blob: c625a9700cb384a744ab79e314fa4634edebab48 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "check_jni.h"
#include <sys/mman.h>
#include <zlib.h>
#include <iomanip>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/macros.h"
#include "base/to_str.h"
#include "base/time_utils.h"
#include "class_linker-inl.h"
#include "class_linker.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "gc/space/space.h"
#include "java_vm_ext.h"
#include "jni_internal.h"
#include "mirror/class-inl.h"
#include "mirror/field.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "mirror/throwable.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "well_known_classes.h"
namespace art {
namespace {
using android::base::StringAppendF;
using android::base::StringPrintf;
/*
* ===========================================================================
* JNI function helpers
* ===========================================================================
*/
// Warn if a JNI critical is held for longer than 16ms.
static constexpr uint64_t kCriticalWarnTimeUs = MsToUs(16);
static_assert(kCriticalWarnTimeUs > 0, "No JNI critical warn time set");
// True if primitives within specific ranges cause a fatal error,
// otherwise just warn.
static constexpr bool kBrokenPrimitivesAreFatal = kIsDebugBuild;
// Flags passed into ScopedCheck.
static constexpr uint16_t kFlag_Default = 0x0000;
// Calling while in critical is not allowed.
static constexpr uint16_t kFlag_CritBad = 0x0000;
// Calling while in critical is allowed.
static constexpr uint16_t kFlag_CritOkay = 0x0001;
// This is a critical "get".
static constexpr uint16_t kFlag_CritGet = 0x0002;
// This is a critical "release".
static constexpr uint16_t kFlag_CritRelease = 0x0003;
// Bit mask to get "crit" value.
static constexpr uint16_t kFlag_CritMask = 0x0003;
// Raised exceptions are allowed.
static constexpr uint16_t kFlag_ExcepOkay = 0x0004;
// Are we in a non-critical release function?
static constexpr uint16_t kFlag_Release = 0x0010;
// Are our UTF parameters nullable?
static constexpr uint16_t kFlag_NullableUtf = 0x0020;
// Part of the invocation interface (JavaVM*).
static constexpr uint16_t kFlag_Invocation = 0x0100;
// Add this to a JNI function's flags if you want to trace every call.
static constexpr uint16_t kFlag_ForceTrace = 0x8000;
class VarArgs;
/*
* Java primitive types:
* B - jbyte
* C - jchar
* D - jdouble
* F - jfloat
* I - jint
* J - jlong
* S - jshort
* Z - jboolean (shown as true and false)
* V - void
*
* Java reference types:
* L - jobject
* a - jarray
* c - jclass
* s - jstring
* t - jthrowable
*
* JNI types:
* b - jboolean (shown as JNI_TRUE and JNI_FALSE)
* f - jfieldID
* i - JNI error value (JNI_OK, JNI_ERR, JNI_EDETACHED, JNI_EVERSION)
* m - jmethodID
* p - void*
* r - jint (for release mode arguments)
* u - const char* (Modified UTF-8)
* z - jsize (for lengths; use i if negative values are okay)
* v - JavaVM*
* w - jobjectRefType
* E - JNIEnv*
* . - no argument; just print "..." (used for varargs JNI calls)
*
*/
union JniValueType {
jarray a;
jboolean b;
jclass c;
jfieldID f;
jint i;
jmethodID m;
const void* p; // Pointer.
jint r; // Release mode.
jstring s;
jthrowable t;
const char* u; // Modified UTF-8.
JavaVM* v;
jobjectRefType w;
jsize z;
jbyte B;
jchar C;
jdouble D;
JNIEnv* E;
jfloat F;
jint I;
jlong J;
jobject L;
jshort S;
const void* V; // void
jboolean Z;
const VarArgs* va;
};
/*
* A structure containing all the information needed to validate varargs arguments.
*
* Note that actually getting the arguments from this structure mutates it so should only be done on
* owned copies.
*/
class VarArgs {
public:
VarArgs(jmethodID m, va_list var) : m_(m), type_(kTypeVaList), cnt_(0) {
va_copy(vargs_, var);
}
VarArgs(jmethodID m, const jvalue* vals) : m_(m), type_(kTypePtr), cnt_(0), ptr_(vals) {}
~VarArgs() {
if (type_ == kTypeVaList) {
va_end(vargs_);
}
}
VarArgs(VarArgs&& other) {
m_ = other.m_;
cnt_ = other.cnt_;
type_ = other.type_;
if (other.type_ == kTypeVaList) {
va_copy(vargs_, other.vargs_);
} else {
ptr_ = other.ptr_;
}
}
// This method is const because we need to ensure that one only uses the GetValue method on an
// owned copy of the VarArgs. This is because getting the next argument from a va_list is a
// mutating operation. Therefore we pass around these VarArgs with the 'const' qualifier and when
// we want to use one we need to Clone() it.
VarArgs Clone() const {
if (type_ == kTypeVaList) {
// const_cast needed to make sure the compiler is okay with va_copy, which (being a macro) is
// messed up if the source argument is not the exact type 'va_list'.
return VarArgs(m_, cnt_, const_cast<VarArgs*>(this)->vargs_);
} else {
return VarArgs(m_, cnt_, ptr_);
}
}
jmethodID GetMethodID() const {
return m_;
}
JniValueType GetValue(char fmt) {
JniValueType o;
if (type_ == kTypeVaList) {
switch (fmt) {
// Assign a full int for va_list values as this is what is done in reflection.cc.
// TODO(b/73656264): avoid undefined behavior.
case 'Z': FALLTHROUGH_INTENDED;
case 'B': FALLTHROUGH_INTENDED;
case 'C': FALLTHROUGH_INTENDED;
case 'S': FALLTHROUGH_INTENDED;
case 'I': o.I = va_arg(vargs_, jint); break;
case 'J': o.J = va_arg(vargs_, jlong); break;
case 'F': o.F = static_cast<jfloat>(va_arg(vargs_, jdouble)); break;
case 'D': o.D = va_arg(vargs_, jdouble); break;
case 'L': o.L = va_arg(vargs_, jobject); break;
default:
LOG(FATAL) << "Illegal type format char " << fmt;
UNREACHABLE();
}
} else {
CHECK(type_ == kTypePtr);
jvalue v = ptr_[cnt_];
cnt_++;
switch (fmt) {
// Copy just the amount of the jvalue necessary, as done in
// reflection.cc, but extend to an int to be consistent with
// var args in CheckNonHeapValue.
// TODO(b/73656264): avoid undefined behavior.
case 'Z': o.I = v.z; break;
case 'B': o.I = v.b; break;
case 'C': o.I = v.c; break;
case 'S': o.I = v.s; break;
case 'I': o.I = v.i; break;
case 'J': o.J = v.j; break;
case 'F': o.F = v.f; break;
case 'D': o.D = v.d; break;
case 'L': o.L = v.l; break;
default:
LOG(FATAL) << "Illegal type format char " << fmt;
UNREACHABLE();
}
}
return o;
}
private:
VarArgs(jmethodID m, uint32_t cnt, va_list var) : m_(m), type_(kTypeVaList), cnt_(cnt) {
va_copy(vargs_, var);
}
VarArgs(jmethodID m, uint32_t cnt, const jvalue* vals) : m_(m), type_(kTypePtr), cnt_(cnt), ptr_(vals) {}
enum VarArgsType {
kTypeVaList,
kTypePtr,
};
jmethodID m_;
VarArgsType type_;
uint32_t cnt_;
union {
va_list vargs_;
const jvalue* ptr_;
};
};
class ScopedCheck {
public:
ScopedCheck(uint16_t flags, const char* functionName, bool has_method = true)
: function_name_(functionName), indent_(0), flags_(flags), has_method_(has_method) {
}
~ScopedCheck() {}
// Checks that 'class_name' is a valid "fully-qualified" JNI class name, like "java/lang/Thread"
// or "[Ljava/lang/Object;". A ClassLoader can actually normalize class names a couple of
// times, so using "java.lang.Thread" instead of "java/lang/Thread" might work in some
// circumstances, but this is incorrect.
bool CheckClassName(const char* class_name) {
if ((class_name == nullptr) || !IsValidJniClassName(class_name)) {
AbortF("illegal class name '%s'\n"
" (should be of the form 'package/Class', [Lpackage/Class;' or '[[B')",
class_name);
return false;
}
return true;
}
/*
* Verify that this instance field ID is valid for this object.
*
* Assumes "jobj" has already been validated.
*/
bool CheckInstanceFieldID(ScopedObjectAccess& soa, jobject java_object, jfieldID fid)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> o = soa.Decode<mirror::Object>(java_object);
if (o == nullptr) {
AbortF("field operation on NULL object: %p", java_object);
return false;
}
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o.Ptr())) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(ERROR));
AbortF("field operation on invalid %s: %p",
GetIndirectRefKindString(IndirectReferenceTable::GetIndirectRefKind(java_object)),
java_object);
return false;
}
ArtField* f = CheckFieldID(fid);
if (f == nullptr) {
return false;
}
mirror::Class* c = o->GetClass();
if (c->FindInstanceField(f->GetName(), f->GetTypeDescriptor()) == nullptr) {
AbortF("jfieldID %s not valid for an object of class %s",
f->PrettyField().c_str(), o->PrettyTypeOf().c_str());
return false;
}
return true;
}
/*
* Verify that the pointer value is non-null.
*/
bool CheckNonNull(const void* ptr) {
if (UNLIKELY(ptr == nullptr)) {
AbortF("non-nullable argument was NULL");
return false;
}
return true;
}
/*
* Verify that the method's return type matches the type of call.
* 'expectedType' will be "L" for all objects, including arrays.
*/
bool CheckMethodAndSig(ScopedObjectAccess& soa, jobject jobj, jclass jc,
jmethodID mid, Primitive::Type type, InvokeType invoke)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* m = CheckMethodID(mid);
if (m == nullptr) {
return false;
}
if (type != Primitive::GetType(m->GetShorty()[0])) {
AbortF("the return type of %s does not match %s", function_name_, m->PrettyMethod().c_str());
return false;
}
bool is_static = (invoke == kStatic);
if (is_static != m->IsStatic()) {
if (is_static) {
AbortF("calling non-static method %s with %s",
m->PrettyMethod().c_str(), function_name_);
} else {
AbortF("calling static method %s with %s",
m->PrettyMethod().c_str(), function_name_);
}
return false;
}
if (invoke != kVirtual) {
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(jc);
if (!m->GetDeclaringClass()->IsAssignableFrom(c)) {
AbortF("can't call %s %s with class %s", invoke == kStatic ? "static" : "nonvirtual",
m->PrettyMethod().c_str(), mirror::Class::PrettyClass(c).c_str());
return false;
}
}
if (invoke != kStatic) {
ObjPtr<mirror::Object> o = soa.Decode<mirror::Object>(jobj);
if (o == nullptr) {
AbortF("can't call %s on null object", m->PrettyMethod().c_str());
return false;
} else if (!o->InstanceOf(m->GetDeclaringClass())) {
AbortF("can't call %s on instance of %s", m->PrettyMethod().c_str(),
o->PrettyTypeOf().c_str());
return false;
}
}
return true;
}
/*
* Verify that this static field ID is valid for this class.
*
* Assumes "java_class" has already been validated.
*/
bool CheckStaticFieldID(ScopedObjectAccess& soa, jclass java_class, jfieldID fid)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(java_class);
ArtField* f = CheckFieldID(fid);
if (f == nullptr) {
return false;
}
if (!f->GetDeclaringClass()->IsAssignableFrom(c)) {
AbortF("static jfieldID %p not valid for class %s", fid,
mirror::Class::PrettyClass(c).c_str());
return false;
}
return true;
}
/*
* Verify that "mid" is appropriate for "java_class".
*
* A mismatch isn't dangerous, because the jmethodID defines the class. In
* fact, java_class is unused in the implementation. It's best if we don't
* allow bad code in the system though.
*
* Instances of "java_class" must be instances of the method's declaring class.
*/
bool CheckStaticMethod(ScopedObjectAccess& soa, jclass java_class, jmethodID mid)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* m = CheckMethodID(mid);
if (m == nullptr) {
return false;
}
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(java_class);
if (!m->GetDeclaringClass()->IsAssignableFrom(c)) {
AbortF("can't call static %s on class %s", m->PrettyMethod().c_str(),
mirror::Class::PrettyClass(c).c_str());
return false;
}
return true;
}
/*
* Verify that "mid" is appropriate for "jobj".
*
* Make sure the object is an instance of the method's declaring class.
* (Note the mid might point to a declaration in an interface; this
* will be handled automatically by the instanceof check.)
*/
bool CheckVirtualMethod(ScopedObjectAccess& soa, jobject java_object, jmethodID mid)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* m = CheckMethodID(mid);
if (m == nullptr) {
return false;
}
ObjPtr<mirror::Object> o = soa.Decode<mirror::Object>(java_object);
if (o == nullptr) {
AbortF("can't call %s on null object", m->PrettyMethod().c_str());
return false;
} else if (!o->InstanceOf(m->GetDeclaringClass())) {
AbortF("can't call %s on instance of %s", m->PrettyMethod().c_str(),
o->PrettyTypeOf().c_str());
return false;
}
return true;
}
/**
* The format string is a sequence of the following characters,
* and must be followed by arguments of the corresponding types
* in the same order.
*
* Java primitive types:
* B - jbyte
* C - jchar
* D - jdouble
* F - jfloat
* I - jint
* J - jlong
* S - jshort
* Z - jboolean (shown as true and false)
* V - void
*
* Java reference types:
* L - jobject
* a - jarray
* c - jclass
* s - jstring
*
* JNI types:
* b - jboolean (shown as JNI_TRUE and JNI_FALSE)
* f - jfieldID
* m - jmethodID
* p - void*
* r - jint (for release mode arguments)
* u - const char* (Modified UTF-8)
* z - jsize (for lengths; use i if negative values are okay)
* v - JavaVM*
* E - JNIEnv*
* . - VarArgs* for Jni calls with variable length arguments
*
* Use the kFlag_NullableUtf flag where 'u' field(s) are nullable.
*/
bool Check(ScopedObjectAccess& soa, bool entry, const char* fmt, JniValueType* args)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* traceMethod = nullptr;
if (has_method_ && soa.Vm()->IsTracingEnabled()) {
// We need to guard some of the invocation interface's calls: a bad caller might
// use DetachCurrentThread or GetEnv on a thread that's not yet attached.
Thread* self = Thread::Current();
if ((flags_ & kFlag_Invocation) == 0 || self != nullptr) {
traceMethod = self->GetCurrentMethod(nullptr);
}
}
if (((flags_ & kFlag_ForceTrace) != 0) ||
(traceMethod != nullptr && soa.Vm()->ShouldTrace(traceMethod))) {
std::string msg;
for (size_t i = 0; fmt[i] != '\0'; ++i) {
TracePossibleHeapValue(soa, entry, fmt[i], args[i], &msg);
if (fmt[i + 1] != '\0') {
StringAppendF(&msg, ", ");
}
}
if ((flags_ & kFlag_ForceTrace) != 0) {
LOG(INFO) << "JNI: call to " << function_name_ << "(" << msg << ")";
} else if (entry) {
if (has_method_) {
std::string methodName(ArtMethod::PrettyMethod(traceMethod, false));
LOG(INFO) << "JNI: " << methodName << " -> " << function_name_ << "(" << msg << ")";
indent_ = methodName.size() + 1;
} else {
LOG(INFO) << "JNI: -> " << function_name_ << "(" << msg << ")";
indent_ = 0;
}
} else {
LOG(INFO) << StringPrintf("JNI: %*s<- %s returned %s", indent_, "", function_name_, msg.c_str());
}
}
// We always do the thorough checks on entry, and never on exit...
if (entry) {
for (size_t i = 0; fmt[i] != '\0'; ++i) {
if (!CheckPossibleHeapValue(soa, fmt[i], args[i])) {
return false;
}
}
}
return true;
}
bool CheckNonHeap(JavaVMExt* vm, bool entry, const char* fmt, JniValueType* args) {
bool should_trace = (flags_ & kFlag_ForceTrace) != 0;
if (!should_trace && vm != nullptr && vm->IsTracingEnabled()) {
// We need to guard some of the invocation interface's calls: a bad caller might
// use DetachCurrentThread or GetEnv on a thread that's not yet attached.
