blob: 006fe76f1bfc7c6c1b53a70a6f87bbc801965206 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "x86_lir.h"
namespace art {
void X86Mir2Lir::GenArithOpFloat(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
X86OpCode op = kX86Nop;
RegLocation rl_result;
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch (opcode) {
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::ADD_FLOAT:
op = kX86AddssRR;
break;
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::SUB_FLOAT:
op = kX86SubssRR;
break;
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::DIV_FLOAT:
op = kX86DivssRR;
break;
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::MUL_FLOAT:
op = kX86MulssRR;
break;
case Instruction::REM_FLOAT_2ADDR:
case Instruction::REM_FLOAT:
FlushAllRegs(); // Send everything to home location
CallRuntimeHelperRegLocationRegLocation(QUICK_ENTRYPOINT_OFFSET(pFmodf), rl_src1, rl_src2,
false);
rl_result = GetReturn(true);
StoreValue(rl_dest, rl_result);
return;
case Instruction::NEG_FLOAT:
GenNegFloat(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
int r_dest = rl_result.low_reg;
int r_src1 = rl_src1.low_reg;
int r_src2 = rl_src2.low_reg;
if (r_dest == r_src2) {
r_src2 = AllocTempFloat();
OpRegCopy(r_src2, r_dest);
}
OpRegCopy(r_dest, r_src1);
NewLIR2(op, r_dest, r_src2);
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenArithOpDouble(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
X86OpCode op = kX86Nop;
RegLocation rl_result;
switch (opcode) {
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::ADD_DOUBLE:
op = kX86AddsdRR;
break;
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE:
op = kX86SubsdRR;
break;
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE:
op = kX86DivsdRR;
break;
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE:
op = kX86MulsdRR;
break;
case Instruction::REM_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE:
FlushAllRegs(); // Send everything to home location
CallRuntimeHelperRegLocationRegLocation(QUICK_ENTRYPOINT_OFFSET(pFmod), rl_src1, rl_src2,
false);
rl_result = GetReturnWide(true);
StoreValueWide(rl_dest, rl_result);
return;
case Instruction::NEG_DOUBLE:
GenNegDouble(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValueWide(rl_src1, kFPReg);
DCHECK(rl_src1.wide);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
DCHECK(rl_src2.wide);
rl_result = EvalLoc(rl_dest, kFPReg, true);
DCHECK(rl_dest.wide);
DCHECK(rl_result.wide);
int r_dest = S2d(rl_result.low_reg, rl_result.high_reg);
int r_src1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
int r_src2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
if (r_dest == r_src2) {
r_src2 = AllocTempDouble() | X86_FP_DOUBLE;
OpRegCopy(r_src2, r_dest);
}
OpRegCopy(r_dest, r_src1);
NewLIR2(op, r_dest, r_src2);
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) {
RegisterClass rcSrc = kFPReg;
X86OpCode op = kX86Nop;
int src_reg;
RegLocation rl_result;
switch (opcode) {
case Instruction::INT_TO_FLOAT:
rcSrc = kCoreReg;
op = kX86Cvtsi2ssRR;
break;
case Instruction::DOUBLE_TO_FLOAT:
rcSrc = kFPReg;
op = kX86Cvtsd2ssRR;
break;
case Instruction::FLOAT_TO_DOUBLE:
rcSrc = kFPReg;
op = kX86Cvtss2sdRR;
break;
case Instruction::INT_TO_DOUBLE:
rcSrc = kCoreReg;
op = kX86Cvtsi2sdRR;
break;
case Instruction::FLOAT_TO_INT: {
rl_src = LoadValue(rl_src, kFPReg);
src_reg = rl_src.low_reg;
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
int temp_reg = AllocTempFloat();
LoadConstant(rl_result.low_reg, 0x7fffffff);
NewLIR2(kX86Cvtsi2ssRR, temp_reg, rl_result.low_reg);
NewLIR2(kX86ComissRR, src_reg, temp_reg);
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttss2siRR, rl_result.low_reg, src_reg);
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::DOUBLE_TO_INT: {
rl_src = LoadValueWide(rl_src, kFPReg);
src_reg = rl_src.low_reg;
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
int temp_reg = AllocTempDouble() | X86_FP_DOUBLE;
LoadConstant(rl_result.low_reg, 0x7fffffff);
NewLIR2(kX86Cvtsi2sdRR, temp_reg, rl_result.low_reg);
NewLIR2(kX86ComisdRR, src_reg, temp_reg);
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttsd2siRR, rl_result.low_reg, src_reg);
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor32RR, rl_result.low_reg, rl_result.low_reg);
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::LONG_TO_DOUBLE:
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(pL2d), rl_dest, rl_src);
return;
case Instruction::LONG_TO_FLOAT:
// TODO: inline by using memory as a 64-bit source. Be careful about promoted registers.
