unexpected relative patch.";
}
private:
DISALLOW_COPY_AND_ASSIGN(NoRelativeCallPatcher);
};
class OatWriter::X86RelativeCallPatcher FINAL : public RelativeCallPatcher {
public:
X86RelativeCallPatcher() { }
uint32_t ReserveSpace(uint32_t offset,
const CompiledMethod* compiled_method ATTRIBUTE_UNUSED) OVERRIDE {
return offset; // No space reserved; no limit on relative call distance.
}
uint32_t WriteThunks(OutputStream* out ATTRIBUTE_UNUSED, uint32_t offset) OVERRIDE {
return offset; // No thunks added; no limit on relative call distance.
}
void Patch(std::vector<uint8_t>* code, uint32_t literal_offset, uint32_t patch_offset,
uint32_t target_offset) OVERRIDE {
DCHECK_LE(literal_offset + 4u, code->size());
// Unsigned arithmetic with its well-defined overflow behavior is just fine here.
uint32_t displacement = target_offset - patch_offset;
displacement -= kPcDisplacement; // The base PC is at the end of the 4-byte patch.
typedef __attribute__((__aligned__(1))) int32_t unaligned_int32_t;
reinterpret_cast<unaligned_int32_t*>(&(*code)[literal_offset])[0] = displacement;
}
private:
// PC displacement from patch location; x86 PC for relative calls points to the next
// instruction and the patch location is 4 bytes earlier.
static constexpr int32_t kPcDisplacement = 4;
DISALLOW_COPY_AND_ASSIGN(X86RelativeCallPatcher);
};
class OatWriter::ArmBaseRelativeCallPatcher : public RelativeCallPatcher {
public:
ArmBaseRelativeCallPatcher(OatWriter* writer,
InstructionSet instruction_set, std::vector<uint8_t> thunk_code,
uint32_t max_positive_displacement, uint32_t max_negative_displacement)
: writer_(writer), instruction_set_(instruction_set), thunk_code_(thunk_code),
max_positive_displacement_(max_positive_displacement),
max_negative_displacement_(max_negative_displacement),
thunk_locations_(), current_thunk_to_write_(0u), unprocessed_patches_() {
}
uint32_t ReserveSpace(uint32_t offset, const CompiledMethod* compiled_method) OVERRIDE {
// NOTE: The final thunk can be reserved from InitCodeMethodVisitor::EndClass() while it
// may be written early by WriteCodeMethodVisitor::VisitMethod() for a deduplicated chunk
// of code. To avoid any alignment discrepancies for the final chunk, we always align the
// offset after reserving of writing any chunk.
if (UNLIKELY(compiled_method == nullptr)) {
uint32_t aligned_offset = CompiledMethod::AlignCode(offset, instruction_set_);
bool needs_thunk = ReserveSpaceProcessPatches(aligned_offset);
if (needs_thunk) {
thunk_locations_.push_back(aligned_offset);
offset = CompiledMethod::AlignCode(aligned_offset + thunk_code_.size(), instruction_set_);
}
return offset;
}
DCHECK(compiled_method->GetQuickCode() != nullptr);
uint32_t quick_code_size = compiled_method->GetQuickCode()->size();
uint32_t quick_code_offset = compiled_method->AlignCode(offset) + sizeof(OatQuickMethodHeader);
uint32_t next_aligned_offset = compiled_method->AlignCode(quick_code_offset + quick_code_size);
if (!unprocessed_patches_.empty() &&
next_aligned_offset - unprocessed_patches_.front().second > max_positive_displacement_) {
bool needs_thunk = ReserveSpaceProcessPatches(next_aligned_offset);
if (needs_thunk) {
// A single thunk will cover all pending patches.
unprocessed_patches_.clear();
uint32_t thunk_location = compiled_method->AlignCode(offset);
thunk_locations_.push_back(thunk_location);
offset = CompiledMethod::AlignCode(thunk_location + thunk_code_.size(), instruction_set_);
}
}
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (patch.Type() == kLinkerPatchCallRelative) {
unprocessed_patches_.emplace_back(patch.TargetMethod(),
quick_code_offset + patch.LiteralOffset());
}
}
return offset;
}
uint32_t WriteThunks(OutputStream* out, uint32_t offset) OVERRIDE {
if (current_thunk_to_write_ == thunk_locations_.size()) {
return offset;
}
uint32_t aligned_offset = CompiledMethod::AlignCode(offset, instruction_set_);
if (UNLIKELY(aligned_offset == thunk_locations_[current_thunk_to_write_])) {
++current_thunk_to_write_;
uint32_t aligned_code_delta = aligned_offset - offset;
if (aligned_code_delta != 0u && !writer_->WriteCodeAlignment(out, aligned_code_delta)) {
return 0u;
}
if (!out->WriteFully(thunk_code_.data(), thunk_code_.size())) {
return 0u;
}
writer_->size_relative_call_thunks_ += thunk_code_.size();
uint32_t thunk_end_offset = aligned_offset + thunk_code_.size();
// Align after writing chunk, see the ReserveSpace() above.
offset = CompiledMethod::AlignCode(thunk_end_offset, instruction_set_);
aligned_code_delta = offset - thunk_end_offset;
if (aligned_code_delta != 0u && !writer_->WriteCodeAlignment(out, aligned_code_delta)) {
return 0u;
}
}
return offset;
}
protected:
uint32_t CalculateDisplacement(uint32_t patch_offset, uint32_t target_offset) {
// Unsigned arithmetic with its well-defined overflow behavior is just fine here.
uint32_t displacement = target_offset - patch_offset;
// NOTE: With unsigned arithmetic we do mean to use && rather than || below.
if (displacement > max_positive_displacement_ && displacement < -max_negative_displacement_) {
// Unwritten thunks have higher offsets, check if it's within range.
DCHECK(current_thunk_to_write_ == thunk_locations_.size() ||
thunk_locations_[current_thunk_to_write_] > patch_offset);
if (current_thunk_to_write_ != thunk_locations_.size() &&
thunk_locations_[current_thunk_to_write_] - patch_offset < max_positive_displacement_) {
displacement = thunk_locations_[current_thunk_to_write_] - patch_offset;
} else {
// We must have a previous thunk then.
DCHECK_NE(current_thunk_to_write_, 0u);
DCHECK_LT(thunk_locations_[current_thunk_to_write_ - 1], patch_offset);
displacement = thunk_locations_[current_thunk_to_write_ - 1] - patch_offset;
DCHECK(displacement >= -max_negative_displacement_);
}
}
return displacement;
}
private:
bool ReserveSpaceProcessPatches(uint32_t next_aligned_offset) {
// Process as many patches as possible, stop only on unresolved targets or calls too far back.
while (!unprocessed_patches_.empty()) {
uint32_t patch_offset = unprocessed_patches_.front().second;
auto it = writer_->method_offset_map_.find(unprocessed_patches_.front().first);
if (it == writer_->method_offset_map_.end()) {
// If still unresolved, check if we have a thunk within range.
DCHECK(thunk_locations_.empty() || thunk_locations_.back() <= patch_offset);
if (thunk_locations_.empty() ||
patch_offset - thunk_locations_.back() > max_negative_displacement_) {
return next_aligned_offset - patch_offset > max_positive_displacement_;
}
} else if (it->second >= patch_offset) {
DCHECK_LE(it->second - patch_offset, max_positive_displacement_);
} else {
// When calling back, check if we have a thunk that's closer than the actual target.
uint32_t target_offset = (thunk_locations_.empty() || it->second > thunk_locations_.back())
? it->second
: thunk_locations_.back();
DCHECK_GT(patch_offset, target_offset);
if (patch_offset - target_offset > max_negative_displacement_) {
return true;
}
}
unprocessed_patches_.pop_front();
}
return false;
}
OatWriter* const writer_;
const InstructionSet instruction_set_;
const std::vector<uint8_t> thunk_code_;
const uint32_t max_positive_displacement_;
const uint32_t max_negative_displacement_;
std::vector<uint32_t> thunk_locations_;
size_t current_thunk_to_write_;
// ReserveSpace() tracks unprocessed patches.
typedef std::pair<MethodReference, uint32_t> UnprocessedPatch;
std::deque<UnprocessedPatch> unprocessed_patches_;
DISALLOW_COPY_AND_ASSIGN(ArmBaseRelativeCallPatcher);
};
class OatWriter::Thumb2RelativeCallPatcher FINAL : public ArmBaseRelativeCallPatcher {
public:
explicit Thumb2RelativeCallPatcher(OatWriter* writer)
: ArmBaseRelativeCallPatcher(writer, kThumb2, CompileThunkCode(),
kMaxPositiveDisplacement, kMaxNegativeDisplacement) {
}
void Patch(std::vector<uint8_t>* code, uint32_t literal_offset, uint32_t patch_offset,
uint32_t target_offset) OVERRIDE {
DCHECK_LE(literal_offset + 4u, code->size());
DCHECK_EQ(literal_offset & 1u, 0u);
DCHECK_EQ(patch_offset & 1u, 0u);
DCHECK_EQ(target_offset & 1u, 1u); // Thumb2 mode bit.
uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u);
displacement -= kPcDisplacement; // The base PC is at the end of the 4-byte patch.
