blob: 87efa6c911e8fad9f67a7fde364c03f7327bb716 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_x86.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "mirror/array-inl.h"
#include "mirror/art_method.h"
#include "mirror/class.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
#include "utils/x86/assembler_x86.h"
#include "utils/x86/managed_register_x86.h"
namespace art {
namespace x86 {
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kRuntimeParameterCoreRegisters[] = { EAX, ECX, EDX, EBX };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
static constexpr XmmRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1, XMM2, XMM3 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
static constexpr int kC2ConditionMask = 0x400;
static constexpr int kFakeReturnRegister = Register(8);
class InvokeRuntimeCallingConvention : public CallingConvention<Register, XmmRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
#define __ reinterpret_cast<X86Assembler*>(codegen->GetAssembler())->
class SlowPathCodeX86 : public SlowPathCode {
public:
SlowPathCodeX86() : entry_label_(), exit_label_() {}
Label* GetEntryLabel() { return &entry_label_; }
Label* GetExitLabel() { return &exit_label_; }
private:
Label entry_label_;
Label exit_label_;
DISALLOW_COPY_AND_ASSIGN(SlowPathCodeX86);
};
class NullCheckSlowPathX86 : public SlowPathCodeX86 {
public:
explicit NullCheckSlowPathX86(HNullCheck* instruction) : instruction_(instruction) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pThrowNullPointer)));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HNullCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
};
class DivZeroCheckSlowPathX86 : public SlowPathCodeX86 {
public:
explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : instruction_(instruction) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pThrowDivZero)));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HDivZeroCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
};
class DivRemMinusOneSlowPathX86 : public SlowPathCodeX86 {
public:
explicit DivRemMinusOneSlowPathX86(Register reg, bool is_div) : reg_(reg), is_div_(is_div) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
if (is_div_) {
__ negl(reg_);
} else {
__ movl(reg_, Immediate(0));
}
__ jmp(GetExitLabel());
}
private:
Register reg_;
bool is_div_;
DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
};
class BoundsCheckSlowPathX86 : public SlowPathCodeX86 {
public:
BoundsCheckSlowPathX86(HBoundsCheck* instruction,
Location index_location,
Location length_location)
: instruction_(instruction),
index_location_(index_location),
length_location_(length_location) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
x86_codegen->EmitParallelMoves(
index_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
length_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pThrowArrayBounds)));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HBoundsCheck* const instruction_;
const Location index_location_;
const Location length_location_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
};
class SuspendCheckSlowPathX86 : public SlowPathCodeX86 {
public:
explicit SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
: instruction_(instruction), successor_(successor) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(instruction_->GetLocations());
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pTestSuspend)));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
codegen->RestoreLiveRegisters(instruction_->GetLocations());
if (successor_ == nullptr) {
__ jmp(GetReturnLabel());
} else {
__ jmp(x86_codegen->GetLabelOf(successor_));
}
}
Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
private:
HSuspendCheck* const instruction_;
HBasicBlock* const successor_;
Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
};
class LoadStringSlowPathX86 : public SlowPathCodeX86 {
public:
explicit LoadStringSlowPathX86(HLoadString* instruction) : instruction_(instruction) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
InvokeRuntimeCallingConvention calling_convention;
x86_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
__ movl(calling_convention.GetRegisterAt(0), Immediate(instruction_->GetStringIndex()));
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pResolveString)));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
HLoadString* const instruction_;
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
};
class LoadClassSlowPathX86 : public SlowPathCodeX86 {
public:
LoadClassSlowPathX86(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
InvokeRuntimeCallingConvention calling_convention;
__ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex()));
x86_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
__ fs()->call(Address::Absolute(do_clinit_
? QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pInitializeStaticStorage)
: QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pInitializeType)));
codegen->RecordPcInfo(at_, dex_pc_);
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
x86_codegen->Move32(out, Location::RegisterLocation(EAX));
}
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
};
class TypeCheckSlowPathX86 : public SlowPathCodeX86 {
public:
TypeCheckSlowPathX86(HInstruction* instruction,
Location class_to_check,
Location object_class,
uint32_t dex_pc)
: instruction_(instruction),
class_to_check_(class_to_check),
object_class_(object_class),
dex_pc_(dex_pc) {}
virtual void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
x86_codegen->EmitParallelMoves(
class_to_check_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
object_class_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
if (instruction_->IsInstanceOf()) {
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize,
pInstanceofNonTrivial)));
} else {
DCHECK(instruction_->IsCheckCast());
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pCheckCast)));
}
codegen->RecordPcInfo(instruction_, dex_pc_);
if (instruction_->IsInstanceOf()) {
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
}
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
HInstruction* const instruction_;
const Location class_to_check_;
const Location object_class_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
};
#undef __
#define __ reinterpret_cast<X86Assembler*>(GetAssembler())->
inline Condition X86Condition(IfCondition cond) {
switch (cond) {
case kCondEQ: return kEqual;
case kCondNE: return kNotEqual;
case kCondLT: return kLess;
case kCondLE: return kLessEqual;
case kCondGT: return kGreater;
case kCondGE: return kGreaterEqual;
default:
LOG(FATAL) << "Unknown if condition";
}
return kEqual;
}
void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << X86ManagedRegister::FromCpuRegister(Register(reg));
}
void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << X86ManagedRegister::FromXmmRegister(XmmRegister(reg));
}
size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
return kX86WordSize;
}
size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
return kX86WordSize;
}
size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
return GetFloatingPointSpillSlotSize();
}
size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
return GetFloatingPointSpillSlotSize();
}
CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, const CompilerOptions& compiler_options)
: CodeGenerator(graph,
kNumberOfCpuRegisters,
kNumberOfXmmRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves))
| (1 << kFakeReturnRegister),
0,
compiler_options),
block_labels_(graph->GetArena(), 0),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this) {
// Use a fake return address register to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
}
Location CodeGeneratorX86::AllocateFreeRegister(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimLong: {
size_t reg = FindFreeEntry(blocked_register_pairs_, kNumberOfRegisterPairs);
X86ManagedRegister pair =
X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(reg));
DCHECK(!blocked_core_registers_[pair.AsRegisterPairLow()]);
DCHECK(!blocked_core_registers_[pair.AsRegisterPairHigh()]);
blocked_core_registers_[pair.AsRegisterPairLow()] = true;
blocked_core_registers_[pair.AsRegisterPairHigh()] = true;
UpdateBlockedPairRegisters();
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
}
case Primitive::kPrimByte:
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
Register reg = static_cast<Register>(
FindFreeEntry(blocked_core_registers_, kNumberOfCpuRegisters));
// Block all register pairs that contain `reg`.