Thread* self = Thread::Current();
if ((flags_ & kFlag_Invocation) == 0 || self != nullptr) {
ScopedObjectAccess soa(self);
ArtMethod* traceMethod = self->GetCurrentMethod(nullptr);
should_trace = (traceMethod != nullptr && vm->ShouldTrace(traceMethod));
}
}
if (should_trace) {
std::string msg;
for (size_t i = 0; fmt[i] != '\0'; ++i) {
TraceNonHeapValue(fmt[i], args[i], &msg);
if (fmt[i + 1] != '\0') {
StringAppendF(&msg, ", ");
}
}
if ((flags_ & kFlag_ForceTrace) != 0) {
LOG(INFO) << "JNI: call to " << function_name_ << "(" << msg << ")";
} else if (entry) {
if (has_method_) {
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
ArtMethod* traceMethod = self->GetCurrentMethod(nullptr);
std::string methodName(ArtMethod::PrettyMethod(traceMethod, false));
LOG(INFO) << "JNI: " << methodName << " -> " << function_name_ << "(" << msg << ")";
indent_ = methodName.size() + 1;
} else {
LOG(INFO) << "JNI: -> " << function_name_ << "(" << msg << ")";
indent_ = 0;
}
} else {
LOG(INFO) << StringPrintf("JNI: %*s<- %s returned %s", indent_, "", function_name_, msg.c_str());
}
}
// We always do the thorough checks on entry, and never on exit...
if (entry) {
for (size_t i = 0; fmt[i] != '\0'; ++i) {
if (!CheckNonHeapValue(fmt[i], args[i])) {
return false;
}
}
}
return true;
}
bool CheckReflectedMethod(ScopedObjectAccess& soa, jobject jmethod)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> method = soa.Decode<mirror::Object>(jmethod);
if (method == nullptr) {
AbortF("expected non-null method");
return false;
}
ObjPtr<mirror::Class> c = method->GetClass();
if (mirror::Method::StaticClass() != c && mirror::Constructor::StaticClass() != c) {
AbortF("expected java.lang.reflect.Method or "
"java.lang.reflect.Constructor but got object of type %s: %p",
method->PrettyTypeOf().c_str(), jmethod);
return false;
}
return true;
}
bool CheckConstructor(jmethodID mid) REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = jni::DecodeArtMethod(mid);
if (method == nullptr) {
AbortF("expected non-null constructor");
return false;
}
if (!method->IsConstructor() || method->IsStatic()) {
AbortF("expected a constructor but %s: %p", method->PrettyMethod().c_str(), mid);
return false;
}
return true;
}
bool CheckReflectedField(ScopedObjectAccess& soa, jobject jfield)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> field = soa.Decode<mirror::Object>(jfield);
if (field == nullptr) {
AbortF("expected non-null java.lang.reflect.Field");
return false;
}
ObjPtr<mirror::Class> c = field->GetClass();
if (mirror::Field::StaticClass() != c) {
AbortF("expected java.lang.reflect.Field but got object of type %s: %p",
field->PrettyTypeOf().c_str(), jfield);
return false;
}
return true;
}
bool CheckThrowable(ScopedObjectAccess& soa, jthrowable jobj)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> obj = soa.Decode<mirror::Object>(jobj);
if (!obj->GetClass()->IsThrowableClass()) {
AbortF("expected java.lang.Throwable but got object of type "
"%s: %p", obj->PrettyTypeOf().c_str(), obj.Ptr());
return false;
}
return true;
}
bool CheckThrowableClass(ScopedObjectAccess& soa, jclass jc)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(jc);
if (!c->IsThrowableClass()) {
AbortF("expected java.lang.Throwable class but got object of "
"type %s: %p", c->PrettyDescriptor().c_str(), c.Ptr());
return false;
}
return true;
}
bool CheckReferenceKind(IndirectRefKind expected_kind, Thread* self, jobject obj) {
IndirectRefKind found_kind;
if (expected_kind == kLocal) {
found_kind = IndirectReferenceTable::GetIndirectRefKind(obj);
if (found_kind == kHandleScopeOrInvalid && self->HandleScopeContains(obj)) {
found_kind = kLocal;
}
} else {
found_kind = IndirectReferenceTable::GetIndirectRefKind(obj);
}
if (obj != nullptr && found_kind != expected_kind) {
AbortF("expected reference of kind %s but found %s: %p",
GetIndirectRefKindString(expected_kind),
GetIndirectRefKindString(IndirectReferenceTable::GetIndirectRefKind(obj)),
obj);
return false;
}
return true;
}
bool CheckInstantiableNonArray(ScopedObjectAccess& soa, jclass jc)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(jc);
if (!c->IsInstantiableNonArray()) {
AbortF("can't make objects of type %s: %p", c->PrettyDescriptor().c_str(), c.Ptr());
return false;
}
return true;
}
bool CheckPrimitiveArrayType(ScopedObjectAccess& soa, jarray array, Primitive::Type type)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!CheckArray(soa, array)) {
return false;
}
ObjPtr<mirror::Array> a = soa.Decode<mirror::Array>(array);
if (a->GetClass()->GetComponentType()->GetPrimitiveType() != type) {
AbortF("incompatible array type %s expected %s[]: %p",
a->GetClass()->PrettyDescriptor().c_str(), PrettyDescriptor(type).c_str(), array);
return false;
}
return true;
}
bool CheckFieldAccess(ScopedObjectAccess& soa, jobject obj, jfieldID fid, bool is_static,
Primitive::Type type)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (is_static && !CheckStaticFieldID(soa, down_cast<jclass>(obj), fid)) {
return false;
}
if (!is_static && !CheckInstanceFieldID(soa, obj, fid)) {
return false;
}
ArtField* field = jni::DecodeArtField(fid);
DCHECK(field != nullptr); // Already checked by Check.
if (is_static != field->IsStatic()) {
AbortF("attempt to access %s field %s: %p",
field->IsStatic() ? "static" : "non-static", field->PrettyField().c_str(), fid);
return false;
}
if (type != field->GetTypeAsPrimitiveType()) {
AbortF("attempt to access field %s of type %s with the wrong type %s: %p",
field->PrettyField().c_str(),
PrettyDescriptor(field->GetTypeDescriptor()).c_str(),
PrettyDescriptor(type).c_str(), fid);
return false;
}
if (is_static) {
ObjPtr<mirror::Object> o = soa.Decode<mirror::Object>(obj);
if (o == nullptr || !o->IsClass()) {
AbortF("attempt to access static field %s with a class argument of type %s: %p",
field->PrettyField().c_str(), o->PrettyTypeOf().c_str(), fid);
return false;
}
ObjPtr<mirror::Class> c = o->AsClass();
if (!field->GetDeclaringClass()->IsAssignableFrom(c)) {
AbortF("attempt to access static field %s with an incompatible class argument of %s: %p",
field->PrettyField().c_str(), mirror::Class::PrettyDescriptor(c).c_str(), fid);
return false;
}
} else {
ObjPtr<mirror::Object> o = soa.Decode<mirror::Object>(obj);
if (o == nullptr || !field->GetDeclaringClass()->IsAssignableFrom(o->GetClass())) {
AbortF("attempt to access field %s from an object argument of type %s: %p",
field->PrettyField().c_str(), o->PrettyTypeOf().c_str(), fid);
return false;
}
}
return true;
}
private:
enum InstanceKind {
kClass,
kDirectByteBuffer,
kObject,
kString,
kThrowable,
};
/*
* Verify that "jobj" is a valid non-null object reference, and points to
* an instance of expectedClass.
*
* Because we're looking at an object on the GC heap, we have to switch
* to "running" mode before doing the checks.
*/
bool CheckInstance(ScopedObjectAccess& soa, InstanceKind kind, jobject java_object, bool null_ok)
REQUIRES_SHARED(Locks::mutator_lock_) {
const char* what = nullptr;
switch (kind) {
case kClass:
what = "jclass";
break;
case kDirectByteBuffer:
what = "direct ByteBuffer";
break;
case kObject:
what = "jobject";
break;
case kString:
what = "jstring";
break;
case kThrowable:
what = "jthrowable";
break;
default:
LOG(FATAL) << "Unknown kind " << static_cast<int>(kind);
}
if (java_object == nullptr) {
if (null_ok) {
return true;
} else {
AbortF("%s received NULL %s", function_name_, what);
return false;
}
}
ObjPtr<mirror::Object> obj = soa.Decode<mirror::Object>(java_object);
if (obj == nullptr) {
// Either java_object is invalid or is a cleared weak.
IndirectRef ref = reinterpret_cast<IndirectRef>(java_object);
bool okay;
if (IndirectReferenceTable::GetIndirectRefKind(ref) != kWeakGlobal) {
okay = false;
} else {
obj = soa.Vm()->DecodeWeakGlobal(soa.Self(), ref);
okay = Runtime::Current()->IsClearedJniWeakGlobal(obj);
}
if (!okay) {
AbortF("%s is an invalid %s: %p (%p)",
what,
GetIndirectRefKindString(IndirectReferenceTable::GetIndirectRefKind(java_object)),
java_object,
obj.Ptr());
return false;
}
}
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(obj.Ptr())) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(ERROR));
AbortF("%s is an invalid %s: %p (%p)",
what,
GetIndirectRefKindString(IndirectReferenceTable::GetIndirectRefKind(java_object)),
java_object,
obj.Ptr());
return false;
}
bool okay = true;
switch (kind) {
case kClass:
okay = obj->IsClass();
break;
case kDirectByteBuffer:
UNIMPLEMENTED(FATAL);
break;
case kString:
okay = obj->GetClass()->IsStringClass();
break;
case kThrowable:
okay = obj->GetClass()->IsThrowableClass();
break;
case kObject:
break;
}
if (!okay) {
AbortF("%s has wrong type: %s", what, mirror::Object::PrettyTypeOf(obj).c_str());
return false;
}
return true;
}
/*
* Verify that the "mode" argument passed to a primitive array Release
* function is one of the valid values.
*/
bool CheckReleaseMode(jint mode) {
if (mode != 0 && mode != JNI_COMMIT && mode != JNI_ABORT) {
AbortF("unknown value for release mode: %d", mode);
return false;
}
return true;
}
bool CheckPossibleHeapValue(ScopedObjectAccess& soa, char fmt, JniValueType arg)
REQUIRES_SHARED(Locks::mutator_lock_) {
switch (fmt) {
case 'a': // jarray
return CheckArray(soa, arg.a);
case 'c': // jclass
return CheckInstance(soa, kClass, arg.c, false);
case 'f': // jfieldID
return CheckFieldID(arg.f) != nullptr;
case 'm': // jmethodID
return CheckMethodID(arg.m) != nullptr;
case 'r': // release int
return CheckReleaseMode(arg.r);
case 's': // jstring
return CheckInstance(soa, kString, arg.s, false);
case 't': // jthrowable
return CheckInstance(soa, kThrowable, arg.t, false);
case 'E': // JNIEnv*
return CheckThread(arg.E);
case 'L': // jobject
return CheckInstance(soa, kObject, arg.L, true);
case '.': // A VarArgs list
return CheckVarArgs(soa, arg.va);
default:
return CheckNonHeapValue(fmt, arg);
}
}
bool CheckVarArgs(ScopedObjectAccess& soa, const VarArgs* args_p)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(args_p != nullptr);
VarArgs args(args_p->Clone());
ArtMethod* m = CheckMethodID(args.GetMethodID());
if (m == nullptr) {
return false;
}
uint32_t len = 0;
const char* shorty = m->GetShorty(&len);
// Skip the return type
CHECK_GE(len, 1u);
len--;
shorty++;
for (uint32_t i = 0; i < len; i++) {
if (!CheckPossibleHeapValue(soa, shorty[i], args.GetValue(shorty[i]))) {
return false;
}
}
return true;
}
bool CheckNonHeapValue(char fmt, JniValueType arg) {
switch (fmt) {
case 'p': // TODO: pointer - null or readable?
case 'v': // JavaVM*
case 'D': // jdouble
case 'F': // jfloat
case 'J': // jlong
case 'I': // jint
break; // Ignored.
case 'b': // jboolean, why two? Fall-through.
case 'Z':
return CheckBoolean(arg.I);
case 'B': // jbyte
return CheckByte(arg.I);
case 'C': // jchar
return CheckChar(arg.I);
case 'S': // jshort
return CheckShort(arg.I);
case 'u': // utf8
if ((flags_ & kFlag_Release) != 0) {
return CheckNonNull(arg.u);
} else {
bool nullable = ((flags_ & kFlag_NullableUtf) != 0);
return CheckUtfString(arg.u, nullable);
}
case 'w': // jobjectRefType
switch (arg.w) {
case JNIInvalidRefType:
case JNILocalRefType:
case JNIGlobalRefType:
case JNIWeakGlobalRefType:
break;
default:
AbortF("Unknown reference type");
return false;
}
break;
case 'z': // jsize
return CheckLengthPositive(arg.z);
default:
AbortF("unknown format specifier: '%c'", fmt);
return false;
}
return true;
}
void TracePossibleHeapValue(ScopedObjectAccess& soa, bool entry, char fmt, JniValueType arg,
std::string* msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
switch (fmt) {
case 'L': // jobject fall-through.
case 'a': // jarray fall-through.
case 's': // jstring fall-through.
case 't': // jthrowable fall-through.
if (arg.L == nullptr) {
*msg += "NULL";
} else {
StringAppendF(msg, "%p", arg.L);
}
break;
case 'c': { // jclass
jclass jc = arg.c;
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(jc);
if (c == nullptr) {
*msg += "NULL";
} else if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(c.Ptr())) {
StringAppendF(msg, "INVALID POINTER:%p", jc);
} else if (!c->IsClass()) {
*msg += "INVALID NON-CLASS OBJECT OF TYPE:" + c->PrettyTypeOf();
} else {
*msg += c->PrettyClass();
if (!entry) {
StringAppendF(msg, " (%p)", jc);
}
}
break;
}
case 'f': { // jfieldID
jfieldID fid = arg.f;
ArtField* f = jni::DecodeArtField(fid);
*msg += ArtField::PrettyField(f);
if (!entry) {
StringAppendF(msg, " (%p)", fid);
}
break;
}
case 'm': { // jmethodID
jmethodID mid = arg.m;
ArtMethod* m = jni::DecodeArtMethod(mid);
*msg += ArtMethod::PrettyMethod(m);
if (!entry) {
StringAppendF(msg, " (%p)", mid);
}
break;
}
case '.': {
const VarArgs* va = arg.va;
VarArgs args(va->Clone());
ArtMethod* m = jni::DecodeArtMethod(args.GetMethodID());
uint32_t len;
const char* shorty = m->GetShorty(&len);
CHECK_GE(len, 1u);
// Skip past return value.
len--;
shorty++;
// Remove the previous ', ' from the message.
msg->erase(msg->length() - 2);
for (uint32_t i = 0; i < len; i++) {
*msg += ", ";
TracePossibleHeapValue(soa, entry, shorty[i], args.GetValue(shorty[i]), msg);
}
break;
}
default:
TraceNonHeapValue(fmt, arg, msg);
break;
}
}
void TraceNonHeapValue(char fmt, JniValueType arg, std::string* msg) {
switch (fmt) {
case 'B': // jbyte
if (arg.B >= 0 && arg.B < 10) {
StringAppendF(msg, "%d", arg.B);
} else {
StringAppendF(msg, "%#x (%d)", arg.B, arg.B);
}
break;
case 'C': // jchar
if (arg.C < 0x7f && arg.C >= ' ') {
StringAppendF(msg, "U+%x ('%c')", arg.C, arg.C);
} else {
StringAppendF(msg, "U+%x", arg.C);
}
break;
case 'F': // jfloat
StringAppendF(msg, "%g", arg.F);
break;
case 'D': // jdouble
StringAppendF(msg, "%g", arg.D);
break;
case 'S': // jshort
StringAppendF(msg, "%d", arg.S);
break;
case 'i': // jint - fall-through.
case 'I': // jint
StringAppendF(msg, "%d", arg.I);
break;
case 'J': // jlong
StringAppendF(msg, "%" PRId64, arg.J);
break;
case 'Z': // jboolean
case 'b': // jboolean (JNI-style)
*msg += arg.b == JNI_TRUE ? "true" : "false";
break;
case 'V': // void
DCHECK(arg.V == nullptr);
*msg += "void";
break;
case 'v': // JavaVM*
StringAppendF(msg, "(JavaVM*)%p", arg.v);
break;
case 'E':
StringAppendF(msg, "(JNIEnv*)%p", arg.E);
break;
case 'z': // non-negative jsize
// You might expect jsize to be size_t, but it's not; it's the same as jint.