DCHECK_EQ(displacement & 1u, 0u);
DCHECK((displacement >> 24) == 0u || (displacement >> 24) == 255u); // 25-bit signed.
uint32_t signbit = (displacement >> 31) & 0x1;
uint32_t i1 = (displacement >> 23) & 0x1;
uint32_t i2 = (displacement >> 22) & 0x1;
uint32_t imm10 = (displacement >> 12) & 0x03ff;
uint32_t imm11 = (displacement >> 1) & 0x07ff;
uint32_t j1 = i1 ^ (signbit ^ 1);
uint32_t j2 = i2 ^ (signbit ^ 1);
uint32_t value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm10 << 16) | imm11;
value |= 0xf000d000; // BL
uint8_t* addr = &(*code)[literal_offset];
// Check that we're just overwriting an existing BL.
DCHECK_EQ(addr[1] & 0xf8, 0xf0);
DCHECK_EQ(addr[3] & 0xd0, 0xd0);
// Write the new BL.
addr[0] = (value >> 16) & 0xff;
addr[1] = (value >> 24) & 0xff;
addr[2] = (value >> 0) & 0xff;
addr[3] = (value >> 8) & 0xff;
}
private:
static std::vector<uint8_t> CompileThunkCode() {
// The thunk just uses the entry point in the ArtMethod. This works even for calls
// to the generic JNI and interpreter trampolines.
arm::Thumb2Assembler assembler;
assembler.LoadFromOffset(
arm::kLoadWord, arm::PC, arm::R0,
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
assembler.bkpt(0);
std::vector<uint8_t> thunk_code(assembler.CodeSize());
MemoryRegion code(thunk_code.data(), thunk_code.size());
assembler.FinalizeInstructions(code);
return thunk_code;
}
// PC displacement from patch location; Thumb2 PC is always at instruction address + 4.
static constexpr int32_t kPcDisplacement = 4;
// Maximum positive and negative displacement measured from the patch location.
// (Signed 25 bit displacement with the last bit 0 has range [-2^24, 2^24-2] measured from
// the Thumb2 PC pointing right after the BL, i.e. 4 bytes later than the patch location.)
static constexpr uint32_t kMaxPositiveDisplacement = (1u << 24) - 2 + kPcDisplacement;
static constexpr uint32_t kMaxNegativeDisplacement = (1u << 24) - kPcDisplacement;
DISALLOW_COPY_AND_ASSIGN(Thumb2RelativeCallPatcher);
};
class OatWriter::Arm64RelativeCallPatcher FINAL : public ArmBaseRelativeCallPatcher {
public:
explicit Arm64RelativeCallPatcher(OatWriter* writer)
: ArmBaseRelativeCallPatcher(writer, kArm64, CompileThunkCode(),
kMaxPositiveDisplacement, kMaxNegativeDisplacement) {
}
void Patch(std::vector<uint8_t>* code, uint32_t literal_offset, uint32_t patch_offset,
uint32_t target_offset) OVERRIDE {
DCHECK_LE(literal_offset + 4u, code->size());
DCHECK_EQ(literal_offset & 3u, 0u);
DCHECK_EQ(patch_offset & 3u, 0u);
DCHECK_EQ(target_offset & 3u, 0u);
uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u);
DCHECK_EQ(displacement & 3u, 0u);
DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
uint32_t value = (displacement & 0x0fffffffu) >> 2;
value |= 0x94000000; // BL
uint8_t* addr = &(*code)[literal_offset];
// Check that we're just overwriting an existing BL.
DCHECK_EQ(addr[3] & 0xfc, 0x94);
// Write the new BL.
addr[0] = (value >> 0) & 0xff;
addr[1] = (value >> 8) & 0xff;
addr[2] = (value >> 16) & 0xff;
addr[3] = (value >> 24) & 0xff;
}
private:
static std::vector<uint8_t> CompileThunkCode() {
// The thunk just uses the entry point in the ArtMethod. This works even for calls
// to the generic JNI and interpreter trampolines.
arm64::Arm64Assembler assembler;
Offset offset(mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
std::vector<uint8_t> thunk_code(assembler.CodeSize());
MemoryRegion code(thunk_code.data(), thunk_code.size());
assembler.FinalizeInstructions(code);
return thunk_code;
}
// Maximum positive and negative displacement measured from the patch location.
// (Signed 28 bit displacement with the last bit 0 has range [-2^27, 2^27-4] measured from
// the ARM64 PC pointing to the BL.)
static constexpr uint32_t kMaxPositiveDisplacement = (1u << 27) - 4u;
static constexpr uint32_t kMaxNegativeDisplacement = (1u << 27);
DISALLOW_COPY_AND_ASSIGN(Arm64RelativeCallPatcher);
};
#define DCHECK_OFFSET() \
DCHECK_EQ(static_cast<off_t>(file_offset + relative_offset), out->Seek(0, kSeekCurrent)) \
<< "file_offset=" << file_offset << " relative_offset=" << relative_offset
#define DCHECK_OFFSET_() \
DCHECK_EQ(static_cast<off_t>(file_offset + offset_), out->Seek(0, kSeekCurrent)) \
<< "file_offset=" << file_offset << " offset_=" << offset_
OatWriter::OatWriter(const std::vector<const DexFile*>& dex_files,
uint32_t image_file_location_oat_checksum,
uintptr_t image_file_location_oat_begin,
int32_t image_patch_delta,
const CompilerDriver* compiler,
ImageWriter* image_writer,
TimingLogger* timings,
SafeMap<std::string, std::string>* key_value_store)
: compiler_driver_(compiler),
image_writer_(image_writer),
dex_files_(&dex_files),
size_(0u),
oat_data_offset_(0u),
image_file_location_oat_checksum_(image_file_location_oat_checksum),
image_file_location_oat_begin_(image_file_location_oat_begin),
image_patch_delta_(image_patch_delta),
key_value_store_(key_value_store),
oat_header_(NULL),
size_dex_file_alignment_(0),
size_executable_offset_alignment_(0),
size_oat_header_(0),
size_oat_header_key_value_store_(0),
size_dex_file_(0),
size_interpreter_to_interpreter_bridge_(0),
size_interpreter_to_compiled_code_bridge_(0),
size_jni_dlsym_lookup_(0),
size_portable_imt_conflict_trampoline_(0),
size_portable_resolution_trampoline_(0),
size_portable_to_interpreter_bridge_(0),
size_quick_generic_jni_trampoline_(0),
size_quick_imt_conflict_trampoline_(0),
size_quick_resolution_trampoline_(0),
size_quick_to_interpreter_bridge_(0),
size_trampoline_alignment_(0),
size_method_header_(0),
size_code_(0),
size_code_alignment_(0),
size_relative_call_thunks_(0),
size_mapping_table_(0),
size_vmap_table_(0),
size_gc_map_(0),
size_oat_dex_file_location_size_(0),
size_oat_dex_file_location_data_(0),
size_oat_dex_file_location_checksum_(0),
size_oat_dex_file_offset_(0),
size_oat_dex_file_methods_offsets_(0),
size_oat_class_type_(0),
size_oat_class_status_(0),
size_oat_class_method_bitmaps_(0),
size_oat_class_method_offsets_(0),
method_offset_map_() {
CHECK(key_value_store != nullptr);
switch (compiler_driver_->GetInstructionSet()) {
case kX86:
case kX86_64:
relative_call_patcher_.reset(new X86RelativeCallPatcher);
break;
case kArm:
// Fall through: we generate Thumb2 code for "arm".