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
X86ManagedRegister current =
X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (current.AsRegisterPairLow() == reg || current.AsRegisterPairHigh() == reg) {
blocked_register_pairs_[i] = true;
}
}
return Location::RegisterLocation(reg);
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
return Location::FpuRegisterLocation(
FindFreeEntry(blocked_fpu_registers_, kNumberOfXmmRegisters));
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
return Location();
}
void CodeGeneratorX86::SetupBlockedRegisters(bool is_baseline) const {
// Don't allocate the dalvik style register pair passing.
blocked_register_pairs_[ECX_EDX] = true;
// Stack register is always reserved.
blocked_core_registers_[ESP] = true;
if (is_baseline) {
blocked_core_registers_[EBP] = true;
blocked_core_registers_[ESI] = true;
blocked_core_registers_[EDI] = true;
}
UpdateBlockedPairRegisters();
}
void CodeGeneratorX86::UpdateBlockedPairRegisters() const {
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
X86ManagedRegister current =
X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (blocked_core_registers_[current.AsRegisterPairLow()]
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
blocked_register_pairs_[i] = true;
}
}
}
InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
: HGraphVisitor(graph),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void CodeGeneratorX86::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
bool skip_overflow_check =
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
if (!skip_overflow_check) {
__ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
return;
}
for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ pushl(reg);
}
}
__ subl(ESP, Immediate(GetFrameSize() - FrameEntrySpillSize()));
__ movl(Address(ESP, kCurrentMethodStackOffset), EAX);
}
void CodeGeneratorX86::GenerateFrameExit() {
if (HasEmptyFrame()) {
return;
}
__ addl(ESP, Immediate(GetFrameSize() - FrameEntrySpillSize()));
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ popl(reg);
}
}
}
void CodeGeneratorX86::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorX86::LoadCurrentMethod(Register reg) {
DCHECK(RequiresCurrentMethod());
__ movl(reg, Address(ESP, kCurrentMethodStackOffset));
}
Location CodeGeneratorX86::GetStackLocation(HLoadLocal* load) const {
switch (load->GetType()) {
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
return Location::StackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type " << load->GetType();
}
LOG(FATAL) << "Unreachable";
return Location();
}
Location InvokeDexCallingConventionVisitor::GetNextLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t index = gp_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfRegisters()) {
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimLong: {
uint32_t index = gp_index_;
gp_index_ += 2;
stack_index_ += 2;
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
calling_convention.GetRegisterPairAt(index));
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimFloat: {
uint32_t index = fp_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimDouble: {
uint32_t index = fp_index_++;
stack_index_ += 2;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
return Location();
}
void CodeGeneratorX86::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(source.IsStackSlot());
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(source.IsStackSlot());
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
int32_t value = GetInt32ValueOf(constant);
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
} else {
DCHECK(source.IsStackSlot());
__ pushl(Address(ESP, source.GetStackIndex()));
__ popl(Address(ESP, destination.GetStackIndex()));
}
}
}
void CodeGeneratorX86::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
EmitParallelMoves(
Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
Location::RegisterLocation(destination.AsRegisterPairLow<Register>()));
} else if (source.IsFpuRegister()) {
LOG(FATAL) << "Unimplemented";
} else {
// No conflict possible, so just do the moves.
DCHECK(source.IsDoubleStackSlot());
__ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
__ movl(destination.AsRegisterPairHigh<Register>(),
Address(ESP, source.GetHighStackIndex(kX86WordSize)));
}
} else if (destination.IsFpuRegister()) {
if (source.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsDoubleStackSlot()) {
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else {
LOG(FATAL) << "Unimplemented";
}
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
if (source.IsRegisterPair()) {
// No conflict possible, so just do the moves.
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
source.AsRegisterPairHigh<Register>());
} else if (source.IsFpuRegister()) {
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(source.IsDoubleStackSlot());
EmitParallelMoves(
Location::StackSlot(source.GetStackIndex()),
Location::StackSlot(destination.GetStackIndex()),
Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)));
}
}
}
void CodeGeneratorX86::Move(HInstruction* instruction, Location location, HInstruction* move_for) {
LocationSummary* locations = instruction->GetLocations();
if (locations != nullptr && locations->Out().Equals(location)) {
return;
}
if (locations != nullptr && locations->Out().IsConstant()) {
HConstant* const_to_move = locations->Out().GetConstant();
if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) {
Immediate imm(GetInt32ValueOf(const_to_move));
if (location.IsRegister()) {
__ movl(location.AsRegister<Register>(), imm);
} else if (location.IsStackSlot()) {
__ movl(Address(ESP, location.GetStackIndex()), imm);
} else {
DCHECK(location.IsConstant());
DCHECK_EQ(location.GetConstant(), const_to_move);
}
} else if (const_to_move->IsLongConstant()) {
int64_t value = const_to_move->AsLongConstant()->GetValue();
if (location.IsRegisterPair()) {
__ movl(location.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
__ movl(location.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
} else if (location.IsDoubleStackSlot()) {
__ movl(Address(ESP, location.GetStackIndex()), Immediate(Low32Bits(value)));
__ movl(Address(ESP, location.GetHighStackIndex(kX86WordSize)),
Immediate(High32Bits(value)));
} else {
DCHECK(location.IsConstant());
DCHECK_EQ(location.GetConstant(), instruction);
}
}
} else if (instruction->IsTemporary()) {
Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
if (temp_location.IsStackSlot()) {
Move32(location, temp_location);
} else {
DCHECK(temp_location.IsDoubleStackSlot());
Move64(location, temp_location);
}
} else if (instruction->IsLoadLocal()) {
int slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal());
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
Move32(location, Location::StackSlot(slot));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
Move64(location, Location::DoubleStackSlot(slot));
break;
default:
LOG(FATAL) << "Unimplemented local type " << instruction->GetType();
}
} else {
DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
Move32(location, locations->Out());
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
Move64(location, locations->Out());
break;
default:
LOG(FATAL) << "Unexpected type " << instruction->GetType();
}
}
}
void LocationsBuilderX86::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
HBasicBlock* successor = got->GetSuccessor();
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
__ jmp(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderX86::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitExit(HExit* exit) {
UNUSED(exit);
if (kIsDebugBuild) {
__ Comment("Unreachable");
__ int3();
}
}
void LocationsBuilderX86::VisitIf(HIf* if_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall);
HInstruction* cond = if_instr->InputAt(0);
if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::Any());
}
}
void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
HInstruction* cond = if_instr->InputAt(0);
if (cond->IsIntConstant()) {
// Constant condition, statically compared against 1.
