blob: 239b8259deb97c612f51c15748873f9b03cbeb1a [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "unstarted_runtime.h"
#include <cmath>
#include <unordered_map>
#include "ScopedLocalRef.h"
#include "art_method-inl.h"
#include "base/casts.h"
#include "base/logging.h"
#include "base/macros.h"
#include "class_linker.h"
#include "common_throws.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "gc/reference_processor.h"
#include "handle_scope-inl.h"
#include "interpreter/interpreter_common.h"
#include "mirror/array-inl.h"
#include "mirror/class.h"
#include "mirror/field-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "nth_caller_visitor.h"
#include "thread.h"
#include "transaction.h"
#include "well_known_classes.h"
#include "zip_archive.h"
namespace art {
namespace interpreter {
static void AbortTransactionOrFail(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
SHARED_REQUIRES(Locks::mutator_lock_);
static void AbortTransactionOrFail(Thread* self, const char* fmt, ...) {
va_list args;
if (Runtime::Current()->IsActiveTransaction()) {
va_start(args, fmt);
AbortTransactionV(self, fmt, args);
va_end(args);
} else {
va_start(args, fmt);
std::string msg;
StringAppendV(&msg, fmt, args);
va_end(args);
LOG(FATAL) << "Trying to abort, but not in transaction mode: " << msg;
UNREACHABLE();
}
}
// Helper function to deal with class loading in an unstarted runtime.
static void UnstartedRuntimeFindClass(Thread* self, Handle<mirror::String> className,
Handle<mirror::ClassLoader> class_loader, JValue* result,
const std::string& method_name, bool initialize_class,
bool abort_if_not_found)
SHARED_REQUIRES(Locks::mutator_lock_) {
CHECK(className.Get() != nullptr);
std::string descriptor(DotToDescriptor(className->ToModifiedUtf8().c_str()));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::Class* found = class_linker->FindClass(self, descriptor.c_str(), class_loader);
if (found == nullptr && abort_if_not_found) {
if (!self->IsExceptionPending()) {
AbortTransactionOrFail(self, "%s failed in un-started runtime for class: %s",
method_name.c_str(), PrettyDescriptor(descriptor.c_str()).c_str());
}
return;
}
if (found != nullptr && initialize_class) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(found));
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return;
}
}
result->SetL(found);
}
// Common helper for class-loading cutouts in an unstarted runtime. We call Runtime methods that
// rely on Java code to wrap errors in the correct exception class (i.e., NoClassDefFoundError into
// ClassNotFoundException), so need to do the same. The only exception is if the exception is
// actually the transaction abort exception. This must not be wrapped, as it signals an
// initialization abort.
static void CheckExceptionGenerateClassNotFound(Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (self->IsExceptionPending()) {
// If it is not the transaction abort exception, wrap it.
std::string type(PrettyTypeOf(self->GetException()));
if (type != Transaction::kAbortExceptionDescriptor) {
self->ThrowNewWrappedException("Ljava/lang/ClassNotFoundException;",
"ClassNotFoundException");
}
}
}
static mirror::String* GetClassName(Thread* self, ShadowFrame* shadow_frame, size_t arg_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
mirror::Object* param = shadow_frame->GetVRegReference(arg_offset);
if (param == nullptr) {
AbortTransactionOrFail(self, "Null-pointer in Class.forName.");
return nullptr;
}
return param->AsString();
}
void UnstartedRuntime::UnstartedClassForName(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::String* class_name = GetClassName(self, shadow_frame, arg_offset);
if (class_name == nullptr) {
return;
}
StackHandleScope<1> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
UnstartedRuntimeFindClass(self,
h_class_name,
ScopedNullHandle<mirror::ClassLoader>(),
result,
"Class.forName",
true,
false);
CheckExceptionGenerateClassNotFound(self);
}
void UnstartedRuntime::UnstartedClassForNameLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::String* class_name = GetClassName(self, shadow_frame, arg_offset);
if (class_name == nullptr) {
return;
}
bool initialize_class = shadow_frame->GetVReg(arg_offset + 1) != 0;
mirror::ClassLoader* class_loader =
down_cast<mirror::ClassLoader*>(shadow_frame->GetVRegReference(arg_offset + 2));
StackHandleScope<2> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
UnstartedRuntimeFindClass(self, h_class_name, h_class_loader, result, "Class.forName",
initialize_class, false);
CheckExceptionGenerateClassNotFound(self);
}
void UnstartedRuntime::UnstartedClassClassForName(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::String* class_name = GetClassName(self, shadow_frame, arg_offset);
if (class_name == nullptr) {
return;
}
bool initialize_class = shadow_frame->GetVReg(arg_offset + 1) != 0;
mirror::ClassLoader* class_loader =
down_cast<mirror::ClassLoader*>(shadow_frame->GetVRegReference(arg_offset + 2));
StackHandleScope<2> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
UnstartedRuntimeFindClass(self, h_class_name, h_class_loader, result, "Class.classForName",
initialize_class, false);
CheckExceptionGenerateClassNotFound(self);
}
void UnstartedRuntime::UnstartedClassNewInstance(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<2> hs(self); // Class, constructor, object.
mirror::Object* param = shadow_frame->GetVRegReference(arg_offset);
if (param == nullptr) {
AbortTransactionOrFail(self, "Null-pointer in Class.newInstance.");
return;
}
mirror::Class* klass = param->AsClass();
Handle<mirror::Class> h_klass(hs.NewHandle(klass));
// Check that it's not null.
if (h_klass.Get() == nullptr) {
AbortTransactionOrFail(self, "Class reference is null for newInstance");
return;
}
// If we're in a transaction, class must not be finalizable (it or a superclass has a finalizer).
if (Runtime::Current()->IsActiveTransaction()) {
if (h_klass.Get()->IsFinalizable()) {
AbortTransactionF(self, "Class for newInstance is finalizable: '%s'",
PrettyClass(h_klass.Get()).c_str());
return;
}
}
// There are two situations in which we'll abort this run.
