blob: 3cc7c935117db994577977bd3bf696952426a360 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "oat/runtime/oat_support_entrypoints.h"
namespace art {
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, uint32_t dexIdx,
uint32_t methodIdx, uintptr_t directCode,
uintptr_t directMethod, InvokeType type);
LIR* opCondBranch(CompilationUnit* cUnit, ConditionCode cc, LIR* target);
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*
* argLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
void flushIns(CompilationUnit* cUnit, RegLocation* argLocs, RegLocation rlMethod)
{
/*
* Dummy up a RegLocation for the incoming Method*
* It will attempt to keep rARG0 live (or copy it to home location
* if promoted).
*/
RegLocation rlSrc = rlMethod;
rlSrc.location = kLocPhysReg;
rlSrc.lowReg = rARG0;
rlSrc.home = false;
oatMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow);
storeValue(cUnit, rlMethod, rlSrc);
// If Method* has been promoted, explicitly flush
if (rlMethod.location == kLocPhysReg) {
storeWordDisp(cUnit, rSP, 0, rARG0);
}
if (cUnit->numIns == 0)
return;
const int numArgRegs = 3;
static int argRegs[] = {rARG1, rARG2, rARG3};
int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
for (int i = 0; i < cUnit->numIns; i++) {
PromotionMap* vMap = &cUnit->promotionMap[startVReg + i];
if (i < numArgRegs) {
// If arriving in register
bool needFlush = true;
RegLocation* tLoc = &argLocs[i];
if ((vMap->coreLocation == kLocPhysReg) && !tLoc->fp) {
opRegCopy(cUnit, vMap->coreReg, argRegs[i]);
needFlush = false;
} else if ((vMap->fpLocation == kLocPhysReg) && tLoc->fp) {
opRegCopy(cUnit, vMap->fpReg, argRegs[i]);
needFlush = false;
} else {
needFlush = true;
}
// For wide args, force flush if only half is promoted
if (tLoc->wide) {
PromotionMap* pMap = vMap + (tLoc->highWord ? -1 : +1);
needFlush |= (pMap->coreLocation != vMap->coreLocation) ||
(pMap->fpLocation != vMap->fpLocation);
}
if (needFlush) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
argRegs[i], kWord);
}
} else {
// If arriving in frame & promoted
if (vMap->coreLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap->coreReg);
}
if (vMap->fpLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap->fpReg);
}
}
}
}
void scanMethodLiteralPool(CompilationUnit* cUnit, LIR** methodTarget, LIR** codeTarget, const DexFile* dexFile, uint32_t dexMethodIdx)
{
LIR* curTarget = cUnit->methodLiteralList;
LIR* nextTarget = curTarget != NULL ? curTarget->next : NULL;
while (curTarget != NULL && nextTarget != NULL) {
if (curTarget->operands[0] == (int)dexFile &&
nextTarget->operands[0] == (int)dexMethodIdx) {
*codeTarget = curTarget;
*methodTarget = nextTarget;
DCHECK((*codeTarget)->next == *methodTarget);
DCHECK_EQ((*codeTarget)->operands[0], (int)dexFile);
DCHECK_EQ((*methodTarget)->operands[0], (int)dexMethodIdx);
break;
}
curTarget = nextTarget->next;
nextTarget = curTarget != NULL ? curTarget->next : NULL;
}
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
int nextSDCallInsn(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t unused,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type)
{
#if !defined(TARGET_ARM)
directCode = 0;
directMethod = 0;
#endif
if (directCode != 0 && directMethod != 0) {
switch (state) {
case 0: // Get the current Method* [sets rARG0]
if (directCode != (uintptr_t)-1) {
loadConstant(cUnit, rINVOKE_TGT, directCode);
} else {
LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
#if defined(TARGET_ARM)
LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset,
kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0,
dataTarget);
oatAppendLIR(cUnit, loadPcRel);
#else
UNIMPLEMENTED(FATAL) << (void*)dataTarget;
#endif
}
if (directMethod != (uintptr_t)-1) {
loadConstant(cUnit, rARG0, directMethod);
} else {
LIR* dataTarget = scanLiteralPool(cUnit->methodLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = addWordData(cUnit, &cUnit->methodLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
#if defined(TARGET_ARM)
LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset,
kThumb2LdrPcRel12, rARG0, 0, 0, 0, 0,
dataTarget);
oatAppendLIR(cUnit, loadPcRel);
#else
UNIMPLEMENTED(FATAL) << (void*)dataTarget;
#endif
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0: // Get the current Method* [sets rARG0]
// TUNING: we can save a reg copy if Method* has been promoted
loadCurrMethodDirect(cUnit, rARG0);
break;
case 1: // Get method->dex_cache_resolved_methods_
loadWordDisp(cUnit, rARG0,
AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(),
rARG0);
// Set up direct code if known.