// We only treat this specially so we can do the non-negative check.
// TODO: maybe this wasn't worth it?
StringAppendF(msg, "%d", arg.z);
break;
case 'p': // void* ("pointer")
if (arg.p == nullptr) {
*msg += "NULL";
} else {
StringAppendF(msg, "(void*) %p", arg.p);
}
break;
case 'r': { // jint (release mode)
jint releaseMode = arg.r;
if (releaseMode == 0) {
*msg += "0";
} else if (releaseMode == JNI_ABORT) {
*msg += "JNI_ABORT";
} else if (releaseMode == JNI_COMMIT) {
*msg += "JNI_COMMIT";
} else {
StringAppendF(msg, "invalid release mode %d", releaseMode);
}
break;
}
case 'u': // const char* (Modified UTF-8)
if (arg.u == nullptr) {
*msg += "NULL";
} else {
StringAppendF(msg, "\"%s\"", arg.u);
}
break;
case 'w': // jobjectRefType
switch (arg.w) {
case JNIInvalidRefType:
*msg += "invalid reference type";
break;
case JNILocalRefType:
*msg += "local ref type";
break;
case JNIGlobalRefType:
*msg += "global ref type";
break;
case JNIWeakGlobalRefType:
*msg += "weak global ref type";
break;
default:
*msg += "unknown ref type";
break;
}
break;
default:
LOG(FATAL) << function_name_ << ": unknown trace format specifier: '" << fmt << "'";
}
}
/*
* Verify that "array" is non-null and points to an Array object.
*
* Since we're dealing with objects, switch to "running" mode.
*/
bool CheckArray(ScopedObjectAccess& soa, jarray java_array)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(java_array == nullptr)) {
AbortF("jarray was NULL");
return false;
}
ObjPtr<mirror::Array> a = soa.Decode<mirror::Array>(java_array);
if (UNLIKELY(!Runtime::Current()->GetHeap()->IsValidObjectAddress(a.Ptr()))) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(ERROR));
AbortF("jarray is an invalid %s: %p (%p)",
GetIndirectRefKindString(IndirectReferenceTable::GetIndirectRefKind(java_array)),
java_array,
a.Ptr());
return false;
} else if (!a->IsArrayInstance()) {
AbortF("jarray argument has non-array type: %s", a->PrettyTypeOf().c_str());
return false;
}
return true;
}
bool CheckBoolean(jint z) {
if (z != JNI_TRUE && z != JNI_FALSE) {
// Note, broken booleans are always fatal.
AbortF("unexpected jboolean value: %d", z);
return false;
}
return true;
}
bool CheckByte(jint b) {
if (b < std::numeric_limits<jbyte>::min() ||
b > std::numeric_limits<jbyte>::max()) {
if (kBrokenPrimitivesAreFatal) {
AbortF("unexpected jbyte value: %d", b);
return false;
} else {
LOG(WARNING) << "Unexpected jbyte value: " << b;
}
}
return true;
}
bool CheckShort(jint s) {
if (s < std::numeric_limits<jshort>::min() ||
s > std::numeric_limits<jshort>::max()) {
if (kBrokenPrimitivesAreFatal) {
AbortF("unexpected jshort value: %d", s);
return false;
} else {
LOG(WARNING) << "Unexpected jshort value: " << s;
}
}
return true;
}
bool CheckChar(jint c) {
if (c < std::numeric_limits<jchar>::min() ||
c > std::numeric_limits<jchar>::max()) {
if (kBrokenPrimitivesAreFatal) {
AbortF("unexpected jchar value: %d", c);
return false;
} else {
LOG(WARNING) << "Unexpected jchar value: " << c;
}
}
return true;
}
bool CheckLengthPositive(jsize length) {
if (length < 0) {
AbortF("negative jsize: %d", length);
return false;
}
return true;
}
ArtField* CheckFieldID(jfieldID fid) REQUIRES_SHARED(Locks::mutator_lock_) {
if (fid == nullptr) {
AbortF("jfieldID was NULL");
return nullptr;
}
ArtField* f = jni::DecodeArtField(fid);
// TODO: Better check here.
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(f->GetDeclaringClass().Ptr())) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(ERROR));
AbortF("invalid jfieldID: %p", fid);
return nullptr;
}
return f;
}
ArtMethod* CheckMethodID(jmethodID mid) REQUIRES_SHARED(Locks::mutator_lock_) {
if (mid == nullptr) {
AbortF("jmethodID was NULL");
return nullptr;
}
ArtMethod* m = jni::DecodeArtMethod(mid);
// TODO: Better check here.
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(m->GetDeclaringClass())) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(ERROR));
AbortF("invalid jmethodID: %p", mid);
return nullptr;
}
return m;
}
bool CheckThread(JNIEnv* env) REQUIRES_SHARED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
if (self == nullptr) {
AbortF("a thread (tid %d) is making JNI calls without being attached", GetTid());
return false;
}
// Get the current thread's JNIEnv by going through our TLS pointer.
JNIEnvExt* threadEnv = self->GetJniEnv();
// Verify that the current thread is (a) attached and (b) associated with
// this particular instance of JNIEnv.
if (env != threadEnv) {
// Get the thread owning the JNIEnv that's being used.
Thread* envThread = reinterpret_cast<JNIEnvExt*>(env)->GetSelf();
AbortF("thread %s using JNIEnv* from thread %s",
ToStr<Thread>(*self).c_str(), ToStr<Thread>(*envThread).c_str());
return false;
}
// Verify that, if this thread previously made a critical "get" call, we
// do the corresponding "release" call before we try anything else.
switch (flags_ & kFlag_CritMask) {
case kFlag_CritOkay: // okay to call this method
break;
case kFlag_CritBad: // not okay to call
if (threadEnv->GetCritical() > 0) {
AbortF("thread %s using JNI after critical get",
ToStr<Thread>(*self).c_str());
return false;
}
break;
case kFlag_CritGet: // this is a "get" call
// Don't check here; we allow nested gets.
if (threadEnv->GetCritical() == 0) {
threadEnv->SetCriticalStartUs(self->GetCpuMicroTime());
}
threadEnv->SetCritical(threadEnv->GetCritical() + 1);
break;
case kFlag_CritRelease: // this is a "release" call
if (threadEnv->GetCritical() == 0) {
AbortF("thread %s called too many critical releases",
ToStr<Thread>(*self).c_str());
return false;
} else if (threadEnv->GetCritical() == 1) {
// Leaving the critical region, possibly warn about long critical regions.
uint64_t critical_duration_us = self->GetCpuMicroTime() - threadEnv->GetCriticalStartUs();
if (critical_duration_us > kCriticalWarnTimeUs) {
LOG(WARNING) << "JNI critical lock held for "
<< PrettyDuration(UsToNs(critical_duration_us)) << " on " << *self;
}
}
threadEnv->SetCritical(threadEnv->GetCritical() - 1);
break;
default:
LOG(FATAL) << "Bad flags (internal error): " << flags_;
}
// Verify that, if an exception has been raised, the native code doesn't
// make any JNI calls other than the Exception* methods.
if ((flags_ & kFlag_ExcepOkay) == 0 && self->IsExceptionPending()) {
mirror::Throwable* exception = self->GetException();
AbortF("JNI %s called with pending exception %s",
function_name_,
exception->Dump().c_str());
return false;
}
return true;
}
// Verifies that "bytes" points to valid Modified UTF-8 data.
bool CheckUtfString(const char* bytes, bool nullable) {
if (bytes == nullptr) {
if (!nullable) {
AbortF("non-nullable const char* was NULL");
return false;
}
return true;
}
const char* errorKind = nullptr;
const uint8_t* utf8 = CheckUtfBytes(bytes, &errorKind);
if (errorKind != nullptr) {
// This is an expensive loop that will resize often, but this isn't supposed to hit in
// practice anyways.
std::ostringstream oss;
oss << std::hex;
const uint8_t* tmp = reinterpret_cast<const uint8_t*>(bytes);
while (*tmp != 0) {
if (tmp == utf8) {
oss << "<";
}
oss << "0x" << std::setfill('0') << std::setw(2) << static_cast<uint32_t>(*tmp);
if (tmp == utf8) {
oss << '>';
}
tmp++;
if (*tmp != 0) {
oss << ' ';
}
}
AbortF("input is not valid Modified UTF-8: illegal %s byte %#x\n"
" string: '%s'\n input: '%s'", errorKind, *utf8, bytes, oss.str().c_str());
return false;
}
return true;
}
// Checks whether |bytes| is valid modified UTF-8. We also accept 4 byte UTF
// sequences in place of encoded surrogate pairs.
static const uint8_t* CheckUtfBytes(const char* bytes, const char** errorKind) {
while (*bytes != '\0') {
const uint8_t* utf8 = reinterpret_cast<const uint8_t*>(bytes++);
// Switch on the high four bits.
switch (*utf8 >> 4) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
// Bit pattern 0xxx. No need for any extra bytes.
break;
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
// Bit patterns 10xx, which are illegal start bytes.
*errorKind = "start";
return utf8;
case 0x0f:
// Bit pattern 1111, which might be the start of a 4 byte sequence.
if ((*utf8 & 0x08) == 0) {
// Bit pattern 1111 0xxx, which is the start of a 4 byte sequence.
// We consume one continuation byte here, and fall through to consume two more.
utf8 = reinterpret_cast<const uint8_t*>(bytes++);
if ((*utf8 & 0xc0) != 0x80) {
*errorKind = "continuation";
return utf8;
}
} else {
*errorKind = "start";
return utf8;
}
// Fall through to the cases below to consume two more continuation bytes.
FALLTHROUGH_INTENDED;
case 0x0e:
// Bit pattern 1110, so there are two additional bytes.
utf8 = reinterpret_cast<const uint8_t*>(bytes++);
if ((*utf8 & 0xc0) != 0x80) {
*errorKind = "continuation";
return utf8;
}
// Fall through to consume one more continuation byte.
FALLTHROUGH_INTENDED;
case 0x0c:
case 0x0d:
// Bit pattern 110x, so there is one additional byte.
utf8 = reinterpret_cast<const uint8_t*>(bytes++);
if ((*utf8 & 0xc0) != 0x80) {
*errorKind = "continuation";
return utf8;
}
break;
}
}
return 0;
}
void AbortF(const char* fmt, ...) __attribute__((__format__(__printf__, 2, 3))) {
va_list args;
va_start(args, fmt);
Runtime::Current()->GetJavaVM()->JniAbortV(function_name_, fmt, args);
va_end(args);
}
// The name of the JNI function being checked.
const char* const function_name_;
int indent_;
const uint16_t flags_;
const bool has_method_;
DISALLOW_COPY_AND_ASSIGN(ScopedCheck);
};
/*
* ===========================================================================
* Guarded arrays
* ===========================================================================
*/
/* this gets tucked in at the start of the buffer; struct size must be even */
class GuardedCopy {
public:
/*
* Create an over-sized buffer to hold the contents of "buf". Copy it in,
* filling in the area around it with guard data.
*/
static void* Create(void* original_buf, size_t len, bool mod_okay) {
const size_t new_len = LengthIncludingRedZones(len);
uint8_t* const new_buf = DebugAlloc(new_len);
// If modification is not expected, grab a checksum.
uLong adler = 0;
if (!mod_okay) {
adler = adler32(adler32(0L, Z_NULL, 0), reinterpret_cast<const Bytef*>(original_buf), len);
}
GuardedCopy* copy = new (new_buf) GuardedCopy(original_buf, len, adler);
// Fill begin region with canary pattern.
const size_t kStartCanaryLength = (GuardedCopy::kRedZoneSize / 2) - sizeof(GuardedCopy);
for (size_t i = 0, j = 0; i < kStartCanaryLength; ++i) {
const_cast<char*>(copy->StartRedZone())[i] = kCanary[j];
if (kCanary[j] == '\0') {
j = 0;
} else {
j++;
}
}
// Copy the data in; note "len" could be zero.
memcpy(const_cast<uint8_t*>(copy->BufferWithinRedZones()), original_buf, len);
// Fill end region with canary pattern.
for (size_t i = 0, j = 0; i < kEndCanaryLength; ++i) {
const_cast<char*>(copy->EndRedZone())[i] = kCanary[j];
if (kCanary[j] == '\0') {
j = 0;
} else {
j++;
}
}
return const_cast<uint8_t*>(copy->BufferWithinRedZones());
}
/*
* Create a guarded copy of a primitive array. Modifications to the copied
* data are allowed. Returns a pointer to the copied data.
*/
static void* CreateGuardedPACopy(JNIEnv* env, const jarray java_array, jboolean* is_copy,
void* original_ptr) {
ScopedObjectAccess soa(env);
ObjPtr<mirror::Array> a = soa.Decode<mirror::Array>(java_array);
size_t component_size = a->GetClass()->GetComponentSize();
size_t byte_count = a->GetLength() * component_size;
void* result = Create(original_ptr, byte_count, true);
if (is_copy != nullptr) {
*is_copy = JNI_TRUE;
}
return result;
}
/*
* Perform the array "release" operation, which may or may not copy data
* back into the managed heap, and may or may not release the underlying storage.
*/
static void* ReleaseGuardedPACopy(const char* function_name, JNIEnv* env,
jarray java_array ATTRIBUTE_UNUSED, void* embedded_buf,
int mode) {
ScopedObjectAccess soa(env);
if (!GuardedCopy::Check(function_name, embedded_buf, true)) {
return nullptr;
}
GuardedCopy* const copy = FromEmbedded(embedded_buf);
void* original_ptr = copy->original_ptr_;
if (mode != JNI_ABORT) {
memcpy(original_ptr, embedded_buf, copy->original_length_);
}
if (mode != JNI_COMMIT) {
Destroy(embedded_buf);
}
return original_ptr;
}
/*
* Free up the guard buffer, scrub it, and return the original pointer.