// 1) If the class isn't yet initialized and initialization fails.
// 2) If we can't find the default constructor. We'll postpone the exception to runtime.
// Note that 2) could likely be handled here, but for safety abort the transaction.
bool ok = false;
auto* cl = Runtime::Current()->GetClassLinker();
if (cl->EnsureInitialized(self, h_klass, true, true)) {
auto* cons = h_klass->FindDeclaredDirectMethod("<init>", "()V", cl->GetImagePointerSize());
if (cons != nullptr) {
Handle<mirror::Object> h_obj(hs.NewHandle(klass->AllocObject(self)));
CHECK(h_obj.Get() != nullptr); // We don't expect OOM at compile-time.
EnterInterpreterFromInvoke(self, cons, h_obj.Get(), nullptr, nullptr);
if (!self->IsExceptionPending()) {
result->SetL(h_obj.Get());
ok = true;
}
} else {
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Could not find default constructor for '%s'",
PrettyClass(h_klass.Get()).c_str());
}
}
if (!ok) {
AbortTransactionOrFail(self, "Failed in Class.newInstance for '%s' with %s",
PrettyClass(h_klass.Get()).c_str(),
PrettyTypeOf(self->GetException()).c_str());
}
}
void UnstartedRuntime::UnstartedClassGetDeclaredField(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Special managed code cut-out to allow field lookup in a un-started runtime that'd fail
// going the reflective Dex way.
mirror::Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
mirror::String* name2 = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ArtField* found = nullptr;
for (ArtField& field : klass->GetIFields()) {
if (name2->Equals(field.GetName())) {
found = &field;
break;
}
}
if (found == nullptr) {
for (ArtField& field : klass->GetSFields()) {
if (name2->Equals(field.GetName())) {
found = &field;
break;
}
}
}
if (found == nullptr) {
AbortTransactionOrFail(self, "Failed to find field in Class.getDeclaredField in un-started "
" runtime. name=%s class=%s", name2->ToModifiedUtf8().c_str(),
PrettyDescriptor(klass).c_str());
return;
}
if (Runtime::Current()->IsActiveTransaction()) {
result->SetL(mirror::Field::CreateFromArtField<true>(self, found, true));
} else {
result->SetL(mirror::Field::CreateFromArtField<false>(self, found, true));
}
}
// This is required for Enum(Set) code, as that uses reflection to inspect enum classes.
void UnstartedRuntime::UnstartedClassGetDeclaredMethod(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Special managed code cut-out to allow method lookup in a un-started runtime.
mirror::Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
if (klass == nullptr) {
ThrowNullPointerExceptionForMethodAccess(shadow_frame->GetMethod(), InvokeType::kVirtual);
return;
}
mirror::String* name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
mirror::ObjectArray<mirror::Class>* args =
shadow_frame->GetVRegReference(arg_offset + 2)->AsObjectArray<mirror::Class>();
if (Runtime::Current()->IsActiveTransaction()) {
result->SetL(mirror::Class::GetDeclaredMethodInternal<true>(self, klass, name, args));
} else {
result->SetL(mirror::Class::GetDeclaredMethodInternal<false>(self, klass, name, args));
}
}
// Special managed code cut-out to allow constructor lookup in a un-started runtime.
void UnstartedRuntime::UnstartedClassGetDeclaredConstructor(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
if (klass == nullptr) {
ThrowNullPointerExceptionForMethodAccess(shadow_frame->GetMethod(), InvokeType::kVirtual);
return;
}
mirror::ObjectArray<mirror::Class>* args =
shadow_frame->GetVRegReference(arg_offset + 1)->AsObjectArray<mirror::Class>();
if (Runtime::Current()->IsActiveTransaction()) {
result->SetL(mirror::Class::GetDeclaredConstructorInternal<true>(self, klass, args));
} else {
result->SetL(mirror::Class::GetDeclaredConstructorInternal<false>(self, klass, args));
}
}
void UnstartedRuntime::UnstartedClassGetEnclosingClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsClass()));
if (klass->IsProxyClass() || klass->GetDexCache() == nullptr) {
result->SetL(nullptr);
}
result->SetL(klass->GetDexFile().GetEnclosingClass(klass));
}
void UnstartedRuntime::UnstartedVmClassLoaderFindLoadedClass(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::String* class_name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
mirror::ClassLoader* class_loader =
down_cast<mirror::ClassLoader*>(shadow_frame->GetVRegReference(arg_offset));
StackHandleScope<2> hs(self);
Handle<mirror::String> h_class_name(hs.NewHandle(class_name));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
UnstartedRuntimeFindClass(self, h_class_name, h_class_loader, result,
"VMClassLoader.findLoadedClass", false, false);
// This might have an error pending. But semantics are to just return null.
if (self->IsExceptionPending()) {
// If it is an InternalError, keep it. See CheckExceptionGenerateClassNotFound.
std::string type(PrettyTypeOf(self->GetException()));
if (type != "java.lang.InternalError") {
self->ClearException();
}
}
}
void UnstartedRuntime::UnstartedVoidLookupType(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame ATTRIBUTE_UNUSED, JValue* result,
size_t arg_offset ATTRIBUTE_UNUSED) {
result->SetL(Runtime::Current()->GetClassLinker()->FindPrimitiveClass('V'));
}
// Arraycopy emulation.