if (directCode != 0) {
if (directCode != (uintptr_t)-1) {
loadConstant(cUnit, rINVOKE_TGT, directCode);
} else {
LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
#if defined(TARGET_ARM)
LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset,
kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0,
dataTarget);
oatAppendLIR(cUnit, loadPcRel);
#else
UNIMPLEMENTED(FATAL) << (void*)dataTarget;
#endif
}
}
break;
case 2: // Grab target method*
loadWordDisp(cUnit, rARG0,
Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4,
rARG0);
break;
#if !defined(TARGET_X86)
case 3: // Grab the code from the method*
if (directCode == 0) {
loadWordDisp(cUnit, rARG0, AbstractMethod::GetCodeOffset().Int32Value(),
rINVOKE_TGT);
}
break;
#endif
default:
return -1;
}
}
return state + 1;
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use rLR as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* rARG1 here rather than the standard loadArgRegs.
*/
int nextVCallInsn(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t methodIdx,
uintptr_t unused, uintptr_t unused2, InvokeType unused3)
{
RegLocation rlArg;
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch (state) {
case 0: // Get "this" [set rARG1]
rlArg = info->args[0];
loadValueDirectFixed(cUnit, rlArg, rARG1);
break;
case 1: // Is "this" null? [use rARG1]
genNullCheck(cUnit, info->args[0].sRegLow, rARG1, info->optFlags);
// get this->klass_ [use rARG1, set rINVOKE_TGT]
loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(),
rINVOKE_TGT);
break;
case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT]
loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(),
rINVOKE_TGT);
break;
case 3: // Get target method [use rINVOKE_TGT, set rARG0]
loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) +
Array::DataOffset(sizeof(Object*)).Int32Value(), rARG0);
break;
#if !defined(TARGET_X86)
case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT]
loadWordDisp(cUnit, rARG0, AbstractMethod::GetCodeOffset().Int32Value(),
rINVOKE_TGT);
break;
#endif
default:
return -1;
}
return state + 1;
}
int nextInvokeInsnSP(CompilationUnit* cUnit, CallInfo* info, int trampoline,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
#if !defined(TARGET_X86)
// Load trampoline target
loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT);
#endif
// Load rARG0 with method index
loadConstant(cUnit, rARG0, dexIdx);
return 1;
}
return -1;
}
int nextStaticCallInsnSP(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t methodIdx,
uintptr_t unused, uintptr_t unused2,
InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
int nextDirectCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
int nextSuperCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
int nextVCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
/*
* All invoke-interface calls bounce off of art_invoke_interface_trampoline,
* which will locate the target and continue on via a tail call.
*/
int nextInterfaceCallInsn(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t unused, uintptr_t unused2,
uintptr_t unused3, InvokeType unused4)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit,
CallInfo* info, int state,
uint32_t dexIdx, uint32_t unused,
uintptr_t unused2, uintptr_t unused3,
InvokeType unused4)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
int loadArgRegs(CompilationUnit* cUnit, CallInfo* info, int callState,
NextCallInsn nextCallInsn, uint32_t dexIdx,
uint32_t methodIdx, uintptr_t directCode,
uintptr_t directMethod, InvokeType type, bool skipThis)
{
int lastArgReg = rARG3;
int nextReg = rARG1;
int nextArg = 0;
if (skipThis) {
nextReg++;
nextArg++;
}
for (; (nextReg <= lastArgReg) && (nextArg < info->numArgWords); nextReg++) {
RegLocation rlArg = info->args[nextArg++];
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.wide && (nextReg <= rARG2)) {
loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
nextReg++;
nextArg++;
} else {
rlArg.wide = false;
loadValueDirectFixed(cUnit, rlArg, nextReg);
}
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
return callState;
}
/*
* Load up to 5 arguments, the first three of which will be in
* rARG1 .. rARG3. On entry rARG0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
int genDalvikArgsNoRange(CompilationUnit* cUnit, CallInfo* info,
int callState,
LIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type, bool skipThis)
{
RegLocation rlArg;
/* If no arguments, just return */
if (info->numArgWords == 0)
return callState;
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
DCHECK_LE(info->numArgWords, 5);
if (info->numArgWords > 3) {
int32_t nextUse = 3;
//Detect special case of wide arg spanning arg3/arg4
RegLocation rlUse0 = info->args[0];
RegLocation rlUse1 = info->args[1];
RegLocation rlUse2 = info->args[2];
if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
rlUse2.wide) {
int reg = -1;
// Wide spans, we need the 2nd half of uses[2].
