| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "oat/runtime/oat_support_entrypoints.h" |
| |
| namespace art { |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| |
| typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, uint32_t dexIdx, |
| uint32_t methodIdx, uintptr_t directCode, |
| uintptr_t directMethod, InvokeType type); |
| LIR* opCondBranch(CompilationUnit* cUnit, ConditionCode cc, LIR* target); |
| |
| /* |
| * If there are any ins passed in registers that have not been promoted |
| * to a callee-save register, flush them to the frame. Perform intial |
| * assignment of promoted arguments. |
| * |
| * argLocs is an array of location records describing the incoming arguments |
| * with one location record per word of argument. |
| */ |
| void flushIns(CompilationUnit* cUnit, RegLocation* argLocs, RegLocation rlMethod) |
| { |
| /* |
| * Dummy up a RegLocation for the incoming Method* |
| * It will attempt to keep rARG0 live (or copy it to home location |
| * if promoted). |
| */ |
| RegLocation rlSrc = rlMethod; |
| rlSrc.location = kLocPhysReg; |
| rlSrc.lowReg = rARG0; |
| rlSrc.home = false; |
| oatMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow); |
| storeValue(cUnit, rlMethod, rlSrc); |
| // If Method* has been promoted, explicitly flush |
| if (rlMethod.location == kLocPhysReg) { |
| storeWordDisp(cUnit, rSP, 0, rARG0); |
| } |
| |
| if (cUnit->numIns == 0) |
| return; |
| const int numArgRegs = 3; |
| static int argRegs[] = {rARG1, rARG2, rARG3}; |
| int startVReg = cUnit->numDalvikRegisters - cUnit->numIns; |
| /* |
| * Copy incoming arguments to their proper home locations. |
| * NOTE: an older version of dx had an issue in which |
| * it would reuse static method argument registers. |
| * This could result in the same Dalvik virtual register |
| * being promoted to both core and fp regs. To account for this, |
| * we only copy to the corresponding promoted physical register |
| * if it matches the type of the SSA name for the incoming |
| * argument. It is also possible that long and double arguments |
| * end up half-promoted. In those cases, we must flush the promoted |
| * half to memory as well. |
| */ |
| for (int i = 0; i < cUnit->numIns; i++) { |
| PromotionMap* vMap = &cUnit->promotionMap[startVReg + i]; |
| if (i < numArgRegs) { |
| // If arriving in register |
| bool needFlush = true; |
| RegLocation* tLoc = &argLocs[i]; |
| if ((vMap->coreLocation == kLocPhysReg) && !tLoc->fp) { |
| opRegCopy(cUnit, vMap->coreReg, argRegs[i]); |
| needFlush = false; |
| } else if ((vMap->fpLocation == kLocPhysReg) && tLoc->fp) { |
| opRegCopy(cUnit, vMap->fpReg, argRegs[i]); |
| needFlush = false; |
| } else { |
| needFlush = true; |
| } |
| |
| // For wide args, force flush if only half is promoted |
| if (tLoc->wide) { |
| PromotionMap* pMap = vMap + (tLoc->highWord ? -1 : +1); |
| needFlush |= (pMap->coreLocation != vMap->coreLocation) || |
| (pMap->fpLocation != vMap->fpLocation); |
| } |
| if (needFlush) { |
| storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), |
| argRegs[i], kWord); |
| } |
| } else { |
| // If arriving in frame & promoted |
| if (vMap->coreLocation == kLocPhysReg) { |
| loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), |
| vMap->coreReg); |
| } |
| if (vMap->fpLocation == kLocPhysReg) { |
| loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), |
| vMap->fpReg); |
| } |
| } |
| } |
| } |
| |
| void scanMethodLiteralPool(CompilationUnit* cUnit, LIR** methodTarget, LIR** codeTarget, const DexFile* dexFile, uint32_t dexMethodIdx) |
| { |
| LIR* curTarget = cUnit->methodLiteralList; |
| LIR* nextTarget = curTarget != NULL ? curTarget->next : NULL; |
| while (curTarget != NULL && nextTarget != NULL) { |
| if (curTarget->operands[0] == (int)dexFile && |
| nextTarget->operands[0] == (int)dexMethodIdx) { |
| *codeTarget = curTarget; |
| *methodTarget = nextTarget; |
| DCHECK((*codeTarget)->next == *methodTarget); |
| DCHECK_EQ((*codeTarget)->operands[0], (int)dexFile); |
| DCHECK_EQ((*methodTarget)->operands[0], (int)dexMethodIdx); |
| break; |
| } |
| curTarget = nextTarget->next; |
| nextTarget = curTarget != NULL ? curTarget->next : NULL; |
| } |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in static & direct invoke sequences. |
| */ |
| int nextSDCallInsn(CompilationUnit* cUnit, CallInfo* info, |
| int state, uint32_t dexIdx, uint32_t unused, |