int32_t cond_value = cond->AsIntConstant()->GetValue();
if (cond_value == 1) {
if (!codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfTrueSuccessor())) {
__ jmp(codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
return;
} else {
DCHECK_EQ(cond_value, 0);
}
} else {
bool materialized =
!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization();
// Moves do not affect the eflags register, so if the condition is
// evaluated just before the if, we don't need to evaluate it
// again.
bool eflags_set = cond->IsCondition()
&& cond->AsCondition()->IsBeforeWhenDisregardMoves(if_instr);
if (materialized) {
if (!eflags_set) {
// Materialized condition, compare against 0.
Location lhs = if_instr->GetLocations()->InAt(0);
if (lhs.IsRegister()) {
__ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
} else {
__ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
}
__ j(kNotEqual, codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
} else {
__ j(X86Condition(cond->AsCondition()->GetCondition()),
codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
} else {
Location lhs = cond->GetLocations()->InAt(0);
Location rhs = cond->GetLocations()->InAt(1);
// LHS is guaranteed to be in a register (see
// LocationsBuilderX86::VisitCondition).
if (rhs.IsRegister()) {
__ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
} else if (rhs.IsConstant()) {
int32_t constant = rhs.GetConstant()->AsIntConstant()->GetValue();
if (constant == 0) {
__ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
} else {
__ cmpl(lhs.AsRegister<Register>(), Immediate(constant));
}
} else {
__ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
}
__ j(X86Condition(cond->AsCondition()->GetCondition()),
codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
}
if (!codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfFalseSuccessor())) {
__ jmp(codegen_->GetLabelOf(if_instr->IfFalseSuccessor()));
}
}
void LocationsBuilderX86::VisitLocal(HLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitLocal(HLocal* local) {
DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
}
void LocationsBuilderX86::VisitLoadLocal(HLoadLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitLoadLocal(HLoadLocal* load) {
// Nothing to do, this is driven by the code generator.
UNUSED(load);
}
void LocationsBuilderX86::VisitStoreLocal(HStoreLocal* store) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall);
switch (store->InputAt(1)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
default:
LOG(FATAL) << "Unknown local type " << store->InputAt(1)->GetType();
}
store->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitStoreLocal(HStoreLocal* store) {
UNUSED(store);
}
void LocationsBuilderX86::VisitCondition(HCondition* comp) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(comp, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
if (comp->NeedsMaterialization()) {
// We need a byte register.
locations->SetOut(Location::RegisterLocation(ECX));
}
}
void InstructionCodeGeneratorX86::VisitCondition(HCondition* comp) {
if (comp->NeedsMaterialization()) {
LocationSummary* locations = comp->GetLocations();
Register reg = locations->Out().AsRegister<Register>();
// Clear register: setcc only sets the low byte.
__ xorl(reg, reg);
Location lhs = locations->InAt(0);
Location rhs = locations->InAt(1);
if (rhs.IsRegister()) {
__ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
} else if (rhs.IsConstant()) {
int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
if (constant == 0) {
__ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
} else {
__ cmpl(lhs.AsRegister<Register>(), Immediate(constant));
}
} else {
__ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
}
__ setb(X86Condition(comp->GetCondition()), reg);
}
}
void LocationsBuilderX86::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret) {
UNUSED(ret);
codegen_->GenerateFrameExit();
__ ret();
}
void LocationsBuilderX86::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
locations->SetInAt(0, Location::RegisterLocation(EAX));
break;
case Primitive::kPrimLong:
locations->SetInAt(
0, Location::RegisterPairLocation(EAX, EDX));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(
0, Location::FpuRegisterLocation(XMM0));
break;
default:
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
if (kIsDebugBuild) {
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
break;
case Primitive::kPrimLong:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
break;
default:
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
}
}
codegen_->GenerateFrameExit();
__ ret();
}
void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
// TODO: Implement all kinds of calls:
// 1) boot -> boot
// 2) app -> boot
// 3) app -> app
//
// Currently we implement the app -> app logic, which looks up in the resolve cache.
// temp = method;
codegen_->LoadCurrentMethod(temp);
if (!invoke->IsRecursive()) {
// temp = temp->dex_cache_resolved_methods_;
__ movl(temp, Address(temp, mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value()));
// temp = temp[index_in_cache]
__ movl(temp, Address(temp, CodeGenerator::GetCacheOffset(invoke->GetDexMethodIndex())));
// (temp + offset_of_quick_compiled_code)()
__ call(Address(
temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
} else {
__ call(codegen_->GetFrameEntryLabel());
}
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
HandleInvoke(invoke);
}
void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall);
locations->AddTemp(Location::RegisterLocation(EAX));
InvokeDexCallingConventionVisitor calling_convention_visitor;
for (size_t i = 0; i < invoke->InputCount(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType()));
}
switch (invoke->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
locations->SetOut(Location::RegisterLocation(EAX));
break;
case Primitive::kPrimLong:
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
case Primitive::kPrimVoid:
break;
case Primitive::kPrimDouble:
case Primitive::kPrimFloat:
locations->SetOut(Location::FpuRegisterLocation(XMM0));
break;
}
invoke->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
invoke->GetVTableIndex() * sizeof(mirror::Class::VTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ movl(temp, Address(ESP, receiver.GetStackIndex()));
__ movl(temp, Address(temp, class_offset));
} else {
__ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(
temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// Add the hidden argument.
invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
}
void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
(invoke->GetImtIndex() % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Set the hidden argument.