*/
static void* Destroy(void* embedded_buf) {
GuardedCopy* copy = FromEmbedded(embedded_buf);
void* original_ptr = const_cast<void*>(copy->original_ptr_);
size_t len = LengthIncludingRedZones(copy->original_length_);
DebugFree(copy, len);
return original_ptr;
}
/*
* Verify the guard area and, if "modOkay" is false, that the data itself
* has not been altered.
*
* The caller has already checked that "dataBuf" is non-null.
*/
static bool Check(const char* function_name, const void* embedded_buf, bool mod_okay) {
const GuardedCopy* copy = FromEmbedded(embedded_buf);
return copy->CheckHeader(function_name, mod_okay) && copy->CheckRedZones(function_name);
}
private:
GuardedCopy(void* original_buf, size_t len, uLong adler) :
magic_(kGuardMagic), adler_(adler), original_ptr_(original_buf), original_length_(len) {
}
static uint8_t* DebugAlloc(size_t len) {
void* result = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
if (result == MAP_FAILED) {
PLOG(FATAL) << "GuardedCopy::create mmap(" << len << ") failed";
}
return reinterpret_cast<uint8_t*>(result);
}
static void DebugFree(void* buf, size_t len) {
if (munmap(buf, len) != 0) {
PLOG(FATAL) << "munmap(" << buf << ", " << len << ") failed";
}
}
static size_t LengthIncludingRedZones(size_t len) {
return len + kRedZoneSize;
}
// Get the GuardedCopy from the interior pointer.
static GuardedCopy* FromEmbedded(void* embedded_buf) {
return reinterpret_cast<GuardedCopy*>(
reinterpret_cast<uint8_t*>(embedded_buf) - (kRedZoneSize / 2));
}
static const GuardedCopy* FromEmbedded(const void* embedded_buf) {
return reinterpret_cast<const GuardedCopy*>(
reinterpret_cast<const uint8_t*>(embedded_buf) - (kRedZoneSize / 2));
}
static void AbortF(const char* jni_function_name, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Runtime::Current()->GetJavaVM()->JniAbortV(jni_function_name, fmt, args);
va_end(args);
}
bool CheckHeader(const char* function_name, bool mod_okay) const {
static const uint32_t kMagicCmp = kGuardMagic;
// Before we do anything with "pExtra", check the magic number. We
// do the check with memcmp rather than "==" in case the pointer is
// unaligned. If it points to completely bogus memory we're going
// to crash, but there's no easy way around that.
if (UNLIKELY(memcmp(&magic_, &kMagicCmp, 4) != 0)) {
uint8_t buf[4];
memcpy(buf, &magic_, 4);
AbortF(function_name,
"guard magic does not match (found 0x%02x%02x%02x%02x) -- incorrect data pointer %p?",
buf[3], buf[2], buf[1], buf[0], this); // Assumes little-endian.
return false;
}
// If modification is not expected, verify checksum. Strictly speaking this is wrong: if we
// told the client that we made a copy, there's no reason they can't alter the buffer.
if (!mod_okay) {
uLong computed_adler =
adler32(adler32(0L, Z_NULL, 0), BufferWithinRedZones(), original_length_);
if (computed_adler != adler_) {
AbortF(function_name, "buffer modified (0x%08lx vs 0x%08lx) at address %p",
computed_adler, adler_, this);
return false;
}
}
return true;
}
bool CheckRedZones(const char* function_name) const {
// Check the begin red zone.
const size_t kStartCanaryLength = (GuardedCopy::kRedZoneSize / 2) - sizeof(GuardedCopy);
for (size_t i = 0, j = 0; i < kStartCanaryLength; ++i) {
if (UNLIKELY(StartRedZone()[i] != kCanary[j])) {
AbortF(function_name, "guard pattern before buffer disturbed at %p +%zd", this, i);
return false;
}
if (kCanary[j] == '\0') {
j = 0;
} else {
j++;
}
}
// Check end region.
for (size_t i = 0, j = 0; i < kEndCanaryLength; ++i) {
if (UNLIKELY(EndRedZone()[i] != kCanary[j])) {
size_t offset_from_buffer_start =
&(EndRedZone()[i]) - &(StartRedZone()[kStartCanaryLength]);
AbortF(function_name, "guard pattern after buffer disturbed at %p +%zd", this,
offset_from_buffer_start);
return false;
}
if (kCanary[j] == '\0') {
j = 0;
} else {
j++;
}
}
return true;
}
// Location that canary value will be written before the guarded region.
const char* StartRedZone() const {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(this);
return reinterpret_cast<const char*>(buf + sizeof(GuardedCopy));
}
// Return the interior embedded buffer.
const uint8_t* BufferWithinRedZones() const {
const uint8_t* embedded_buf = reinterpret_cast<const uint8_t*>(this) + (kRedZoneSize / 2);
return embedded_buf;
}
// Location that canary value will be written after the guarded region.
const char* EndRedZone() const {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(this);
size_t buf_len = LengthIncludingRedZones(original_length_);
return reinterpret_cast<const char*>(buf + (buf_len - (kRedZoneSize / 2)));
}
static constexpr size_t kRedZoneSize = 512;
static constexpr size_t kEndCanaryLength = kRedZoneSize / 2;
// Value written before and after the guarded array.
static const char* const kCanary;
static constexpr uint32_t kGuardMagic = 0xffd5aa96;
const uint32_t magic_;
const uLong adler_;
void* const original_ptr_;
const size_t original_length_;
};
const char* const GuardedCopy::kCanary = "JNI BUFFER RED ZONE";
/*
* ===========================================================================
* JNI functions
* ===========================================================================
*/
class CheckJNI {
public:
static jint GetVersion(JNIEnv* env) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[1] = {{.E = env }};
if (sc.Check(soa, true, "E", args)) {
JniValueType result;
result.I = baseEnv(env)->GetVersion(env);
if (sc.Check(soa, false, "I", &result)) {
return result.I;
}
}
return JNI_ERR;
}
static jint GetJavaVM(JNIEnv *env, JavaVM **vm) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env }, {.p = vm}};
if (sc.Check(soa, true, "Ep", args)) {
JniValueType result;
result.i = baseEnv(env)->GetJavaVM(env, vm);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jint RegisterNatives(JNIEnv* env, jclass c, const JNINativeMethod* methods, jint nMethods) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[4] = {{.E = env }, {.c = c}, {.p = methods}, {.I = nMethods}};
if (sc.Check(soa, true, "EcpI", args)) {
JniValueType result;
result.i = baseEnv(env)->RegisterNatives(env, c, methods, nMethods);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jint UnregisterNatives(JNIEnv* env, jclass c) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env }, {.c = c}};
if (sc.Check(soa, true, "Ec", args)) {
JniValueType result;
result.i = baseEnv(env)->UnregisterNatives(env, c);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jobjectRefType GetObjectRefType(JNIEnv* env, jobject obj) {
// Note: we use "EL" here but "Ep" has been used in the past on the basis that we'd like to
// know the object is invalid. The spec says that passing invalid objects or even ones that
// are deleted isn't supported.
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env }, {.L = obj}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
result.w = baseEnv(env)->GetObjectRefType(env, obj);
if (sc.Check(soa, false, "w", &result)) {
return result.w;
}
}
return JNIInvalidRefType;
}
static jclass DefineClass(JNIEnv* env, const char* name, jobject loader, const jbyte* buf,
jsize bufLen) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[5] = {{.E = env}, {.u = name}, {.L = loader}, {.p = buf}, {.z = bufLen}};
if (sc.Check(soa, true, "EuLpz", args) && sc.CheckClassName(name)) {
JniValueType result;
result.c = baseEnv(env)->DefineClass(env, name, loader, buf, bufLen);
if (sc.Check(soa, false, "c", &result)) {
return result.c;
}
}
return nullptr;
}
static jclass FindClass(JNIEnv* env, const char* name) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.u = name}};
if (sc.Check(soa, true, "Eu", args) && sc.CheckClassName(name)) {
JniValueType result;
result.c = baseEnv(env)->FindClass(env, name);
if (sc.Check(soa, false, "c", &result)) {
return result.c;
}
}
return nullptr;
}
static jclass GetSuperclass(JNIEnv* env, jclass c) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.c = c}};
if (sc.Check(soa, true, "Ec", args)) {
JniValueType result;
result.c = baseEnv(env)->GetSuperclass(env, c);
if (sc.Check(soa, false, "c", &result)) {
return result.c;
}
}
return nullptr;
}
static jboolean IsAssignableFrom(JNIEnv* env, jclass c1, jclass c2) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.c = c1}, {.c = c2}};
if (sc.Check(soa, true, "Ecc", args)) {
JniValueType result;
result.b = baseEnv(env)->IsAssignableFrom(env, c1, c2);
if (sc.Check(soa, false, "b", &result)) {
return result.b;
}
}
return JNI_FALSE;
}
static jmethodID FromReflectedMethod(JNIEnv* env, jobject method) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = method}};
if (sc.Check(soa, true, "EL", args) && sc.CheckReflectedMethod(soa, method)) {
JniValueType result;
result.m = baseEnv(env)->FromReflectedMethod(env, method);
if (sc.Check(soa, false, "m", &result)) {
return result.m;
}
}
return nullptr;
}
static jfieldID FromReflectedField(JNIEnv* env, jobject field) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = field}};
if (sc.Check(soa, true, "EL", args) && sc.CheckReflectedField(soa, field)) {
JniValueType result;
result.f = baseEnv(env)->FromReflectedField(env, field);
if (sc.Check(soa, false, "f", &result)) {
return result.f;
}
}
return nullptr;
}
static jobject ToReflectedMethod(JNIEnv* env, jclass cls, jmethodID mid, jboolean isStatic) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[4] = {{.E = env}, {.c = cls}, {.m = mid}, {.I = isStatic}};
if (sc.Check(soa, true, "Ecmb", args)) {
JniValueType result;
result.L = baseEnv(env)->ToReflectedMethod(env, cls, mid, isStatic);
if (sc.Check(soa, false, "L", &result) && (result.L != nullptr)) {
DCHECK(sc.CheckReflectedMethod(soa, result.L));
return result.L;
}
}
return nullptr;
}
static jobject ToReflectedField(JNIEnv* env, jclass cls, jfieldID fid, jboolean isStatic) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[4] = {{.E = env}, {.c = cls}, {.f = fid}, {.I = isStatic}};
if (sc.Check(soa, true, "Ecfb", args)) {
JniValueType result;
result.L = baseEnv(env)->ToReflectedField(env, cls, fid, isStatic);
if (sc.Check(soa, false, "L", &result) && (result.L != nullptr)) {
DCHECK(sc.CheckReflectedField(soa, result.L));
return result.L;
}
}
return nullptr;
}
static jint Throw(JNIEnv* env, jthrowable obj) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.t = obj}};
if (sc.Check(soa, true, "Et", args) && sc.CheckThrowable(soa, obj)) {
JniValueType result;
result.i = baseEnv(env)->Throw(env, obj);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jint ThrowNew(JNIEnv* env, jclass c, const char* message) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_NullableUtf, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.c = c}, {.u = message}};
if (sc.Check(soa, true, "Ecu", args) && sc.CheckThrowableClass(soa, c)) {
JniValueType result;
result.i = baseEnv(env)->ThrowNew(env, c, message);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jthrowable ExceptionOccurred(JNIEnv* env) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[1] = {{.E = env}};
if (sc.Check(soa, true, "E", args)) {
JniValueType result;
result.t = baseEnv(env)->ExceptionOccurred(env);
if (sc.Check(soa, false, "t", &result)) {
return result.t;
}
}
return nullptr;
}
static void ExceptionDescribe(JNIEnv* env) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[1] = {{.E = env}};
if (sc.Check(soa, true, "E", args)) {
JniValueType result;
baseEnv(env)->ExceptionDescribe(env);
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static void ExceptionClear(JNIEnv* env) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[1] = {{.E = env}};
if (sc.Check(soa, true, "E", args)) {
JniValueType result;
baseEnv(env)->ExceptionClear(env);
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jboolean ExceptionCheck(JNIEnv* env) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay | kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[1] = {{.E = env}};
if (sc.Check(soa, true, "E", args)) {
JniValueType result;
result.b = baseEnv(env)->ExceptionCheck(env);
if (sc.Check(soa, false, "b", &result)) {
return result.b;
}
}
return JNI_FALSE;
}
static void FatalError(JNIEnv* env, const char* msg) {
// The JNI specification doesn't say it's okay to call FatalError with a pending exception,
// but you're about to abort anyway, and it's quite likely that you have a pending exception,
// and it's not unimaginable that you don't know that you do. So we allow it.
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay | kFlag_NullableUtf, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.u = msg}};
if (sc.Check(soa, true, "Eu", args)) {
JniValueType result;
baseEnv(env)->FatalError(env, msg);
// Unreachable.
