| /* |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "jit_code_cache.h" |
| |
| #include <sstream> |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "cha.h" |
| #include "debugger_interface.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "gc/accounting/bitmap-inl.h" |
| #include "gc/scoped_gc_critical_section.h" |
| #include "jit/jit.h" |
| #include "jit/profiling_info.h" |
| #include "linear_alloc.h" |
| #include "mem_map.h" |
| #include "oat_file-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread_list.h" |
| |
| namespace art { |
| namespace jit { |
| |
| static constexpr int kProtAll = PROT_READ | PROT_WRITE | PROT_EXEC; |
| static constexpr int kProtData = PROT_READ | PROT_WRITE; |
| static constexpr int kProtCode = PROT_READ | PROT_EXEC; |
| |
| static constexpr size_t kCodeSizeLogThreshold = 50 * KB; |
| static constexpr size_t kStackMapSizeLogThreshold = 50 * KB; |
| |
| #define CHECKED_MPROTECT(memory, size, prot) \ |
| do { \ |
| int rc = mprotect(memory, size, prot); \ |
| if (UNLIKELY(rc != 0)) { \ |
| errno = rc; \ |
| PLOG(FATAL) << "Failed to mprotect jit code cache"; \ |
| } \ |
| } while (false) \ |
| |
| JitCodeCache* JitCodeCache::Create(size_t initial_capacity, |
| size_t max_capacity, |
| bool generate_debug_info, |
| std::string* error_msg) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| CHECK_GE(max_capacity, initial_capacity); |
| |
| // Generating debug information is mostly for using the 'perf' tool, which does |
| // not work with ashmem. |
| bool use_ashmem = !generate_debug_info; |
| // With 'perf', we want a 1-1 mapping between an address and a method. |
| bool garbage_collect_code = !generate_debug_info; |
| |
| // We need to have 32 bit offsets from method headers in code cache which point to things |
| // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work. |
| // Ensure we're below 1 GB to be safe. |
| if (max_capacity > 1 * GB) { |
| std::ostringstream oss; |
| oss << "Maxium code cache capacity is limited to 1 GB, " |
| << PrettySize(max_capacity) << " is too big"; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| |
| std::string error_str; |
| // Map name specific for android_os_Debug.cpp accounting. |
| // Map in low 4gb to simplify accessing root tables for x86_64. |
| // We could do PC-relative addressing to avoid this problem, but that |
| // would require reserving code and data area before submitting, which |
| // means more windows for the code memory to be RWX. |
| MemMap* data_map = MemMap::MapAnonymous( |
| "data-code-cache", nullptr, |
| max_capacity, |
| kProtAll, |
| /* low_4gb */ true, |
| /* reuse */ false, |
| &error_str, |
| use_ashmem); |
| if (data_map == nullptr) { |
| std::ostringstream oss; |
| oss << "Failed to create read write execute cache: " << error_str << " size=" << max_capacity; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| |
| // Align both capacities to page size, as that's the unit mspaces use. |
| initial_capacity = RoundDown(initial_capacity, 2 * kPageSize); |
| max_capacity = RoundDown(max_capacity, 2 * kPageSize); |
| |
| // Data cache is 1 / 2 of the map. |
| // TODO: Make this variable? |
| size_t data_size = max_capacity / 2; |
| size_t code_size = max_capacity - data_size; |
| DCHECK_EQ(code_size + data_size, max_capacity); |
| uint8_t* divider = data_map->Begin() + data_size; |
| |
| MemMap* code_map = |
| data_map->RemapAtEnd(divider, "jit-code-cache", kProtAll, &error_str, use_ashmem); |
| if (code_map == nullptr) { |
| std::ostringstream oss; |
| oss << "Failed to create read write execute cache: " << error_str << " size=" << max_capacity; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| DCHECK_EQ(code_map->Begin(), divider); |
| data_size = initial_capacity / 2; |
| code_size = initial_capacity - data_size; |
| DCHECK_EQ(code_size + data_size, initial_capacity); |
| return new JitCodeCache( |
| code_map, data_map, code_size, data_size, max_capacity, garbage_collect_code); |
| } |
| |
| JitCodeCache::JitCodeCache(MemMap* code_map, |
| MemMap* data_map, |
| size_t initial_code_capacity, |
| size_t initial_data_capacity, |
| size_t max_capacity, |
| bool garbage_collect_code) |
| : lock_("Jit code cache", kJitCodeCacheLock), |
| lock_cond_("Jit code cache condition variable", lock_), |
| collection_in_progress_(false), |
| code_map_(code_map), |
| data_map_(data_map), |
| max_capacity_(max_capacity), |
| current_capacity_(initial_code_capacity + initial_data_capacity), |
| code_end_(initial_code_capacity), |
