| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #define ATRACE_TAG ATRACE_TAG_DALVIK |
| #include <stdio.h> |
| #include <cutils/trace.h> |
| |
| #include "timing_logger.h" |
| |
| #include "base/logging.h" |
| #include "thread-inl.h" |
| #include "base/stl_util.h" |
| #include "base/histogram-inl.h" |
| |
| #include <cmath> |
| #include <iomanip> |
| |
| namespace art { |
| |
| CumulativeLogger::CumulativeLogger(const std::string& name) |
| : name_(name), |
| lock_name_("CumulativeLoggerLock" + name), |
| lock_(lock_name_.c_str(), kDefaultMutexLevel, true) { |
| Reset(); |
| } |
| |
| CumulativeLogger::~CumulativeLogger() { |
| STLDeleteValues(&histograms_); |
| } |
| |
| void CumulativeLogger::SetName(const std::string& name) { |
| name_.assign(name); |
| } |
| |
| void CumulativeLogger::Start() { |
| } |
| |
| void CumulativeLogger::End() { |
| MutexLock mu(Thread::Current(), lock_); |
| iterations_++; |
| } |
| |
| void CumulativeLogger::Reset() { |
| MutexLock mu(Thread::Current(), lock_); |
| iterations_ = 0; |
| STLDeleteValues(&histograms_); |
| } |
| |
| uint64_t CumulativeLogger::GetTotalNs() const { |
| return GetTotalTime() * kAdjust; |
| } |
| |
| uint64_t CumulativeLogger::GetTotalTime() const { |
| MutexLock mu(Thread::Current(), lock_); |
| uint64_t total = 0; |
| for (CumulativeLogger::HistogramsIterator it = histograms_.begin(), end = histograms_.end(); |
| it != end; ++it) { |
| total += it->second->Sum(); |
| } |
| return total; |
| } |
| |
| void CumulativeLogger::AddLogger(const TimingLogger &logger) { |
| MutexLock mu(Thread::Current(), lock_); |
| const TimingLogger::SplitTimings& splits = logger.GetSplits(); |
| for (auto it = splits.begin(), end = splits.end(); it != end; ++it) { |
| TimingLogger::SplitTiming split = *it; |
| uint64_t split_time = split.first; |
| const char* split_name = split.second; |
| AddPair(split_name, split_time); |
| } |
| } |
| |
| size_t CumulativeLogger::GetIterations() const { |
| MutexLock mu(Thread::Current(), lock_); |
| return iterations_; |
| } |
| |
| void CumulativeLogger::Dump(std::ostream &os) { |
| MutexLock mu(Thread::Current(), lock_); |
| DumpHistogram(os); |
| } |
| |
| void CumulativeLogger::AddPair(const std::string &label, uint64_t delta_time) { |
| // Convert delta time to microseconds so that we don't overflow our counters. |
| delta_time /= kAdjust; |
| |
| if (histograms_.find(label) == histograms_.end()) { |
| // TODO: Should this be a defined constant so we we know out of which orifice 16 and 100 were |
| // picked? |
| const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ? 16 : 100; |
| // TODO: Should this be a defined constant so we know 50 of WTF? |
| histograms_[label] = new Histogram<uint64_t>(label.c_str(), 50, max_buckets); |
| } |
| histograms_[label]->AddValue(delta_time); |
| } |
| |
| void CumulativeLogger::DumpHistogram(std::ostream &os) { |
| os << "Start Dumping histograms for " << iterations_ << " iterations" |
| << " for " << name_ << "\n"; |
| for (CumulativeLogger::HistogramsIterator it = histograms_.begin(), end = histograms_.end(); |
| it != end; ++it) { |
| Histogram<uint64_t>::CumulativeData cumulative_data; |
| it->second->CreateHistogram(cumulative_data); |
| it->second->PrintConfidenceIntervals(os, 0.99, cumulative_data); |
| // Reset cumulative values to save memory. We don't expect DumpHistogram to be called often, so |
| // it is not performance critical. |
| } |
| os << "Done Dumping histograms \n"; |
| } |
| |
| TimingLogger::TimingLogger(const char* name, bool precise, bool verbose) |
| : name_(name), precise_(precise), verbose_(verbose), current_split_(NULL) { |
| } |
| |
| void TimingLogger::Reset() { |
| current_split_ = NULL; |
| splits_.clear(); |
| } |
| |
| void TimingLogger::StartSplit(const char* new_split_label) { |
| DCHECK(new_split_label != nullptr) << "Starting split with null label."; |
| TimingLogger::ScopedSplit* explicit_scoped_split = |
| new TimingLogger::ScopedSplit(new_split_label, this); |
| explicit_scoped_split->explicit_ = true; |
| } |
| |
| void TimingLogger::EndSplit() { |
| CHECK(current_split_ != nullptr) << "Ending a non-existent split."; |
| DCHECK(current_split_->label_ != nullptr); |
| DCHECK(current_split_->explicit_ == true) |
| << "Explicitly ending scoped split: " << current_split_->label_; |
| delete current_split_; |
| // TODO: current_split_ = nullptr; |
| } |
| |
| // Ends the current split and starts the one given by the label. |
| void TimingLogger::NewSplit(const char* new_split_label) { |
| if (current_split_ == nullptr) { |
| StartSplit(new_split_label); |
| } else { |
| DCHECK(new_split_label != nullptr) << "New split (" << new_split_label << ") with null label."; |
| current_split_->TailInsertSplit(new_split_label); |