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jint PushLocalFrame(JNIEnv* env, jint capacity) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.I = capacity}};
if (sc.Check(soa, true, "EI", args)) {
JniValueType result;
result.i = baseEnv(env)->PushLocalFrame(env, capacity);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jobject PopLocalFrame(JNIEnv* env, jobject res) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = res}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
result.L = baseEnv(env)->PopLocalFrame(env, res);
sc.Check(soa, false, "L", &result);
return result.L;
}
return nullptr;
}
static jobject NewGlobalRef(JNIEnv* env, jobject obj) {
return NewRef(__FUNCTION__, env, obj, kGlobal);
}
static jobject NewLocalRef(JNIEnv* env, jobject obj) {
return NewRef(__FUNCTION__, env, obj, kLocal);
}
static jweak NewWeakGlobalRef(JNIEnv* env, jobject obj) {
return NewRef(__FUNCTION__, env, obj, kWeakGlobal);
}
static void DeleteGlobalRef(JNIEnv* env, jobject obj) {
DeleteRef(__FUNCTION__, env, obj, kGlobal);
}
static void DeleteWeakGlobalRef(JNIEnv* env, jweak obj) {
DeleteRef(__FUNCTION__, env, obj, kWeakGlobal);
}
static void DeleteLocalRef(JNIEnv* env, jobject obj) {
DeleteRef(__FUNCTION__, env, obj, kLocal);
}
static jint EnsureLocalCapacity(JNIEnv *env, jint capacity) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.I = capacity}};
if (sc.Check(soa, true, "EI", args)) {
JniValueType result;
result.i = baseEnv(env)->EnsureLocalCapacity(env, capacity);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jboolean IsSameObject(JNIEnv* env, jobject ref1, jobject ref2) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.L = ref1}, {.L = ref2}};
if (sc.Check(soa, true, "ELL", args)) {
JniValueType result;
result.b = baseEnv(env)->IsSameObject(env, ref1, ref2);
if (sc.Check(soa, false, "b", &result)) {
return result.b;
}
}
return JNI_FALSE;
}
static jobject AllocObject(JNIEnv* env, jclass c) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.c = c}};
if (sc.Check(soa, true, "Ec", args) && sc.CheckInstantiableNonArray(soa, c)) {
JniValueType result;
result.L = baseEnv(env)->AllocObject(env, c);
if (sc.Check(soa, false, "L", &result)) {
return result.L;
}
}
return nullptr;
}
static jobject NewObjectV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
VarArgs rest(mid, vargs);
JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = &rest}};
if (sc.Check(soa, true, "Ecm.", args) && sc.CheckInstantiableNonArray(soa, c) &&
sc.CheckConstructor(mid)) {
JniValueType result;
result.L = baseEnv(env)->NewObjectV(env, c, mid, vargs);
if (sc.Check(soa, false, "L", &result)) {
return result.L;
}
}
return nullptr;
}
static jobject NewObject(JNIEnv* env, jclass c, jmethodID mid, ...) {
va_list args;
va_start(args, mid);
jobject result = NewObjectV(env, c, mid, args);
va_end(args);
return result;
}
static jobject NewObjectA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
VarArgs rest(mid, vargs);
JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = &rest}};
if (sc.Check(soa, true, "Ecm.", args) && sc.CheckInstantiableNonArray(soa, c) &&
sc.CheckConstructor(mid)) {
JniValueType result;
result.L = baseEnv(env)->NewObjectA(env, c, mid, vargs);
if (sc.Check(soa, false, "L", &result)) {
return result.L;
}
}
return nullptr;
}
static jclass GetObjectClass(JNIEnv* env, jobject obj) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = obj}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
result.c = baseEnv(env)->GetObjectClass(env, obj);
if (sc.Check(soa, false, "c", &result)) {
return result.c;
}
}
return nullptr;
}
static jboolean IsInstanceOf(JNIEnv* env, jobject obj, jclass c) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.L = obj}, {.c = c}};
if (sc.Check(soa, true, "ELc", args)) {
JniValueType result;
result.b = baseEnv(env)->IsInstanceOf(env, obj, c);
if (sc.Check(soa, false, "b", &result)) {
return result.b;
}
}
return JNI_FALSE;
}
static jmethodID GetMethodID(JNIEnv* env, jclass c, const char* name, const char* sig) {
return GetMethodIDInternal(__FUNCTION__, env, c, name, sig, false);
}
static jmethodID GetStaticMethodID(JNIEnv* env, jclass c, const char* name, const char* sig) {
return GetMethodIDInternal(__FUNCTION__, env, c, name, sig, true);
}
static jfieldID GetFieldID(JNIEnv* env, jclass c, const char* name, const char* sig) {
return GetFieldIDInternal(__FUNCTION__, env, c, name, sig, false);
}
static jfieldID GetStaticFieldID(JNIEnv* env, jclass c, const char* name, const char* sig) {
return GetFieldIDInternal(__FUNCTION__, env, c, name, sig, true);
}
#define FIELD_ACCESSORS(jtype, name, ptype, shorty, slot_sized_shorty) \
static jtype GetStatic##name##Field(JNIEnv* env, jclass c, jfieldID fid) { \
return GetField(__FUNCTION__, env, c, fid, true, ptype).shorty; \
} \
\
static jtype Get##name##Field(JNIEnv* env, jobject obj, jfieldID fid) { \
return GetField(__FUNCTION__, env, obj, fid, false, ptype).shorty; \
} \
\
static void SetStatic##name##Field(JNIEnv* env, jclass c, jfieldID fid, jtype v) { \
JniValueType value; \
value.slot_sized_shorty = v; \
SetField(__FUNCTION__, env, c, fid, true, ptype, value); \
} \
\
static void Set##name##Field(JNIEnv* env, jobject obj, jfieldID fid, jtype v) { \
JniValueType value; \
value.slot_sized_shorty = v; \
SetField(__FUNCTION__, env, obj, fid, false, ptype, value); \
}
FIELD_ACCESSORS(jobject, Object, Primitive::kPrimNot, L, L)
FIELD_ACCESSORS(jboolean, Boolean, Primitive::kPrimBoolean, Z, I)
FIELD_ACCESSORS(jbyte, Byte, Primitive::kPrimByte, B, I)
FIELD_ACCESSORS(jchar, Char, Primitive::kPrimChar, C, I)
FIELD_ACCESSORS(jshort, Short, Primitive::kPrimShort, S, I)
FIELD_ACCESSORS(jint, Int, Primitive::kPrimInt, I, I)
FIELD_ACCESSORS(jlong, Long, Primitive::kPrimLong, J, J)
FIELD_ACCESSORS(jfloat, Float, Primitive::kPrimFloat, F, F)
FIELD_ACCESSORS(jdouble, Double, Primitive::kPrimDouble, D, D)
#undef FIELD_ACCESSORS
static void CallVoidMethodA(JNIEnv* env, jobject obj, jmethodID mid, jvalue* vargs) {
CallMethodA(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual);
}
static void CallNonvirtualVoidMethodA(JNIEnv* env, jobject obj, jclass c, jmethodID mid,
jvalue* vargs) {
CallMethodA(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect);
}
static void CallStaticVoidMethodA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) {
CallMethodA(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic);
}
static void CallVoidMethodV(JNIEnv* env, jobject obj, jmethodID mid, va_list vargs) {
CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual);
}
static void CallNonvirtualVoidMethodV(JNIEnv* env, jobject obj, jclass c, jmethodID mid,
va_list vargs) {
CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect);
}
static void CallStaticVoidMethodV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) {
CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic);
}
static void CallVoidMethod(JNIEnv* env, jobject obj, jmethodID mid, ...) {
va_list vargs;
va_start(vargs, mid);
CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual);
va_end(vargs);
}
static void CallNonvirtualVoidMethod(JNIEnv* env, jobject obj, jclass c, jmethodID mid, ...) {
va_list vargs;
va_start(vargs, mid);
CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect);
va_end(vargs);
}
static void CallStaticVoidMethod(JNIEnv* env, jclass c, jmethodID mid, ...) {
va_list vargs;
va_start(vargs, mid);
CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic);
va_end(vargs);
}
#define CALL(rtype, name, ptype, shorty) \
static rtype Call##name##MethodA(JNIEnv* env, jobject obj, jmethodID mid, jvalue* vargs) { \
return CallMethodA(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \
} \
\
static rtype CallNonvirtual##name##MethodA(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \
jvalue* vargs) { \
return CallMethodA(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \
} \
\
static rtype CallStatic##name##MethodA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) { \
return CallMethodA(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \
} \
\
static rtype Call##name##MethodV(JNIEnv* env, jobject obj, jmethodID mid, va_list vargs) { \
return CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \
} \
\
static rtype CallNonvirtual##name##MethodV(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \
va_list vargs) { \
return CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \
} \
\
static rtype CallStatic##name##MethodV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) { \
return CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \
} \
\
static rtype Call##name##Method(JNIEnv* env, jobject obj, jmethodID mid, ...) { \
va_list vargs; \
va_start(vargs, mid); \
rtype result = \
CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \
va_end(vargs); \
return result; \
} \
\
static rtype CallNonvirtual##name##Method(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \
...) { \
va_list vargs; \
va_start(vargs, mid); \
rtype result = \
CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \
va_end(vargs); \
return result; \
} \
\
static rtype CallStatic##name##Method(JNIEnv* env, jclass c, jmethodID mid, ...) { \
va_list vargs; \
va_start(vargs, mid); \
rtype result = \
CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \
va_end(vargs); \
return result; \
}
CALL(jobject, Object, Primitive::kPrimNot, L)
CALL(jboolean, Boolean, Primitive::kPrimBoolean, Z)
CALL(jbyte, Byte, Primitive::kPrimByte, B)
CALL(jchar, Char, Primitive::kPrimChar, C)
CALL(jshort, Short, Primitive::kPrimShort, S)
CALL(jint, Int, Primitive::kPrimInt, I)
CALL(jlong, Long, Primitive::kPrimLong, J)
CALL(jfloat, Float, Primitive::kPrimFloat, F)
CALL(jdouble, Double, Primitive::kPrimDouble, D)
#undef CALL
static jstring NewString(JNIEnv* env, const jchar* unicode_chars, jsize len) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.p = unicode_chars}, {.z = len}};
if (sc.Check(soa, true, "Epz", args)) {
JniValueType result;
result.s = baseEnv(env)->NewString(env, unicode_chars, len);
if (sc.Check(soa, false, "s", &result)) {
return result.s;
}
}
return nullptr;
}
static jstring NewStringUTF(JNIEnv* env, const char* chars) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_NullableUtf, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.u = chars}};
if (sc.Check(soa, true, "Eu", args)) {
JniValueType result;
// TODO: stale? show pointer and truncate string.
result.s = baseEnv(env)->NewStringUTF(env, chars);
if (sc.Check(soa, false, "s", &result)) {
return result.s;
}
}
return nullptr;
}
static jsize GetStringLength(JNIEnv* env, jstring string) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.s = string}};
if (sc.Check(soa, true, "Es", args)) {
JniValueType result;
result.z = baseEnv(env)->GetStringLength(env, string);
if (sc.Check(soa, false, "z", &result)) {
return result.z;
}
}
return JNI_ERR;
}
static jsize GetStringUTFLength(JNIEnv* env, jstring string) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.s = string}};
if (sc.Check(soa, true, "Es", args)) {
JniValueType result;
result.z = baseEnv(env)->GetStringUTFLength(env, string);
if (sc.Check(soa, false, "z", &result)) {
return result.z;
}
}
return JNI_ERR;
}
static const jchar* GetStringChars(JNIEnv* env, jstring string, jboolean* is_copy) {
return reinterpret_cast<const jchar*>(GetStringCharsInternal(__FUNCTION__, env, string,
is_copy, false, false));
}
static const char* GetStringUTFChars(JNIEnv* env, jstring string, jboolean* is_copy) {
return reinterpret_cast<const char*>(GetStringCharsInternal(__FUNCTION__, env, string,
is_copy, true, false));
}
static const jchar* GetStringCritical(JNIEnv* env, jstring string, jboolean* is_copy) {
return reinterpret_cast<const jchar*>(GetStringCharsInternal(__FUNCTION__, env, string,
is_copy, false, true));
}
static void ReleaseStringChars(JNIEnv* env, jstring string, const jchar* chars) {
ReleaseStringCharsInternal(__FUNCTION__, env, string, chars, false, false);
}
static void ReleaseStringUTFChars(JNIEnv* env, jstring string, const char* utf) {
ReleaseStringCharsInternal(__FUNCTION__, env, string, utf, true, false);
}
static void ReleaseStringCritical(JNIEnv* env, jstring string, const jchar* chars) {
ReleaseStringCharsInternal(__FUNCTION__, env, string, chars, false, true);
}
static void GetStringRegion(JNIEnv* env, jstring string, jsize start, jsize len, jchar* buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay, __FUNCTION__);
JniValueType args[5] = {{.E = env}, {.s = string}, {.z = start}, {.z = len}, {.p = buf}};
// Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices
// result in ArrayIndexOutOfBoundsExceptions in the base implementation.
if (sc.Check(soa, true, "EsIIp", args)) {
baseEnv(env)->GetStringRegion(env, string, start, len, buf);
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static void GetStringUTFRegion(JNIEnv* env, jstring string, jsize start, jsize len, char* buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay, __FUNCTION__);
JniValueType args[5] = {{.E = env}, {.s = string}, {.z = start}, {.z = len}, {.p = buf}};
// Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices
// result in ArrayIndexOutOfBoundsExceptions in the base implementation.
if (sc.Check(soa, true, "EsIIp", args)) {
baseEnv(env)->GetStringUTFRegion(env, string, start, len, buf);
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jsize GetArrayLength(JNIEnv* env, jarray array) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.a = array}};
if (sc.Check(soa, true, "Ea", args)) {
JniValueType result;
result.z = baseEnv(env)->GetArrayLength(env, array);
if (sc.Check(soa, false, "z", &result)) {
return result.z;
}
}
return JNI_ERR;
}
static jobjectArray NewObjectArray(JNIEnv* env, jsize length, jclass element_class,
jobject initial_element) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[4] =
{{.E = env}, {.z = length}, {.c = element_class}, {.L = initial_element}};
if (sc.Check(soa, true, "EzcL", args)) {
JniValueType result;
// Note: assignability tests of initial_element are done in the base implementation.
result.a = baseEnv(env)->NewObjectArray(env, length, element_class, initial_element);
if (sc.Check(soa, false, "a", &result)) {
return down_cast<jobjectArray>(result.a);
}
}
return nullptr;
}
static jobject GetObjectArrayElement(JNIEnv* env, jobjectArray array, jsize index) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.a = array}, {.z = index}};
if (sc.Check(soa, true, "Eaz", args)) {
JniValueType result;
result.L = baseEnv(env)->GetObjectArrayElement(env, array, index);
if (sc.Check(soa, false, "L", &result)) {
return result.L;
}
}
return nullptr;
}
static void SetObjectArrayElement(JNIEnv* env, jobjectArray array, jsize index, jobject value) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[4] = {{.E = env}, {.a = array}, {.z = index}, {.L = value}};
// Note: the index arguments is checked as 'I' rather than 'z' as invalid indices result in
// ArrayIndexOutOfBoundsExceptions in the base implementation. Similarly invalid stores result
// in ArrayStoreExceptions.
if (sc.Check(soa, true, "EaIL", args)) {
baseEnv(env)->SetObjectArrayElement(env, array, index, value);
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jbooleanArray NewBooleanArray(JNIEnv* env, jsize length) {
return down_cast<jbooleanArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimBoolean));
}
static jbyteArray NewByteArray(JNIEnv* env, jsize length) {
return down_cast<jbyteArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimByte));
}
static jcharArray NewCharArray(JNIEnv* env, jsize length) {
return down_cast<jcharArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimChar));
}
static jshortArray NewShortArray(JNIEnv* env, jsize length) {
return down_cast<jshortArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimShort));
}
static jintArray NewIntArray(JNIEnv* env, jsize length) {
return down_cast<jintArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimInt));
}
static jlongArray NewLongArray(JNIEnv* env, jsize length) {
return down_cast<jlongArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimLong));
}
static jfloatArray NewFloatArray(JNIEnv* env, jsize length) {
return down_cast<jfloatArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimFloat));
}
static jdoubleArray NewDoubleArray(JNIEnv* env, jsize length) {
return down_cast<jdoubleArray>(NewPrimitiveArray(__FUNCTION__, env, length,
Primitive::kPrimDouble));
}
// NOLINT added to avoid wrong warning/fix from clang-tidy.