| uintptr_t directCode, uintptr_t directMethod, |
| InvokeType type) |
| { |
| #if !defined(TARGET_ARM) |
| directCode = 0; |
| directMethod = 0; |
| #endif |
| if (directCode != 0 && directMethod != 0) { |
| switch (state) { |
| case 0: // Get the current Method* [sets rARG0] |
| if (directCode != (uintptr_t)-1) { |
| loadConstant(cUnit, rINVOKE_TGT, directCode); |
| } else { |
| LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); |
| if (dataTarget == NULL) { |
| dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); |
| dataTarget->operands[1] = type; |
| } |
| #if defined(TARGET_ARM) |
| LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, |
| kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, |
| dataTarget); |
| oatAppendLIR(cUnit, loadPcRel); |
| #else |
| UNIMPLEMENTED(FATAL) << (void*)dataTarget; |
| #endif |
| } |
| if (directMethod != (uintptr_t)-1) { |
| loadConstant(cUnit, rARG0, directMethod); |
| } else { |
| LIR* dataTarget = scanLiteralPool(cUnit->methodLiteralList, dexIdx, 0); |
| if (dataTarget == NULL) { |
| dataTarget = addWordData(cUnit, &cUnit->methodLiteralList, dexIdx); |
| dataTarget->operands[1] = type; |
| } |
| #if defined(TARGET_ARM) |
| LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, |
| kThumb2LdrPcRel12, rARG0, 0, 0, 0, 0, |
| dataTarget); |
| oatAppendLIR(cUnit, loadPcRel); |
| #else |
| UNIMPLEMENTED(FATAL) << (void*)dataTarget; |
| #endif |
| } |
| break; |
| default: |
| return -1; |
| } |
| } else { |
| switch (state) { |
| case 0: // Get the current Method* [sets rARG0] |
| // TUNING: we can save a reg copy if Method* has been promoted |
| loadCurrMethodDirect(cUnit, rARG0); |
| break; |
| case 1: // Get method->dex_cache_resolved_methods_ |
| loadWordDisp(cUnit, rARG0, |
| AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), |
| rARG0); |
| // Set up direct code if known. |
| if (directCode != 0) { |
| if (directCode != (uintptr_t)-1) { |
| loadConstant(cUnit, rINVOKE_TGT, directCode); |
| } else { |
| LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); |
| if (dataTarget == NULL) { |
| dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); |
| dataTarget->operands[1] = type; |
| } |
| #if defined(TARGET_ARM) |
| LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, |
| kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, |
| dataTarget); |
| oatAppendLIR(cUnit, loadPcRel); |
| #else |
| UNIMPLEMENTED(FATAL) << (void*)dataTarget; |
| #endif |
| } |
| } |
| break; |
| case 2: // Grab target method* |
| loadWordDisp(cUnit, rARG0, |
| Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4, |
| rARG0); |
| break; |
| #if !defined(TARGET_X86) |
| case 3: // Grab the code from the method* |
| if (directCode == 0) { |
| loadWordDisp(cUnit, rARG0, AbstractMethod::GetCodeOffset().Int32Value(), |
| rINVOKE_TGT); |
| } |
| break; |
| #endif |
| default: |
| return -1; |
| } |
| } |
| return state + 1; |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in a virtual invoke sequence. |
| * We can use rLR as a temp prior to target address loading |
| * Note also that we'll load the first argument ("this") into |
| * rARG1 here rather than the standard loadArgRegs. |
| */ |
| int nextVCallInsn(CompilationUnit* cUnit, CallInfo* info, |
| int state, uint32_t dexIdx, uint32_t methodIdx, |
| uintptr_t unused, uintptr_t unused2, InvokeType unused3) |
| { |
| RegLocation rlArg; |
| /* |
| * This is the fast path in which the target virtual method is |
| * fully resolved at compile time. |
| */ |
| switch (state) { |
| case 0: // Get "this" [set rARG1] |
| rlArg = info->args[0]; |
| loadValueDirectFixed(cUnit, rlArg, rARG1); |
| break; |
| case 1: // Is "this" null? [use rARG1] |
| genNullCheck(cUnit, info->args[0].sRegLow, rARG1, info->optFlags); |
| // get this->klass_ [use rARG1, set rINVOKE_TGT] |
| loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(), |
| rINVOKE_TGT); |
| break; |
| case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT] |
| loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(), |
| rINVOKE_TGT); |
| break; |
| case 3: // Get target method [use rINVOKE_TGT, set rARG0] |
| loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) + |
| Array::DataOffset(sizeof(Object*)).Int32Value(), rARG0); |
| break; |
| #if !defined(TARGET_X86) |
| case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT] |