| data_end_(initial_data_capacity), |
| last_collection_increased_code_cache_(false), |
| last_update_time_ns_(0), |
| garbage_collect_code_(garbage_collect_code), |
| used_memory_for_data_(0), |
| used_memory_for_code_(0), |
| number_of_compilations_(0), |
| number_of_osr_compilations_(0), |
| number_of_deoptimizations_(0), |
| number_of_collections_(0), |
| histogram_stack_map_memory_use_("Memory used for stack maps", 16), |
| histogram_code_memory_use_("Memory used for compiled code", 16), |
| histogram_profiling_info_memory_use_("Memory used for profiling info", 16), |
| is_weak_access_enabled_(true), |
| inline_cache_cond_("Jit inline cache condition variable", lock_) { |
| |
| DCHECK_GE(max_capacity, initial_code_capacity + initial_data_capacity); |
| code_mspace_ = create_mspace_with_base(code_map_->Begin(), code_end_, false /*locked*/); |
| data_mspace_ = create_mspace_with_base(data_map_->Begin(), data_end_, false /*locked*/); |
| |
| if (code_mspace_ == nullptr || data_mspace_ == nullptr) { |
| PLOG(FATAL) << "create_mspace_with_base failed"; |
| } |
| |
| SetFootprintLimit(current_capacity_); |
| |
| CHECKED_MPROTECT(code_map_->Begin(), code_map_->Size(), kProtCode); |
| CHECKED_MPROTECT(data_map_->Begin(), data_map_->Size(), kProtData); |
| |
| VLOG(jit) << "Created jit code cache: initial data size=" |
| << PrettySize(initial_data_capacity) |
| << ", initial code size=" |
| << PrettySize(initial_code_capacity); |
| } |
| |
| bool JitCodeCache::ContainsPc(const void* ptr) const { |
| return code_map_->Begin() <= ptr && ptr < code_map_->End(); |
| } |
| |
| bool JitCodeCache::ContainsMethod(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (auto& it : method_code_map_) { |
| if (it.second == method) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| class ScopedCodeCacheWrite : ScopedTrace { |
| public: |
| explicit ScopedCodeCacheWrite(MemMap* code_map) |
| : ScopedTrace("ScopedCodeCacheWrite"), |
| code_map_(code_map) { |
| ScopedTrace trace("mprotect all"); |
| CHECKED_MPROTECT(code_map_->Begin(), code_map_->Size(), kProtAll); |
| } |
| ~ScopedCodeCacheWrite() { |
| ScopedTrace trace("mprotect code"); |
| CHECKED_MPROTECT(code_map_->Begin(), code_map_->Size(), kProtCode); |
| } |
| private: |
| MemMap* const code_map_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite); |
| }; |
| |
| uint8_t* JitCodeCache::CommitCode(Thread* self, |
| ArtMethod* method, |
| uint8_t* stack_map, |
| uint8_t* roots_data, |
| size_t frame_size_in_bytes, |
| size_t core_spill_mask, |
| size_t fp_spill_mask, |
| const uint8_t* code, |
| size_t code_size, |
| size_t data_size, |
| bool osr, |
| Handle<mirror::ObjectArray<mirror::Object>> roots, |
| bool has_should_deoptimize_flag, |
| const ArenaSet<ArtMethod*>& cha_single_implementation_list) { |
| uint8_t* result = CommitCodeInternal(self, |
| method, |
| stack_map, |
| roots_data, |
| frame_size_in_bytes, |
| core_spill_mask, |
| fp_spill_mask, |
| code, |
| code_size, |
| data_size, |
| osr, |
| roots, |
| has_should_deoptimize_flag, |
| cha_single_implementation_list); |
| if (result == nullptr) { |
| // Retry. |
| GarbageCollectCache(self); |
| result = CommitCodeInternal(self, |
| method, |
| stack_map, |
| roots_data, |
| frame_size_in_bytes, |
| core_spill_mask, |
| fp_spill_mask, |
| code, |
| code_size, |
| data_size, |
| osr, |
| roots, |
| has_should_deoptimize_flag, |
| cha_single_implementation_list); |
| } |
| return result; |
| } |
| |
| bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) { |
| bool in_collection = false; |
| while (collection_in_progress_) { |
| in_collection = true; |
| lock_cond_.Wait(self); |
| } |
| return in_collection; |
| } |
| |
| static uintptr_t FromCodeToAllocation(const void* code) { |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| } |
| |
| static uint32_t ComputeRootTableSize(uint32_t number_of_roots) { |
| return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>); |
| } |
| |
| static uint32_t GetNumberOfRoots(const uint8_t* stack_map) { |
| // The length of the table is stored just before the stack map (and therefore at the end of |
| // the table itself), in order to be able to fetch it from a `stack_map` pointer. |
| return reinterpret_cast<const uint32_t*>(stack_map)[-1]; |
| } |
| |
| static void FillRootTableLength(uint8_t* roots_data, uint32_t length) { |
| // Store the length of the table at the end. This will allow fetching it from a `stack_map` |
| // pointer. |
| reinterpret_cast<uint32_t*>(roots_data)[length] = length; |
| } |
| |