#define PRIMITIVE_ARRAY_FUNCTIONS(ctype, name, ptype) \
static ctype* Get##name##ArrayElements(JNIEnv* env, ctype##Array array, jboolean* is_copy) { /* NOLINT */ \
return reinterpret_cast<ctype*>( /* NOLINT */ \
GetPrimitiveArrayElements(__FUNCTION__, ptype, env, array, is_copy)); \
} \
\
static void Release##name##ArrayElements(JNIEnv* env, ctype##Array array, ctype* elems, /* NOLINT */ \
jint mode) { \
ReleasePrimitiveArrayElements(__FUNCTION__, ptype, env, array, elems, mode); \
} \
\
static void Get##name##ArrayRegion(JNIEnv* env, ctype##Array array, jsize start, jsize len, \
ctype* buf) { /* NOLINT */ \
GetPrimitiveArrayRegion(__FUNCTION__, ptype, env, array, start, len, buf); \
} \
\
static void Set##name##ArrayRegion(JNIEnv* env, ctype##Array array, jsize start, jsize len, \
const ctype* buf) { \
SetPrimitiveArrayRegion(__FUNCTION__, ptype, env, array, start, len, buf); \
}
PRIMITIVE_ARRAY_FUNCTIONS(jboolean, Boolean, Primitive::kPrimBoolean)
PRIMITIVE_ARRAY_FUNCTIONS(jbyte, Byte, Primitive::kPrimByte)
PRIMITIVE_ARRAY_FUNCTIONS(jchar, Char, Primitive::kPrimChar)
PRIMITIVE_ARRAY_FUNCTIONS(jshort, Short, Primitive::kPrimShort)
PRIMITIVE_ARRAY_FUNCTIONS(jint, Int, Primitive::kPrimInt)
PRIMITIVE_ARRAY_FUNCTIONS(jlong, Long, Primitive::kPrimLong)
PRIMITIVE_ARRAY_FUNCTIONS(jfloat, Float, Primitive::kPrimFloat)
PRIMITIVE_ARRAY_FUNCTIONS(jdouble, Double, Primitive::kPrimDouble)
#undef PRIMITIVE_ARRAY_FUNCTIONS
static jint MonitorEnter(JNIEnv* env, jobject obj) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = obj}};
if (sc.Check(soa, true, "EL", args)) {
if (obj != nullptr) {
down_cast<JNIEnvExt*>(env)->RecordMonitorEnter(obj);
}
JniValueType result;
result.i = baseEnv(env)->MonitorEnter(env, obj);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static jint MonitorExit(JNIEnv* env, jobject obj) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = obj}};
if (sc.Check(soa, true, "EL", args)) {
if (obj != nullptr) {
down_cast<JNIEnvExt*>(env)->CheckMonitorRelease(obj);
}
JniValueType result;
result.i = baseEnv(env)->MonitorExit(env, obj);
if (sc.Check(soa, false, "i", &result)) {
return result.i;
}
}
return JNI_ERR;
}
static void* GetPrimitiveArrayCritical(JNIEnv* env, jarray array, jboolean* is_copy) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritGet, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.a = array}, {.p = is_copy}};
if (sc.Check(soa, true, "Eap", args)) {
JniValueType result;
void* ptr = baseEnv(env)->GetPrimitiveArrayCritical(env, array, is_copy);
if (ptr != nullptr && soa.ForceCopy()) {
ptr = GuardedCopy::CreateGuardedPACopy(env, array, is_copy, ptr);
}
result.p = ptr;
if (sc.Check(soa, false, "p", &result)) {
return const_cast<void*>(result.p);
}
}
return nullptr;
}
static void ReleasePrimitiveArrayCritical(JNIEnv* env, jarray array, void* carray, jint mode) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_CritRelease | kFlag_ExcepOkay, __FUNCTION__);
sc.CheckNonNull(carray);
JniValueType args[4] = {{.E = env}, {.a = array}, {.p = carray}, {.r = mode}};
if (sc.Check(soa, true, "Eapr", args)) {
if (soa.ForceCopy()) {
carray = GuardedCopy::ReleaseGuardedPACopy(__FUNCTION__, env, array, carray, mode);
}
baseEnv(env)->ReleasePrimitiveArrayCritical(env, array, carray, mode);
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jobject NewDirectByteBuffer(JNIEnv* env, void* address, jlong capacity) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[3] = {{.E = env}, {.p = address}, {.J = capacity}};
if (sc.Check(soa, true, "EpJ", args)) {
JniValueType result;
// Note: the validity of address and capacity are checked in the base implementation.
result.L = baseEnv(env)->NewDirectByteBuffer(env, address, capacity);
if (sc.Check(soa, false, "L", &result)) {
return result.L;
}
}
return nullptr;
}
static void* GetDirectBufferAddress(JNIEnv* env, jobject buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = buf}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
// Note: this is implemented in the base environment by a GetLongField which will sanity
// check the type of buf in GetLongField above.
result.p = baseEnv(env)->GetDirectBufferAddress(env, buf);
if (sc.Check(soa, false, "p", &result)) {
return const_cast<void*>(result.p);
}
}
return nullptr;
}
static jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, __FUNCTION__);
JniValueType args[2] = {{.E = env}, {.L = buf}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
// Note: this is implemented in the base environment by a GetIntField which will sanity
// check the type of buf in GetIntField above.
result.J = baseEnv(env)->GetDirectBufferCapacity(env, buf);
if (sc.Check(soa, false, "J", &result)) {
return result.J;
}
}
return JNI_ERR;
}
private:
static JavaVMExt* GetJavaVMExt(JNIEnv* env) {
return reinterpret_cast<JNIEnvExt*>(env)->GetVm();
}
static const JNINativeInterface* baseEnv(JNIEnv* env) {
return reinterpret_cast<JNIEnvExt*>(env)->GetUncheckedFunctions();
}
static jobject NewRef(const char* function_name, JNIEnv* env, jobject obj, IndirectRefKind kind) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[2] = {{.E = env}, {.L = obj}};
if (sc.Check(soa, true, "EL", args)) {
JniValueType result;
switch (kind) {
case kGlobal:
result.L = baseEnv(env)->NewGlobalRef(env, obj);
break;
case kLocal:
result.L = baseEnv(env)->NewLocalRef(env, obj);
break;
case kWeakGlobal:
result.L = baseEnv(env)->NewWeakGlobalRef(env, obj);
break;
default:
LOG(FATAL) << "Unexpected reference kind: " << kind;
}
if (sc.Check(soa, false, "L", &result)) {
DCHECK_EQ(IsSameObject(env, obj, result.L), JNI_TRUE);
DCHECK(sc.CheckReferenceKind(kind, soa.Self(), result.L));
return result.L;
}
}
return nullptr;
}
static void DeleteRef(const char* function_name, JNIEnv* env, jobject obj, IndirectRefKind kind) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, function_name);
JniValueType args[2] = {{.E = env}, {.L = obj}};
sc.Check(soa, true, "EL", args);
if (sc.CheckReferenceKind(kind, soa.Self(), obj)) {
JniValueType result;
switch (kind) {
case kGlobal:
baseEnv(env)->DeleteGlobalRef(env, obj);
break;
case kLocal:
baseEnv(env)->DeleteLocalRef(env, obj);
break;
case kWeakGlobal:
baseEnv(env)->DeleteWeakGlobalRef(env, obj);
break;
default:
LOG(FATAL) << "Unexpected reference kind: " << kind;
}
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static jmethodID GetMethodIDInternal(const char* function_name, JNIEnv* env, jclass c,
const char* name, const char* sig, bool is_static) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[4] = {{.E = env}, {.c = c}, {.u = name}, {.u = sig}};
if (sc.Check(soa, true, "Ecuu", args)) {
JniValueType result;
if (is_static) {
result.m = baseEnv(env)->GetStaticMethodID(env, c, name, sig);
} else {
result.m = baseEnv(env)->GetMethodID(env, c, name, sig);
}
if (sc.Check(soa, false, "m", &result)) {
return result.m;
}
}
return nullptr;
}
static jfieldID GetFieldIDInternal(const char* function_name, JNIEnv* env, jclass c,
const char* name, const char* sig, bool is_static) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[4] = {{.E = env}, {.c = c}, {.u = name}, {.u = sig}};
if (sc.Check(soa, true, "Ecuu", args)) {
JniValueType result;
if (is_static) {
result.f = baseEnv(env)->GetStaticFieldID(env, c, name, sig);
} else {
result.f = baseEnv(env)->GetFieldID(env, c, name, sig);
}
if (sc.Check(soa, false, "f", &result)) {
return result.f;
}
}
return nullptr;
}
static JniValueType GetField(const char* function_name, JNIEnv* env, jobject obj, jfieldID fid,
bool is_static, Primitive::Type type) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[3] = {{.E = env}, {.L = obj}, {.f = fid}};
JniValueType result;
if (sc.Check(soa, true, is_static ? "Ecf" : "ELf", args) &&
sc.CheckFieldAccess(soa, obj, fid, is_static, type)) {
const char* result_check = nullptr;
switch (type) {
case Primitive::kPrimNot:
if (is_static) {
result.L = baseEnv(env)->GetStaticObjectField(env, down_cast<jclass>(obj), fid);
} else {
result.L = baseEnv(env)->GetObjectField(env, obj, fid);
}
result_check = "L";
break;
case Primitive::kPrimBoolean:
if (is_static) {
result.Z = baseEnv(env)->GetStaticBooleanField(env, down_cast<jclass>(obj), fid);
} else {
result.Z = baseEnv(env)->GetBooleanField(env, obj, fid);
}
result_check = "Z";
break;
case Primitive::kPrimByte:
if (is_static) {
result.B = baseEnv(env)->GetStaticByteField(env, down_cast<jclass>(obj), fid);
} else {
result.B = baseEnv(env)->GetByteField(env, obj, fid);
}
result_check = "B";
break;
case Primitive::kPrimChar:
if (is_static) {
result.C = baseEnv(env)->GetStaticCharField(env, down_cast<jclass>(obj), fid);
} else {
result.C = baseEnv(env)->GetCharField(env, obj, fid);
}
result_check = "C";
break;
case Primitive::kPrimShort:
if (is_static) {
result.S = baseEnv(env)->GetStaticShortField(env, down_cast<jclass>(obj), fid);
} else {
result.S = baseEnv(env)->GetShortField(env, obj, fid);
}
result_check = "S";
break;
case Primitive::kPrimInt:
if (is_static) {
result.I = baseEnv(env)->GetStaticIntField(env, down_cast<jclass>(obj), fid);
} else {
result.I = baseEnv(env)->GetIntField(env, obj, fid);
}
result_check = "I";
break;
case Primitive::kPrimLong:
if (is_static) {
result.J = baseEnv(env)->GetStaticLongField(env, down_cast<jclass>(obj), fid);
} else {
result.J = baseEnv(env)->GetLongField(env, obj, fid);
}
result_check = "J";
break;
case Primitive::kPrimFloat:
if (is_static) {
result.F = baseEnv(env)->GetStaticFloatField(env, down_cast<jclass>(obj), fid);
} else {
result.F = baseEnv(env)->GetFloatField(env, obj, fid);
}
result_check = "F";
break;
case Primitive::kPrimDouble:
if (is_static) {
result.D = baseEnv(env)->GetStaticDoubleField(env, down_cast<jclass>(obj), fid);
} else {
result.D = baseEnv(env)->GetDoubleField(env, obj, fid);
}
result_check = "D";
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type: " << type;
break;
}
if (sc.Check(soa, false, result_check, &result)) {
return result;
}
}
result.J = 0;
return result;
}
static void SetField(const char* function_name, JNIEnv* env, jobject obj, jfieldID fid,
bool is_static, Primitive::Type type, JniValueType value) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[4] = {{.E = env}, {.L = obj}, {.f = fid}, value};
char sig[5] = { 'E', is_static ? 'c' : 'L', 'f',
type == Primitive::kPrimNot ? 'L' : Primitive::Descriptor(type)[0], '\0'};
if (sc.Check(soa, true, sig, args) &&
sc.CheckFieldAccess(soa, obj, fid, is_static, type)) {
switch (type) {
case Primitive::kPrimNot:
if (is_static) {
baseEnv(env)->SetStaticObjectField(env, down_cast<jclass>(obj), fid, value.L);
} else {
baseEnv(env)->SetObjectField(env, obj, fid, value.L);
}
break;
case Primitive::kPrimBoolean:
if (is_static) {
baseEnv(env)->SetStaticBooleanField(env, down_cast<jclass>(obj), fid, value.Z);
} else {
baseEnv(env)->SetBooleanField(env, obj, fid, value.Z);
}
break;
case Primitive::kPrimByte:
if (is_static) {
baseEnv(env)->SetStaticByteField(env, down_cast<jclass>(obj), fid, value.B);
} else {
baseEnv(env)->SetByteField(env, obj, fid, value.B);
}
break;
case Primitive::kPrimChar:
if (is_static) {
baseEnv(env)->SetStaticCharField(env, down_cast<jclass>(obj), fid, value.C);
} else {
baseEnv(env)->SetCharField(env, obj, fid, value.C);
}
break;
case Primitive::kPrimShort:
if (is_static) {
baseEnv(env)->SetStaticShortField(env, down_cast<jclass>(obj), fid, value.S);
} else {
baseEnv(env)->SetShortField(env, obj, fid, value.S);
}
break;
case Primitive::kPrimInt:
if (is_static) {
baseEnv(env)->SetStaticIntField(env, down_cast<jclass>(obj), fid, value.I);
} else {
baseEnv(env)->SetIntField(env, obj, fid, value.I);
}
break;
case Primitive::kPrimLong:
if (is_static) {
baseEnv(env)->SetStaticLongField(env, down_cast<jclass>(obj), fid, value.J);
} else {
baseEnv(env)->SetLongField(env, obj, fid, value.J);
}
break;
case Primitive::kPrimFloat:
if (is_static) {
baseEnv(env)->SetStaticFloatField(env, down_cast<jclass>(obj), fid, value.F);
} else {
baseEnv(env)->SetFloatField(env, obj, fid, value.F);
}
break;
case Primitive::kPrimDouble:
if (is_static) {
baseEnv(env)->SetStaticDoubleField(env, down_cast<jclass>(obj), fid, value.D);
} else {
baseEnv(env)->SetDoubleField(env, obj, fid, value.D);
}
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type: " << type;
break;
}
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static bool CheckCallArgs(ScopedObjectAccess& soa, ScopedCheck& sc, JNIEnv* env, jobject obj,
jclass c, jmethodID mid, InvokeType invoke, const VarArgs* vargs)
REQUIRES_SHARED(Locks::mutator_lock_) {
bool checked;
switch (invoke) {
case kVirtual: {
DCHECK(c == nullptr);
JniValueType args[4] = {{.E = env}, {.L = obj}, {.m = mid}, {.va = vargs}};
checked = sc.Check(soa, true, "ELm.", args);
break;
}
case kDirect: {
JniValueType args[5] = {{.E = env}, {.L = obj}, {.c = c}, {.m = mid}, {.va = vargs}};
checked = sc.Check(soa, true, "ELcm.", args);
break;
}
case kStatic: {
DCHECK(obj == nullptr);
JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = vargs}};
checked = sc.Check(soa, true, "Ecm.", args);
break;
}
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
checked = false;
break;
}
return checked;
}
static JniValueType CallMethodA(const char* function_name, JNIEnv* env, jobject obj, jclass c,
jmethodID mid, jvalue* vargs, Primitive::Type type,
InvokeType invoke) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType result;
VarArgs rest(mid, vargs);
if (CheckCallArgs(soa, sc, env, obj, c, mid, invoke, &rest) &&
sc.CheckMethodAndSig(soa, obj, c, mid, type, invoke)) {
const char* result_check;
switch (type) {
case Primitive::kPrimNot:
result_check = "L";
switch (invoke) {
case kVirtual:
result.L = baseEnv(env)->CallObjectMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.L = baseEnv(env)->CallNonvirtualObjectMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.L = baseEnv(env)->CallStaticObjectMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimBoolean:
result_check = "Z";
switch (invoke) {
case kVirtual:
result.Z = baseEnv(env)->CallBooleanMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.Z = baseEnv(env)->CallNonvirtualBooleanMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.Z = baseEnv(env)->CallStaticBooleanMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimByte:
result_check = "B";
switch (invoke) {
case kVirtual:
result.B = baseEnv(env)->CallByteMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.B = baseEnv(env)->CallNonvirtualByteMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.B = baseEnv(env)->CallStaticByteMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimChar:
result_check = "C";
switch (invoke) {
case kVirtual:
result.C = baseEnv(env)->CallCharMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.C = baseEnv(env)->CallNonvirtualCharMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.C = baseEnv(env)->CallStaticCharMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimShort:
result_check = "S";
switch (invoke) {
case kVirtual:
result.S = baseEnv(env)->CallShortMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.S = baseEnv(env)->CallNonvirtualShortMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.S = baseEnv(env)->CallStaticShortMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimInt:
result_check = "I";