// Note: we can't use any fast copy functions, as they are not available under transaction.
template <typename T>
static void PrimitiveArrayCopy(Thread* self,
mirror::Array* src_array, int32_t src_pos,
mirror::Array* dst_array, int32_t dst_pos,
int32_t length)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (src_array->GetClass()->GetComponentType() != dst_array->GetClass()->GetComponentType()) {
AbortTransactionOrFail(self, "Types mismatched in arraycopy: %s vs %s.",
PrettyDescriptor(src_array->GetClass()->GetComponentType()).c_str(),
PrettyDescriptor(dst_array->GetClass()->GetComponentType()).c_str());
return;
}
mirror::PrimitiveArray<T>* src = down_cast<mirror::PrimitiveArray<T>*>(src_array);
mirror::PrimitiveArray<T>* dst = down_cast<mirror::PrimitiveArray<T>*>(dst_array);
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= length);
if (copy_forward) {
for (int32_t i = 0; i < length; ++i) {
dst->Set(dst_pos + i, src->Get(src_pos + i));
}
} else {
for (int32_t i = 1; i <= length; ++i) {
dst->Set(dst_pos + length - i, src->Get(src_pos + length - i));
}
}
}
void UnstartedRuntime::UnstartedSystemArraycopy(
Thread* self, ShadowFrame* shadow_frame, JValue* result ATTRIBUTE_UNUSED, size_t arg_offset) {
// Special case array copying without initializing System.
jint src_pos = shadow_frame->GetVReg(arg_offset + 1);
jint dst_pos = shadow_frame->GetVReg(arg_offset + 3);
jint length = shadow_frame->GetVReg(arg_offset + 4);
mirror::Object* src_obj = shadow_frame->GetVRegReference(arg_offset);
mirror::Object* dst_obj = shadow_frame->GetVRegReference(arg_offset + 2);
// Null checking. For simplicity, abort transaction.
if (src_obj == nullptr) {
AbortTransactionOrFail(self, "src is null in arraycopy.");
return;
}
if (dst_obj == nullptr) {
AbortTransactionOrFail(self, "dst is null in arraycopy.");
return;
}
// Test for arrayness. Throw ArrayStoreException.
if (!src_obj->IsArrayInstance() || !dst_obj->IsArrayInstance()) {
self->ThrowNewException("Ljava/lang/ArrayStoreException;", "src or trg is not an array");
return;
}
mirror::Array* src_array = src_obj->AsArray();
mirror::Array* dst_array = dst_obj->AsArray();
// Bounds checking. Throw IndexOutOfBoundsException.
if (UNLIKELY(src_pos < 0) || UNLIKELY(dst_pos < 0) || UNLIKELY(length < 0) ||
UNLIKELY(src_pos > src_array->GetLength() - length) ||
UNLIKELY(dst_pos > dst_array->GetLength() - length)) {
self->ThrowNewExceptionF("Ljava/lang/IndexOutOfBoundsException;",
"src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
src_array->GetLength(), src_pos, dst_array->GetLength(), dst_pos,
length);
return;
}
// Type checking.
mirror::Class* src_type = shadow_frame->GetVRegReference(arg_offset)->GetClass()->
GetComponentType();
if (!src_type->IsPrimitive()) {
// Check that the second type is not primitive.
mirror::Class* trg_type = shadow_frame->GetVRegReference(arg_offset + 2)->GetClass()->
GetComponentType();
if (trg_type->IsPrimitiveInt()) {
AbortTransactionOrFail(self, "Type mismatch in arraycopy: %s vs %s",
PrettyDescriptor(src_array->GetClass()->GetComponentType()).c_str(),
PrettyDescriptor(dst_array->GetClass()->GetComponentType()).c_str());
return;
}
mirror::ObjectArray<mirror::Object>* src = src_array->AsObjectArray<mirror::Object>();
mirror::ObjectArray<mirror::Object>* dst = dst_array->AsObjectArray<mirror::Object>();
if (src == dst) {
// Can overlap, but not have type mismatches.
// We cannot use ObjectArray::MemMove here, as it doesn't support transactions.
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= length);
if (copy_forward) {
for (int32_t i = 0; i < length; ++i) {
dst->Set(dst_pos + i, src->Get(src_pos + i));
}
} else {
for (int32_t i = 1; i <= length; ++i) {
dst->Set(dst_pos + length - i, src->Get(src_pos + length - i));
}
}
} else {
// We're being lazy here. Optimally this could be a memcpy (if component types are
// assignable), but the ObjectArray implementation doesn't support transactions. The
// checking version, however, does.
if (Runtime::Current()->IsActiveTransaction()) {
dst->AssignableCheckingMemcpy<true>(
dst_pos, src, src_pos, length, true /* throw_exception */);
} else {
dst->AssignableCheckingMemcpy<false>(
dst_pos, src, src_pos, length, true /* throw_exception */);
}
}
} else if (src_type->IsPrimitiveByte()) {
PrimitiveArrayCopy<uint8_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else if (src_type->IsPrimitiveChar()) {
PrimitiveArrayCopy<uint16_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else if (src_type->IsPrimitiveInt()) {
PrimitiveArrayCopy<int32_t>(self, src_array, src_pos, dst_array, dst_pos, length);
} else {
AbortTransactionOrFail(self, "Unimplemented System.arraycopy for type '%s'",
PrettyDescriptor(src_type).c_str());
}
}
void UnstartedRuntime::UnstartedSystemArraycopyByte(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemArraycopyChar(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemArraycopyInt(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Just forward.
UnstartedRuntime::UnstartedSystemArraycopy(self, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedSystemGetSecurityManager(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame ATTRIBUTE_UNUSED,
JValue* result, size_t arg_offset ATTRIBUTE_UNUSED) {
result->SetL(nullptr);
}
void UnstartedRuntime::UnstartedThreadLocalGet(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset ATTRIBUTE_UNUSED) {
std::string caller(PrettyMethod(shadow_frame->GetLink()->GetMethod()));
bool ok = false;
if (caller == "void java.lang.FloatingDecimal.developLongDigits(int, long, long)" ||
caller == "java.lang.String java.lang.FloatingDecimal.toJavaFormatString()") {
// Allocate non-threadlocal buffer.
result->SetL(mirror::CharArray::Alloc(self, 26));
ok = true;
} else if (caller ==
"java.lang.FloatingDecimal java.lang.FloatingDecimal.getThreadLocalInstance()") {
// Allocate new object.