rlArg = oatUpdateLocWide(cUnit, rlUse2);
if (rlArg.location == kLocPhysReg) {
reg = rlArg.highReg;
} else {
// rARG2 & rARG3 can safely be used here
reg = rARG3;
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
callState = nextCallInsn(cUnit, info, callState, dexIdx,
methodIdx, directCode, directMethod, type);
}
storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord);
storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
nextUse++;
}
// Loop through the rest
while (nextUse < info->numArgWords) {
int lowReg;
int highReg = -1;
rlArg = info->args[nextUse];
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.location == kLocPhysReg) {
lowReg = rlArg.lowReg;
highReg = rlArg.highReg;
} else {
lowReg = rARG2;
if (rlArg.wide) {
highReg = rARG3;
loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
} else {
loadValueDirectFixed(cUnit, rlArg, lowReg);
}
callState = nextCallInsn(cUnit, info, callState, dexIdx,
methodIdx, directCode, directMethod, type);
}
int outsOffset = (nextUse + 1) * 4;
if (rlArg.wide) {
storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg);
nextUse += 2;
} else {
storeWordDisp(cUnit, rSP, outsOffset, lowReg);
nextUse++;
}
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
}
callState = loadArgRegs(cUnit, info, callState, nextCallInsn,
dexIdx, methodIdx, directCode, directMethod,
type, skipThis);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1,
info->optFlags);
}
return callState;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in rARG1-rARG3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in rARG1-rARG3
*
*/
int genDalvikArgsRange(CompilationUnit* cUnit, CallInfo* info, int callState,
LIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type, bool skipThis)
{
// If we can treat it as non-range (Jumbo ops will use range form)
if (info->numArgWords <= 5)
return genDalvikArgsNoRange(cUnit, info, callState, pcrLabel,
nextCallInsn, dexIdx, methodIdx,
directCode, directMethod, type, skipThis);
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the sReg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in physReg flush to memory
for (int nextArg = 0; nextArg < info->numArgWords;) {
RegLocation loc = info->args[nextArg];
if (loc.wide) {
loc = oatUpdateLocWide(cUnit, loc);
if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
storeBaseDispWide(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, loc.highReg);
}
nextArg += 2;
} else {
loc = oatUpdateLoc(cUnit, loc);
if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
nextArg++;
}
}
int startOffset = oatSRegOffset(cUnit, info->args[3].sRegLow);
int outsOffset = 4 /* Method* */ + (3 * 4);
#if defined(TARGET_MIPS) || defined(TARGET_X86)
// Generate memcpy
opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy),
rARG0, rARG1, (info->numArgWords - 3) * 4, false);
#else
if (info->numArgWords >= 20) {
// Generate memcpy
opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy),
rARG0, rARG1, (info->numArgWords - 3) * 4, false);
} else {
// Use vldm/vstm pair using rARG3 as a temp
int regsLeft = std::min(info->numArgWords - 3, 16);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset);
LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft);
//TUNING: loosen barrier
ld->defMask = ENCODE_ALL;
setMemRefType(ld, true /* isLoad */, kDalvikReg);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4));
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft);
setMemRefType(st, false /* isLoad */, kDalvikReg);
st->defMask = ENCODE_ALL;
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
#endif
callState = loadArgRegs(cUnit, info, callState, nextCallInsn,
dexIdx, methodIdx, directCode, directMethod,
type, skipThis);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1,
info->optFlags);
}
return callState;
}
RegLocation inlineTarget(CompilationUnit* cUnit, CallInfo* info)