__ movl(temp, Immediate(invoke->GetDexMethodIndex()));
__ movd(invoke->GetLocations()->GetTemp(1).AsFpuRegister<XmmRegister>(), temp);
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ movl(temp, Address(ESP, receiver.GetStackIndex()));
__ movl(temp, Address(temp, class_offset));
} else {
__ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetImtEntryAt(method_offset);
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kX86WordSize).Int32Value()));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
case Primitive::kPrimFloat:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
DCHECK(in.IsRegister());
DCHECK(in.Equals(out));
__ negl(out.AsRegister<Register>());
break;
case Primitive::kPrimLong:
DCHECK(in.IsRegisterPair());
DCHECK(in.Equals(out));
__ negl(out.AsRegisterPairLow<Register>());
// Negation is similar to subtraction from zero. The least
// significant byte triggers a borrow when it is different from
// zero; to take it into account, add 1 to the most significant
// byte if the carry flag (CF) is set to 1 after the first NEGL
// operation.
__ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
__ negl(out.AsRegisterPairHigh<Register>());
break;
case Primitive::kPrimFloat: {
DCHECK(in.Equals(out));
Register constant = locations->GetTemp(0).AsRegister<Register>();
XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// Implement float negation with an exclusive or with value
// 0x80000000 (mask for bit 31, representing the sign of a
// single-precision floating-point number).
__ movl(constant, Immediate(INT32_C(0x80000000)));
__ movd(mask, constant);
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
case Primitive::kPrimDouble: {
DCHECK(in.Equals(out));
XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
// Implement double negation with an exclusive or with value
// 0x8000000000000000 (mask for bit 63, representing the sign of
// a double-precision floating-point number).
__ LoadLongConstant(mask, INT64_C(0x8000000000000000));
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
// The float-to-long and double-to-long type conversions rely on a
// call to the runtime.
LocationSummary::CallKind call_kind =
((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
&& result_type == Primitive::kPrimLong)
? LocationSummary::kCall
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
// Make the output overlap to please the register allocator. This greatly simplifies
// the validation of the linear scan implementation
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
// Processing a Dex `float-to-long' or 'double-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
// The runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
if (in.IsRegister()) {
__ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
} else if (in.IsStackSlot()) {
__ movsxb(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
if (in.IsRegister()) {
__ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
} else if (in.IsStackSlot()) {
__ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
if (in.IsRegisterPair()) {
__ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
Register output = out.AsRegister<Register>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-float(output)
__ cvtsi2ss(temp, output);
// if input >= temp goto done
__ comiss(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = float-to-int-truncate(input)
__ cvttss2si(output, input);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
Register output = out.AsRegister<Register>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-double(output)
__ cvtsi2sd(temp, output);
// if input >= temp goto done
__ comisd(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = double-to-int-truncate(input)
__ cvttsd2si(output, input);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
DCHECK_EQ(in.AsRegister<Register>(), EAX);
__ cdq();
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pF2l)));
codegen_->RecordPcInfo(conversion, conversion->GetDexPc());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pD2l)));
codegen_->RecordPcInfo(conversion, conversion->GetDexPc());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `Process a Dex `int-to-char'' instruction.
if (in.IsRegister()) {
__ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
} else if (in.IsStackSlot()) {
__ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
__ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-float' instruction.
Register low = in.AsRegisterPairLow<Register>();
Register high = in.AsRegisterPairHigh<Register>();
XmmRegister result = out.AsFpuRegister<XmmRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister constant = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// Operations use doubles for precision reasons (each 32-bit
// half of a long fits in the 53-bit mantissa of a double,
// but not in the 24-bit mantissa of a float). This is
// especially important for the low bits. The result is
// eventually converted to float.
// low = low - 2^31 (to prevent bit 31 of `low` to be
// interpreted as a sign bit)
__ subl(low, Immediate(0x80000000));
// temp = int-to-double(high)
__ cvtsi2sd(temp, high);
// temp = temp * 2^32
__ LoadLongConstant(constant, k2Pow32EncodingForDouble);
__ mulsd(temp, constant);
// result = int-to-double(low)
__ cvtsi2sd(result, low);
// result = result + 2^31 (restore the original value of `low`)
__ LoadLongConstant(constant, k2Pow31EncodingForDouble);
__ addsd(result, constant);
// result = result + temp
__ addsd(result, temp);
// result = double-to-float(result)
__ cvtsd2ss(result, result);
break;
}
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
__ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-double' instruction.
Register low = in.AsRegisterPairLow<Register>();
Register high = in.AsRegisterPairHigh<Register>();
XmmRegister result = out.AsFpuRegister<XmmRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister constant = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// low = low - 2^31 (to prevent bit 31 of `low` to be
// interpreted as a sign bit)
__ subl(low, Immediate(0x80000000));
// temp = int-to-double(high)
__ cvtsi2sd(temp, high);
// temp = temp * 2^32
__ LoadLongConstant(constant, k2Pow32EncodingForDouble);
__ mulsd(temp, constant);
// result = int-to-double(low)
__ cvtsi2sd(result, low);
// result = result + 2^31 (restore the original value of `low`)
__ LoadLongConstant(constant, k2Pow31EncodingForDouble);
__ addsd(result, constant);
// result = result + temp
__ addsd(result, temp);
break;
}
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderX86::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
break;
}
}
void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
} else {
__ leal(out.AsRegister<Register>(), Address(
first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
}
} else if (second.IsConstant()) {
int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<Register>(), Immediate(value));
} else {
__ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
}
} else {
DCHECK(first.Equals(locations->Out()));
__ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegisterPair()) {
__ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else {
__ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ adcl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
}
break;
}
case Primitive::kPrimFloat: {
if (second.IsFpuRegister()) {
__ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
}
break;
}
case Primitive::kPrimDouble: {
if (second.IsFpuRegister()) {
__ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
}
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderX86::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else if (second.IsConstant()) {
__ subl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegisterPair()) {
__ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else {
__ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ sbbl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
}
break;
}
case Primitive::kPrimFloat: {
__ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderX86::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
// TODO: Currently this handles only stack operands:
// - we don't have enough registers because we currently use Quick ABI.