| loadWordDisp(cUnit, rARG0, AbstractMethod::GetCodeOffset().Int32Value(), |
| rINVOKE_TGT); |
| break; |
| #endif |
| default: |
| return -1; |
| } |
| return state + 1; |
| } |
| |
| int nextInvokeInsnSP(CompilationUnit* cUnit, CallInfo* info, int trampoline, |
| int state, uint32_t dexIdx, uint32_t methodIdx) |
| { |
| /* |
| * This handles the case in which the base method is not fully |
| * resolved at compile time, we bail to a runtime helper. |
| */ |
| if (state == 0) { |
| #if !defined(TARGET_X86) |
| // Load trampoline target |
| loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT); |
| #endif |
| // Load rARG0 with method index |
| loadConstant(cUnit, rARG0, dexIdx); |
| return 1; |
| } |
| return -1; |
| } |
| |
| int nextStaticCallInsnSP(CompilationUnit* cUnit, CallInfo* info, |
| int state, uint32_t dexIdx, uint32_t methodIdx, |
| uintptr_t unused, uintptr_t unused2, |
| InvokeType unused3) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| int nextDirectCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, |
| uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| int nextSuperCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, |
| uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| int nextVCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, |
| uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| /* |
| * All invoke-interface calls bounce off of art_invoke_interface_trampoline, |
| * which will locate the target and continue on via a tail call. |
| */ |
| int nextInterfaceCallInsn(CompilationUnit* cUnit, CallInfo* info, int state, |
| uint32_t dexIdx, uint32_t unused, uintptr_t unused2, |
| uintptr_t unused3, InvokeType unused4) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit, |
| CallInfo* info, int state, |
| uint32_t dexIdx, uint32_t unused, |
| uintptr_t unused2, uintptr_t unused3, |
| InvokeType unused4) |
| { |
| int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); |
| return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); |
| } |
| |
| int loadArgRegs(CompilationUnit* cUnit, CallInfo* info, int callState, |
| NextCallInsn nextCallInsn, uint32_t dexIdx, |
| uint32_t methodIdx, uintptr_t directCode, |
| uintptr_t directMethod, InvokeType type, bool skipThis) |
| { |
| int lastArgReg = rARG3; |
| int nextReg = rARG1; |
| int nextArg = 0; |
| if (skipThis) { |
| nextReg++; |
| nextArg++; |
| } |
| for (; (nextReg <= lastArgReg) && (nextArg < info->numArgWords); nextReg++) { |
| RegLocation rlArg = info->args[nextArg++]; |
| rlArg = oatUpdateRawLoc(cUnit, rlArg); |
| if (rlArg.wide && (nextReg <= rARG2)) { |
| loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1); |
| nextReg++; |
| nextArg++; |
| } else { |
| rlArg.wide = false; |
| loadValueDirectFixed(cUnit, rlArg, nextReg); |
| } |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| } |
| return callState; |
| } |
| |
| /* |
| * Load up to 5 arguments, the first three of which will be in |
| * rARG1 .. rARG3. On entry rARG0 contains the current method pointer, |
| * and as part of the load sequence, it must be replaced with |
| * the target method pointer. Note, this may also be called |
| * for "range" variants if the number of arguments is 5 or fewer. |
| */ |
| int genDalvikArgsNoRange(CompilationUnit* cUnit, CallInfo* info, |
| int callState, |
| LIR** pcrLabel, NextCallInsn nextCallInsn, |
| uint32_t dexIdx, uint32_t methodIdx, |
| uintptr_t directCode, uintptr_t directMethod, |
| InvokeType type, bool skipThis) |
| { |
| RegLocation rlArg; |
| |
| /* If no arguments, just return */ |
| if (info->numArgWords == 0) |
| return callState; |
| |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| |
| DCHECK_LE(info->numArgWords, 5); |
| if (info->numArgWords > 3) { |
| int32_t nextUse = 3; |
| //Detect special case of wide arg spanning arg3/arg4 |
| RegLocation rlUse0 = info->args[0]; |
| RegLocation rlUse1 = info->args[1]; |
| RegLocation rlUse2 = info->args[2]; |
| if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) && |
| rlUse2.wide) { |
| int reg = -1; |
| // Wide spans, we need the 2nd half of uses[2]. |
| rlArg = oatUpdateLocWide(cUnit, rlUse2); |
| if (rlArg.location == kLocPhysReg) { |
| reg = rlArg.highReg; |
| } else { |
| // rARG2 & rARG3 can safely be used here |
| reg = rARG3; |
| loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg); |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, |