case kThumb2:
relative_call_patcher_.reset(new Thumb2RelativeCallPatcher(this));
break;
case kArm64:
relative_call_patcher_.reset(new Arm64RelativeCallPatcher(this));
break;
default:
relative_call_patcher_.reset(new NoRelativeCallPatcher);
break;
}
size_t offset;
{
TimingLogger::ScopedTiming split("InitOatHeader", timings);
offset = InitOatHeader();
}
{
TimingLogger::ScopedTiming split("InitOatDexFiles", timings);
offset = InitOatDexFiles(offset);
}
{
TimingLogger::ScopedTiming split("InitDexFiles", timings);
offset = InitDexFiles(offset);
}
{
TimingLogger::ScopedTiming split("InitOatClasses", timings);
offset = InitOatClasses(offset);
}
{
TimingLogger::ScopedTiming split("InitOatMaps", timings);
offset = InitOatMaps(offset);
}
{
TimingLogger::ScopedTiming split("InitOatCode", timings);
offset = InitOatCode(offset);
}
{
TimingLogger::ScopedTiming split("InitOatCodeDexFiles", timings);
offset = InitOatCodeDexFiles(offset);
}
size_ = offset;
CHECK_EQ(dex_files_->size(), oat_dex_files_.size());
CHECK_EQ(compiler->IsImage(), image_writer_ != nullptr);
CHECK_EQ(compiler->IsImage(),
key_value_store_->find(OatHeader::kImageLocationKey) == key_value_store_->end());
CHECK_ALIGNED(image_patch_delta_, kPageSize);
}
OatWriter::~OatWriter() {
delete oat_header_;
STLDeleteElements(&oat_dex_files_);
STLDeleteElements(&oat_classes_);
}
struct OatWriter::GcMapDataAccess {
static const std::vector<uint8_t>* GetData(const CompiledMethod* compiled_method) ALWAYS_INLINE {
return compiled_method->GetGcMap();
}
static uint32_t GetOffset(OatClass* oat_class, size_t method_offsets_index) ALWAYS_INLINE {
return oat_class->method_offsets_[method_offsets_index].gc_map_offset_;
}
static void SetOffset(OatClass* oat_class, size_t method_offsets_index, uint32_t offset)
ALWAYS_INLINE {
oat_class->method_offsets_[method_offsets_index].gc_map_offset_ = offset;
}
static const char* Name() ALWAYS_INLINE {
return "GC map";
}
};
struct OatWriter::MappingTableDataAccess {
static const std::vector<uint8_t>* GetData(const CompiledMethod* compiled_method) ALWAYS_INLINE {
return &compiled_method->GetMappingTable();
}
static uint32_t GetOffset(OatClass* oat_class, size_t method_offsets_index) ALWAYS_INLINE {
uint32_t offset = oat_class->method_headers_[method_offsets_index].mapping_table_offset_;
return offset == 0u ? 0u :
(oat_class->method_offsets_[method_offsets_index].code_offset_ & ~1) - offset;
}
static void SetOffset(OatClass* oat_class, size_t method_offsets_index, uint32_t offset)
ALWAYS_INLINE {
oat_class->method_headers_[method_offsets_index].mapping_table_offset_ =
(oat_class->method_offsets_[method_offsets_index].code_offset_ & ~1) - offset;
}
static const char* Name() ALWAYS_INLINE {
return "mapping table";
}
};
struct OatWriter::VmapTableDataAccess {
static const std::vector<uint8_t>* GetData(const CompiledMethod* compiled_method) ALWAYS_INLINE {
return &compiled_method->GetVmapTable();
}
static uint32_t GetOffset(OatClass* oat_class, size_t method_offsets_index) ALWAYS_INLINE {
uint32_t offset = oat_class->method_headers_[method_offsets_index].vmap_table_offset_;
return offset == 0u ? 0u :
(oat_class->method_offsets_[method_offsets_index].code_offset_ & ~1) - offset;
}
static void SetOffset(OatClass* oat_class, size_t method_offsets_index, uint32_t offset)
ALWAYS_INLINE {
oat_class->method_headers_[method_offsets_index].vmap_table_offset_ =
(oat_class->method_offsets_[method_offsets_index].code_offset_ & ~1) - offset;
}
static const char* Name() ALWAYS_INLINE {
return "vmap table";
}
};
class OatWriter::DexMethodVisitor {
public:
DexMethodVisitor(OatWriter* writer, size_t offset)
: writer_(writer),
offset_(offset),
dex_file_(nullptr),
class_def_index_(DexFile::kDexNoIndex) {
}
virtual bool StartClass(const DexFile* dex_file, size_t class_def_index) {
DCHECK(dex_file_ == nullptr);
DCHECK_EQ(class_def_index_, DexFile::kDexNoIndex);
dex_file_ = dex_file;
class_def_index_ = class_def_index;
return true;
}
virtual bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it) = 0;
virtual bool EndClass() {
if (kIsDebugBuild) {
dex_file_ = nullptr;
class_def_index_ = DexFile::kDexNoIndex;
}
return true;
}
size_t GetOffset() const {
return offset_;
}
protected:
virtual ~DexMethodVisitor() { }
OatWriter* const writer_;
// The offset is usually advanced for each visited method by the derived class.
size_t offset_;
// The dex file and class def index are set in StartClass().
const DexFile* dex_file_;
size_t class_def_index_;
};
class OatWriter::OatDexMethodVisitor : public DexMethodVisitor {
public:
OatDexMethodVisitor(OatWriter* writer, size_t offset)
: DexMethodVisitor(writer, offset),
oat_class_index_(0u),
method_offsets_index_(0u) {
}
bool StartClass(const DexFile* dex_file, size_t class_def_index) {
DexMethodVisitor::StartClass(dex_file, class_def_index);
DCHECK_LT(oat_class_index_, writer_->oat_classes_.size());
method_offsets_index_ = 0u;
return true;
}
bool EndClass() {
++oat_class_index_;
return DexMethodVisitor::EndClass();
}
protected:
size_t oat_class_index_;
size_t method_offsets_index_;
};
class OatWriter::InitOatClassesMethodVisitor : public DexMethodVisitor {
public:
InitOatClassesMethodVisitor(OatWriter* writer, size_t offset)
: DexMethodVisitor(writer, offset),
compiled_methods_(),
num_non_null_compiled_methods_(0u) {
compiled_methods_.reserve(256u);
}
bool StartClass(const DexFile* dex_file, size_t class_def_index) {
DexMethodVisitor::StartClass(dex_file, class_def_index);
compiled_methods_.clear();
num_non_null_compiled_methods_ = 0u;
return true;
}
bool VisitMethod(size_t class_def_method_index ATTRIBUTE_UNUSED, const ClassDataItemIterator& it) {
// Fill in the compiled_methods_ array for methods that have a
// CompiledMethod. We track the number of non-null entries in
// num_non_null_compiled_methods_ since we only want to allocate
// OatMethodOffsets for the compiled methods.
uint32_t method_idx = it.GetMemberIndex();
CompiledMethod* compiled_method =
writer_->compiler_driver_->GetCompiledMethod(MethodReference(dex_file_, method_idx));
compiled_methods_.push_back(compiled_method);
if (compiled_method != nullptr) {
++num_non_null_compiled_methods_;
}
return true;
}
bool EndClass() {
ClassReference class_ref(dex_file_, class_def_index_);
CompiledClass* compiled_class = writer_->compiler_driver_->GetCompiledClass(class_ref);
mirror::Class::Status status;
if (compiled_class != NULL) {
status = compiled_class->GetStatus();
} else if (writer_->compiler_driver_->GetVerificationResults()->IsClassRejected(class_ref)) {
status = mirror::Class::kStatusError;
} else {
status = mirror::Class::kStatusNotReady;
}
OatClass* oat_class = new OatClass(offset_, compiled_methods_,
num_non_null_compiled_methods_, status);
writer_->oat_classes_.push_back(oat_class);
oat_class->UpdateChecksum(writer_->oat_header_);
offset_ += oat_class->SizeOf();
return DexMethodVisitor::EndClass();
}
private:
std::vector<CompiledMethod*> compiled_methods_;
size_t num_non_null_compiled_methods_;
};
class OatWriter::InitCodeMethodVisitor : public OatDexMethodVisitor {
public:
InitCodeMethodVisitor(OatWriter* writer, size_t offset)
: OatDexMethodVisitor(writer, offset) {
writer_->absolute_patch_locations_.reserve(
writer_->compiler_driver_->GetNonRelativeLinkerPatchCount());
}
bool EndClass() {
OatDexMethodVisitor::EndClass();
if (oat_class_index_ == writer_->oat_classes_.size()) {
offset_ = writer_->relative_call_patcher_->ReserveSpace(offset_, nullptr);
}
return true;
}
bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
OatClass* oat_class = writer_->oat_classes_[oat_class_index_];
CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index);
if (compiled_method != nullptr) {
// Derived from CompiledMethod.
uint32_t quick_code_offset = 0;
const std::vector<uint8_t>* portable_code = compiled_method->GetPortableCode();
const std::vector<uint8_t>* quick_code = compiled_method->GetQuickCode();
if (portable_code != nullptr) {
CHECK(quick_code == nullptr);
size_t oat_method_offsets_offset =
oat_class->GetOatMethodOffsetsOffsetFromOatHeader(class_def_method_index);
compiled_method->AddOatdataOffsetToCompliledCodeOffset(
oat_method_offsets_offset + OFFSETOF_MEMBER(OatMethodOffsets, code_offset_));
} else {
CHECK(quick_code != nullptr);
offset_ = writer_->relative_call_patcher_->ReserveSpace(offset_, compiled_method);
offset_ = compiled_method->AlignCode(offset_);
DCHECK_ALIGNED_PARAM(offset_,
GetInstructionSetAlignment(compiled_method->GetInstructionSet()));
uint32_t code_size = quick_code->size() * sizeof(uint8_t);
CHECK_NE(code_size, 0U);
uint32_t thumb_offset = compiled_method->CodeDelta();
quick_code_offset = offset_ + sizeof(OatQuickMethodHeader) + thumb_offset;
bool deduped = false;
// Deduplicate code arrays.
auto lb = dedupe_map_.lower_bound(compiled_method);
if (lb != dedupe_map_.end() && !dedupe_map_.key_comp()(compiled_method, lb->first)) {
quick_code_offset = lb->second;
deduped = true;
} else {
dedupe_map_.PutBefore(lb, compiled_method, quick_code_offset);
}
MethodReference method_ref(dex_file_, it.GetMemberIndex());
auto method_lb = writer_->method_offset_map_.lower_bound(method_ref);
if (method_lb != writer_->method_offset_map_.end() &&
!writer_->method_offset_map_.key_comp()(method_ref, method_lb->first)) {
// TODO: Should this be a hard failure?