{
RegLocation res;
if (info->result.location == kLocInvalid) {
res = oatGetReturn(cUnit, false);
} else {
res = info->result;
}
return res;
}
RegLocation inlineTargetWide(CompilationUnit* cUnit, CallInfo* info)
{
RegLocation res;
if (info->result.location == kLocInvalid) {
res = oatGetReturnWide(cUnit, false);
} else {
res = info->result;
}
return res;
}
bool genInlinedCharAt(CompilationUnit* cUnit, CallInfo* info)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
// Location of reference to data array
int valueOffset = String::ValueOffset().Int32Value();
// Location of count
int countOffset = String::CountOffset().Int32Value();
// Starting offset within data array
int offsetOffset = String::OffsetOffset().Int32Value();
// Start of char data with array_
int dataOffset = Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rlObj = info->args[0];
RegLocation rlIdx = info->args[1];
rlObj = loadValue(cUnit, rlObj, kCoreReg);
rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
int regMax;
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags);
bool rangeCheck = (!(info->optFlags & MIR_IGNORE_RANGE_CHECK));
LIR* launchPad = NULL;
#if !defined(TARGET_X86)
int regOff = oatAllocTemp(cUnit);
int regPtr = oatAllocTemp(cUnit);
if (rangeCheck) {
regMax = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax);
}
loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff);
loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr);
if (rangeCheck) {
// Set up a launch pad to allow retry in case of bounds violation */
launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info);
oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
(intptr_t)launchPad);
opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax);
oatFreeTemp(cUnit, regMax);
opCondBranch(cUnit, kCondCs, launchPad);
}
#else
if (rangeCheck) {
regMax = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax);
// Set up a launch pad to allow retry in case of bounds violation */
launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info);
oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
(intptr_t)launchPad);
opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax);
oatFreeTemp(cUnit, regMax);
opCondBranch(cUnit, kCondCc, launchPad);
}
int regOff = oatAllocTemp(cUnit);
int regPtr = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff);
loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr);
#endif
opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
oatFreeTemp(cUnit, rlObj.lowReg);
oatFreeTemp(cUnit, rlIdx.lowReg);
RegLocation rlDest = inlineTarget(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
oatFreeTemp(cUnit, regOff);
oatFreeTemp(cUnit, regPtr);
storeValue(cUnit, rlDest, rlResult);
if (rangeCheck) {
launchPad->operands[2] = 0; // no resumption
}
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
return true;
#else
return false;
#endif
}
bool genInlinedMinMaxInt(CompilationUnit *cUnit, CallInfo* info, bool isMin)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
RegLocation rlSrc1 = info->args[0];
RegLocation rlSrc2 = info->args[1];
rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
RegLocation rlDest = inlineTarget(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
#if defined(TARGET_ARM)
opIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
genBarrier(cUnit);
#elif defined(TARGET_X86)
LIR* branch = newLIR2(cUnit, kX86Jcc8, 0, isMin ? kX86CondG : kX86CondL);
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
LIR* branch2 = newLIR1(cUnit, kX86Jmp8, 0);
branch->target = newLIR0(cUnit, kPseudoTargetLabel);
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
branch2->target = newLIR0(cUnit, kPseudoTargetLabel);
#endif
storeValue(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
// Generates an inlined String.isEmpty or String.length.