| methodIdx, directCode, directMethod, type); |
| } |
| storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord); |
| storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord); |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| nextUse++; |
| } |
| // Loop through the rest |
| while (nextUse < info->numArgWords) { |
| int lowReg; |
| int highReg = -1; |
| rlArg = info->args[nextUse]; |
| rlArg = oatUpdateRawLoc(cUnit, rlArg); |
| if (rlArg.location == kLocPhysReg) { |
| lowReg = rlArg.lowReg; |
| highReg = rlArg.highReg; |
| } else { |
| lowReg = rARG2; |
| if (rlArg.wide) { |
| highReg = rARG3; |
| loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg); |
| } else { |
| loadValueDirectFixed(cUnit, rlArg, lowReg); |
| } |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, |
| methodIdx, directCode, directMethod, type); |
| } |
| int outsOffset = (nextUse + 1) * 4; |
| if (rlArg.wide) { |
| storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg); |
| nextUse += 2; |
| } else { |
| storeWordDisp(cUnit, rSP, outsOffset, lowReg); |
| nextUse++; |
| } |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| } |
| } |
| |
| callState = loadArgRegs(cUnit, info, callState, nextCallInsn, |
| dexIdx, methodIdx, directCode, directMethod, |
| type, skipThis); |
| |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1, |
| info->optFlags); |
| } |
| return callState; |
| } |
| |
| /* |
| * May have 0+ arguments (also used for jumbo). Note that |
| * source virtual registers may be in physical registers, so may |
| * need to be flushed to home location before copying. This |
| * applies to arg3 and above (see below). |
| * |
| * Two general strategies: |
| * If < 20 arguments |
| * Pass args 3-18 using vldm/vstm block copy |
| * Pass arg0, arg1 & arg2 in rARG1-rARG3 |
| * If 20+ arguments |
| * Pass args arg19+ using memcpy block copy |
| * Pass arg0, arg1 & arg2 in rARG1-rARG3 |
| * |
| */ |
| int genDalvikArgsRange(CompilationUnit* cUnit, CallInfo* info, int callState, |
| LIR** pcrLabel, NextCallInsn nextCallInsn, |
| uint32_t dexIdx, uint32_t methodIdx, |
| uintptr_t directCode, uintptr_t directMethod, |
| InvokeType type, bool skipThis) |
| { |
| |
| // If we can treat it as non-range (Jumbo ops will use range form) |
| if (info->numArgWords <= 5) |
| return genDalvikArgsNoRange(cUnit, info, callState, pcrLabel, |
| nextCallInsn, dexIdx, methodIdx, |
| directCode, directMethod, type, skipThis); |
| /* |
| * First load the non-register arguments. Both forms expect all |
| * of the source arguments to be in their home frame location, so |
| * scan the sReg names and flush any that have been promoted to |
| * frame backing storage. |
| */ |
| // Scan the rest of the args - if in physReg flush to memory |
| for (int nextArg = 0; nextArg < info->numArgWords;) { |
| RegLocation loc = info->args[nextArg]; |
| if (loc.wide) { |
| loc = oatUpdateLocWide(cUnit, loc); |
| if ((nextArg >= 2) && (loc.location == kLocPhysReg)) { |
| storeBaseDispWide(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), |
| loc.lowReg, loc.highReg); |
| } |
| nextArg += 2; |
| } else { |
| loc = oatUpdateLoc(cUnit, loc); |
| if ((nextArg >= 3) && (loc.location == kLocPhysReg)) { |
| storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), |
| loc.lowReg, kWord); |
| } |
| nextArg++; |
| } |
| } |
| |
| int startOffset = oatSRegOffset(cUnit, info->args[3].sRegLow); |
| int outsOffset = 4 /* Method* */ + (3 * 4); |
| #if defined(TARGET_MIPS) || defined(TARGET_X86) |
| // Generate memcpy |
| opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); |
| opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); |
| callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), |
| rARG0, rARG1, (info->numArgWords - 3) * 4, false); |
| #else |
| if (info->numArgWords >= 20) { |
| // Generate memcpy |
| opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); |
| opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); |
| callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), |
| rARG0, rARG1, (info->numArgWords - 3) * 4, false); |
| } else { |
| // Use vldm/vstm pair using rARG3 as a temp |
| int regsLeft = std::min(info->numArgWords - 3, 16); |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset); |
| LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft); |