LOG(WARNING) << "Multiple definitions of "
<< PrettyMethod(method_ref.dex_method_index, *method_ref.dex_file)
<< ((method_lb->second != quick_code_offset) ? "; OFFSET MISMATCH" : "");
} else {
writer_->method_offset_map_.PutBefore(method_lb, method_ref, quick_code_offset);
}
// Update quick method header.
DCHECK_LT(method_offsets_index_, oat_class->method_headers_.size());
OatQuickMethodHeader* method_header = &oat_class->method_headers_[method_offsets_index_];
uint32_t mapping_table_offset = method_header->mapping_table_offset_;
uint32_t vmap_table_offset = method_header->vmap_table_offset_;
// The code offset was 0 when the mapping/vmap table offset was set, so it's set
// to 0-offset and we need to adjust it by code_offset.
uint32_t code_offset = quick_code_offset - thumb_offset;
if (mapping_table_offset != 0u) {
mapping_table_offset += code_offset;
DCHECK_LT(mapping_table_offset, code_offset);
}
if (vmap_table_offset != 0u) {
vmap_table_offset += code_offset;
DCHECK_LT(vmap_table_offset, code_offset);
}
uint32_t frame_size_in_bytes = compiled_method->GetFrameSizeInBytes();
uint32_t core_spill_mask = compiled_method->GetCoreSpillMask();
uint32_t fp_spill_mask = compiled_method->GetFpSpillMask();
*method_header = OatQuickMethodHeader(mapping_table_offset, vmap_table_offset,
frame_size_in_bytes, core_spill_mask, fp_spill_mask,
code_size);
if (!deduped) {
// Update offsets. (Checksum is updated when writing.)
offset_ += sizeof(*method_header); // Method header is prepended before code.
offset_ += code_size;
// Record absolute patch locations.
if (!compiled_method->GetPatches().empty()) {
uintptr_t base_loc = offset_ - code_size - writer_->oat_header_->GetExecutableOffset();
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (patch.Type() != kLinkerPatchCallRelative) {
writer_->absolute_patch_locations_.push_back(base_loc + patch.LiteralOffset());
}
}
}
}
if (writer_->compiler_driver_->GetCompilerOptions().GetIncludeDebugSymbols()) {
// Record debug information for this function if we are doing that.
std::string name = PrettyMethod(it.GetMemberIndex(), *dex_file_, true);
if (deduped) {
// TODO We should place the DEDUPED tag on the first instance of a deduplicated symbol
// so that it will show up in a debuggerd crash report.
name += " [ DEDUPED ]";
}
const uint32_t quick_code_start = quick_code_offset -
writer_->oat_header_->GetExecutableOffset();
const DexFile::CodeItem *code_item = it.GetMethodCodeItem();
writer_->method_info_.push_back(DebugInfo(name,
dex_file_->GetSourceFile(dex_file_->GetClassDef(class_def_index_)),
quick_code_start, quick_code_start + code_size,
code_item == nullptr ? nullptr : dex_file_->GetDebugInfoStream(code_item),
compiled_method));
}
}
if (kIsDebugBuild) {
// We expect GC maps except when the class hasn't been verified or the method is native.
const CompilerDriver* compiler_driver = writer_->compiler_driver_;
ClassReference class_ref(dex_file_, class_def_index_);
CompiledClass* compiled_class = compiler_driver->GetCompiledClass(class_ref);
mirror::Class::Status status;
if (compiled_class != NULL) {
status = compiled_class->GetStatus();
} else if (compiler_driver->GetVerificationResults()->IsClassRejected(class_ref)) {
status = mirror::Class::kStatusError;
} else {
status = mirror::Class::kStatusNotReady;
}
std::vector<uint8_t> const * gc_map = compiled_method->GetGcMap();
if (gc_map != nullptr) {
size_t gc_map_size = gc_map->size() * sizeof(gc_map[0]);
bool is_native = it.MemberIsNative();
CHECK(gc_map_size != 0 || is_native || status < mirror::Class::kStatusVerified)
<< gc_map << " " << gc_map_size << " " << (is_native ? "true" : "false") << " "
<< (status < mirror::Class::kStatusVerified) << " " << status << " "
<< PrettyMethod(it.GetMemberIndex(), *dex_file_);
}
}
DCHECK_LT(method_offsets_index_, oat_class->method_offsets_.size());
OatMethodOffsets* offsets = &oat_class->method_offsets_[method_offsets_index_];
offsets->code_offset_ = quick_code_offset;
++method_offsets_index_;
}
return true;
}
private:
// Deduplication is already done on a pointer basis by the compiler driver,
// so we can simply compare the pointers to find out if things are duplicated.
SafeMap<const CompiledMethod*, uint32_t, CodeOffsetsKeyComparator> dedupe_map_;
};
template <typename DataAccess>
class OatWriter::InitMapMethodVisitor : public OatDexMethodVisitor {
public:
InitMapMethodVisitor(OatWriter* writer, size_t offset)
: OatDexMethodVisitor(writer, offset) {
}
bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it ATTRIBUTE_UNUSED)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
OatClass* oat_class = writer_->oat_classes_[oat_class_index_];
CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index);
if (compiled_method != nullptr) {
DCHECK_LT(method_offsets_index_, oat_class->method_offsets_.size());
DCHECK_EQ(DataAccess::GetOffset(oat_class, method_offsets_index_), 0u);
const std::vector<uint8_t>* map = DataAccess::GetData(compiled_method);
uint32_t map_size = map == nullptr ? 0 : map->size() * sizeof((*map)[0]);
if (map_size != 0u) {
auto lb = dedupe_map_.lower_bound(map);
if (lb != dedupe_map_.end() && !dedupe_map_.key_comp()(map, lb->first)) {
DataAccess::SetOffset(oat_class, method_offsets_index_, lb->second);
} else {
DataAccess::SetOffset(oat_class, method_offsets_index_, offset_);
dedupe_map_.PutBefore(lb, map, offset_);
offset_ += map_size;
writer_->oat_header_->UpdateChecksum(&(*map)[0], map_size);
}
}
++method_offsets_index_;
}
return true;
}
private:
// Deduplication is already done on a pointer basis by the compiler driver,
// so we can simply compare the pointers to find out if things are duplicated.
SafeMap<const std::vector<uint8_t>*, uint32_t> dedupe_map_;
};
class OatWriter::InitImageMethodVisitor : public OatDexMethodVisitor {
public:
InitImageMethodVisitor(OatWriter* writer, size_t offset)
: OatDexMethodVisitor(writer, offset) {
}
bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
OatClass* oat_class = writer_->oat_classes_[oat_class_index_];
CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index);
OatMethodOffsets offsets(0u, 0u);
if (compiled_method != nullptr) {
DCHECK_LT(method_offsets_index_, oat_class->method_offsets_.size());
offsets = oat_class->method_offsets_[method_offsets_index_];
++method_offsets_index_;
}
ClassLinker* linker = Runtime::Current()->GetClassLinker();
InvokeType invoke_type = it.GetMethodInvokeType(dex_file_->GetClassDef(class_def_index_));
// Unchecked as we hold mutator_lock_ on entry.
ScopedObjectAccessUnchecked soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(linker->FindDexCache(*dex_file_)));
mirror::ArtMethod* method = linker->ResolveMethod(*dex_file_, it.GetMemberIndex(), dex_cache,
NullHandle<mirror::ClassLoader>(),
NullHandle<mirror::ArtMethod>(),
invoke_type);
if (method == nullptr) {
LOG(ERROR) << "Unexpected failure to resolve a method: "
<< PrettyMethod(it.GetMemberIndex(), *dex_file_, true);
soa.Self()->AssertPendingException();
mirror::Throwable* exc = soa.Self()->GetException(nullptr);
std::string dump = exc->Dump();
LOG(FATAL) << dump;
}
// Portable code offsets are set by ElfWriterMclinker::FixupCompiledCodeOffset after linking.
method->SetQuickOatCodeOffset(offsets.code_offset_);
method->SetOatNativeGcMapOffset(offsets.gc_map_offset_);
return true;
}
};
class OatWriter::WriteCodeMethodVisitor : public OatDexMethodVisitor {
public:
WriteCodeMethodVisitor(OatWriter* writer, OutputStream* out, const size_t file_offset,
size_t relative_offset) SHARED_LOCK_FUNCTION(Locks::mutator_lock_)
: OatDexMethodVisitor(writer, relative_offset),
out_(out),
file_offset_(file_offset),
soa_(Thread::Current()),
no_thread_suspension_(soa_.Self(), "OatWriter patching"),
class_linker_(Runtime::Current()->GetClassLinker()),
dex_cache_(nullptr) {
if (writer_->image_writer_ != nullptr) {
// If we're creating the image, the address space must be ready so that we can apply patches.