| } |
| } |
| |
| uint64_t TimingLogger::GetTotalNs() const { |
| uint64_t total_ns = 0; |
| for (auto it = splits_.begin(), end = splits_.end(); it != end; ++it) { |
| TimingLogger::SplitTiming split = *it; |
| total_ns += split.first; |
| } |
| return total_ns; |
| } |
| |
| void TimingLogger::Dump(std::ostream &os) const { |
| uint64_t longest_split = 0; |
| uint64_t total_ns = 0; |
| for (auto it = splits_.begin(), end = splits_.end(); it != end; ++it) { |
| TimingLogger::SplitTiming split = *it; |
| uint64_t split_time = split.first; |
| longest_split = std::max(longest_split, split_time); |
| total_ns += split_time; |
| } |
| // Compute which type of unit we will use for printing the timings. |
| TimeUnit tu = GetAppropriateTimeUnit(longest_split); |
| uint64_t divisor = GetNsToTimeUnitDivisor(tu); |
| // Print formatted splits. |
| for (auto it = splits_.begin(), end = splits_.end(); it != end; ++it) { |
| const TimingLogger::SplitTiming& split = *it; |
| uint64_t split_time = split.first; |
| if (!precise_ && divisor >= 1000) { |
| // Make the fractional part 0. |
| split_time -= split_time % (divisor / 1000); |
| } |
| os << name_ << ": " << std::setw(8) << FormatDuration(split_time, tu) << " " |
| << split.second << "\n"; |
| } |
| os << name_ << ": end, " << NsToMs(total_ns) << " ms\n"; |
| } |
| |
| |
| TimingLogger::ScopedSplit::ScopedSplit(const char* label, TimingLogger* timing_logger) { |
| DCHECK(label != NULL) << "New scoped split (" << label << ") with null label."; |
| CHECK(timing_logger != NULL) << "New scoped split (" << label << ") without TimingLogger."; |
| timing_logger_ = timing_logger; |
| label_ = label; |
| running_ns_ = 0; |
| explicit_ = false; |
| |
| // Stash away the current split and pause it. |
| enclosing_split_ = timing_logger->current_split_; |
| if (enclosing_split_ != NULL) { |
| enclosing_split_->Pause(); |
| } |
| |
| timing_logger_->current_split_ = this; |
| |
| ATRACE_BEGIN(label_); |
| |
| start_ns_ = NanoTime(); |
| if (timing_logger_->verbose_) { |
| LOG(INFO) << "Begin: " << label_; |
| } |
| } |
| |
| TimingLogger::ScopedSplit::~ScopedSplit() { |
| uint64_t current_time = NanoTime(); |
| uint64_t split_time = current_time - start_ns_; |
| running_ns_ += split_time; |
| ATRACE_END(); |
| |
| if (timing_logger_->verbose_) { |
| LOG(INFO) << "End: " << label_ << " " << PrettyDuration(split_time); |
| } |
| |
| // If one or more enclosed explicitly started splits are not terminated we can |
| // either fail or "unwind" the stack of splits in the timing logger to 'this' |
| // (by deleting the intervening scoped splits). This implements the latter. |
| TimingLogger::ScopedSplit* current = timing_logger_->current_split_; |
| while ((current != NULL) && (current != this)) { |
| delete current; |
| current = timing_logger_->current_split_; |
| } |
| |
| CHECK(current != NULL) << "Missing scoped split (" << this->label_ |
| << ") in timing logger (" << timing_logger_->name_ << ")."; |
| CHECK(timing_logger_->current_split_ == this); |
| |
| timing_logger_->splits_.push_back(SplitTiming(running_ns_, label_)); |
| |
| timing_logger_->current_split_ = enclosing_split_; |
| if (enclosing_split_ != NULL) { |
| enclosing_split_->Resume(); |
| } |
| } |
| |
| |
| void TimingLogger::ScopedSplit::TailInsertSplit(const char* label) { |
| // Sleight of hand here: Rather than embedding a new scoped split, we're updating the current |
| // scoped split in place. Basically, it's one way to make explicit and scoped splits compose |
| // well while maintaining the current semantics of NewSplit. An alternative is to push a new split |
| // since we unwind the stack of scoped splits in the scoped split destructor. However, this implies |
| // that the current split is not ended by NewSplit (which calls TailInsertSplit), which would |
| // be different from what we had before. |
| |
| uint64_t current_time = NanoTime(); |
| uint64_t split_time = current_time - start_ns_; |
| ATRACE_END(); |
| timing_logger_->splits_.push_back(std::pair<uint64_t, const char*>(split_time, label_)); |
| |
| if (timing_logger_->verbose_) { |
| LOG(INFO) << "End: " << label_ << " " << PrettyDuration(split_time) << "\n" |
| << "Begin: " << label; |
| } |
| |
| label_ = label; |
| start_ns_ = current_time; |
| running_ns_ = 0; |
| |
| ATRACE_BEGIN(label); |
| } |
| |
| void TimingLogger::ScopedSplit::Pause() { |
| uint64_t current_time = NanoTime(); |
| uint64_t split_time = current_time - start_ns_; |
| running_ns_ += split_time; |
| ATRACE_END(); |
| } |
| |
| |
| void TimingLogger::ScopedSplit::Resume() { |
| uint64_t current_time = NanoTime(); |
| |
| start_ns_ = current_time; |
| ATRACE_BEGIN(label_); |
| } |
| |
| } // namespace art |