| //TUNING: loosen barrier |
| ld->defMask = ENCODE_ALL; |
| setMemRefType(ld, true /* isLoad */, kDalvikReg); |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4)); |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft); |
| setMemRefType(st, false /* isLoad */, kDalvikReg); |
| st->defMask = ENCODE_ALL; |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| |
| } |
| #endif |
| |
| callState = loadArgRegs(cUnit, info, callState, nextCallInsn, |
| dexIdx, methodIdx, directCode, directMethod, |
| type, skipThis); |
| |
| callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, |
| directCode, directMethod, type); |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1, |
| info->optFlags); |
| } |
| return callState; |
| } |
| |
| RegLocation inlineTarget(CompilationUnit* cUnit, CallInfo* info) |
| { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| res = oatGetReturn(cUnit, false); |
| } else { |
| res = info->result; |
| } |
| return res; |
| } |
| |
| RegLocation inlineTargetWide(CompilationUnit* cUnit, CallInfo* info) |
| { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| res = oatGetReturnWide(cUnit, false); |
| } else { |
| res = info->result; |
| } |
| return res; |
| } |
| |
| bool genInlinedCharAt(CompilationUnit* cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| // Location of reference to data array |
| int valueOffset = String::ValueOffset().Int32Value(); |
| // Location of count |
| int countOffset = String::CountOffset().Int32Value(); |
| // Starting offset within data array |
| int offsetOffset = String::OffsetOffset().Int32Value(); |
| // Start of char data with array_ |
| int dataOffset = Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| RegLocation rlObj = info->args[0]; |
| RegLocation rlIdx = info->args[1]; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlIdx = loadValue(cUnit, rlIdx, kCoreReg); |
| int regMax; |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags); |
| bool rangeCheck = (!(info->optFlags & MIR_IGNORE_RANGE_CHECK)); |
| LIR* launchPad = NULL; |
| #if !defined(TARGET_X86) |
| int regOff = oatAllocTemp(cUnit); |
| int regPtr = oatAllocTemp(cUnit); |
| if (rangeCheck) { |
| regMax = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax); |
| } |
| loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff); |
| loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr); |
| if (rangeCheck) { |
| // Set up a launch pad to allow retry in case of bounds violation */ |
| launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); |
| oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, |
| (intptr_t)launchPad); |
| opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax); |
| oatFreeTemp(cUnit, regMax); |
| opCondBranch(cUnit, kCondCs, launchPad); |
| } |
| #else |
| if (rangeCheck) { |
| regMax = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax); |
| // Set up a launch pad to allow retry in case of bounds violation */ |
| launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); |
| oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, |
| (intptr_t)launchPad); |
| opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax); |
| oatFreeTemp(cUnit, regMax); |
| opCondBranch(cUnit, kCondCc, launchPad); |
| } |
| int regOff = oatAllocTemp(cUnit); |
| int regPtr = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff); |
| loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr); |
| #endif |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); |
| oatFreeTemp(cUnit, rlObj.lowReg); |
| oatFreeTemp(cUnit, rlIdx.lowReg); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); |
| oatFreeTemp(cUnit, regOff); |
| oatFreeTemp(cUnit, regPtr); |
| storeValue(cUnit, rlDest, rlResult); |
| if (rangeCheck) { |
| launchPad->operands[2] = 0; // no resumption |
| } |
| // Record that we've already inlined & null checked |
| info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedMinMaxInt(CompilationUnit *cUnit, CallInfo* info, bool isMin) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| RegLocation rlSrc1 = info->args[0]; |
| RegLocation rlSrc2 = info->args[1]; |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); |
| #if defined(TARGET_ARM) |
| opIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E"); |
| opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg); |
| genBarrier(cUnit); |
| #elif defined(TARGET_X86) |