StackHandleScope<2> hs(self);
Handle<mirror::Class> h_real_to_string_class(hs.NewHandle(
shadow_frame->GetLink()->GetMethod()->GetDeclaringClass()));
Handle<mirror::Object> h_real_to_string_obj(hs.NewHandle(
h_real_to_string_class->AllocObject(self)));
if (h_real_to_string_obj.Get() != nullptr) {
auto* cl = Runtime::Current()->GetClassLinker();
ArtMethod* init_method = h_real_to_string_class->FindDirectMethod(
"<init>", "()V", cl->GetImagePointerSize());
if (init_method == nullptr) {
h_real_to_string_class->DumpClass(LOG(FATAL), mirror::Class::kDumpClassFullDetail);
} else {
JValue invoke_result;
EnterInterpreterFromInvoke(self, init_method, h_real_to_string_obj.Get(), nullptr,
nullptr);
if (!self->IsExceptionPending()) {
result->SetL(h_real_to_string_obj.Get());
ok = true;
}
}
}
}
if (!ok) {
AbortTransactionOrFail(self, "Could not create RealToString object");
}
}
void UnstartedRuntime::UnstartedMathCeil(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
double in = shadow_frame->GetVRegDouble(arg_offset);
double out;
// Special cases:
// 1) NaN, infinity, +0, -0 -> out := in. All are guaranteed by cmath.
// -1 < in < 0 -> out := -0.
if (-1.0 < in && in < 0) {
out = -0.0;
} else {
out = ceil(in);
}
result->SetD(out);
}
void UnstartedRuntime::UnstartedObjectHashCode(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset);
result->SetI(obj->IdentityHashCode());
}
void UnstartedRuntime::UnstartedDoubleDoubleToRawLongBits(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
double in = shadow_frame->GetVRegDouble(arg_offset);
result->SetJ(bit_cast<int64_t, double>(in));
}
static mirror::Object* GetDexFromDexCache(Thread* self, mirror::DexCache* dex_cache)
SHARED_REQUIRES(Locks::mutator_lock_) {
const DexFile* dex_file = dex_cache->GetDexFile();
if (dex_file == nullptr) {
return nullptr;
}
// Create the direct byte buffer.
JNIEnv* env = self->GetJniEnv();
DCHECK(env != nullptr);
void* address = const_cast<void*>(reinterpret_cast<const void*>(dex_file->Begin()));
ScopedLocalRef<jobject> byte_buffer(env, env->NewDirectByteBuffer(address, dex_file->Size()));
if (byte_buffer.get() == nullptr) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
jvalue args[1];
args[0].l = byte_buffer.get();
ScopedLocalRef<jobject> dex(env, env->CallStaticObjectMethodA(
WellKnownClasses::com_android_dex_Dex,
WellKnownClasses::com_android_dex_Dex_create,
args));
return self->DecodeJObject(dex.get());
}
void UnstartedRuntime::UnstartedDexCacheGetDexNative(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// We will create the Dex object, but the image writer will release it before creating the
// art file.
mirror::Object* src = shadow_frame->GetVRegReference(arg_offset);
bool have_dex = false;
if (src != nullptr) {
mirror::Object* dex = GetDexFromDexCache(self, reinterpret_cast<mirror::DexCache*>(src));
if (dex != nullptr) {
have_dex = true;
result->SetL(dex);
}
}
if (!have_dex) {
self->ClearException();
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Could not create Dex object");
}
}
static void UnstartedMemoryPeek(
Primitive::Type type, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
int64_t address = shadow_frame->GetVRegLong(arg_offset);
// TODO: Check that this is in the heap somewhere. Otherwise we will segfault instead of
// aborting the transaction.
switch (type) {
case Primitive::kPrimByte: {
result->SetB(*reinterpret_cast<int8_t*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimShort: {
typedef int16_t unaligned_short __attribute__ ((aligned (1)));
result->SetS(*reinterpret_cast<unaligned_short*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimInt: {
typedef int32_t unaligned_int __attribute__ ((aligned (1)));
result->SetI(*reinterpret_cast<unaligned_int*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimLong: {
typedef int64_t unaligned_long __attribute__ ((aligned (1)));
result->SetJ(*reinterpret_cast<unaligned_long*>(static_cast<intptr_t>(address)));
return;
}
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
case Primitive::kPrimVoid:
case Primitive::kPrimNot:
LOG(FATAL) << "Not in the Memory API: " << type;
UNREACHABLE();
}
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
void UnstartedRuntime::UnstartedMemoryPeekByte(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimByte, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekShort(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimShort, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekInt(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimInt, shadow_frame, result, arg_offset);
}
void UnstartedRuntime::UnstartedMemoryPeekLong(
Thread* self ATTRIBUTE_UNUSED, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
UnstartedMemoryPeek(Primitive::kPrimLong, shadow_frame, result, arg_offset);
}
static void UnstartedMemoryPeekArray(
Primitive::Type type, Thread* self, ShadowFrame* shadow_frame, size_t arg_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
int64_t address_long = shadow_frame->GetVRegLong(arg_offset);
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 2);
if (obj == nullptr) {
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Null pointer in peekArray");
return;
}
mirror::Array* array = obj->AsArray();
int offset = shadow_frame->GetVReg(arg_offset + 3);
int count = shadow_frame->GetVReg(arg_offset + 4);
if (offset < 0 || offset + count > array->GetLength()) {
std::string error_msg(StringPrintf("Array out of bounds in peekArray: %d/%d vs %d",
offset, count, array->GetLength()));
Runtime::Current()->AbortTransactionAndThrowAbortError(self, error_msg.c_str());
return;
}
switch (type) {
case Primitive::kPrimByte: {
int8_t* address = reinterpret_cast<int8_t*>(static_cast<intptr_t>(address_long));
mirror::ByteArray* byte_array = array->AsByteArray();
for (int32_t i = 0; i < count; ++i, ++address) {
byte_array->SetWithoutChecks<true>(i + offset, *address);
}
return;
}
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
LOG(FATAL) << "Type unimplemented for Memory Array API, should not reach here: " << type;
UNREACHABLE();
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
case Primitive::kPrimVoid:
case Primitive::kPrimNot:
LOG(FATAL) << "Not in the Memory API: " << type;
UNREACHABLE();
}
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
void UnstartedRuntime::UnstartedMemoryPeekByteArray(
Thread* self, ShadowFrame* shadow_frame, JValue* result ATTRIBUTE_UNUSED, size_t arg_offset) {
UnstartedMemoryPeekArray(Primitive::kPrimByte, self, shadow_frame, arg_offset);
}
// This allows reading security.properties in an unstarted runtime and initialize Security.