bool genInlinedStringIsEmptyOrLength(CompilationUnit* cUnit, CallInfo* info,
bool isEmpty)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
// dst = src.length();
RegLocation rlObj = info->args[0];
rlObj = loadValue(cUnit, rlObj, kCoreReg);
RegLocation rlDest = inlineTarget(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags);
loadWordDisp(cUnit, rlObj.lowReg, String::CountOffset().Int32Value(),
rlResult.lowReg);
if (isEmpty) {
// dst = (dst == 0);
#if defined(TARGET_ARM)
int tReg = oatAllocTemp(cUnit);
opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
#elif defined(TARGET_X86)
opRegImm(cUnit, kOpSub, rlResult.lowReg, 1);
opRegImm(cUnit, kOpLsr, rlResult.lowReg, 31);
#endif
}
storeValue(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
bool genInlinedAbsInt(CompilationUnit *cUnit, CallInfo* info)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
RegLocation rlSrc = info->args[0];
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = inlineTarget(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = oatAllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
storeValue(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
bool genInlinedAbsLong(CompilationUnit *cUnit, CallInfo* info)
{
#if defined(TARGET_ARM)
RegLocation rlSrc = info->args[0];
rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = inlineTargetWide(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = oatAllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
storeValueWide(cUnit, rlDest, rlResult);
return true;
#elif defined(TARGET_X86)
// Reuse source registers to avoid running out of temps
RegLocation rlSrc = info->args[0];
rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = inlineTargetWide(cUnit, info);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegCopyWide(cUnit, rlResult.lowReg, rlResult.highReg, rlSrc.lowReg, rlSrc.highReg);
oatFreeTemp(cUnit, rlSrc.lowReg);
oatFreeTemp(cUnit, rlSrc.highReg);
int signReg = oatAllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
opRegRegImm(cUnit, kOpAsr, signReg, rlResult.highReg, 31);
opRegReg(cUnit, kOpAdd, rlResult.lowReg, signReg);
opRegReg(cUnit, kOpAdc, rlResult.highReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
storeValueWide(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
bool genInlinedFloatCvt(CompilationUnit *cUnit, CallInfo* info)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
RegLocation rlSrc = info->args[0];
RegLocation rlDest = inlineTarget(cUnit, info);
storeValue(cUnit, rlDest, rlSrc);
return true;
#else
return false;
#endif
}
bool genInlinedDoubleCvt(CompilationUnit *cUnit, CallInfo* info)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
RegLocation rlSrc = info->args[0];
RegLocation rlDest = inlineTargetWide(cUnit, info);
storeValueWide(cUnit, rlDest, rlSrc);
return true;
#else
return false;
#endif
}
/*
* Fast string.indexOf(I) & (II). Tests for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool genInlinedIndexOf(CompilationUnit* cUnit, CallInfo* info,
bool zeroBased)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
oatClobberCalleeSave(cUnit);
oatLockCallTemps(cUnit); // Using fixed registers
int regPtr = rARG0;
int regChar = rARG1;
int regStart = rARG2;
RegLocation rlObj = info->args[0];
RegLocation rlChar = info->args[1];
RegLocation rlStart = info->args[2];
loadValueDirectFixed(cUnit, rlObj, regPtr);
loadValueDirectFixed(cUnit, rlChar, regChar);
if (zeroBased) {
loadConstant(cUnit, regStart, 0);
} else {
loadValueDirectFixed(cUnit, rlStart, regStart);
}
#if !defined(TARGET_X86)
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pIndexOf));
#endif
genNullCheck(cUnit, rlObj.sRegLow, regPtr, info->optFlags);
LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info);
oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
(intptr_t)launchPad);
opCmpImmBranch(cUnit, kCondGt, regChar, 0xFFFF, launchPad);
// NOTE: not a safepoint
#if !defined(TARGET_X86)
opReg(cUnit, kOpBlx, rTgt);
#else
opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pIndexOf));
#endif
LIR* resumeTgt = newLIR0(cUnit, kPseudoTargetLabel);
launchPad->operands[2] = (uintptr_t)resumeTgt;
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rlReturn = oatGetReturn(cUnit, false);
RegLocation rlDest = inlineTarget(cUnit, info);
storeValue(cUnit, rlDest, rlReturn);
return true;
#else
return false;
#endif
}
/* Fast string.compareTo(Ljava/lang/string;)I. */
bool genInlinedStringCompareTo(CompilationUnit* cUnit, CallInfo* info)
{
#if defined(TARGET_ARM) || defined(TARGET_X86)
oatClobberCalleeSave(cUnit);
oatLockCallTemps(cUnit); // Using fixed registers
int regThis = rARG0;
int regCmp = rARG1;
RegLocation rlThis = info->args[0];
RegLocation rlCmp = info->args[1];
loadValueDirectFixed(cUnit, rlThis, regThis);
loadValueDirectFixed(cUnit, rlCmp, regCmp);
#if !defined(TARGET_X86)
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pStringCompareTo));
#endif
genNullCheck(cUnit, rlThis.sRegLow, regThis, info->optFlags);
//TUNING: check if rlCmp.sRegLow is already null checked
LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info);
oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
(intptr_t)launchPad);
opCmpImmBranch(cUnit, kCondEq, regCmp, 0, launchPad);
// NOTE: not a safepoint
#if !defined(TARGET_X86)
opReg(cUnit, kOpBlx, rTgt);
#else
opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo));
#endif
launchPad->operands[2] = 0; // No return possible
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rlReturn = oatGetReturn(cUnit, false);
RegLocation rlDest = inlineTarget(cUnit, info);
storeValue(cUnit, rlDest, rlReturn);
return true;
#else
return false;
#endif
}
bool genInlinedCas32(CompilationUnit* cUnit, CallInfo* info, bool need_write_barrier) {
#if defined(TARGET_ARM)
// Unused - RegLocation rlSrcUnsafe = info->args[0];
RegLocation rlSrcObj= info->args[1]; // Object - known non-null
RegLocation rlSrcOffset= info->args[2]; // long low
rlSrcOffset.wide = 0; // ignore high half in info->args[3]
RegLocation rlSrcExpected= info->args[4]; // int or Object
RegLocation rlSrcNewValue= info->args[5]; // int or Object
RegLocation rlDest = inlineTarget(cUnit, info); // boolean place for result
// Release store semantics, get the barrier out of the way.
oatGenMemBarrier(cUnit, kSY);
RegLocation rlObject = loadValue(cUnit, rlSrcObj, kCoreReg);
RegLocation rlNewValue = loadValue(cUnit, rlSrcNewValue, kCoreReg);
if (need_write_barrier) {
// Mark card for object assuming new value is stored.
markGCCard(cUnit, rlNewValue.lowReg, rlObject.lowReg);
}
RegLocation rlOffset = loadValue(cUnit, rlSrcOffset, kCoreReg);
int rPtr = oatAllocTemp(cUnit);
opRegRegReg(cUnit, kOpAdd, rPtr, rlObject.lowReg, rlOffset.lowReg);
// Free now unneeded rlObject and rlOffset to give more temps.
oatClobberSReg(cUnit, rlObject.sRegLow);
oatFreeTemp(cUnit, rlObject.lowReg);
oatClobberSReg(cUnit, rlOffset.sRegLow);
oatFreeTemp(cUnit, rlOffset.lowReg);
int rOldValue = oatAllocTemp(cUnit);
newLIR3(cUnit, kThumb2Ldrex, rOldValue, rPtr, 0); // rOldValue := [rPtr]
RegLocation rlExpected = loadValue(cUnit, rlSrcExpected, kCoreReg);
// if (rOldValue == rExpected) {
// [rPtr] <- rNewValue && rResult := success ? 0 : 1
// rResult ^= 1
// } else {
// rResult := 0
// }
opRegReg(cUnit, kOpCmp, rOldValue, rlExpected.lowReg);
oatFreeTemp(cUnit, rOldValue); // Now unneeded.
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opIT(cUnit, kArmCondEq, "TE");
newLIR4(cUnit, kThumb2Strex, rlResult.lowReg, rlNewValue.lowReg, rPtr, 0);
oatFreeTemp(cUnit, rPtr); // Now unneeded.