CHECK(writer_->image_writer_->IsImageAddressSpaceReady());
patched_code_.reserve(16 * KB);
}
}
~WriteCodeMethodVisitor() UNLOCK_FUNCTION(Locks::mutator_lock_) {
}
bool StartClass(const DexFile* dex_file, size_t class_def_index)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
OatDexMethodVisitor::StartClass(dex_file, class_def_index);
if (dex_cache_ == nullptr || dex_cache_->GetDexFile() != dex_file) {
dex_cache_ = class_linker_->FindDexCache(*dex_file);
}
return true;
}
bool EndClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
bool result = OatDexMethodVisitor::EndClass();
if (oat_class_index_ == writer_->oat_classes_.size()) {
DCHECK(result); // OatDexMethodVisitor::EndClass() never fails.
offset_ = writer_->relative_call_patcher_->WriteThunks(out_, offset_);
if (UNLIKELY(offset_ == 0u)) {
PLOG(ERROR) << "Failed to write final relative call thunks";
result = false;
}
}
return result;
}
bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
OatClass* oat_class = writer_->oat_classes_[oat_class_index_];
const CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index);
if (compiled_method != NULL) { // ie. not an abstract method
size_t file_offset = file_offset_;
OutputStream* out = out_;
const std::vector<uint8_t>* quick_code = compiled_method->GetQuickCode();
if (quick_code != nullptr) {
CHECK(compiled_method->GetPortableCode() == nullptr);
offset_ = writer_->relative_call_patcher_->WriteThunks(out, offset_);
if (offset_ == 0u) {
ReportWriteFailure("relative call thunk", it);
return false;
}
uint32_t aligned_offset = compiled_method->AlignCode(offset_);
uint32_t aligned_code_delta = aligned_offset - offset_;
if (aligned_code_delta != 0) {
if (!writer_->WriteCodeAlignment(out, aligned_code_delta)) {
ReportWriteFailure("code alignment padding", it);
return false;
}
offset_ += aligned_code_delta;
DCHECK_OFFSET_();
}
DCHECK_ALIGNED_PARAM(offset_,
GetInstructionSetAlignment(compiled_method->GetInstructionSet()));
uint32_t code_size = quick_code->size() * sizeof(uint8_t);
CHECK_NE(code_size, 0U);
// Deduplicate code arrays.
const OatMethodOffsets& method_offsets = oat_class->method_offsets_[method_offsets_index_];
DCHECK(method_offsets.code_offset_ < offset_ || method_offsets.code_offset_ ==
offset_ + sizeof(OatQuickMethodHeader) + compiled_method->CodeDelta())
<< PrettyMethod(it.GetMemberIndex(), *dex_file_);
if (method_offsets.code_offset_ >= offset_) {
const OatQuickMethodHeader& method_header =
oat_class->method_headers_[method_offsets_index_];
writer_->oat_header_->UpdateChecksum(&method_header, sizeof(method_header));
if (!out->WriteFully(&method_header, sizeof(method_header))) {
ReportWriteFailure("method header", it);
return false;
}
writer_->size_method_header_ += sizeof(method_header);
offset_ += sizeof(method_header);
DCHECK_OFFSET_();
if (!compiled_method->GetPatches().empty()) {
patched_code_ = *quick_code;
quick_code = &patched_code_;
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (patch.Type() == kLinkerPatchCallRelative) {
// NOTE: Relative calls across oat files are not supported.
uint32_t target_offset = GetTargetOffset(patch);
uint32_t literal_offset = patch.LiteralOffset();
writer_->relative_call_patcher_->Patch(&patched_code_, literal_offset,
offset_ + literal_offset, target_offset);
} else if (patch.Type() == kLinkerPatchCall) {
uint32_t target_offset = GetTargetOffset(patch);
PatchCodeAddress(&patched_code_, patch.LiteralOffset(), target_offset);
} else if (patch.Type() == kLinkerPatchMethod) {
mirror::ArtMethod* method = GetTargetMethod(patch);
PatchObjectAddress(&patched_code_, patch.LiteralOffset(), method);
} else if (patch.Type() == kLinkerPatchType) {
mirror::Class* type = GetTargetType(patch);
PatchObjectAddress(&patched_code_, patch.LiteralOffset(), type);
}
}
}
writer_->oat_header_->UpdateChecksum(&(*quick_code)[0], code_size);
if (!out->WriteFully(&(*quick_code)[0], code_size)) {
ReportWriteFailure("method code", it);
return false;
}
writer_->size_code_ += code_size;
offset_ += code_size;
}
DCHECK_OFFSET_();
}
++method_offsets_index_;
}
return true;
}
private:
OutputStream* const out_;
const size_t file_offset_;
const ScopedObjectAccess soa_;
const ScopedAssertNoThreadSuspension no_thread_suspension_;
ClassLinker* const class_linker_;
mirror::DexCache* dex_cache_;
std::vector<uint8_t> patched_code_;
void ReportWriteFailure(const char* what, const ClassDataItemIterator& it) {
PLOG(ERROR) << "Failed to write " << what << " for "
<< PrettyMethod(it.GetMemberIndex(), *dex_file_) << " to " << out_->GetLocation();
}
mirror::ArtMethod* GetTargetMethod(const LinkerPatch& patch)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
MethodReference ref = patch.TargetMethod();
mirror::DexCache* dex_cache =
(dex_file_ == ref.dex_file) ? dex_cache_ : class_linker_->FindDexCache(*ref.dex_file);
mirror::ArtMethod* method = dex_cache->GetResolvedMethod(ref.dex_method_index);
CHECK(method != nullptr);
return method;
}
uint32_t GetTargetOffset(const LinkerPatch& patch) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
auto target_it = writer_->method_offset_map_.find(patch.TargetMethod());
uint32_t target_offset =
(target_it != writer_->method_offset_map_.end()) ? target_it->second : 0u;
// If there's no compiled code, point to the correct trampoline.
if (UNLIKELY(target_offset == 0)) {
mirror::ArtMethod* target = GetTargetMethod(patch);
DCHECK(target != nullptr);
DCHECK_EQ(target->GetQuickOatCodeOffset(), 0u);
target_offset = target->IsNative()
? writer_->oat_header_->GetQuickGenericJniTrampolineOffset()
: writer_->oat_header_->GetQuickToInterpreterBridgeOffset();
}
return target_offset;
}
mirror::Class* GetTargetType(const LinkerPatch& patch)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::DexCache* dex_cache = (dex_file_ == patch.TargetTypeDexFile())
? dex_cache_ : class_linker_->FindDexCache(*patch.TargetTypeDexFile());
mirror::Class* type = dex_cache->GetResolvedType(patch.TargetTypeIndex());
CHECK(type != nullptr);
return type;
}
void PatchObjectAddress(std::vector<uint8_t>* code, uint32_t offset, mirror::Object* object)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// NOTE: Direct method pointers across oat files don't use linker patches. However, direct
// type pointers across oat files do. (TODO: Investigate why.)
if (writer_->image_writer_ != nullptr) {
object = writer_->image_writer_->GetImageAddress(object);
}
uint32_t address = PointerToLowMemUInt32(object);
DCHECK_LE(offset + 4, code->size());
uint8_t* data = &(*code)[offset];
data[0] = address & 0xffu;
data[1] = (address >> 8) & 0xffu;
data[2] = (address >> 16) & 0xffu;
data[3] = (address >> 24) & 0xffu;
}
void PatchCodeAddress(std::vector<uint8_t>* code, uint32_t offset, uint32_t target_offset)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// NOTE: Direct calls across oat files don't use linker patches.
DCHECK(writer_->image_writer_ != nullptr);
uint32_t address = PointerToLowMemUInt32(writer_->image_writer_->GetOatFileBegin() +
writer_->oat_data_offset_ + target_offset);
DCHECK_LE(offset + 4, code->size());
uint8_t* data = &(*code)[offset];
data[0] = address & 0xffu;
data[1] = (address >> 8) & 0xffu;
data[2] = (address >> 16) & 0xffu;
data[3] = (address >> 24) & 0xffu;
}
};
template <typename DataAccess>
class OatWriter::WriteMapMethodVisitor : public OatDexMethodVisitor {
public:
WriteMapMethodVisitor(OatWriter* writer, OutputStream* out, const size_t file_offset,
size_t relative_offset)
: OatDexMethodVisitor(writer, relative_offset),
out_(out),
file_offset_(file_offset) {
}
bool VisitMethod(size_t class_def_method_index, const ClassDataItemIterator& it) {
OatClass* oat_class = writer_->oat_classes_[oat_class_index_];
const CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index);
if (compiled_method != NULL) { // ie. not an abstract method
size_t file_offset = file_offset_;
OutputStream* out = out_;
uint32_t map_offset = DataAccess::GetOffset(oat_class, method_offsets_index_);
++method_offsets_index_;
// Write deduplicated map.