// - by the time we have a working register allocator we will probably change the ABI
// and fix the above.
// - we don't have a way yet to request operands on stack but the base line compiler
// will leave the operands on the stack with Any().
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
// Needed for imul on 32bits with 64bits output.
locations->AddTemp(Location::RegisterLocation(EAX));
locations->AddTemp(Location::RegisterLocation(EDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
} else if (second.IsConstant()) {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue());
__ imull(first.AsRegister<Register>(), imm);
} else {
DCHECK(second.IsStackSlot());
__ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
DCHECK(second.IsDoubleStackSlot());
Register in1_hi = first.AsRegisterPairHigh<Register>();
Register in1_lo = first.AsRegisterPairLow<Register>();
Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
Address in2_lo(ESP, second.GetStackIndex());
Register eax = locations->GetTemp(0).AsRegister<Register>();
Register edx = locations->GetTemp(1).AsRegister<Register>();
DCHECK_EQ(EAX, eax);
DCHECK_EQ(EDX, edx);
// input: in1 - 64 bits, in2 - 64 bits
// output: in1
// formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
// parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
// parts: in1.lo = (in1.lo * in2.lo)[31:0]
__ movl(eax, in2_hi);
// eax <- in1.lo * in2.hi
__ imull(eax, in1_lo);
// in1.hi <- in1.hi * in2.lo
__ imull(in1_hi, in2_lo);
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ addl(in1_hi, eax);
// move in1_lo to eax to prepare for double precision
__ movl(eax, in1_lo);
// edx:eax <- in1.lo * in2.lo
__ mull(in2_lo);
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ addl(in1_hi, edx);
// in1.lo <- (in1.lo * in2.lo)[31:0];
__ movl(in1_lo, eax);
break;
}
case Primitive::kPrimFloat: {
__ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, uint32_t temp_offset,
uint32_t stack_adjustment, bool is_float) {
if (source.IsStackSlot()) {
DCHECK(is_float);
__ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
} else if (source.IsDoubleStackSlot()) {
DCHECK(!is_float);
__ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
} else {
// Write the value to the temporary location on the stack and load to FP stack.
if (is_float) {
Location stack_temp = Location::StackSlot(temp_offset);
codegen_->Move32(stack_temp, source);
__ flds(Address(ESP, temp_offset));
} else {
Location stack_temp = Location::DoubleStackSlot(temp_offset);
codegen_->Move64(stack_temp, source);
__ fldl(Address(ESP, temp_offset));
}
}
}
void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
Primitive::Type type = rem->GetResultType();
bool is_float = type == Primitive::kPrimFloat;
size_t elem_size = Primitive::ComponentSize(type);
LocationSummary* locations = rem->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
// Create stack space for 2 elements.
// TODO: enhance register allocator to ask for stack temporaries.
__ subl(ESP, Immediate(2 * elem_size));
// Load the values to the FP stack in reverse order, using temporaries if needed.
PushOntoFPStack(second, elem_size, 2 * elem_size, is_float);
PushOntoFPStack(first, 0, 2 * elem_size, is_float);
// Loop doing FPREM until we stabilize.
Label retry;
__ Bind(&retry);
__ fprem();
// Move FP status to AX.
__ fstsw();
// And see if the argument reduction is complete. This is signaled by the
// C2 FPU flag bit set to 0.
__ andl(EAX, Immediate(kC2ConditionMask));
__ j(kNotEqual, &retry);
// We have settled on the final value. Retrieve it into an XMM register.
// Store FP top of stack to real stack.
if (is_float) {
__ fsts(Address(ESP, 0));
} else {
__ fstl(Address(ESP, 0));
}
// Pop the 2 items from the FP stack.
__ fucompp();
// Load the value from the stack into an XMM register.
DCHECK(out.IsFpuRegister()) << out;
if (is_float) {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
} else {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
}
// And remove the temporary stack space we allocated.
__ addl(ESP, Immediate(2 * elem_size));
}
void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
bool is_div = instruction->IsDiv();
switch (instruction->GetResultType()) {
case Primitive::kPrimInt: {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(EAX, first.AsRegister<Register>());
DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
SlowPathCodeX86* slow_path =
new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(out.AsRegister<Register>(),
is_div);
codegen_->AddSlowPath(slow_path);
// 0x80000000/-1 triggers an arithmetic exception!
// Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
// it's safe to just use negl instead of more complex comparisons.
__ cmpl(second_reg, Immediate(-1));
__ j(kEqual, slow_path->GetEntryLabel());
// edx:eax <- sign-extended of eax
__ cdq();
// eax = quotient, edx = remainder
__ idivl(second_reg);
__ Bind(slow_path->GetExitLabel());
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
if (is_div) {
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pLdiv)));
} else {
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pLmod)));
}
uint32_t dex_pc = is_div
? instruction->AsDiv()->GetDexPc()
: instruction->AsRem()->GetDexPc();
codegen_->RecordPcInfo(instruction, dex_pc);
break;
}
default:
LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
}
}
void LocationsBuilderX86::VisitDiv(HDiv* div) {
LocationSummary::CallKind call_kind = div->GetResultType() == Primitive::kPrimLong
? LocationSummary::kCall
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
// Intel uses edx:eax as the dividend.