| static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) { |
| return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data)); |
| } |
| |
| static void FillRootTable(uint8_t* roots_data, Handle<mirror::ObjectArray<mirror::Object>> roots) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); |
| const uint32_t length = roots->GetLength(); |
| // Put all roots in `roots_data`. |
| for (uint32_t i = 0; i < length; ++i) { |
| ObjPtr<mirror::Object> object = roots->Get(i); |
| if (kIsDebugBuild) { |
| // Ensure the string is strongly interned. b/32995596 |
| if (object->IsString()) { |
| ObjPtr<mirror::String> str = reinterpret_cast<mirror::String*>(object.Ptr()); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr); |
| } |
| } |
| gc_roots[i] = GcRoot<mirror::Object>(object); |
| } |
| } |
| |
| static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) { |
| OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| uint8_t* data = method_header->GetOptimizedCodeInfoPtr(); |
| uint32_t roots = GetNumberOfRoots(data); |
| if (number_of_roots != nullptr) { |
| *number_of_roots = roots; |
| } |
| return data - ComputeRootTableSize(roots); |
| } |
| |
| // Helper for the GC to process a weak class in a JIT root table. |
| static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr, IsMarkedVisitor* visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // This does not need a read barrier because this is called by GC. |
| mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>(); |
| if (cls != nullptr) { |
| DCHECK((cls->IsClass<kDefaultVerifyFlags, kWithoutReadBarrier>())); |
| // Look at the classloader of the class to know if it has been unloaded. |
| // This does not need a read barrier because this is called by GC. |
| mirror::Object* class_loader = |
| cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>(); |
| if (class_loader == nullptr || visitor->IsMarked(class_loader) != nullptr) { |
| // The class loader is live, update the entry if the class has moved. |
| mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls)); |
| // Note that new_object can be null for CMS and newly allocated objects. |
| if (new_cls != nullptr && new_cls != cls) { |
| *root_ptr = GcRoot<mirror::Class>(new_cls); |
| } |
| } else { |
| // The class loader is not live, clear the entry. |
| *root_ptr = GcRoot<mirror::Class>(nullptr); |
| } |
| } |
| } |
| |
| void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (const auto& entry : method_code_map_) { |
| uint32_t number_of_roots = 0; |
| uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots); |
| GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); |
| for (uint32_t i = 0; i < number_of_roots; ++i) { |
| // This does not need a read barrier because this is called by GC. |
| mirror::Object* object = roots[i].Read<kWithoutReadBarrier>(); |
| if (object == nullptr) { |
| // entry got deleted in a previous sweep. |
| } else if (object->IsString<kDefaultVerifyFlags, kWithoutReadBarrier>()) { |
| mirror::Object* new_object = visitor->IsMarked(object); |
| // We know the string is marked because it's a strongly-interned string that |
| // is always alive. The IsMarked implementation of the CMS collector returns |
| // null for newly allocated objects, but we know those haven't moved. Therefore, |
| // only update the entry if we get a different non-null string. |
| // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method |
| // out of the weak access/creation pause. b/32167580 |
| if (new_object != nullptr && new_object != object) { |
| DCHECK(new_object->IsString()); |
| roots[i] = GcRoot<mirror::Object>(new_object); |
| } |
| } else { |
| ProcessWeakClass(reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor); |
| } |
| } |
| } |
| // Walk over inline caches to clear entries containing unloaded classes. |
| for (ProfilingInfo* info : profiling_infos_) { |
| for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { |
| InlineCache* cache = &info->cache_[i]; |
| for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) { |
| ProcessWeakClass(&cache->classes_[j], visitor); |
| } |
| } |
| } |
| } |
| |
| void JitCodeCache::FreeCode(const void* code_ptr) { |
| uintptr_t allocation = FromCodeToAllocation(code_ptr); |
| // Notify native debugger that we are about to remove the code. |
| // It does nothing if we are not using native debugger. |
| DeleteJITCodeEntryForAddress(reinterpret_cast<uintptr_t>(code_ptr)); |
| FreeData(GetRootTable(code_ptr)); |
| FreeCode(reinterpret_cast<uint8_t*>(allocation)); |