| LIR* branch = newLIR2(cUnit, kX86Jcc8, 0, isMin ? kX86CondG : kX86CondL); |
| opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg); |
| LIR* branch2 = newLIR1(cUnit, kX86Jmp8, 0); |
| branch->target = newLIR0(cUnit, kPseudoTargetLabel); |
| opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg); |
| branch2->target = newLIR0(cUnit, kPseudoTargetLabel); |
| #endif |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| // Generates an inlined String.isEmpty or String.length. |
| bool genInlinedStringIsEmptyOrLength(CompilationUnit* cUnit, CallInfo* info, |
| bool isEmpty) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| // dst = src.length(); |
| RegLocation rlObj = info->args[0]; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags); |
| loadWordDisp(cUnit, rlObj.lowReg, String::CountOffset().Int32Value(), |
| rlResult.lowReg); |
| if (isEmpty) { |
| // dst = (dst == 0); |
| #if defined(TARGET_ARM) |
| int tReg = oatAllocTemp(cUnit); |
| opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg); |
| opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg); |
| #elif defined(TARGET_X86) |
| opRegImm(cUnit, kOpSub, rlResult.lowReg, 1); |
| opRegImm(cUnit, kOpLsr, rlResult.lowReg, 31); |
| #endif |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedAbsInt(CompilationUnit *cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| RegLocation rlSrc = info->args[0]; |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = oatAllocTemp(cUnit); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedAbsLong(CompilationUnit *cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) |
| RegLocation rlSrc = info->args[0]; |
| rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| RegLocation rlDest = inlineTargetWide(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = oatAllocTemp(cUnit); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return true; |
| #elif defined(TARGET_X86) |
| // Reuse source registers to avoid running out of temps |
| RegLocation rlSrc = info->args[0]; |
| rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| RegLocation rlDest = inlineTargetWide(cUnit, info); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegCopyWide(cUnit, rlResult.lowReg, rlResult.highReg, rlSrc.lowReg, rlSrc.highReg); |
| oatFreeTemp(cUnit, rlSrc.lowReg); |
| oatFreeTemp(cUnit, rlSrc.highReg); |
| int signReg = oatAllocTemp(cUnit); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| opRegRegImm(cUnit, kOpAsr, signReg, rlResult.highReg, 31); |
| opRegReg(cUnit, kOpAdd, rlResult.lowReg, signReg); |
| opRegReg(cUnit, kOpAdc, rlResult.highReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedFloatCvt(CompilationUnit *cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| RegLocation rlSrc = info->args[0]; |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| storeValue(cUnit, rlDest, rlSrc); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedDoubleCvt(CompilationUnit *cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| RegLocation rlSrc = info->args[0]; |
| RegLocation rlDest = inlineTargetWide(cUnit, info); |
| storeValueWide(cUnit, rlDest, rlSrc); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Fast string.indexOf(I) & (II). Tests for simple case of char <= 0xffff, |
| * otherwise bails to standard library code. |
| */ |
| bool genInlinedIndexOf(CompilationUnit* cUnit, CallInfo* info, |
| bool zeroBased) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| oatClobberCalleeSave(cUnit); |
| oatLockCallTemps(cUnit); // Using fixed registers |
| int regPtr = rARG0; |
| int regChar = rARG1; |
| int regStart = rARG2; |
| |
| RegLocation rlObj = info->args[0]; |
| RegLocation rlChar = info->args[1]; |
| RegLocation rlStart = info->args[2]; |
| loadValueDirectFixed(cUnit, rlObj, regPtr); |
| loadValueDirectFixed(cUnit, rlChar, regChar); |
| if (zeroBased) { |
| loadConstant(cUnit, regStart, 0); |
| } else { |
| loadValueDirectFixed(cUnit, rlStart, regStart); |
| } |
| #if !defined(TARGET_X86) |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pIndexOf)); |
| #endif |
| genNullCheck(cUnit, rlObj.sRegLow, regPtr, info->optFlags); |
| LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); |
| oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, |
| (intptr_t)launchPad); |
| opCmpImmBranch(cUnit, kCondGt, regChar, 0xFFFF, launchPad); |
| // NOTE: not a safepoint |
| #if !defined(TARGET_X86) |