const std::vector<uint8_t>* map = DataAccess::GetData(compiled_method);
size_t map_size = map == nullptr ? 0 : map->size() * sizeof((*map)[0]);
DCHECK((map_size == 0u && map_offset == 0u) ||
(map_size != 0u && map_offset != 0u && map_offset <= offset_))
<< PrettyMethod(it.GetMemberIndex(), *dex_file_);
if (map_size != 0u && map_offset == offset_) {
if (UNLIKELY(!out->WriteFully(&(*map)[0], map_size))) {
ReportWriteFailure(it);
return false;
}
offset_ += map_size;
}
DCHECK_OFFSET_();
}
return true;
}
private:
OutputStream* const out_;
size_t const file_offset_;
void ReportWriteFailure(const ClassDataItemIterator& it) {
PLOG(ERROR) << "Failed to write " << DataAccess::Name() << " for "
<< PrettyMethod(it.GetMemberIndex(), *dex_file_) << " to " << out_->GetLocation();
}
};
// Visit all methods from all classes in all dex files with the specified visitor.
bool OatWriter::VisitDexMethods(DexMethodVisitor* visitor) {
for (const DexFile* dex_file : *dex_files_) {
const size_t class_def_count = dex_file->NumClassDefs();
for (size_t class_def_index = 0; class_def_index != class_def_count; ++class_def_index) {
if (UNLIKELY(!visitor->StartClass(dex_file, class_def_index))) {
return false;
}
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data != NULL) { // ie not an empty class, such as a marker interface
ClassDataItemIterator it(*dex_file, class_data);
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
size_t class_def_method_index = 0u;
while (it.HasNextDirectMethod()) {
if (!visitor->VisitMethod(class_def_method_index, it)) {
return false;
}
++class_def_method_index;
it.Next();
}
while (it.HasNextVirtualMethod()) {
if (UNLIKELY(!visitor->VisitMethod(class_def_method_index, it))) {
return false;
}
++class_def_method_index;
it.Next();
}
}
if (UNLIKELY(!visitor->EndClass())) {
return false;
}
}
}
return true;
}
size_t OatWriter::InitOatHeader() {
oat_header_ = OatHeader::Create(compiler_driver_->GetInstructionSet(),
compiler_driver_->GetInstructionSetFeatures(),
dex_files_,
image_file_location_oat_checksum_,
image_file_location_oat_begin_,
key_value_store_);
return oat_header_->GetHeaderSize();
}
size_t OatWriter::InitOatDexFiles(size_t offset) {
// create the OatDexFiles
for (size_t i = 0; i != dex_files_->size(); ++i) {
const DexFile* dex_file = (*dex_files_)[i];
CHECK(dex_file != NULL);
OatDexFile* oat_dex_file = new OatDexFile(offset, *dex_file);
oat_dex_files_.push_back(oat_dex_file);
offset += oat_dex_file->SizeOf();
}
return offset;
}
size_t OatWriter::InitDexFiles(size_t offset) {
// calculate the offsets within OatDexFiles to the DexFiles
for (size_t i = 0; i != dex_files_->size(); ++i) {
// dex files are required to be 4 byte aligned
size_t original_offset = offset;
offset = RoundUp(offset, 4);
size_dex_file_alignment_ += offset - original_offset;
// set offset in OatDexFile to DexFile
oat_dex_files_[i]->dex_file_offset_ = offset;
const DexFile* dex_file = (*dex_files_)[i];
offset += dex_file->GetHeader().file_size_;
}
return offset;
}
size_t OatWriter::InitOatClasses(size_t offset) {
// calculate the offsets within OatDexFiles to OatClasses
InitOatClassesMethodVisitor visitor(this, offset);
bool success = VisitDexMethods(&visitor);
CHECK(success);
offset = visitor.GetOffset();
// Update oat_dex_files_.
auto oat_class_it = oat_classes_.begin();
for (OatDexFile* oat_dex_file : oat_dex_files_) {
for (uint32_t& offset : oat_dex_file->methods_offsets_) {
DCHECK(oat_class_it != oat_classes_.end());
offset = (*oat_class_it)->offset_;
++oat_class_it;
}
oat_dex_file->UpdateChecksum(oat_header_);
}
CHECK(oat_class_it == oat_classes_.end());
return offset;
}
size_t OatWriter::InitOatMaps(size_t offset) {
#define VISIT(VisitorType) \
do { \
VisitorType visitor(this, offset); \
bool success = VisitDexMethods(&visitor); \
DCHECK(success); \
offset = visitor.GetOffset(); \
} while (false)
VISIT(InitMapMethodVisitor<GcMapDataAccess>);
VISIT(InitMapMethodVisitor<MappingTableDataAccess>);
VISIT(InitMapMethodVisitor<VmapTableDataAccess>);
#undef VISIT
return offset;
}
size_t OatWriter::InitOatCode(size_t offset) {
// calculate the offsets within OatHeader to executable code
size_t old_offset = offset;
size_t adjusted_offset = offset;
// required to be on a new page boundary
offset = RoundUp(offset, kPageSize);
oat_header_->SetExecutableOffset(offset);
size_executable_offset_alignment_ = offset - old_offset;
if (compiler_driver_->IsImage()) {
CHECK_EQ(image_patch_delta_, 0);
InstructionSet instruction_set = compiler_driver_->GetInstructionSet();
#define DO_TRAMPOLINE(field, fn_name) \
offset = CompiledCode::AlignCode(offset, instruction_set); \
adjusted_offset = offset + CompiledCode::CodeDelta(instruction_set); \
oat_header_->Set ## fn_name ## Offset(adjusted_offset); \
field.reset(compiler_driver_->Create ## fn_name()); \
offset += field->size();
DO_TRAMPOLINE(interpreter_to_interpreter_bridge_, InterpreterToInterpreterBridge);
DO_TRAMPOLINE(interpreter_to_compiled_code_bridge_, InterpreterToCompiledCodeBridge);
DO_TRAMPOLINE(jni_dlsym_lookup_, JniDlsymLookup);
DO_TRAMPOLINE(portable_imt_conflict_trampoline_, PortableImtConflictTrampoline);
DO_TRAMPOLINE(portable_resolution_trampoline_, PortableResolutionTrampoline);
DO_TRAMPOLINE(portable_to_interpreter_bridge_, PortableToInterpreterBridge);
DO_TRAMPOLINE(quick_generic_jni_trampoline_, QuickGenericJniTrampoline);
DO_TRAMPOLINE(quick_imt_conflict_trampoline_, QuickImtConflictTrampoline);
DO_TRAMPOLINE(quick_resolution_trampoline_, QuickResolutionTrampoline);
DO_TRAMPOLINE(quick_to_interpreter_bridge_, QuickToInterpreterBridge);
#undef DO_TRAMPOLINE
} else {
oat_header_->SetInterpreterToInterpreterBridgeOffset(0);
oat_header_->SetInterpreterToCompiledCodeBridgeOffset(0);
oat_header_->SetJniDlsymLookupOffset(0);
oat_header_->SetPortableImtConflictTrampolineOffset(0);
oat_header_->SetPortableResolutionTrampolineOffset(0);
oat_header_->SetPortableToInterpreterBridgeOffset(0);
oat_header_->SetQuickGenericJniTrampolineOffset(0);
oat_header_->SetQuickImtConflictTrampolineOffset(0);
oat_header_->SetQuickResolutionTrampolineOffset(0);
oat_header_->SetQuickToInterpreterBridgeOffset(0);
oat_header_->SetImagePatchDelta(image_patch_delta_);
}
return offset;
}
size_t OatWriter::InitOatCodeDexFiles(size_t offset) {
#define VISIT(VisitorType) \
do { \
VisitorType visitor(this, offset); \
bool success = VisitDexMethods(&visitor); \
DCHECK(success); \
offset = visitor.GetOffset(); \
} while (false)
VISIT(InitCodeMethodVisitor);
if (compiler_driver_->IsImage()) {
VISIT(InitImageMethodVisitor);
}
#undef VISIT
return offset;
}
bool OatWriter::Write(OutputStream* out) {
const off_t raw_file_offset = out->Seek(0, kSeekCurrent);
if (raw_file_offset == (off_t) -1) {
LOG(ERROR) << "Failed to get file offset in " << out->GetLocation();
return false;
}
const size_t file_offset = static_cast<size_t>(raw_file_offset);
// Reserve space for header. It will be written last - after updating the checksum.