void UnstartedRuntime::UnstartedSecurityGetSecurityPropertiesReader(
Thread* self, ShadowFrame* shadow_frame ATTRIBUTE_UNUSED, JValue* result,
size_t arg_offset ATTRIBUTE_UNUSED) {
Runtime* runtime = Runtime::Current();
std::vector<std::string> split;
Split(runtime->GetBootClassPathString(), ':', &split);
if (split.empty()) {
AbortTransactionOrFail(self,
"Boot classpath not set or split error:: %s",
runtime->GetBootClassPathString().c_str());
return;
}
const std::string& source = split[0];
mirror::String* string_data;
// Use a block to enclose the I/O and MemMap code so buffers are released early.
{
std::string error_msg;
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(source.c_str(), &error_msg));
if (zip_archive.get() == nullptr) {
AbortTransactionOrFail(self,
"Could not open zip file %s: %s",
source.c_str(),
error_msg.c_str());
return;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find("java/security/security.properties",
&error_msg));
if (zip_entry.get() == nullptr) {
AbortTransactionOrFail(self,
"Could not find security.properties file in %s: %s",
source.c_str(),
error_msg.c_str());
return;
}
std::unique_ptr<MemMap> map(zip_entry->ExtractToMemMap(source.c_str(),
"java/security/security.properties",
&error_msg));
if (map.get() == nullptr) {
AbortTransactionOrFail(self,
"Could not unzip security.properties file in %s: %s",
source.c_str(),
error_msg.c_str());
return;
}
uint32_t length = zip_entry->GetUncompressedLength();
std::unique_ptr<char[]> tmp(new char[length + 1]);
memcpy(tmp.get(), map->Begin(), length);
tmp.get()[length] = 0; // null terminator
string_data = mirror::String::AllocFromModifiedUtf8(self, tmp.get());
}
if (string_data == nullptr) {
AbortTransactionOrFail(self, "Could not create string from file content of %s", source.c_str());
return;
}
// Create a StringReader.
StackHandleScope<3> hs(self);
Handle<mirror::String> h_string(hs.NewHandle(string_data));
Handle<mirror::Class> h_class(hs.NewHandle(
runtime->GetClassLinker()->FindClass(self,
"Ljava/io/StringReader;",
ScopedNullHandle<mirror::ClassLoader>())));
if (h_class.Get() == nullptr) {
AbortTransactionOrFail(self, "Could not find StringReader class");
return;
}
if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
AbortTransactionOrFail(self, "Could not initialize StringReader class");
return;
}
Handle<mirror::Object> h_obj(hs.NewHandle(h_class->AllocObject(self)));
if (h_obj.Get() == nullptr) {
AbortTransactionOrFail(self, "Could not allocate StringReader object");
return;
}
auto* cl = Runtime::Current()->GetClassLinker();
ArtMethod* constructor = h_class->FindDeclaredDirectMethod(
"<init>", "(Ljava/lang/String;)V", cl->GetImagePointerSize());
if (constructor == nullptr) {
AbortTransactionOrFail(self, "Could not find StringReader constructor");
return;
}
uint32_t args[1];
args[0] = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(h_string.Get()));
EnterInterpreterFromInvoke(self, constructor, h_obj.Get(), args, nullptr);
if (self->IsExceptionPending()) {
AbortTransactionOrFail(self, "Could not run StringReader constructor");
return;
}
result->SetL(h_obj.Get());
}
// This allows reading the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringGetCharsNoCheck(
Thread* self, ShadowFrame* shadow_frame, JValue* result ATTRIBUTE_UNUSED, size_t arg_offset) {
jint start = shadow_frame->GetVReg(arg_offset + 1);
jint end = shadow_frame->GetVReg(arg_offset + 2);
jint index = shadow_frame->GetVReg(arg_offset + 4);
mirror::String* string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.getCharsNoCheck with null object");
return;
}
DCHECK_GE(start, 0);
DCHECK_GE(end, string->GetLength());
StackHandleScope<1> hs(self);
Handle<mirror::CharArray> h_char_array(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset + 3)->AsCharArray()));
DCHECK_LE(index, h_char_array->GetLength());
DCHECK_LE(end - start, h_char_array->GetLength() - index);
string->GetChars(start, end, h_char_array, index);
}
// This allows reading chars from the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringCharAt(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint index = shadow_frame->GetVReg(arg_offset + 1);
mirror::String* string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.charAt with null object");
return;
}
result->SetC(string->CharAt(index));
}
// This allows setting chars from the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringSetCharAt(
Thread* self, ShadowFrame* shadow_frame, JValue* result ATTRIBUTE_UNUSED, size_t arg_offset) {
jint index = shadow_frame->GetVReg(arg_offset + 1);
jchar c = shadow_frame->GetVReg(arg_offset + 2);
mirror::String* string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.setCharAt with null object");
return;
}
string->SetCharAt(index, c);
}
// This allows creating the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringFactoryNewStringFromChars(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint offset = shadow_frame->GetVReg(arg_offset);
jint char_count = shadow_frame->GetVReg(arg_offset + 1);
DCHECK_GE(char_count, 0);
StackHandleScope<1> hs(self);
Handle<mirror::CharArray> h_char_array(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset + 2)->AsCharArray()));
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::String::AllocFromCharArray<true>(self, char_count, h_char_array, offset, allocator));
}
// This allows creating the new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringFactoryNewStringFromString(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::String* to_copy = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (to_copy == nullptr) {
AbortTransactionOrFail(self, "StringFactory.newStringFromString with null object");
return;
}
StackHandleScope<1> hs(self);
Handle<mirror::String> h_string(hs.NewHandle(to_copy));
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::String::AllocFromString<true>(self, h_string->GetLength(), h_string, 0,
allocator));
}
void UnstartedRuntime::UnstartedStringFastSubstring(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
jint start = shadow_frame->GetVReg(arg_offset + 1);
jint length = shadow_frame->GetVReg(arg_offset + 2);
DCHECK_GE(start, 0);
DCHECK_GE(length, 0);
StackHandleScope<1> hs(self);
Handle<mirror::String> h_string(
hs.NewHandle(shadow_frame->GetVRegReference(arg_offset)->AsString()));
DCHECK_LE(start, h_string->GetLength());
DCHECK_LE(start + length, h_string->GetLength());
Runtime* runtime = Runtime::Current();
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::String::AllocFromString<true>(self, length, h_string, start, allocator));
}
// This allows getting the char array for new style of String objects during compilation.