| } |
| |
| void JitCodeCache::FreeAllMethodHeaders( |
| const std::unordered_set<OatQuickMethodHeader*>& method_headers) { |
| { |
| MutexLock mu(Thread::Current(), *Locks::cha_lock_); |
| Runtime::Current()->GetClassHierarchyAnalysis() |
| ->RemoveDependentsWithMethodHeaders(method_headers); |
| } |
| |
| // We need to remove entries in method_headers from CHA dependencies |
| // first since once we do FreeCode() below, the memory can be reused |
| // so it's possible for the same method_header to start representing |
| // different compile code. |
| MutexLock mu(Thread::Current(), lock_); |
| ScopedCodeCacheWrite scc(code_map_.get()); |
| for (const OatQuickMethodHeader* method_header : method_headers) { |
| FreeCode(method_header->GetCode()); |
| } |
| } |
| |
| void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| // We use a set to first collect all method_headers whose code need to be |
| // removed. We need to free the underlying code after we remove CHA dependencies |
| // for entries in this set. And it's more efficient to iterate through |
| // the CHA dependency map just once with an unordered_set. |
| std::unordered_set<OatQuickMethodHeader*> method_headers; |
| { |
| MutexLock mu(self, lock_); |
| // We do not check if a code cache GC is in progress, as this method comes |
| // with the classlinker_classes_lock_ held, and suspending ourselves could |
| // lead to a deadlock. |
| { |
| ScopedCodeCacheWrite scc(code_map_.get()); |
| for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { |
| if (alloc.ContainsUnsafe(it->second)) { |
| method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); |
| it = method_code_map_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) { |
| if (alloc.ContainsUnsafe(it->first)) { |
| // Note that the code has already been pushed to method_headers in the loop |
| // above and is going to be removed in FreeCode() below. |
| it = osr_code_map_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) { |
| ProfilingInfo* info = *it; |
| if (alloc.ContainsUnsafe(info->GetMethod())) { |
| info->GetMethod()->SetProfilingInfo(nullptr); |
| FreeData(reinterpret_cast<uint8_t*>(info)); |
| it = profiling_infos_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| FreeAllMethodHeaders(method_headers); |
| } |
| |
| bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const { |
| return kUseReadBarrier |
| ? self->GetWeakRefAccessEnabled() |
| : is_weak_access_enabled_.LoadSequentiallyConsistent(); |
| } |
| |
| void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) { |
| if (IsWeakAccessEnabled(self)) { |
| return; |
| } |
| ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead); |
| MutexLock mu(self, lock_); |
| while (!IsWeakAccessEnabled(self)) { |
| inline_cache_cond_.Wait(self); |
| } |
| } |
| |
| void JitCodeCache::BroadcastForInlineCacheAccess() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, lock_); |
| inline_cache_cond_.Broadcast(self); |
| } |
| |
| void JitCodeCache::AllowInlineCacheAccess() { |
| DCHECK(!kUseReadBarrier); |
| is_weak_access_enabled_.StoreSequentiallyConsistent(true); |
| BroadcastForInlineCacheAccess(); |
| } |
| |
| void JitCodeCache::DisallowInlineCacheAccess() { |
| DCHECK(!kUseReadBarrier); |
| is_weak_access_enabled_.StoreSequentiallyConsistent(false); |
| } |
| |
| void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic, |
| Handle<mirror::ObjectArray<mirror::Class>> array) { |
| WaitUntilInlineCacheAccessible(Thread::Current()); |
| // Note that we don't need to lock `lock_` here, the compiler calling |
| // this method has already ensured the inline cache will not be deleted. |
| for (size_t in_cache = 0, in_array = 0; |
| in_cache < InlineCache::kIndividualCacheSize; |
| ++in_cache) { |
| mirror::Class* object = ic.classes_[in_cache].Read(); |
| if (object != nullptr) { |
| array->Set(in_array++, object); |
| } |
| } |
| } |
| |
| uint8_t* JitCodeCache::CommitCodeInternal(Thread* self, |
| ArtMethod* method, |
| uint8_t* stack_map, |
| uint8_t* roots_data, |
| size_t frame_size_in_bytes, |
| size_t core_spill_mask, |
| size_t fp_spill_mask, |
| const uint8_t* code, |
| size_t code_size, |
| size_t data_size, |
| bool osr, |
| Handle<mirror::ObjectArray<mirror::Object>> roots, |
| bool has_should_deoptimize_flag, |
| const ArenaSet<ArtMethod*>& |
| cha_single_implementation_list) { |
| DCHECK(stack_map != nullptr); |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| // Ensure the header ends up at expected instruction alignment. |