opRegImm(cUnit, kOpXor, rlResult.lowReg, 1);
opRegReg(cUnit, kOpXor, rlResult.lowReg, rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
bool genInlinedSqrt(CompilationUnit* cUnit, CallInfo* info) {
#if defined(TARGET_ARM)
LIR *branch;
RegLocation rlSrc = info->args[0];
RegLocation rlDest = inlineTargetWide(cUnit, info); // double place for result
rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kFPReg, true);
newLIR2(cUnit, kThumb2Vsqrtd, S2D(rlResult.lowReg, rlResult.highReg),
S2D(rlSrc.lowReg, rlSrc.highReg));
newLIR2(cUnit, kThumb2Vcmpd, S2D(rlResult.lowReg, rlResult.highReg),
S2D(rlResult.lowReg, rlResult.highReg));
newLIR0(cUnit, kThumb2Fmstat);
branch = newLIR2(cUnit, kThumbBCond, 0, kArmCondEq);
oatClobberCalleeSave(cUnit);
oatLockCallTemps(cUnit); // Using fixed registers
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pSqrt));
newLIR3(cUnit, kThumb2Fmrrd, r0, r1, S2D(rlSrc.lowReg, rlSrc.highReg));
newLIR1(cUnit, kThumbBlxR, rTgt);
newLIR3(cUnit, kThumb2Fmdrr, S2D(rlResult.lowReg, rlResult.highReg), r0, r1);
branch->target = newLIR0(cUnit, kPseudoTargetLabel);
storeValueWide(cUnit, rlDest, rlResult);
return true;
#else
return false;
#endif
}
bool genIntrinsic(CompilationUnit* cUnit, CallInfo* info)
{
if (info->optFlags & MIR_INLINED) {
return false;
}
/*
* TODO: move these to a target-specific structured constant array
* and use a generic match function. The list of intrinsics may be
* slightly different depending on target.
* TODO: Fold this into a matching function that runs during
* basic block building. This should be part of the action for
* small method inlining and recognition of the special object init
* method. By doing this during basic block construction, we can also
* take advantage of/generate new useful dataflow info.
*/
std::string tgtMethod(PrettyMethod(info->index, *cUnit->dex_file));
if (tgtMethod.find(" java.lang") != std::string::npos) {
if (tgtMethod == "long java.lang.Double.doubleToRawLongBits(double)") {
return genInlinedDoubleCvt(cUnit, info);
}
if (tgtMethod == "double java.lang.Double.longBitsToDouble(long)") {
return genInlinedDoubleCvt(cUnit, info);
}
if (tgtMethod == "int java.lang.Float.floatToRawIntBits(float)") {
return genInlinedFloatCvt(cUnit, info);
}
if (tgtMethod == "float java.lang.Float.intBitsToFloat(int)") {
return genInlinedFloatCvt(cUnit, info);
}
if (tgtMethod == "int java.lang.Math.abs(int)" ||
tgtMethod == "int java.lang.StrictMath.abs(int)") {
return genInlinedAbsInt(cUnit, info);
}
if (tgtMethod == "long java.lang.Math.abs(long)" ||
tgtMethod == "long java.lang.StrictMath.abs(long)") {
return genInlinedAbsLong(cUnit, info);
}
if (tgtMethod == "int java.lang.Math.max(int, int)" ||
tgtMethod == "int java.lang.StrictMath.max(int, int)") {
return genInlinedMinMaxInt(cUnit, info, false /* isMin */);
}
if (tgtMethod == "int java.lang.Math.min(int, int)" ||
tgtMethod == "int java.lang.StrictMath.min(int, int)") {
return genInlinedMinMaxInt(cUnit, info, true /* isMin */);
}
if (tgtMethod == "double java.lang.Math.sqrt(double)" ||
tgtMethod == "double java.lang.StrictMath.sqrt(double)") {
return genInlinedSqrt(cUnit, info);
}
if (tgtMethod == "char java.lang.String.charAt(int)") {
return genInlinedCharAt(cUnit, info);
}
if (tgtMethod == "int java.lang.String.compareTo(java.lang.String)") {
return genInlinedStringCompareTo(cUnit, info);
}
if (tgtMethod == "boolean java.lang.String.isEmpty()") {
return genInlinedStringIsEmptyOrLength(cUnit, info, true /* isEmpty */);
}
if (tgtMethod == "int java.lang.String.indexOf(int, int)") {
return genInlinedIndexOf(cUnit, info, false /* base 0 */);
}
if (tgtMethod == "int java.lang.String.indexOf(int)") {
return genInlinedIndexOf(cUnit, info, true /* base 0 */);
}
if (tgtMethod == "int java.lang.String.length()") {
return genInlinedStringIsEmptyOrLength(cUnit, info, false /* isEmpty */);
}
} else if (tgtMethod.find("boolean sun.misc.Unsafe.compareAndSwap") != std::string::npos) {
if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
return genInlinedCas32(cUnit, info, false);
}
if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
return genInlinedCas32(cUnit, info, true);
}
}
return false;
}
} // namespace art