void UnstartedRuntime::UnstartedStringToCharArray(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
mirror::String* string = shadow_frame->GetVRegReference(arg_offset)->AsString();
if (string == nullptr) {
AbortTransactionOrFail(self, "String.charAt with null object");
return;
}
result->SetL(string->ToCharArray(self));
}
// This allows statically initializing ConcurrentHashMap and SynchronousQueue.
void UnstartedRuntime::UnstartedReferenceGetReferent(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
mirror::Reference* const ref = down_cast<mirror::Reference*>(
shadow_frame->GetVRegReference(arg_offset));
if (ref == nullptr) {
AbortTransactionOrFail(self, "Reference.getReferent() with null object");
return;
}
mirror::Object* const referent =
Runtime::Current()->GetHeap()->GetReferenceProcessor()->GetReferent(self, ref);
result->SetL(referent);
}
// This allows statically initializing ConcurrentHashMap and SynchronousQueue. We use a somewhat
// conservative upper bound. We restrict the callers to SynchronousQueue and ConcurrentHashMap,
// where we can predict the behavior (somewhat).
// Note: this is required (instead of lazy initialization) as these classes are used in the static
// initialization of other classes, so will *use* the value.
void UnstartedRuntime::UnstartedRuntimeAvailableProcessors(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset ATTRIBUTE_UNUSED) {
std::string caller(PrettyMethod(shadow_frame->GetLink()->GetMethod()));
if (caller == "void java.util.concurrent.SynchronousQueue.<clinit>()") {
// SynchronousQueue really only separates between single- and multiprocessor case. Return
// 8 as a conservative upper approximation.
result->SetI(8);
} else if (caller == "void java.util.concurrent.ConcurrentHashMap.<clinit>()") {
// ConcurrentHashMap uses it for striding. 8 still seems an OK general value, as it's likely
// a good upper bound.
// TODO: Consider resetting in the zygote?
result->SetI(8);
} else {
// Not supported.
AbortTransactionOrFail(self, "Accessing availableProcessors not allowed");
}
}
// This allows accessing ConcurrentHashMap/SynchronousQueue.
void UnstartedRuntime::UnstartedUnsafeCompareAndSwapLong(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
int64_t expectedValue = shadow_frame->GetVRegLong(arg_offset + 4);
int64_t newValue = shadow_frame->GetVRegLong(arg_offset + 6);
// Must use non transactional mode.
if (kUseReadBarrier) {
// Need to make sure the reference stored in the field is a to-space one before attempting the
// CAS or the CAS could fail incorrectly.
mirror::HeapReference<mirror::Object>* field_addr =
reinterpret_cast<mirror::HeapReference<mirror::Object>*>(
reinterpret_cast<uint8_t*>(obj) + static_cast<size_t>(offset));
ReadBarrier::Barrier<mirror::Object, kWithReadBarrier, /*kAlwaysUpdateField*/true>(
obj,
MemberOffset(offset),
field_addr);
}
bool success;
// Check whether we're in a transaction, call accordingly.
if (Runtime::Current()->IsActiveTransaction()) {
success = obj->CasFieldStrongSequentiallyConsistent64<true>(MemberOffset(offset),
expectedValue,
newValue);
} else {
success = obj->CasFieldStrongSequentiallyConsistent64<false>(MemberOffset(offset),
expectedValue,
newValue);
}
result->SetZ(success ? 1 : 0);
}
void UnstartedRuntime::UnstartedUnsafeCompareAndSwapObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* expected_value = shadow_frame->GetVRegReference(arg_offset + 4);
mirror::Object* newValue = shadow_frame->GetVRegReference(arg_offset + 5);
// Must use non transactional mode.
if (kUseReadBarrier) {
// Need to make sure the reference stored in the field is a to-space one before attempting the
// CAS or the CAS could fail incorrectly.
mirror::HeapReference<mirror::Object>* field_addr =
reinterpret_cast<mirror::HeapReference<mirror::Object>*>(
reinterpret_cast<uint8_t*>(obj) + static_cast<size_t>(offset));
ReadBarrier::Barrier<mirror::Object, kWithReadBarrier, /*kAlwaysUpdateField*/true>(
obj,
MemberOffset(offset),
field_addr);
}
bool success;
// Check whether we're in a transaction, call accordingly.
if (Runtime::Current()->IsActiveTransaction()) {
success = obj->CasFieldStrongSequentiallyConsistentObject<true>(MemberOffset(offset),
expected_value,
newValue);
} else {
success = obj->CasFieldStrongSequentiallyConsistentObject<false>(MemberOffset(offset),
expected_value,
newValue);
}
result->SetZ(success ? 1 : 0);
}
void UnstartedRuntime::UnstartedUnsafeGetObjectVolatile(
Thread* self, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* value = obj->GetFieldObjectVolatile<mirror::Object>(MemberOffset(offset));
result->SetL(value);
}
void UnstartedRuntime::UnstartedUnsafePutOrderedObject(
Thread* self, ShadowFrame* shadow_frame, JValue* result ATTRIBUTE_UNUSED, size_t arg_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
// Argument 0 is the Unsafe instance, skip.