locations->AddTemp(Location::RegisterLocation(EDX));
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// Runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (div->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(div);
break;
}
case Primitive::kPrimFloat: {
DCHECK(first.Equals(out));
__ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
DCHECK(first.Equals(out));
__ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderX86::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(rem, LocationSummary::kNoCall);
switch (type) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RegisterLocation(EDX));
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// Runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
}
case Primitive::kPrimDouble:
case Primitive::kPrimFloat: {
locations->SetInAt(0, Location::Any());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RegisterLocation(EAX));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(rem);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
GenerateRemFP(rem);
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
switch (instruction->GetType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::Any());
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (!instruction->IsConstant()) {
locations->AddTemp(Location::RequiresRegister());
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
__ j(kEqual, slow_path->GetEntryLabel());
} else if (value.IsStackSlot()) {
__ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegisterPair()) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ movl(temp, value.AsRegisterPairLow<Register>());
__ orl(temp, value.AsRegisterPairHigh<Register>());
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
}
}
void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
// The shift count needs to be in CL.
locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
// The shift count needs to be in CL.
locations->SetInAt(1, Location::RegisterLocation(ECX));
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
}
}
void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations = op->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
Register first_reg = first.AsRegister<Register>();
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(ECX, second_reg);
if (op->IsShl()) {
__ shll(first_reg, second_reg);
} else if (op->IsShr()) {
__ sarl(first_reg, second_reg);
} else {
__ shrl(first_reg, second_reg);
}
} else {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftValue);
if (op->IsShl()) {
__ shll(first_reg, imm);
} else if (op->IsShr()) {
__ sarl(first_reg, imm);
} else {
__ shrl(first_reg, imm);
}
}
break;
}
case Primitive::kPrimLong: {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(ECX, second_reg);
if (op->IsShl()) {
GenerateShlLong(first, second_reg);
} else if (op->IsShr()) {
GenerateShrLong(first, second_reg);
} else {
GenerateUShrLong(first, second_reg);
}
break;
}
default:
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
}
}
void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
Label done;
__ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
__ shll(loc.AsRegisterPairLow<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
__ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
__ Bind(&done);
}
void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
Label done;
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
__ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
__ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
__ Bind(&done);
}
void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
Label done;
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
__ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
__ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
__ Bind(&done);
}
void LocationsBuilderX86::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderX86::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
locations->SetOut(Location::RegisterLocation(EAX));
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
__ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
__ fs()->call(Address::Absolute(GetThreadOffset<kX86WordSize>(instruction->GetEntrypoint())));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
locations->SetOut(Location::RegisterLocation(EAX));
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(2));
__ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
__ fs()->call(Address::Absolute(GetThreadOffset<kX86WordSize>(instruction->GetEntrypoint())));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorX86::VisitParameterValue(HParameterValue* instruction) {
UNUSED(instruction);
}
void LocationsBuilderX86::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
Location in = locations->InAt(0);
Location out = locations->Out();
DCHECK(in.Equals(out));
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ notl(out.AsRegister<Register>());
break;
case Primitive::kPrimLong:
__ notl(out.AsRegisterPairLow<Register>());
__ notl(out.AsRegisterPairHigh<Register>());
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void LocationsBuilderX86::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
// TODO: we set any here but we don't handle constants
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
LocationSummary* locations = compare->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
Label less, greater, done;
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimLong: {
if (right.IsRegisterPair()) {
__ cmpl(left.AsRegisterPairHigh<Register>(), right.AsRegisterPairHigh<Register>());
} else {
DCHECK(right.IsDoubleStackSlot());
__ cmpl(left.AsRegisterPairHigh<Register>(),
Address(ESP, right.GetHighStackIndex(kX86WordSize)));
}
__ j(kLess, &less); // Signed compare.
__ j(kGreater, &greater); // Signed compare.
if (right.IsRegisterPair()) {
__ cmpl(left.AsRegisterPairLow<Register>(), right.AsRegisterPairLow<Register>());
} else {
DCHECK(right.IsDoubleStackSlot());
__ cmpl(left.AsRegisterPairLow<Register>(), Address(ESP, right.GetStackIndex()));
}
break;
}
case Primitive::kPrimFloat: {
__ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>());
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
break;
}
case Primitive::kPrimDouble: {
__ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>());
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
__ movl(out, Immediate(0));
__ j(kEqual, &done);
__ j(kBelow, &less); // kBelow is for CF (unsigned & floats).
__ Bind(&greater);
__ movl(out, Immediate(1));
__ jmp(&done);
__ Bind(&less);
__ movl(out, Immediate(-1));
__ Bind(&done);
}
void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
/*
* According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
* All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
* For those cases, all we need to ensure is that there is a scheduling barrier in place.
*/
switch (kind) {
case MemBarrierKind::kAnyAny: {
__ mfence();
break;
}
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kStoreStore: {
// nop
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
}
void CodeGeneratorX86::MarkGCCard(Register temp, Register card, Register object, Register value) {
Label is_null;
__ testl(value, value);
__ j(kEqual, &is_null);
__ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value()));
__ movl(temp, object);
__ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
__ movb(Address(temp, card, TIMES_1, 0),
X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
__ Bind(&is_null);
}
void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
// Long values can be loaded atomically into an XMM using movsd.
// So we use an XMM register as a temp to achieve atomicity (first load the temp into the XMM
// and then copy the XMM into the output 32bits at a time).
locations->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location out = locations->Out();
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (field_type) {
case Primitive::kPrimBoolean: {
__ movzxb(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimByte: {
__ movsxb(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimShort: {
__ movsxw(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimChar: {
__ movzxw(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ movl(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimLong: {
if (is_volatile) {
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movsd(temp, Address(base, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movd(out.AsRegisterPairLow<Register>(), temp);
__ psrlq(temp, Immediate(32));
__ movd(out.AsRegisterPairHigh<Register>(), temp);
} else {
__ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
}
break;
}
case Primitive::kPrimFloat: {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimDouble: {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
// Longs are handled in the switch.
if (field_type != Primitive::kPrimLong) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
bool is_byte_type = (field_type == Primitive::kPrimBoolean)
|| (field_type == Primitive::kPrimByte);
// The register allocator does not support multiple
// inputs that die at entry with one in a specific register.
if (is_byte_type) {
// Ensure the value is in a byte register.
locations->SetInAt(1, Location::RegisterLocation(EAX));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
// Temporary registers for the write barrier.
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
locations->AddTemp(Location::RequiresRegister());
// Ensure the card is in a byte register.
locations->AddTemp(Location::RegisterLocation(ECX));
} else if (is_volatile && (field_type == Primitive::kPrimLong)) {
// 64bits value can be atomically written to an address with movsd and an XMM register.