switch (invoke) {
case kVirtual:
result.I = baseEnv(env)->CallIntMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.I = baseEnv(env)->CallNonvirtualIntMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.I = baseEnv(env)->CallStaticIntMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimLong:
result_check = "J";
switch (invoke) {
case kVirtual:
result.J = baseEnv(env)->CallLongMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.J = baseEnv(env)->CallNonvirtualLongMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.J = baseEnv(env)->CallStaticLongMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimFloat:
result_check = "F";
switch (invoke) {
case kVirtual:
result.F = baseEnv(env)->CallFloatMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.F = baseEnv(env)->CallNonvirtualFloatMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.F = baseEnv(env)->CallStaticFloatMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimDouble:
result_check = "D";
switch (invoke) {
case kVirtual:
result.D = baseEnv(env)->CallDoubleMethodA(env, obj, mid, vargs);
break;
case kDirect:
result.D = baseEnv(env)->CallNonvirtualDoubleMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
result.D = baseEnv(env)->CallStaticDoubleMethodA(env, c, mid, vargs);
break;
default:
break;
}
break;
case Primitive::kPrimVoid:
result_check = "V";
result.V = nullptr;
switch (invoke) {
case kVirtual:
baseEnv(env)->CallVoidMethodA(env, obj, mid, vargs);
break;
case kDirect:
baseEnv(env)->CallNonvirtualVoidMethodA(env, obj, c, mid, vargs);
break;
case kStatic:
baseEnv(env)->CallStaticVoidMethodA(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
default:
LOG(FATAL) << "Unexpected return type: " << type;
result_check = nullptr;
}
if (sc.Check(soa, false, result_check, &result)) {
return result;
}
}
result.J = 0;
return result;
}
static JniValueType CallMethodV(const char* function_name, JNIEnv* env, jobject obj, jclass c,
jmethodID mid, va_list vargs, Primitive::Type type,
InvokeType invoke) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType result;
VarArgs rest(mid, vargs);
if (CheckCallArgs(soa, sc, env, obj, c, mid, invoke, &rest) &&
sc.CheckMethodAndSig(soa, obj, c, mid, type, invoke)) {
const char* result_check;
switch (type) {
case Primitive::kPrimNot:
result_check = "L";
switch (invoke) {
case kVirtual:
result.L = baseEnv(env)->CallObjectMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.L = baseEnv(env)->CallNonvirtualObjectMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.L = baseEnv(env)->CallStaticObjectMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimBoolean:
result_check = "Z";
switch (invoke) {
case kVirtual:
result.Z = baseEnv(env)->CallBooleanMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.Z = baseEnv(env)->CallNonvirtualBooleanMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.Z = baseEnv(env)->CallStaticBooleanMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimByte:
result_check = "B";
switch (invoke) {
case kVirtual:
result.B = baseEnv(env)->CallByteMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.B = baseEnv(env)->CallNonvirtualByteMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.B = baseEnv(env)->CallStaticByteMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimChar:
result_check = "C";
switch (invoke) {
case kVirtual:
result.C = baseEnv(env)->CallCharMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.C = baseEnv(env)->CallNonvirtualCharMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.C = baseEnv(env)->CallStaticCharMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimShort:
result_check = "S";
switch (invoke) {
case kVirtual:
result.S = baseEnv(env)->CallShortMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.S = baseEnv(env)->CallNonvirtualShortMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.S = baseEnv(env)->CallStaticShortMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimInt:
result_check = "I";
switch (invoke) {
case kVirtual:
result.I = baseEnv(env)->CallIntMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.I = baseEnv(env)->CallNonvirtualIntMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.I = baseEnv(env)->CallStaticIntMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimLong:
result_check = "J";
switch (invoke) {
case kVirtual:
result.J = baseEnv(env)->CallLongMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.J = baseEnv(env)->CallNonvirtualLongMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.J = baseEnv(env)->CallStaticLongMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimFloat:
result_check = "F";
switch (invoke) {
case kVirtual:
result.F = baseEnv(env)->CallFloatMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.F = baseEnv(env)->CallNonvirtualFloatMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.F = baseEnv(env)->CallStaticFloatMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimDouble:
result_check = "D";
switch (invoke) {
case kVirtual:
result.D = baseEnv(env)->CallDoubleMethodV(env, obj, mid, vargs);
break;
case kDirect:
result.D = baseEnv(env)->CallNonvirtualDoubleMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
result.D = baseEnv(env)->CallStaticDoubleMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
case Primitive::kPrimVoid:
result_check = "V";
result.V = nullptr;
switch (invoke) {
case kVirtual:
baseEnv(env)->CallVoidMethodV(env, obj, mid, vargs);
break;
case kDirect:
baseEnv(env)->CallNonvirtualVoidMethodV(env, obj, c, mid, vargs);
break;
case kStatic:
baseEnv(env)->CallStaticVoidMethodV(env, c, mid, vargs);
break;
default:
LOG(FATAL) << "Unexpected invoke: " << invoke;
}
break;
default:
LOG(FATAL) << "Unexpected return type: " << type;
result_check = nullptr;
}
if (sc.Check(soa, false, result_check, &result)) {
return result;
}
}
result.J = 0;
return result;
}
static const void* GetStringCharsInternal(const char* function_name, JNIEnv* env, jstring string,
jboolean* is_copy, bool utf, bool critical) {
ScopedObjectAccess soa(env);
int flags = critical ? kFlag_CritGet : kFlag_CritOkay;
ScopedCheck sc(flags, function_name);
JniValueType args[3] = {{.E = env}, {.s = string}, {.p = is_copy}};
if (sc.Check(soa, true, "Esp", args)) {
JniValueType result;
void* ptr;
if (utf) {
CHECK(!critical);
ptr = const_cast<char*>(baseEnv(env)->GetStringUTFChars(env, string, is_copy));
result.u = reinterpret_cast<char*>(ptr);
} else {
ptr = const_cast<jchar*>(critical ? baseEnv(env)->GetStringCritical(env, string, is_copy) :
baseEnv(env)->GetStringChars(env, string, is_copy));
result.p = ptr;
}
// TODO: could we be smarter about not copying when local_is_copy?
if (ptr != nullptr && soa.ForceCopy()) {
if (utf) {
size_t length_in_bytes = strlen(result.u) + 1;
result.u =
reinterpret_cast<const char*>(GuardedCopy::Create(ptr, length_in_bytes, false));
} else {
size_t length_in_bytes = baseEnv(env)->GetStringLength(env, string) * 2;
result.p =
reinterpret_cast<const jchar*>(GuardedCopy::Create(ptr, length_in_bytes, false));
}
if (is_copy != nullptr) {
*is_copy = JNI_TRUE;
}
}
if (sc.Check(soa, false, utf ? "u" : "p", &result)) {
return utf ? result.u : result.p;
}
}
return nullptr;
}
static void ReleaseStringCharsInternal(const char* function_name, JNIEnv* env, jstring string,
const void* chars, bool utf, bool critical) {
ScopedObjectAccess soa(env);
int flags = kFlag_ExcepOkay | kFlag_Release;
if (critical) {
flags |= kFlag_CritRelease;
}
ScopedCheck sc(flags, function_name);
sc.CheckNonNull(chars);
bool force_copy_ok = !soa.ForceCopy() || GuardedCopy::Check(function_name, chars, false);
if (force_copy_ok && soa.ForceCopy()) {
chars = reinterpret_cast<const jchar*>(GuardedCopy::Destroy(const_cast<void*>(chars)));
}
if (force_copy_ok) {
JniValueType args[3] = {{.E = env}, {.s = string}, {.p = chars}};
if (sc.Check(soa, true, utf ? "Esu" : "Esp", args)) {
if (utf) {
CHECK(!critical);
baseEnv(env)->ReleaseStringUTFChars(env, string, reinterpret_cast<const char*>(chars));
} else {
if (critical) {
baseEnv(env)->ReleaseStringCritical(env, string, reinterpret_cast<const jchar*>(chars));
} else {
baseEnv(env)->ReleaseStringChars(env, string, reinterpret_cast<const jchar*>(chars));
}
}
JniValueType result;
sc.Check(soa, false, "V", &result);
}
}
}
static jarray NewPrimitiveArray(const char* function_name, JNIEnv* env, jsize length,
Primitive::Type type) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[2] = {{.E = env}, {.z = length}};
if (sc.Check(soa, true, "Ez", args)) {
JniValueType result;
switch (type) {
case Primitive::kPrimBoolean:
result.a = baseEnv(env)->NewBooleanArray(env, length);
break;
case Primitive::kPrimByte:
result.a = baseEnv(env)->NewByteArray(env, length);
break;
case Primitive::kPrimChar:
result.a = baseEnv(env)->NewCharArray(env, length);
break;
case Primitive::kPrimShort:
result.a = baseEnv(env)->NewShortArray(env, length);
break;
case Primitive::kPrimInt:
result.a = baseEnv(env)->NewIntArray(env, length);
break;
case Primitive::kPrimLong:
result.a = baseEnv(env)->NewLongArray(env, length);
break;
case Primitive::kPrimFloat:
result.a = baseEnv(env)->NewFloatArray(env, length);
break;
case Primitive::kPrimDouble:
result.a = baseEnv(env)->NewDoubleArray(env, length);
break;
default:
LOG(FATAL) << "Unexpected primitive type: " << type;
}
if (sc.Check(soa, false, "a", &result)) {
return result.a;
}
}
return nullptr;
}
static void* GetPrimitiveArrayElements(const char* function_name, Primitive::Type type,
JNIEnv* env, jarray array, jboolean* is_copy) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[3] = {{.E = env}, {.a = array}, {.p = is_copy}};
if (sc.Check(soa, true, "Eap", args) && sc.CheckPrimitiveArrayType(soa, array, type)) {
JniValueType result;
void* ptr = nullptr;
switch (type) {
case Primitive::kPrimBoolean:
ptr = baseEnv(env)->GetBooleanArrayElements(env, down_cast<jbooleanArray>(array),
is_copy);
break;
case Primitive::kPrimByte:
ptr = baseEnv(env)->GetByteArrayElements(env, down_cast<jbyteArray>(array), is_copy);
break;
case Primitive::kPrimChar:
ptr = baseEnv(env)->GetCharArrayElements(env, down_cast<jcharArray>(array), is_copy);
break;
case Primitive::kPrimShort:
ptr = baseEnv(env)->GetShortArrayElements(env, down_cast<jshortArray>(array), is_copy);
break;
case Primitive::kPrimInt:
ptr = baseEnv(env)->GetIntArrayElements(env, down_cast<jintArray>(array), is_copy);
break;
case Primitive::kPrimLong:
ptr = baseEnv(env)->GetLongArrayElements(env, down_cast<jlongArray>(array), is_copy);
break;
case Primitive::kPrimFloat:
ptr = baseEnv(env)->GetFloatArrayElements(env, down_cast<jfloatArray>(array), is_copy);
break;
case Primitive::kPrimDouble:
ptr = baseEnv(env)->GetDoubleArrayElements(env, down_cast<jdoubleArray>(array), is_copy);
break;
default:
LOG(FATAL) << "Unexpected primitive type: " << type;
}
if (ptr != nullptr && soa.ForceCopy()) {
ptr = GuardedCopy::CreateGuardedPACopy(env, array, is_copy, ptr);
if (is_copy != nullptr) {
*is_copy = JNI_TRUE;
}
}
result.p = ptr;
if (sc.Check(soa, false, "p", &result)) {
return const_cast<void*>(result.p);
}
}
return nullptr;
}
static void ReleasePrimitiveArrayElements(const char* function_name, Primitive::Type type,
JNIEnv* env, jarray array, void* elems, jint mode) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_ExcepOkay, function_name);
if (sc.CheckNonNull(elems) && sc.CheckPrimitiveArrayType(soa, array, type)) {
if (soa.ForceCopy()) {
elems = GuardedCopy::ReleaseGuardedPACopy(function_name, env, array, elems, mode);
}
if (!soa.ForceCopy() || elems != nullptr) {
JniValueType args[4] = {{.E = env}, {.a = array}, {.p = elems}, {.r = mode}};
if (sc.Check(soa, true, "Eapr", args)) {
switch (type) {
case Primitive::kPrimBoolean:
baseEnv(env)->ReleaseBooleanArrayElements(env, down_cast<jbooleanArray>(array),
reinterpret_cast<jboolean*>(elems), mode);
break;
case Primitive::kPrimByte:
baseEnv(env)->ReleaseByteArrayElements(env, down_cast<jbyteArray>(array),
reinterpret_cast<jbyte*>(elems), mode);
break;
case Primitive::kPrimChar:
baseEnv(env)->ReleaseCharArrayElements(env, down_cast<jcharArray>(array),
reinterpret_cast<jchar*>(elems), mode);
break;
case Primitive::kPrimShort:
baseEnv(env)->ReleaseShortArrayElements(env, down_cast<jshortArray>(array),
reinterpret_cast<jshort*>(elems), mode);
break;
case Primitive::kPrimInt:
baseEnv(env)->ReleaseIntArrayElements(env, down_cast<jintArray>(array),
reinterpret_cast<jint*>(elems), mode);
break;
case Primitive::kPrimLong:
baseEnv(env)->ReleaseLongArrayElements(env, down_cast<jlongArray>(array),
reinterpret_cast<jlong*>(elems), mode);
break;
case Primitive::kPrimFloat:
baseEnv(env)->ReleaseFloatArrayElements(env, down_cast<jfloatArray>(array),
reinterpret_cast<jfloat*>(elems), mode);
break;
case Primitive::kPrimDouble:
baseEnv(env)->ReleaseDoubleArrayElements(env, down_cast<jdoubleArray>(array),
reinterpret_cast<jdouble*>(elems), mode);
break;
default:
LOG(FATAL) << "Unexpected primitive type: " << type;
}
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
}
}
static void GetPrimitiveArrayRegion(const char* function_name, Primitive::Type type, JNIEnv* env,
jarray array, jsize start, jsize len, void* buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[5] = {{.E = env}, {.a = array}, {.z = start}, {.z = len}, {.p = buf}};
// Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices
// result in ArrayIndexOutOfBoundsExceptions in the base implementation.
if (sc.Check(soa, true, "EaIIp", args) && sc.CheckPrimitiveArrayType(soa, array, type)) {
switch (type) {
case Primitive::kPrimBoolean:
baseEnv(env)->GetBooleanArrayRegion(env, down_cast<jbooleanArray>(array), start, len,
reinterpret_cast<jboolean*>(buf));
break;
case Primitive::kPrimByte:
baseEnv(env)->GetByteArrayRegion(env, down_cast<jbyteArray>(array), start, len,
reinterpret_cast<jbyte*>(buf));
break;
case Primitive::kPrimChar:
baseEnv(env)->GetCharArrayRegion(env, down_cast<jcharArray>(array), start, len,
reinterpret_cast<jchar*>(buf));
break;
case Primitive::kPrimShort:
baseEnv(env)->GetShortArrayRegion(env, down_cast<jshortArray>(array), start, len,
reinterpret_cast<jshort*>(buf));
break;
case Primitive::kPrimInt:
baseEnv(env)->GetIntArrayRegion(env, down_cast<jintArray>(array), start, len,
reinterpret_cast<jint*>(buf));
break;
case Primitive::kPrimLong:
baseEnv(env)->GetLongArrayRegion(env, down_cast<jlongArray>(array), start, len,
reinterpret_cast<jlong*>(buf));
break;
case Primitive::kPrimFloat:
baseEnv(env)->GetFloatArrayRegion(env, down_cast<jfloatArray>(array), start, len,
reinterpret_cast<jfloat*>(buf));
break;
case Primitive::kPrimDouble:
baseEnv(env)->GetDoubleArrayRegion(env, down_cast<jdoubleArray>(array), start, len,
reinterpret_cast<jdouble*>(buf));
break;
default:
LOG(FATAL) << "Unexpected primitive type: " << type;
}
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
static void SetPrimitiveArrayRegion(const char* function_name, Primitive::Type type, JNIEnv* env,
jarray array, jsize start, jsize len, const void* buf) {
ScopedObjectAccess soa(env);
ScopedCheck sc(kFlag_Default, function_name);
JniValueType args[5] = {{.E = env}, {.a = array}, {.z = start}, {.z = len}, {.p = buf}};
// Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices
// result in ArrayIndexOutOfBoundsExceptions in the base implementation.