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(pL2f), rl_dest, rl_src);
return;
case Instruction::FLOAT_TO_LONG:
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(pF2l), rl_dest, rl_src);
return;
case Instruction::DOUBLE_TO_LONG:
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(pD2l), rl_dest, rl_src);
return;
default:
LOG(INFO) << "Unexpected opcode: " << opcode;
}
if (rl_src.wide) {
rl_src = LoadValueWide(rl_src, rcSrc);
src_reg = S2d(rl_src.low_reg, rl_src.high_reg);
} else {
rl_src = LoadValue(rl_src, rcSrc);
src_reg = rl_src.low_reg;
}
if (rl_dest.wide) {
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(op, S2d(rl_result.low_reg, rl_result.high_reg), src_reg);
StoreValueWide(rl_dest, rl_result);
} else {
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(op, rl_result.low_reg, src_reg);
StoreValue(rl_dest, rl_result);
}
}
void X86Mir2Lir::GenCmpFP(Instruction::Code code, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
bool single = (code == Instruction::CMPL_FLOAT) || (code == Instruction::CMPG_FLOAT);
bool unordered_gt = (code == Instruction::CMPG_DOUBLE) || (code == Instruction::CMPG_FLOAT);
int src_reg1;
int src_reg2;
if (single) {
rl_src1 = LoadValue(rl_src1, kFPReg);
src_reg1 = rl_src1.low_reg;
rl_src2 = LoadValue(rl_src2, kFPReg);
src_reg2 = rl_src2.low_reg;
} else {
rl_src1 = LoadValueWide(rl_src1, kFPReg);
src_reg1 = S2d(rl_src1.low_reg, rl_src1.high_reg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
src_reg2 = S2d(rl_src2.low_reg, rl_src2.high_reg);
}
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstantNoClobber(rl_result.low_reg, unordered_gt ? 1 : 0);
if (single) {
NewLIR2(kX86UcomissRR, src_reg1, src_reg2);
} else {
NewLIR2(kX86UcomisdRR, src_reg1, src_reg2);
}
LIR* branch = NULL;
if (unordered_gt) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
}
// If the result reg can't be byte accessed, use a jump and move instead of a set.
if (rl_result.low_reg >= 4) {
LIR* branch2 = NULL;
if (unordered_gt) {
branch2 = NewLIR2(kX86Jcc8, 0, kX86CondA);
NewLIR2(kX86Mov32RI, rl_result.low_reg, 0x0);
} else {
branch2 = NewLIR2(kX86Jcc8, 0, kX86CondBe);
NewLIR2(kX86Mov32RI, rl_result.low_reg, 0x1);
}
branch2->target = NewLIR0(kPseudoTargetLabel);
} else {
NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondA /* above - unsigned > */);
}
NewLIR2(kX86Sbb32RI, rl_result.low_reg, 0);
if (unordered_gt) {
branch->target = NewLIR0(kPseudoTargetLabel);
}
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
bool is_double) {
LIR* taken = &block_label_list_[bb->taken];
LIR* not_taken = &block_label_list_[bb->fall_through];
LIR* branch = NULL;
RegLocation rl_src1;
RegLocation rl_src2;
if (is_double) {
rl_src1 = mir_graph_->GetSrcWide(mir, 0);
rl_src2 = mir_graph_->GetSrcWide(mir, 2);
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
NewLIR2(kX86UcomisdRR, S2d(rl_src1.low_reg, rl_src1.high_reg),
S2d(rl_src2.low_reg, rl_src2.high_reg));
} else {
rl_src1 = mir_graph_->GetSrc(mir, 0);
rl_src2 = mir_graph_->GetSrc(mir, 1);
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
NewLIR2(kX86UcomissRR, rl_src1.low_reg, rl_src2.low_reg);
}
ConditionCode ccode = mir->meta.ccode;
switch (ccode) {
case kCondEq:
if (!gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
break;
case kCondNe:
if (!gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
break;
case kCondLt:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
ccode = kCondUlt;
break;
case kCondLe:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
ccode = kCondLs;
break;
case kCondGt:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
ccode = kCondHi;
break;
case kCondGe:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
ccode = kCondUge;
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCondBranch(ccode, taken);
}
void X86Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegImm(kOpAdd, rl_result.low_reg, rl_src.low_reg, 0x80000000);
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValueWide(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegImm(kOpAdd, rl_result.high_reg, rl_src.high_reg, 0x80000000);
OpRegCopy(rl_result.low_reg, rl_src.low_reg);
StoreValueWide(rl_dest, rl_result);
}
bool X86Mir2Lir::GenInlinedSqrt(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info); // double place for result
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(kX86SqrtsdRR, S2d(rl_result.low_reg, rl_result.high_reg),
S2d(rl_src.low_reg, rl_src.high_reg));
StoreValueWide(rl_dest, rl_result);
return true;
}
} // namespace art