size_t header_size = oat_header_->GetHeaderSize();
if (out->Seek(header_size, kSeekCurrent) == (off_t) -1) {
PLOG(ERROR) << "Failed to reserve space for oat header in " << out->GetLocation();
return false;
}
size_oat_header_ += sizeof(OatHeader);
size_oat_header_key_value_store_ += oat_header_->GetHeaderSize() - sizeof(OatHeader);
if (!WriteTables(out, file_offset)) {
LOG(ERROR) << "Failed to write oat tables to " << out->GetLocation();
return false;
}
off_t tables_end_offset = out->Seek(0, kSeekCurrent);
if (tables_end_offset == (off_t) -1) {
LOG(ERROR) << "Failed to seek to oat code position in " << out->GetLocation();
return false;
}
size_t relative_offset = static_cast<size_t>(tables_end_offset) - file_offset;
relative_offset = WriteMaps(out, file_offset, relative_offset);
if (relative_offset == 0) {
LOG(ERROR) << "Failed to write oat code to " << out->GetLocation();
return false;
}
relative_offset = WriteCode(out, file_offset, relative_offset);
if (relative_offset == 0) {
LOG(ERROR) << "Failed to write oat code to " << out->GetLocation();
return false;
}
relative_offset = WriteCodeDexFiles(out, file_offset, relative_offset);
if (relative_offset == 0) {
LOG(ERROR) << "Failed to write oat code for dex files to " << out->GetLocation();
return false;
}
const off_t oat_end_file_offset = out->Seek(0, kSeekCurrent);
if (oat_end_file_offset == (off_t) -1) {
LOG(ERROR) << "Failed to get oat end file offset in " << out->GetLocation();
return false;
}
if (kIsDebugBuild) {
uint32_t size_total = 0;
#define DO_STAT(x) \
VLOG(compiler) << #x "=" << PrettySize(x) << " (" << x << "B)"; \
size_total += x;
DO_STAT(size_dex_file_alignment_);
DO_STAT(size_executable_offset_alignment_);
DO_STAT(size_oat_header_);
DO_STAT(size_oat_header_key_value_store_);
DO_STAT(size_dex_file_);
DO_STAT(size_interpreter_to_interpreter_bridge_);
DO_STAT(size_interpreter_to_compiled_code_bridge_);
DO_STAT(size_jni_dlsym_lookup_);
DO_STAT(size_portable_imt_conflict_trampoline_);
DO_STAT(size_portable_resolution_trampoline_);
DO_STAT(size_portable_to_interpreter_bridge_);
DO_STAT(size_quick_generic_jni_trampoline_);
DO_STAT(size_quick_imt_conflict_trampoline_);
DO_STAT(size_quick_resolution_trampoline_);
DO_STAT(size_quick_to_interpreter_bridge_);
DO_STAT(size_trampoline_alignment_);
DO_STAT(size_method_header_);
DO_STAT(size_code_);
DO_STAT(size_code_alignment_);
DO_STAT(size_relative_call_thunks_);
DO_STAT(size_mapping_table_);
DO_STAT(size_vmap_table_);
DO_STAT(size_gc_map_);
DO_STAT(size_oat_dex_file_location_size_);
DO_STAT(size_oat_dex_file_location_data_);
DO_STAT(size_oat_dex_file_location_checksum_);
DO_STAT(size_oat_dex_file_offset_);
DO_STAT(size_oat_dex_file_methods_offsets_);
DO_STAT(size_oat_class_type_);
DO_STAT(size_oat_class_status_);
DO_STAT(size_oat_class_method_bitmaps_);
DO_STAT(size_oat_class_method_offsets_);
#undef DO_STAT
VLOG(compiler) << "size_total=" << PrettySize(size_total) << " (" << size_total << "B)"; \
CHECK_EQ(file_offset + size_total, static_cast<size_t>(oat_end_file_offset));
CHECK_EQ(size_, size_total);
}
CHECK_EQ(file_offset + size_, static_cast<size_t>(oat_end_file_offset));
CHECK_EQ(size_, relative_offset);
// Write the header now that the checksum is final.
if (out->Seek(file_offset, kSeekSet) == (off_t) -1) {
PLOG(ERROR) << "Failed to seek to oat header position in " << out->GetLocation();
return false;
}
DCHECK_EQ(raw_file_offset, out->Seek(0, kSeekCurrent));
if (!out->WriteFully(oat_header_, header_size)) {
PLOG(ERROR) << "Failed to write oat header to " << out->GetLocation();
return false;
}
if (out->Seek(oat_end_file_offset, kSeekSet) == (off_t) -1) {
PLOG(ERROR) << "Failed to seek to end after writing oat header to " << out->GetLocation();
return false;
}
DCHECK_EQ(oat_end_file_offset, out->Seek(0, kSeekCurrent));
return true;
}
bool OatWriter::WriteTables(OutputStream* out, const size_t file_offset) {
for (size_t i = 0; i != oat_dex_files_.size(); ++i) {
if (!oat_dex_files_[i]->Write(this, out, file_offset)) {
PLOG(ERROR) << "Failed to write oat dex information to " << out->GetLocation();
return false;
}
}
for (size_t i = 0; i != oat_dex_files_.size(); ++i) {
uint32_t expected_offset = file_offset + oat_dex_files_[i]->dex_file_offset_;
off_t actual_offset = out->Seek(expected_offset, kSeekSet);
if (static_cast<uint32_t>(actual_offset) != expected_offset) {
const DexFile* dex_file = (*dex_files_)[i];
PLOG(ERROR) << "Failed to seek to dex file section. Actual: " << actual_offset
<< " Expected: " << expected_offset << " File: " << dex_file->GetLocation();
return false;
}
const DexFile* dex_file = (*dex_files_)[i];
if (!out->WriteFully(&dex_file->GetHeader(), dex_file->GetHeader().file_size_)) {
PLOG(ERROR) << "Failed to write dex file " << dex_file->GetLocation()
<< " to " << out->GetLocation();
return false;
}
size_dex_file_ += dex_file->GetHeader().file_size_;
}
for (size_t i = 0; i != oat_classes_.size(); ++i) {
if (!oat_classes_[i]->Write(this, out, file_offset)) {
PLOG(ERROR) << "Failed to write oat methods information to " << out->GetLocation();
return false;
}
}
return true;
}
size_t OatWriter::WriteMaps(OutputStream* out, const size_t file_offset, size_t relative_offset) {
#define VISIT(VisitorType) \
do { \
VisitorType visitor(this, out, file_offset, relative_offset); \
if (UNLIKELY(!VisitDexMethods(&visitor))) { \
return 0; \
} \
relative_offset = visitor.GetOffset(); \
} while (false)
size_t gc_maps_offset = relative_offset;
VISIT(WriteMapMethodVisitor<GcMapDataAccess>);
size_gc_map_ = relative_offset - gc_maps_offset;
size_t mapping_tables_offset = relative_offset;
VISIT(WriteMapMethodVisitor<MappingTableDataAccess>);
size_mapping_table_ = relative_offset - mapping_tables_offset;
size_t vmap_tables_offset = relative_offset;
VISIT(WriteMapMethodVisitor<VmapTableDataAccess>);
size_vmap_table_ = relative_offset - vmap_tables_offset;
#undef VISIT
return relative_offset;
}
size_t OatWriter::WriteCode(OutputStream* out, const size_t file_offset, size_t relative_offset) {
off_t new_offset = out->Seek(size_executable_offset_alignment_, kSeekCurrent);
relative_offset += size_executable_offset_alignment_;
DCHECK_EQ(relative_offset, oat_header_->GetExecutableOffset());
size_t expected_file_offset = file_offset + relative_offset;
if (static_cast<uint32_t>(new_offset) != expected_file_offset) {
PLOG(ERROR) << "Failed to seek to oat code section. Actual: " << new_offset
<< " Expected: " << expected_file_offset << " File: " << out->GetLocation();
return 0;
}
DCHECK_OFFSET();
if (compiler_driver_->IsImage()) {
InstructionSet instruction_set = compiler_driver_->GetInstructionSet();
#define DO_TRAMPOLINE(field) \
do { \
uint32_t aligned_offset = CompiledCode::AlignCode(relative_offset, instruction_set); \
uint32_t alignment_padding = aligned_offset - relative_offset; \
out->Seek(alignment_padding, kSeekCurrent); \
size_trampoline_alignment_ += alignment_padding; \
if (!out->WriteFully(&(*field)[0], field->size())) { \
PLOG(ERROR) << "Failed to write " # field " to " << out->GetLocation(); \
return false; \
} \
size_ ## field += field->size(); \
relative_offset += alignment_padding + field->size(); \
DCHECK_OFFSET(); \
} while (false)
DO_TRAMPOLINE(interpreter_to_interpreter_bridge_);
DO_TRAMPOLINE(interpreter_to_compiled_code_bridge_);
DO_TRAMPOLINE(jni_dlsym_lookup_);
DO_TRAMPOLINE(portable_imt_conflict_trampoline_);
DO_TRAMPOLINE(portable_resolution_trampoline_);
DO_TRAMPOLINE(portable_to_interpreter_bridge_);
DO_TRAMPOLINE(quick_generic_jni_trampoline_);
DO_TRAMPOLINE(quick_imt_conflict_trampoline_);
DO_TRAMPOLINE(quick_resolution_trampoline_);
DO_TRAMPOLINE(quick_to_interpreter_bridge_);
#undef DO_TRAMPOLINE
}
return relative_offset;
}
size_t OatWriter::WriteCodeDexFiles(OutputStream* out,
const size_t file_offset,
size_t relative_offset) {
#define VISIT(VisitorType) \
do { \