// We need two XMM registers because there's no easier way to (bit) copy a register pair
// into a single XMM register (we copy each pair part into the XMMs and then interleave them).
// NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
// isolated cases when we need this it isn't worth adding the extra complexity.
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location value = locations->InAt(1);
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
__ movb(Address(base, offset), value.AsRegister<ByteRegister>());
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
__ movw(Address(base, offset), value.AsRegister<Register>());
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ movl(Address(base, offset), value.AsRegister<Register>());
break;
}
case Primitive::kPrimLong: {
if (is_volatile) {
XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
__ movd(temp1, value.AsRegisterPairLow<Register>());
__ movd(temp2, value.AsRegisterPairHigh<Register>());
__ punpckldq(temp1, temp2);
__ movsd(Address(base, offset), temp1);
codegen_->MaybeRecordImplicitNullCheck(instruction);
} else {
__ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
}
break;
}
case Primitive::kPrimFloat: {
__ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
// Longs are handled in the switch.
if (field_type != Primitive::kPrimLong) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>());
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks()
? Location::RequiresRegister()
: Location::Any();
locations->SetInAt(0, loc);
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (codegen_->CanMoveNullCheckToUser(instruction)) {
return;
}
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ testl(EAX, Address(obj.AsRegister<Register>(), 0));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void InstructionCodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
if (obj.IsRegister()) {
__ cmpl(obj.AsRegister<Register>(), Immediate(0));
} else if (obj.IsStackSlot()) {
__ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
} else {
DCHECK(obj.IsConstant()) << obj;
DCHECK_EQ(obj.GetConstant()->AsIntConstant()->GetValue(), 0);
__ jmp(slow_path->GetEntryLabel());
return;
}
__ j(kEqual, slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) {
GenerateImplicitNullCheck(instruction);
} else {
GenerateExplicitNullCheck(instruction);
}
}
void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimBoolean: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
__ movzxb(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
} else {
__ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
}
break;
}
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
__ movsxb(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
} else {
__ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
}
break;
}
case Primitive::kPrimShort: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
__ movsxw(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
} else {
__ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
}
break;
}
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
__ movzxw(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
} else {
__ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
__ movl(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
} else {
__ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Location out = locations->Out();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ movl(out.AsRegisterPairLow<Register>(), Address(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(out.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize));
} else {
__ movl(out.AsRegisterPairLow<Register>(),
Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(out.AsRegisterPairHigh<Register>(),
Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize));
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
if (index.IsConstant()) {
__ movss(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
} else {
__ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
if (index.IsConstant()) {
__ movsd(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
} else {
__ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (type != Primitive::kPrimLong) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
// This location builder might end up asking to up to four registers, which is
// not currently possible for baseline. The situation in which we need four
// registers cannot be met by baseline though, because it has not run any
// optimization.
Primitive::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool needs_runtime_call = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall);
if (needs_runtime_call) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
} else {
bool is_byte_type = (value_type == Primitive::kPrimBoolean)
|| (value_type == Primitive::kPrimByte);
// We need the inputs to be different than the output in case of long operation.
// In case of a byte operation, the register allocator does not support multiple
// inputs that die at entry with one in a specific register.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_byte_type) {
// Ensure the value is in a byte register.
locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
} else {
locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
}
// Temporary registers for the write barrier.
if (needs_write_barrier) {
locations->AddTemp(Location::RequiresRegister());
// Ensure the card is in a byte register.
locations->AddTemp(Location::RegisterLocation(ECX));
}
}
}
void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Location value = locations->InAt(2);
Primitive::Type value_type = instruction->GetComponentType();
bool needs_runtime_call = locations->WillCall();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
if (value.IsRegister()) {
__ movb(Address(obj, offset), value.AsRegister<ByteRegister>());
} else {
__ movb(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
if (value.IsRegister()) {
__ movb(Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset),
value.AsRegister<ByteRegister>());
} else {
__ movb(Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
if (value.IsRegister()) {
__ movw(Address(obj, offset), value.AsRegister<Register>());
} else {
__ movw(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
if (value.IsRegister()) {
__ movw(Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset),
value.AsRegister<Register>());
} else {
__ movw(Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (!needs_runtime_call) {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
if (value.IsRegister()) {
__ movl(Address(obj, offset), value.AsRegister<Register>());
} else {
DCHECK(value.IsConstant()) << value;
__ movl(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
DCHECK(index.IsRegister()) << index;
if (value.IsRegister()) {
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset),
value.AsRegister<Register>());
} else {
DCHECK(value.IsConstant()) << value;
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (needs_write_barrier) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(temp, card, obj, value.AsRegister<Register>());
}
} else {
DCHECK_EQ(value_type, Primitive::kPrimNot);
DCHECK(!codegen_->IsLeafMethod());
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAputObject)));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
if (value.IsRegisterPair()) {
__ movl(Address(obj, offset), value.AsRegisterPairLow<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(obj, offset + kX86WordSize), value.AsRegisterPairHigh<Register>());
} else {
DCHECK(value.IsConstant());
int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
__ movl(Address(obj, offset), Immediate(Low32Bits(val)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(obj, offset + kX86WordSize), Immediate(High32Bits(val)));
}
} else {
if (value.IsRegisterPair()) {
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset),
value.AsRegisterPairLow<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
value.AsRegisterPairHigh<Register>());
} else {
DCHECK(value.IsConstant());
int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset),
Immediate(Low32Bits(val)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
Immediate(High32Bits(val)));
}
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
DCHECK(value.IsFpuRegister());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ movss(Address(obj, offset), value.AsFpuRegister<XmmRegister>());
} else {
__ movss(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset),
value.AsFpuRegister<XmmRegister>());
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
DCHECK(value.IsFpuRegister());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ movsd(Address(obj, offset), value.AsFpuRegister<XmmRegister>());
} else {
__ movsd(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset),
value.AsFpuRegister<XmmRegister>());
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
instruction->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ movl(out, Address(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(
instruction, locations->InAt(0), locations->InAt(1));
codegen_->AddSlowPath(slow_path);
Register index = locations->InAt(0).AsRegister<Register>();
Register length = locations->InAt(1).AsRegister<Register>();
__ cmpl(index, length);
__ j(kAboveEqual, slow_path->GetEntryLabel());
}
void LocationsBuilderX86::VisitTemporary(HTemporary* temp) {
temp->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitTemporary(HTemporary* temp) {
// Nothing to do, this is driven by the code generator.