| opReg(cUnit, kOpBlx, rTgt); |
| #else |
| opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pIndexOf)); |
| #endif |
| LIR* resumeTgt = newLIR0(cUnit, kPseudoTargetLabel); |
| launchPad->operands[2] = (uintptr_t)resumeTgt; |
| // Record that we've already inlined & null checked |
| info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| RegLocation rlReturn = oatGetReturn(cUnit, false); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| storeValue(cUnit, rlDest, rlReturn); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| /* Fast string.compareTo(Ljava/lang/string;)I. */ |
| bool genInlinedStringCompareTo(CompilationUnit* cUnit, CallInfo* info) |
| { |
| #if defined(TARGET_ARM) || defined(TARGET_X86) |
| oatClobberCalleeSave(cUnit); |
| oatLockCallTemps(cUnit); // Using fixed registers |
| int regThis = rARG0; |
| int regCmp = rARG1; |
| |
| RegLocation rlThis = info->args[0]; |
| RegLocation rlCmp = info->args[1]; |
| loadValueDirectFixed(cUnit, rlThis, regThis); |
| loadValueDirectFixed(cUnit, rlCmp, regCmp); |
| #if !defined(TARGET_X86) |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pStringCompareTo)); |
| #endif |
| genNullCheck(cUnit, rlThis.sRegLow, regThis, info->optFlags); |
| //TUNING: check if rlCmp.sRegLow is already null checked |
| LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); |
| oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, |
| (intptr_t)launchPad); |
| opCmpImmBranch(cUnit, kCondEq, regCmp, 0, launchPad); |
| // NOTE: not a safepoint |
| #if !defined(TARGET_X86) |
| opReg(cUnit, kOpBlx, rTgt); |
| #else |
| opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo)); |
| #endif |
| launchPad->operands[2] = 0; // No return possible |
| // Record that we've already inlined & null checked |
| info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| RegLocation rlReturn = oatGetReturn(cUnit, false); |
| RegLocation rlDest = inlineTarget(cUnit, info); |
| storeValue(cUnit, rlDest, rlReturn); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedCas32(CompilationUnit* cUnit, CallInfo* info, bool need_write_barrier) { |
| #if defined(TARGET_ARM) |
| // Unused - RegLocation rlSrcUnsafe = info->args[0]; |
| RegLocation rlSrcObj= info->args[1]; // Object - known non-null |
| RegLocation rlSrcOffset= info->args[2]; // long low |
| rlSrcOffset.wide = 0; // ignore high half in info->args[3] |
| RegLocation rlSrcExpected= info->args[4]; // int or Object |
| RegLocation rlSrcNewValue= info->args[5]; // int or Object |
| RegLocation rlDest = inlineTarget(cUnit, info); // boolean place for result |
| |
| |
| // Release store semantics, get the barrier out of the way. |
| oatGenMemBarrier(cUnit, kSY); |
| |
| RegLocation rlObject = loadValue(cUnit, rlSrcObj, kCoreReg); |
| RegLocation rlNewValue = loadValue(cUnit, rlSrcNewValue, kCoreReg); |
| |
| if (need_write_barrier) { |
| // Mark card for object assuming new value is stored. |
| markGCCard(cUnit, rlNewValue.lowReg, rlObject.lowReg); |
| } |
| |
| RegLocation rlOffset = loadValue(cUnit, rlSrcOffset, kCoreReg); |
| |
| int rPtr = oatAllocTemp(cUnit); |
| opRegRegReg(cUnit, kOpAdd, rPtr, rlObject.lowReg, rlOffset.lowReg); |
| |
| // Free now unneeded rlObject and rlOffset to give more temps. |
| oatClobberSReg(cUnit, rlObject.sRegLow); |
| oatFreeTemp(cUnit, rlObject.lowReg); |
| oatClobberSReg(cUnit, rlOffset.sRegLow); |
| oatFreeTemp(cUnit, rlOffset.lowReg); |
| |
| int rOldValue = oatAllocTemp(cUnit); |
| newLIR3(cUnit, kThumb2Ldrex, rOldValue, rPtr, 0); // rOldValue := [rPtr] |
| |
| RegLocation rlExpected = loadValue(cUnit, rlSrcExpected, kCoreReg); |
| |
| // if (rOldValue == rExpected) { |
| // [rPtr] <- rNewValue && rResult := success ? 0 : 1 |
| // rResult ^= 1 |
| // } else { |
| // rResult := 0 |
| // } |
| opRegReg(cUnit, kOpCmp, rOldValue, rlExpected.lowReg); |
| oatFreeTemp(cUnit, rOldValue); // Now unneeded. |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opIT(cUnit, kArmCondEq, "TE"); |
| newLIR4(cUnit, kThumb2Strex, rlResult.lowReg, rlNewValue.lowReg, rPtr, 0); |
| oatFreeTemp(cUnit, rPtr); // Now unneeded. |
| opRegImm(cUnit, kOpXor, rlResult.lowReg, 1); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, rlResult.lowReg); |
| |
| storeValue(cUnit, rlDest, rlResult); |
| |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genInlinedSqrt(CompilationUnit* cUnit, CallInfo* info) { |