mirror::Object* obj = shadow_frame->GetVRegReference(arg_offset + 1);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
int64_t offset = shadow_frame->GetVRegLong(arg_offset + 2);
mirror::Object* newValue = shadow_frame->GetVRegReference(arg_offset + 4);
QuasiAtomic::ThreadFenceRelease();
if (Runtime::Current()->IsActiveTransaction()) {
obj->SetFieldObject<true>(MemberOffset(offset), newValue);
} else {
obj->SetFieldObject<false>(MemberOffset(offset), newValue);
}
}
void UnstartedRuntime::UnstartedJNIVMRuntimeNewUnpaddedArray(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args, JValue* result) {
int32_t length = args[1];
DCHECK_GE(length, 0);
mirror::Class* element_class = reinterpret_cast<mirror::Object*>(args[0])->AsClass();
Runtime* runtime = Runtime::Current();
mirror::Class* array_class = runtime->GetClassLinker()->FindArrayClass(self, &element_class);
DCHECK(array_class != nullptr);
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
result->SetL(mirror::Array::Alloc<true, true>(self, array_class, length,
array_class->GetComponentSizeShift(), allocator));
}
void UnstartedRuntime::UnstartedJNIVMStackGetCallingClassLoader(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
result->SetL(nullptr);
}
void UnstartedRuntime::UnstartedJNIVMStackGetStackClass2(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
NthCallerVisitor visitor(self, 3);
visitor.WalkStack();
if (visitor.caller != nullptr) {
result->SetL(visitor.caller->GetDeclaringClass());
}
}
void UnstartedRuntime::UnstartedJNIMathLog(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(log(value.GetD()));
}
void UnstartedRuntime::UnstartedJNIMathExp(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(exp(value.GetD()));
}
void UnstartedRuntime::UnstartedJNIAtomicLongVMSupportsCS8(
Thread* self ATTRIBUTE_UNUSED,
ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args ATTRIBUTE_UNUSED,
JValue* result) {
result->SetZ(QuasiAtomic::LongAtomicsUseMutexes(Runtime::Current()->GetInstructionSet())
? 0
: 1);
}
void UnstartedRuntime::UnstartedJNIClassGetNameNative(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
StackHandleScope<1> hs(self);
result->SetL(mirror::Class::ComputeName(hs.NewHandle(receiver->AsClass())));
}
void UnstartedRuntime::UnstartedJNIDoubleLongBitsToDouble(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
uint64_t long_input = args[0] | (static_cast<uint64_t>(args[1]) << 32);
result->SetD(bit_cast<double>(long_input));
}
void UnstartedRuntime::UnstartedJNIFloatFloatToRawIntBits(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
result->SetI(args[0]);
}
void UnstartedRuntime::UnstartedJNIFloatIntBitsToFloat(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
result->SetI(args[0]);
}
void UnstartedRuntime::UnstartedJNIObjectInternalClone(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
result->SetL(receiver->Clone(self));
}
void UnstartedRuntime::UnstartedJNIObjectNotifyAll(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result ATTRIBUTE_UNUSED) {
receiver->NotifyAll(self);
}
void UnstartedRuntime::UnstartedJNIStringCompareTo(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver, uint32_t* args,
JValue* result) {
mirror::String* rhs = reinterpret_cast<mirror::Object*>(args[0])->AsString();
if (rhs == nullptr) {
AbortTransactionOrFail(self, "String.compareTo with null object");
}
result->SetI(receiver->AsString()->CompareTo(rhs));
}
void UnstartedRuntime::UnstartedJNIStringIntern(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
result->SetL(receiver->AsString()->Intern());
}
void UnstartedRuntime::UnstartedJNIStringFastIndexOf(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver,
uint32_t* args, JValue* result) {
result->SetI(receiver->AsString()->FastIndexOf(args[0], args[1]));
}
void UnstartedRuntime::UnstartedJNIArrayCreateMultiArray(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args, JValue* result) {
StackHandleScope<2> hs(self);
auto h_class(hs.NewHandle(reinterpret_cast<mirror::Class*>(args[0])->AsClass()));
auto h_dimensions(hs.NewHandle(reinterpret_cast<mirror::IntArray*>(args[1])->AsIntArray()));
result->SetL(mirror::Array::CreateMultiArray(self, h_class, h_dimensions));
}
void UnstartedRuntime::UnstartedJNIArrayCreateObjectArray(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args, JValue* result) {
int32_t length = static_cast<int32_t>(args[1]);
if (length < 0) {
ThrowNegativeArraySizeException(length);
return;
}
mirror::Class* element_class = reinterpret_cast<mirror::Class*>(args[0])->AsClass();
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
mirror::Class* array_class = class_linker->FindArrayClass(self, &element_class);
if (UNLIKELY(array_class == nullptr)) {
CHECK(self->IsExceptionPending());
return;
}
DCHECK(array_class->IsObjectArrayClass());
mirror::Array* new_array = mirror::ObjectArray<mirror::Object*>::Alloc(
self, array_class, length, runtime->GetHeap()->GetCurrentAllocator());
result->SetL(new_array);
}
void UnstartedRuntime::UnstartedJNIThrowableNativeFillInStackTrace(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
ScopedObjectAccessUnchecked soa(self);
if (Runtime::Current()->IsActiveTransaction()) {
result->SetL(soa.Decode<mirror::Object*>(self->CreateInternalStackTrace<true>(soa)));
} else {
result->SetL(soa.Decode<mirror::Object*>(self->CreateInternalStackTrace<false>(soa)));
}
}
void UnstartedRuntime::UnstartedJNISystemIdentityHashCode(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