UNUSED(temp);
}
void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathX86* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
codegen_->AddSlowPath(slow_path);
__ fs()->cmpw(Address::Absolute(
Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()), Immediate(0));
if (successor == nullptr) {
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ j(kEqual, codegen_->GetLabelOf(successor));
__ jmp(slow_path->GetEntryLabel());
}
}
X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, src + stack_offset));
__ movl(Address(ESP, dst + stack_offset), temp_reg);
}
void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, src + stack_offset));
__ movl(Address(ESP, dst + stack_offset), temp_reg);
__ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
__ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
}
void ParallelMoveResolverX86::EmitMove(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else {
DCHECK(destination.IsStackSlot());
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (destination.IsStackSlot()) {
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(destination.IsDoubleStackSlot());
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
} else if (destination.IsFpuRegister()) {
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else {
DCHECK(destination.IsStackSlot());
MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsFpuRegister()) {
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
}
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
if (value == 0) {
__ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
} else {
__ movl(destination.AsRegister<Register>(), Immediate(value));
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
}
} else {
DCHECK(constant->IsFloatConstant());
float value = constant->AsFloatConstant()->GetValue();
Immediate imm(bit_cast<float, int32_t>(value));
if (destination.IsFpuRegister()) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp = static_cast<Register>(ensure_scratch.GetRegister());
__ movl(temp, imm);
__ movd(destination.AsFpuRegister<XmmRegister>(), temp);
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(ESP, destination.GetStackIndex()), imm);
}
}
} else {
LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
}
}
void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
Register suggested_scratch = reg == EAX ? EBX : EAX;
ScratchRegisterScope ensure_scratch(
this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
__ movl(Address(ESP, mem + stack_offset), reg);
__ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
}
void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, mem + stack_offset));
__ movss(Address(ESP, mem + stack_offset), reg);
__ movd(reg, temp_reg);
}
void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch1(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
ScratchRegisterScope ensure_scratch2(
this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
__ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
__ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
__ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
__ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
}
void ParallelMoveResolverX86::EmitSwap(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister() && destination.IsRegister()) {
__ xchgl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(destination.GetStackIndex(), source.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
// Use XOR Swap algorithm to avoid a temporary.
DCHECK_NE(source.reg(), destination.reg());
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
__ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsFpuRegister() && destination.IsStackSlot()) {
Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
} else if (destination.IsFpuRegister() && source.IsStackSlot()) {
Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
} else {
LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
}
}
void ParallelMoveResolverX86::SpillScratch(int reg) {
__ pushl(static_cast<Register>(reg));
}
void ParallelMoveResolverX86::RestoreScratch(int reg) {
__ popl(static_cast<Register>(reg));
}
void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
LocationSummary::CallKind call_kind = cls->CanCallRuntime()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) {
Register out = cls->GetLocations()->Out().AsRegister<Register>();
if (cls->IsReferrersClass()) {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
codegen_->LoadCurrentMethod(out);
__ movl(out, Address(out, mirror::ArtMethod::DeclaringClassOffset().Int32Value()));
} else {
DCHECK(cls->CanCallRuntime());
codegen_->LoadCurrentMethod(out);
__ movl(out, Address(out, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value()));
__ movl(out, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
// We assume the class to not be null.
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
SlowPathCodeX86* slow_path, Register class_reg) {
__ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()),
Immediate(mirror::Class::kStatusInitialized));
__ j(kLess, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
// No need for memory fence, thanks to the X86 memory model.
}
void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) {
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
codegen_->AddSlowPath(slow_path);
Register out = load->GetLocations()->Out().AsRegister<Register>();
codegen_->LoadCurrentMethod(out);
__ movl(out, Address(out, mirror::ArtMethod::DeclaringClassOffset().Int32Value()));
__ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
__ movl(out, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
Address address = Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value());
__ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), address);
__ fs()->movl(address, Immediate(0));
}
void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pDeliverException)));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = instruction->IsClassFinal()
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location cls = locations->InAt(1);
Register out = locations->Out().AsRegister<Register>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Label done, zero;
SlowPathCodeX86* slow_path = nullptr;
// Return 0 if `obj` is null.
// TODO: avoid this check if we know obj is not null.
__ testl(obj, obj);
__ j(kEqual, &zero);
__ movl(out, Address(obj, class_offset));
// Compare the class of `obj` with `cls`.
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
if (instruction->IsClassFinal()) {
// Classes must be equal for the instanceof to succeed.
__ j(kNotEqual, &zero);
__ movl(out, Immediate(1));
__ jmp(&done);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(
instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
__ j(kNotEqual, slow_path->GetEntryLabel());
__ movl(out, Immediate(1));
__ jmp(&done);
}
__ Bind(&zero);
__ movl(out, Immediate(0));
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location cls = locations->InAt(1);
Register temp = locations->GetTemp(0).AsRegister<Register>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(
instruction, locations->InAt(1), locations->GetTemp(0), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ testl(obj, obj);
__ j(kEqual, slow_path->GetExitLabel());
__ movl(temp, Address(obj, class_offset));
// Compare the class of `obj` with `cls`.
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
}
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
__ fs()->call(Address::Absolute(instruction->IsEnter()
? QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pLockObject)
: QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pUnlockObject)));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
if (instruction->GetResultType() == Primitive::kPrimInt) {
if (second.IsRegister()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
}
} else if (second.IsConstant()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
if (second.IsRegisterPair()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else if (instruction->IsOr()) {
__ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
}
} else {
if (instruction->IsAnd()) {
__ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ andl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else if (instruction->IsOr()) {
__ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ orl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ xorl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
}
}
}
}
void LocationsBuilderX86::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
} // namespace x86
} // namespace art