| #if defined(TARGET_ARM) |
| LIR *branch; |
| RegLocation rlSrc = info->args[0]; |
| RegLocation rlDest = inlineTargetWide(cUnit, info); // double place for result |
| rlSrc = loadValueWide(cUnit, rlSrc, kFPReg); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kFPReg, true); |
| newLIR2(cUnit, kThumb2Vsqrtd, S2D(rlResult.lowReg, rlResult.highReg), |
| S2D(rlSrc.lowReg, rlSrc.highReg)); |
| newLIR2(cUnit, kThumb2Vcmpd, S2D(rlResult.lowReg, rlResult.highReg), |
| S2D(rlResult.lowReg, rlResult.highReg)); |
| newLIR0(cUnit, kThumb2Fmstat); |
| branch = newLIR2(cUnit, kThumbBCond, 0, kArmCondEq); |
| oatClobberCalleeSave(cUnit); |
| oatLockCallTemps(cUnit); // Using fixed registers |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pSqrt)); |
| newLIR3(cUnit, kThumb2Fmrrd, r0, r1, S2D(rlSrc.lowReg, rlSrc.highReg)); |
| newLIR1(cUnit, kThumbBlxR, rTgt); |
| newLIR3(cUnit, kThumb2Fmdrr, S2D(rlResult.lowReg, rlResult.highReg), r0, r1); |
| branch->target = newLIR0(cUnit, kPseudoTargetLabel); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool genIntrinsic(CompilationUnit* cUnit, CallInfo* info) |
| { |
| if (info->optFlags & MIR_INLINED) { |
| return false; |
| } |
| /* |
| * TODO: move these to a target-specific structured constant array |
| * and use a generic match function. The list of intrinsics may be |
| * slightly different depending on target. |
| * TODO: Fold this into a matching function that runs during |
| * basic block building. This should be part of the action for |
| * small method inlining and recognition of the special object init |
| * method. By doing this during basic block construction, we can also |
| * take advantage of/generate new useful dataflow info. |
| */ |
| std::string tgtMethod(PrettyMethod(info->index, *cUnit->dex_file)); |
| if (tgtMethod.find(" java.lang") != std::string::npos) { |
| if (tgtMethod == "long java.lang.Double.doubleToRawLongBits(double)") { |
| return genInlinedDoubleCvt(cUnit, info); |
| } |
| if (tgtMethod == "double java.lang.Double.longBitsToDouble(long)") { |
| return genInlinedDoubleCvt(cUnit, info); |
| } |
| if (tgtMethod == "int java.lang.Float.floatToRawIntBits(float)") { |
| return genInlinedFloatCvt(cUnit, info); |
| } |
| if (tgtMethod == "float java.lang.Float.intBitsToFloat(int)") { |
| return genInlinedFloatCvt(cUnit, info); |
| } |
| if (tgtMethod == "int java.lang.Math.abs(int)" || |
| tgtMethod == "int java.lang.StrictMath.abs(int)") { |
| return genInlinedAbsInt(cUnit, info); |
| } |
| if (tgtMethod == "long java.lang.Math.abs(long)" || |
| tgtMethod == "long java.lang.StrictMath.abs(long)") { |
| return genInlinedAbsLong(cUnit, info); |
| } |
| if (tgtMethod == "int java.lang.Math.max(int, int)" || |
| tgtMethod == "int java.lang.StrictMath.max(int, int)") { |
| return genInlinedMinMaxInt(cUnit, info, false /* isMin */); |
| } |
| if (tgtMethod == "int java.lang.Math.min(int, int)" || |
| tgtMethod == "int java.lang.StrictMath.min(int, int)") { |
| return genInlinedMinMaxInt(cUnit, info, true /* isMin */); |
| } |
| if (tgtMethod == "double java.lang.Math.sqrt(double)" || |
| tgtMethod == "double java.lang.StrictMath.sqrt(double)") { |
| return genInlinedSqrt(cUnit, info); |
| } |
| if (tgtMethod == "char java.lang.String.charAt(int)") { |
| return genInlinedCharAt(cUnit, info); |
| } |
| if (tgtMethod == "int java.lang.String.compareTo(java.lang.String)") { |
| return genInlinedStringCompareTo(cUnit, info); |
| } |
| if (tgtMethod == "boolean java.lang.String.isEmpty()") { |
| return genInlinedStringIsEmptyOrLength(cUnit, info, true /* isEmpty */); |
| } |
| if (tgtMethod == "int java.lang.String.indexOf(int, int)") { |
| return genInlinedIndexOf(cUnit, info, false /* base 0 */); |
| } |
| if (tgtMethod == "int java.lang.String.indexOf(int)") { |
| return genInlinedIndexOf(cUnit, info, true /* base 0 */); |
| } |
| if (tgtMethod == "int java.lang.String.length()") { |
| return genInlinedStringIsEmptyOrLength(cUnit, info, false /* isEmpty */); |
| } |
| } else if (tgtMethod.find("boolean sun.misc.Unsafe.compareAndSwap") != std::string::npos) { |
| if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { |
| return genInlinedCas32(cUnit, info, false); |
| } |
| if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") { |
| return genInlinedCas32(cUnit, info, true); |
| } |
| } |
| return false; |
| } |
| |
| |
| } // namespace art |