mirror::Object* obj = reinterpret_cast<mirror::Object*>(args[0]);
result->SetI((obj != nullptr) ? obj->IdentityHashCode() : 0);
}
void UnstartedRuntime::UnstartedJNIByteOrderIsLittleEndian(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args ATTRIBUTE_UNUSED, JValue* result) {
result->SetZ(JNI_TRUE);
}
void UnstartedRuntime::UnstartedJNIUnsafeCompareAndSwapInt(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
mirror::Object* obj = reinterpret_cast<mirror::Object*>(args[0]);
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
jint expectedValue = args[3];
jint newValue = args[4];
bool success;
if (Runtime::Current()->IsActiveTransaction()) {
success = obj->CasFieldStrongSequentiallyConsistent32<true>(MemberOffset(offset),
expectedValue, newValue);
} else {
success = obj->CasFieldStrongSequentiallyConsistent32<false>(MemberOffset(offset),
expectedValue, newValue);
}
result->SetZ(success ? JNI_TRUE : JNI_FALSE);
}
void UnstartedRuntime::UnstartedJNIUnsafeGetIntVolatile(
Thread* self, ArtMethod* method ATTRIBUTE_UNUSED, mirror::Object* receiver ATTRIBUTE_UNUSED,
uint32_t* args, JValue* result) {
mirror::Object* obj = reinterpret_cast<mirror::Object*>(args[0]);
if (obj == nullptr) {
AbortTransactionOrFail(self, "Cannot access null object, retry at runtime.");
return;
}
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
result->SetI(obj->GetField32Volatile(MemberOffset(offset)));
}
void UnstartedRuntime::UnstartedJNIUnsafePutObject(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result ATTRIBUTE_UNUSED) {
mirror::Object* obj = reinterpret_cast<mirror::Object*>(args[0]);
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
mirror::Object* newValue = reinterpret_cast<mirror::Object*>(args[3]);
if (Runtime::Current()->IsActiveTransaction()) {
obj->SetFieldObject<true>(MemberOffset(offset), newValue);
} else {
obj->SetFieldObject<false>(MemberOffset(offset), newValue);
}
}
void UnstartedRuntime::UnstartedJNIUnsafeGetArrayBaseOffsetForComponentType(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
mirror::Class* component = reinterpret_cast<mirror::Object*>(args[0])->AsClass();
Primitive::Type primitive_type = component->GetPrimitiveType();
result->SetI(mirror::Array::DataOffset(Primitive::ComponentSize(primitive_type)).Int32Value());
}
void UnstartedRuntime::UnstartedJNIUnsafeGetArrayIndexScaleForComponentType(
Thread* self ATTRIBUTE_UNUSED, ArtMethod* method ATTRIBUTE_UNUSED,
mirror::Object* receiver ATTRIBUTE_UNUSED, uint32_t* args, JValue* result) {
mirror::Class* component = reinterpret_cast<mirror::Object*>(args[0])->AsClass();
Primitive::Type primitive_type = component->GetPrimitiveType();
result->SetI(Primitive::ComponentSize(primitive_type));
}
typedef void (*InvokeHandler)(Thread* self, ShadowFrame* shadow_frame, JValue* result,
size_t arg_size);
typedef void (*JNIHandler)(Thread* self, ArtMethod* method, mirror::Object* receiver,
uint32_t* args, JValue* result);
static bool tables_initialized_ = false;
static std::unordered_map<std::string, InvokeHandler> invoke_handlers_;
static std::unordered_map<std::string, JNIHandler> jni_handlers_;
void UnstartedRuntime::InitializeInvokeHandlers() {
#define UNSTARTED_DIRECT(ShortName, Sig) \
invoke_handlers_.insert(std::make_pair(Sig, & UnstartedRuntime::Unstarted ## ShortName));
#include "unstarted_runtime_list.h"
UNSTARTED_RUNTIME_DIRECT_LIST(UNSTARTED_DIRECT)
#undef UNSTARTED_RUNTIME_DIRECT_LIST
#undef UNSTARTED_RUNTIME_JNI_LIST
#undef UNSTARTED_DIRECT
}
void UnstartedRuntime::InitializeJNIHandlers() {
#define UNSTARTED_JNI(ShortName, Sig) \
jni_handlers_.insert(std::make_pair(Sig, & UnstartedRuntime::UnstartedJNI ## ShortName));
#include "unstarted_runtime_list.h"
UNSTARTED_RUNTIME_JNI_LIST(UNSTARTED_JNI)
#undef UNSTARTED_RUNTIME_DIRECT_LIST
#undef UNSTARTED_RUNTIME_JNI_LIST
#undef UNSTARTED_JNI
}
void UnstartedRuntime::Initialize() {
CHECK(!tables_initialized_);
InitializeInvokeHandlers();
InitializeJNIHandlers();
tables_initialized_ = true;
}
void UnstartedRuntime::Invoke(Thread* self, const DexFile::CodeItem* code_item,
ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) {
// In a runtime that's not started we intercept certain methods to avoid complicated dependency
// problems in core libraries.
CHECK(tables_initialized_);
std::string name(PrettyMethod(shadow_frame->GetMethod()));
const auto& iter = invoke_handlers_.find(name);
if (iter != invoke_handlers_.end()) {
// Clear out the result in case it's not zeroed out.
result->SetL(0);
(*iter->second)(self, shadow_frame, result, arg_offset);
} else {
// Not special, continue with regular interpreter execution.
ArtInterpreterToInterpreterBridge(self, code_item, shadow_frame, result);
}
}
// Hand select a number of methods to be run in a not yet started runtime without using JNI.
void UnstartedRuntime::Jni(Thread* self, ArtMethod* method, mirror::Object* receiver,
uint32_t* args, JValue* result) {
std::string name(PrettyMethod(method));
const auto& iter = jni_handlers_.find(name);
if (iter != jni_handlers_.end()) {
// Clear out the result in case it's not zeroed out.
result->SetL(0);
(*iter->second)(self, method, receiver, args, result);
} else if (Runtime::Current()->IsActiveTransaction()) {
AbortTransactionF(self, "Attempt to invoke native method in non-started runtime: %s",
name.c_str());
} else {
LOG(FATAL) << "Calling native method " << PrettyMethod(method) << " in an unstarted "
"non-transactional runtime";
}
}
} // namespace interpreter
} // namespace art