VisitorType visitor(this, out, file_offset, relative_offset); \
if (UNLIKELY(!VisitDexMethods(&visitor))) { \
return 0; \
} \
relative_offset = visitor.GetOffset(); \
} while (false)
VISIT(WriteCodeMethodVisitor);
#undef VISIT
return relative_offset;
}
bool OatWriter::WriteCodeAlignment(OutputStream* out, uint32_t aligned_code_delta) {
static const uint8_t kPadding[] = {
0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u
};
DCHECK_LE(aligned_code_delta, sizeof(kPadding));
if (UNLIKELY(!out->WriteFully(kPadding, aligned_code_delta))) {
return false;
}
size_code_alignment_ += aligned_code_delta;
return true;
}
OatWriter::OatDexFile::OatDexFile(size_t offset, const DexFile& dex_file) {
offset_ = offset;
const std::string& location(dex_file.GetLocation());
dex_file_location_size_ = location.size();
dex_file_location_data_ = reinterpret_cast<const uint8_t*>(location.data());
dex_file_location_checksum_ = dex_file.GetLocationChecksum();
dex_file_offset_ = 0;
methods_offsets_.resize(dex_file.NumClassDefs());
}
size_t OatWriter::OatDexFile::SizeOf() const {
return sizeof(dex_file_location_size_)
+ dex_file_location_size_
+ sizeof(dex_file_location_checksum_)
+ sizeof(dex_file_offset_)
+ (sizeof(methods_offsets_[0]) * methods_offsets_.size());
}
void OatWriter::OatDexFile::UpdateChecksum(OatHeader* oat_header) const {
oat_header->UpdateChecksum(&dex_file_location_size_, sizeof(dex_file_location_size_));
oat_header->UpdateChecksum(dex_file_location_data_, dex_file_location_size_);
oat_header->UpdateChecksum(&dex_file_location_checksum_, sizeof(dex_file_location_checksum_));
oat_header->UpdateChecksum(&dex_file_offset_, sizeof(dex_file_offset_));
oat_header->UpdateChecksum(&methods_offsets_[0],
sizeof(methods_offsets_[0]) * methods_offsets_.size());
}
bool OatWriter::OatDexFile::Write(OatWriter* oat_writer,
OutputStream* out,
const size_t file_offset) const {
DCHECK_OFFSET_();
if (!out->WriteFully(&dex_file_location_size_, sizeof(dex_file_location_size_))) {
PLOG(ERROR) << "Failed to write dex file location length to " << out->GetLocation();
return false;
}
oat_writer->size_oat_dex_file_location_size_ += sizeof(dex_file_location_size_);
if (!out->WriteFully(dex_file_location_data_, dex_file_location_size_)) {
PLOG(ERROR) << "Failed to write dex file location data to " << out->GetLocation();
return false;
}
oat_writer->size_oat_dex_file_location_data_ += dex_file_location_size_;
if (!out->WriteFully(&dex_file_location_checksum_, sizeof(dex_file_location_checksum_))) {
PLOG(ERROR) << "Failed to write dex file location checksum to " << out->GetLocation();
return false;
}
oat_writer->size_oat_dex_file_location_checksum_ += sizeof(dex_file_location_checksum_);
if (!out->WriteFully(&dex_file_offset_, sizeof(dex_file_offset_))) {
PLOG(ERROR) << "Failed to write dex file offset to " << out->GetLocation();
return false;
}
oat_writer->size_oat_dex_file_offset_ += sizeof(dex_file_offset_);
if (!out->WriteFully(&methods_offsets_[0],
sizeof(methods_offsets_[0]) * methods_offsets_.size())) {
PLOG(ERROR) << "Failed to write methods offsets to " << out->GetLocation();
return false;
}
oat_writer->size_oat_dex_file_methods_offsets_ +=
sizeof(methods_offsets_[0]) * methods_offsets_.size();
return true;
}
OatWriter::OatClass::OatClass(size_t offset,
const std::vector<CompiledMethod*>& compiled_methods,
uint32_t num_non_null_compiled_methods,
mirror::Class::Status status)
: compiled_methods_(compiled_methods) {
uint32_t num_methods = compiled_methods.size();
CHECK_LE(num_non_null_compiled_methods, num_methods);
offset_ = offset;
oat_method_offsets_offsets_from_oat_class_.resize(num_methods);
// Since both kOatClassNoneCompiled and kOatClassAllCompiled could
// apply when there are 0 methods, we just arbitrarily say that 0
// methods means kOatClassNoneCompiled and that we won't use
// kOatClassAllCompiled unless there is at least one compiled
// method. This means in an interpretter only system, we can assert
// that all classes are kOatClassNoneCompiled.
if (num_non_null_compiled_methods == 0) {
type_ = kOatClassNoneCompiled;
} else if (num_non_null_compiled_methods == num_methods) {
type_ = kOatClassAllCompiled;
} else {
type_ = kOatClassSomeCompiled;
}
status_ = status;
method_offsets_.resize(num_non_null_compiled_methods);
method_headers_.resize(num_non_null_compiled_methods);
uint32_t oat_method_offsets_offset_from_oat_class = sizeof(type_) + sizeof(status_);
if (type_ == kOatClassSomeCompiled) {
method_bitmap_ = new BitVector(num_methods, false, Allocator::GetMallocAllocator());
method_bitmap_size_ = method_bitmap_->GetSizeOf();
oat_method_offsets_offset_from_oat_class += sizeof(method_bitmap_size_);
oat_method_offsets_offset_from_oat_class += method_bitmap_size_;
} else {
method_bitmap_ = NULL;
method_bitmap_size_ = 0;
}
for (size_t i = 0; i < num_methods; i++) {
CompiledMethod* compiled_method = compiled_methods_[i];
if (compiled_method == NULL) {
oat_method_offsets_offsets_from_oat_class_[i] = 0;
} else {
oat_method_offsets_offsets_from_oat_class_[i] = oat_method_offsets_offset_from_oat_class;
oat_method_offsets_offset_from_oat_class += sizeof(OatMethodOffsets);
if (type_ == kOatClassSomeCompiled) {
method_bitmap_->SetBit(i);
}
}
}
}
OatWriter::OatClass::~OatClass() {
delete method_bitmap_;
}
size_t OatWriter::OatClass::GetOatMethodOffsetsOffsetFromOatHeader(
size_t class_def_method_index_) const {
uint32_t method_offset = GetOatMethodOffsetsOffsetFromOatClass(class_def_method_index_);
if (method_offset == 0) {
return 0;
}
return offset_ + method_offset;
}
size_t OatWriter::OatClass::GetOatMethodOffsetsOffsetFromOatClass(
size_t class_def_method_index_) const {
return oat_method_offsets_offsets_from_oat_class_[class_def_method_index_];
}
size_t OatWriter::OatClass::SizeOf() const {
return sizeof(status_)
+ sizeof(type_)
+ ((method_bitmap_size_ == 0) ? 0 : sizeof(method_bitmap_size_))
+ method_bitmap_size_
+ (sizeof(method_offsets_[0]) * method_offsets_.size());
}
void OatWriter::OatClass::UpdateChecksum(OatHeader* oat_header) const {
oat_header->UpdateChecksum(&status_, sizeof(status_));
oat_header->UpdateChecksum(&type_, sizeof(type_));
if (method_bitmap_size_ != 0) {
CHECK_EQ(kOatClassSomeCompiled, type_);
oat_header->UpdateChecksum(&method_bitmap_size_, sizeof(method_bitmap_size_));
oat_header->UpdateChecksum(method_bitmap_->GetRawStorage(), method_bitmap_size_);
}
oat_header->UpdateChecksum(&method_offsets_[0],
sizeof(method_offsets_[0]) * method_offsets_.size());
}
bool OatWriter::OatClass::Write(OatWriter* oat_writer,
OutputStream* out,
const size_t file_offset) const {
DCHECK_OFFSET_();
if (!out->WriteFully(&status_, sizeof(status_))) {
PLOG(ERROR) << "Failed to write class status to " << out->GetLocation();
return false;
}
oat_writer->size_oat_class_status_ += sizeof(status_);
if (!out->WriteFully(&type_, sizeof(type_))) {
PLOG(ERROR) << "Failed to write oat class type to " << out->GetLocation();
return false;
}
oat_writer->size_oat_class_type_ += sizeof(type_);
if (method_bitmap_size_ != 0) {
CHECK_EQ(kOatClassSomeCompiled, type_);
if (!out->WriteFully(&method_bitmap_size_, sizeof(method_bitmap_size_))) {
PLOG(ERROR) << "Failed to write method bitmap size to " << out->GetLocation();
return false;
}
oat_writer->size_oat_class_method_bitmaps_ += sizeof(method_bitmap_size_);
if (!out->WriteFully(method_bitmap_->GetRawStorage(), method_bitmap_size_)) {
PLOG(ERROR) << "Failed to write method bitmap to " << out->GetLocation();
return false;
}
oat_writer->size_oat_class_method_bitmaps_ += method_bitmap_size_;
}
if (!out->WriteFully(&method_offsets_[0],
sizeof(method_offsets_[0]) * method_offsets_.size())) {
PLOG(ERROR) << "Failed to write method offsets to " << out->GetLocation();
return false;
}
oat_writer->size_oat_class_method_offsets_ += sizeof(method_offsets_[0]) * method_offsets_.size();
return true;
}
} // namespace art