if (sc.Check(soa, true, "EaIIp", args) && sc.CheckPrimitiveArrayType(soa, array, type)) {
switch (type) {
case Primitive::kPrimBoolean:
baseEnv(env)->SetBooleanArrayRegion(env, down_cast<jbooleanArray>(array), start, len,
reinterpret_cast<const jboolean*>(buf));
break;
case Primitive::kPrimByte:
baseEnv(env)->SetByteArrayRegion(env, down_cast<jbyteArray>(array), start, len,
reinterpret_cast<const jbyte*>(buf));
break;
case Primitive::kPrimChar:
baseEnv(env)->SetCharArrayRegion(env, down_cast<jcharArray>(array), start, len,
reinterpret_cast<const jchar*>(buf));
break;
case Primitive::kPrimShort:
baseEnv(env)->SetShortArrayRegion(env, down_cast<jshortArray>(array), start, len,
reinterpret_cast<const jshort*>(buf));
break;
case Primitive::kPrimInt:
baseEnv(env)->SetIntArrayRegion(env, down_cast<jintArray>(array), start, len,
reinterpret_cast<const jint*>(buf));
break;
case Primitive::kPrimLong:
baseEnv(env)->SetLongArrayRegion(env, down_cast<jlongArray>(array), start, len,
reinterpret_cast<const jlong*>(buf));
break;
case Primitive::kPrimFloat:
baseEnv(env)->SetFloatArrayRegion(env, down_cast<jfloatArray>(array), start, len,
reinterpret_cast<const jfloat*>(buf));
break;
case Primitive::kPrimDouble:
baseEnv(env)->SetDoubleArrayRegion(env, down_cast<jdoubleArray>(array), start, len,
reinterpret_cast<const jdouble*>(buf));
break;
default:
LOG(FATAL) << "Unexpected primitive type: " << type;
}
JniValueType result;
result.V = nullptr;
sc.Check(soa, false, "V", &result);
}
}
};
const JNINativeInterface gCheckNativeInterface = {
nullptr, // reserved0.
nullptr, // reserved1.
nullptr, // reserved2.
nullptr, // reserved3.
CheckJNI::GetVersion,
CheckJNI::DefineClass,
CheckJNI::FindClass,
CheckJNI::FromReflectedMethod,
CheckJNI::FromReflectedField,
CheckJNI::ToReflectedMethod,
CheckJNI::GetSuperclass,
CheckJNI::IsAssignableFrom,
CheckJNI::ToReflectedField,
CheckJNI::Throw,
CheckJNI::ThrowNew,
CheckJNI::ExceptionOccurred,
CheckJNI::ExceptionDescribe,
CheckJNI::ExceptionClear,
CheckJNI::FatalError,
CheckJNI::PushLocalFrame,
CheckJNI::PopLocalFrame,
CheckJNI::NewGlobalRef,
CheckJNI::DeleteGlobalRef,
CheckJNI::DeleteLocalRef,
CheckJNI::IsSameObject,
CheckJNI::NewLocalRef,
CheckJNI::EnsureLocalCapacity,
CheckJNI::AllocObject,
CheckJNI::NewObject,
CheckJNI::NewObjectV,
CheckJNI::NewObjectA,
CheckJNI::GetObjectClass,
CheckJNI::IsInstanceOf,
CheckJNI::GetMethodID,
CheckJNI::CallObjectMethod,
CheckJNI::CallObjectMethodV,
CheckJNI::CallObjectMethodA,
CheckJNI::CallBooleanMethod,
CheckJNI::CallBooleanMethodV,
CheckJNI::CallBooleanMethodA,
CheckJNI::CallByteMethod,
CheckJNI::CallByteMethodV,
CheckJNI::CallByteMethodA,
CheckJNI::CallCharMethod,
CheckJNI::CallCharMethodV,
CheckJNI::CallCharMethodA,
CheckJNI::CallShortMethod,
CheckJNI::CallShortMethodV,
CheckJNI::CallShortMethodA,
CheckJNI::CallIntMethod,
CheckJNI::CallIntMethodV,
CheckJNI::CallIntMethodA,
CheckJNI::CallLongMethod,
CheckJNI::CallLongMethodV,
CheckJNI::CallLongMethodA,
CheckJNI::CallFloatMethod,
CheckJNI::CallFloatMethodV,
CheckJNI::CallFloatMethodA,
CheckJNI::CallDoubleMethod,
CheckJNI::CallDoubleMethodV,
CheckJNI::CallDoubleMethodA,
CheckJNI::CallVoidMethod,
CheckJNI::CallVoidMethodV,
CheckJNI::CallVoidMethodA,
CheckJNI::CallNonvirtualObjectMethod,
CheckJNI::CallNonvirtualObjectMethodV,
CheckJNI::CallNonvirtualObjectMethodA,
CheckJNI::CallNonvirtualBooleanMethod,
CheckJNI::CallNonvirtualBooleanMethodV,
CheckJNI::CallNonvirtualBooleanMethodA,
CheckJNI::CallNonvirtualByteMethod,
CheckJNI::CallNonvirtualByteMethodV,
CheckJNI::CallNonvirtualByteMethodA,
CheckJNI::CallNonvirtualCharMethod,
CheckJNI::CallNonvirtualCharMethodV,
CheckJNI::CallNonvirtualCharMethodA,
CheckJNI::CallNonvirtualShortMethod,
CheckJNI::CallNonvirtualShortMethodV,
CheckJNI::CallNonvirtualShortMethodA,
CheckJNI::CallNonvirtualIntMethod,
CheckJNI::CallNonvirtualIntMethodV,
CheckJNI::CallNonvirtualIntMethodA,
CheckJNI::CallNonvirtualLongMethod,
CheckJNI::CallNonvirtualLongMethodV,
CheckJNI::CallNonvirtualLongMethodA,
CheckJNI::CallNonvirtualFloatMethod,
CheckJNI::CallNonvirtualFloatMethodV,
CheckJNI::CallNonvirtualFloatMethodA,
CheckJNI::CallNonvirtualDoubleMethod,
CheckJNI::CallNonvirtualDoubleMethodV,
CheckJNI::CallNonvirtualDoubleMethodA,
CheckJNI::CallNonvirtualVoidMethod,
CheckJNI::CallNonvirtualVoidMethodV,
CheckJNI::CallNonvirtualVoidMethodA,
CheckJNI::GetFieldID,
CheckJNI::GetObjectField,
CheckJNI::GetBooleanField,
CheckJNI::GetByteField,
CheckJNI::GetCharField,
CheckJNI::GetShortField,
CheckJNI::GetIntField,
CheckJNI::GetLongField,
CheckJNI::GetFloatField,
CheckJNI::GetDoubleField,
CheckJNI::SetObjectField,
CheckJNI::SetBooleanField,
CheckJNI::SetByteField,
CheckJNI::SetCharField,
CheckJNI::SetShortField,
CheckJNI::SetIntField,
CheckJNI::SetLongField,
CheckJNI::SetFloatField,
CheckJNI::SetDoubleField,
CheckJNI::GetStaticMethodID,
CheckJNI::CallStaticObjectMethod,
CheckJNI::CallStaticObjectMethodV,
CheckJNI::CallStaticObjectMethodA,
CheckJNI::CallStaticBooleanMethod,
CheckJNI::CallStaticBooleanMethodV,
CheckJNI::CallStaticBooleanMethodA,
CheckJNI::CallStaticByteMethod,
CheckJNI::CallStaticByteMethodV,
CheckJNI::CallStaticByteMethodA,
CheckJNI::CallStaticCharMethod,
CheckJNI::CallStaticCharMethodV,
CheckJNI::CallStaticCharMethodA,
CheckJNI::CallStaticShortMethod,
CheckJNI::CallStaticShortMethodV,
CheckJNI::CallStaticShortMethodA,
CheckJNI::CallStaticIntMethod,
CheckJNI::CallStaticIntMethodV,
CheckJNI::CallStaticIntMethodA,
CheckJNI::CallStaticLongMethod,
CheckJNI::CallStaticLongMethodV,
CheckJNI::CallStaticLongMethodA,
CheckJNI::CallStaticFloatMethod,
CheckJNI::CallStaticFloatMethodV,
CheckJNI::CallStaticFloatMethodA,
CheckJNI::CallStaticDoubleMethod,
CheckJNI::CallStaticDoubleMethodV,
CheckJNI::CallStaticDoubleMethodA,
CheckJNI::CallStaticVoidMethod,
CheckJNI::CallStaticVoidMethodV,
CheckJNI::CallStaticVoidMethodA,
CheckJNI::GetStaticFieldID,
CheckJNI::GetStaticObjectField,
CheckJNI::GetStaticBooleanField,
CheckJNI::GetStaticByteField,
CheckJNI::GetStaticCharField,
CheckJNI::GetStaticShortField,
CheckJNI::GetStaticIntField,
CheckJNI::GetStaticLongField,
CheckJNI::GetStaticFloatField,
CheckJNI::GetStaticDoubleField,
CheckJNI::SetStaticObjectField,
CheckJNI::SetStaticBooleanField,
CheckJNI::SetStaticByteField,
CheckJNI::SetStaticCharField,
CheckJNI::SetStaticShortField,
CheckJNI::SetStaticIntField,
CheckJNI::SetStaticLongField,
CheckJNI::SetStaticFloatField,
CheckJNI::SetStaticDoubleField,
CheckJNI::NewString,
CheckJNI::GetStringLength,
CheckJNI::GetStringChars,
CheckJNI::ReleaseStringChars,
CheckJNI::NewStringUTF,
CheckJNI::GetStringUTFLength,
CheckJNI::GetStringUTFChars,
CheckJNI::ReleaseStringUTFChars,
CheckJNI::GetArrayLength,
CheckJNI::NewObjectArray,
CheckJNI::GetObjectArrayElement,
CheckJNI::SetObjectArrayElement,
CheckJNI::NewBooleanArray,
CheckJNI::NewByteArray,
CheckJNI::NewCharArray,
CheckJNI::NewShortArray,
CheckJNI::NewIntArray,
CheckJNI::NewLongArray,
CheckJNI::NewFloatArray,
CheckJNI::NewDoubleArray,
CheckJNI::GetBooleanArrayElements,
CheckJNI::GetByteArrayElements,
CheckJNI::GetCharArrayElements,
CheckJNI::GetShortArrayElements,
CheckJNI::GetIntArrayElements,
CheckJNI::GetLongArrayElements,
CheckJNI::GetFloatArrayElements,
CheckJNI::GetDoubleArrayElements,
CheckJNI::ReleaseBooleanArrayElements,
CheckJNI::ReleaseByteArrayElements,
CheckJNI::ReleaseCharArrayElements,
CheckJNI::ReleaseShortArrayElements,
CheckJNI::ReleaseIntArrayElements,
CheckJNI::ReleaseLongArrayElements,
CheckJNI::ReleaseFloatArrayElements,
CheckJNI::ReleaseDoubleArrayElements,
CheckJNI::GetBooleanArrayRegion,
CheckJNI::GetByteArrayRegion,
CheckJNI::GetCharArrayRegion,
CheckJNI::GetShortArrayRegion,
CheckJNI::GetIntArrayRegion,
CheckJNI::GetLongArrayRegion,
CheckJNI::GetFloatArrayRegion,
CheckJNI::GetDoubleArrayRegion,
CheckJNI::SetBooleanArrayRegion,
CheckJNI::SetByteArrayRegion,
CheckJNI::SetCharArrayRegion,
CheckJNI::SetShortArrayRegion,
CheckJNI::SetIntArrayRegion,
CheckJNI::SetLongArrayRegion,
CheckJNI::SetFloatArrayRegion,
CheckJNI::SetDoubleArrayRegion,
CheckJNI::RegisterNatives,
CheckJNI::UnregisterNatives,
CheckJNI::MonitorEnter,
CheckJNI::MonitorExit,
CheckJNI::GetJavaVM,
CheckJNI::GetStringRegion,
CheckJNI::GetStringUTFRegion,
CheckJNI::GetPrimitiveArrayCritical,
CheckJNI::ReleasePrimitiveArrayCritical,
CheckJNI::GetStringCritical,
CheckJNI::ReleaseStringCritical,
CheckJNI::NewWeakGlobalRef,
CheckJNI::DeleteWeakGlobalRef,
CheckJNI::ExceptionCheck,
CheckJNI::NewDirectByteBuffer,
CheckJNI::GetDirectBufferAddress,
CheckJNI::GetDirectBufferCapacity,
CheckJNI::GetObjectRefType,
};
class CheckJII {
public:
static jint DestroyJavaVM(JavaVM* vm) {
ScopedCheck sc(kFlag_Invocation, __FUNCTION__, false);
JniValueType args[1] = {{.v = vm}};
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "v", args);
JniValueType result;
result.i = BaseVm(vm)->DestroyJavaVM(vm);
// Use null to signal that the JavaVM isn't valid anymore. DestroyJavaVM deletes the runtime,
// which will delete the JavaVMExt.
sc.CheckNonHeap(nullptr, false, "i", &result);
return result.i;
}
static jint AttachCurrentThread(JavaVM* vm, JNIEnv** p_env, void* thr_args) {
ScopedCheck sc(kFlag_Invocation, __FUNCTION__);
JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.p = thr_args}};
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpp", args);
JniValueType result;
result.i = BaseVm(vm)->AttachCurrentThread(vm, p_env, thr_args);
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result);
return result.i;
}
static jint AttachCurrentThreadAsDaemon(JavaVM* vm, JNIEnv** p_env, void* thr_args) {
ScopedCheck sc(kFlag_Invocation, __FUNCTION__);
JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.p = thr_args}};
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpp", args);
JniValueType result;
result.i = BaseVm(vm)->AttachCurrentThreadAsDaemon(vm, p_env, thr_args);
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result);
return result.i;
}
static jint DetachCurrentThread(JavaVM* vm) {
ScopedCheck sc(kFlag_Invocation, __FUNCTION__);
JniValueType args[1] = {{.v = vm}};
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "v", args);
JniValueType result;
result.i = BaseVm(vm)->DetachCurrentThread(vm);
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result);
return result.i;
}
static jint GetEnv(JavaVM* vm, void** p_env, jint version) {
ScopedCheck sc(kFlag_Invocation, __FUNCTION__);
JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.I = version}};
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpI", args);
JniValueType result;
result.i = BaseVm(vm)->GetEnv(vm, p_env, version);
sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result);
return result.i;
}
private:
static const JNIInvokeInterface* BaseVm(JavaVM* vm) {
return reinterpret_cast<JavaVMExt*>(vm)->GetUncheckedFunctions();
}
};
const JNIInvokeInterface gCheckInvokeInterface = {
nullptr, // reserved0
nullptr, // reserved1
nullptr, // reserved2
CheckJII::DestroyJavaVM,
CheckJII::AttachCurrentThread,
CheckJII::DetachCurrentThread,
CheckJII::GetEnv,
CheckJII::AttachCurrentThreadAsDaemon
};
} // anonymous namespace
const JNINativeInterface* GetCheckJniNativeInterface() {
return &gCheckNativeInterface;
}
const JNIInvokeInterface* GetCheckJniInvokeInterface() {
return &gCheckInvokeInterface;
}
} // namespace art