| size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| size_t total_size = header_size + code_size; |
| |
| OatQuickMethodHeader* method_header = nullptr; |
| uint8_t* code_ptr = nullptr; |
| uint8_t* memory = nullptr; |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| { |
| ScopedCodeCacheWrite scc(code_map_.get()); |
| memory = AllocateCode(total_size); |
| if (memory == nullptr) { |
| return nullptr; |
| } |
| code_ptr = memory + header_size; |
| |
| std::copy(code, code + code_size, code_ptr); |
| method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| new (method_header) OatQuickMethodHeader( |
| code_ptr - stack_map, |
| frame_size_in_bytes, |
| core_spill_mask, |
| fp_spill_mask, |
| code_size); |
| DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data); |
| DCHECK_LE(roots_data, stack_map); |
| // Flush data cache, as compiled code references literals in it. |
| FlushDataCache(reinterpret_cast<char*>(roots_data), |
| reinterpret_cast<char*>(roots_data + data_size)); |
| // Flush caches before we remove write permission because some ARMv8 Qualcomm kernels may |
| // trigger a segfault if a page fault occurs when requesting a cache maintenance operation. |
| // This is a kernel bug that we need to work around until affected devices (e.g. Nexus 5X and |
| // 6P) stop being supported or their kernels are fixed. |
| // |
| // For reference, this behavior is caused by this commit: |
| // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c |
| FlushInstructionCache(reinterpret_cast<char*>(code_ptr), |
| reinterpret_cast<char*>(code_ptr + code_size)); |
| DCHECK(!Runtime::Current()->IsAotCompiler()); |
| if (has_should_deoptimize_flag) { |
| method_header->SetHasShouldDeoptimizeFlag(); |
| } |
| } |
| |
| number_of_compilations_++; |
| } |
| // We need to update the entry point in the runnable state for the instrumentation. |
| { |
| // Need cha_lock_ for checking all single-implementation flags and register |
| // dependencies. |
| MutexLock cha_mu(self, *Locks::cha_lock_); |
| bool single_impl_still_valid = true; |
| for (ArtMethod* single_impl : cha_single_implementation_list) { |
| if (!single_impl->HasSingleImplementation()) { |
| // We simply discard the compiled code. Clear the |
| // counter so that it may be recompiled later. Hopefully the |
| // class hierarchy will be more stable when compilation is retried. |
| single_impl_still_valid = false; |
| method->ClearCounter(); |
| break; |
| } |
| } |
| |
| // Discard the code if any single-implementation assumptions are now invalid. |
| if (!single_impl_still_valid) { |
| VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions."; |
| return nullptr; |
| } |
| DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable()) |
| << "Should not be using cha on debuggable apps/runs!"; |
| |
| for (ArtMethod* single_impl : cha_single_implementation_list) { |
| Runtime::Current()->GetClassHierarchyAnalysis()->AddDependency( |
| single_impl, method, method_header); |
| } |
| |
| // The following needs to be guarded by cha_lock_ also. Otherwise it's |
| // possible that the compiled code is considered invalidated by some class linking, |
| // but below we still make the compiled code valid for the method. |
| MutexLock mu(self, lock_); |
| method_code_map_.Put(code_ptr, method); |
| // Fill the root table before updating the entry point. |
| DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data); |
| FillRootTable(roots_data, roots); |
| if (osr) { |
| number_of_osr_compilations_++; |
| osr_code_map_.Put(method, code_ptr); |
| } else { |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, method_header->GetEntryPoint()); |
| } |
| if (collection_in_progress_) { |
| // We need to update the live bitmap if there is a GC to ensure it sees this new |
| // code. |
| GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); |
| } |
| last_update_time_ns_.StoreRelease(NanoTime()); |
| VLOG(jit) |
| << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") " |
| << ArtMethod::PrettyMethod(method) << "@" << method |
| << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " |
| << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": " |
| << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << "," |
| << reinterpret_cast<const void*>(method_header->GetEntryPoint() + |
| method_header->GetCodeSize()); |
| histogram_code_memory_use_.AddValue(code_size); |
| if (code_size > kCodeSizeLogThreshold) { |
| LOG(INFO) << "JIT allocated " |
| << PrettySize(code_size) |
| << " for compiled code of " |
| << ArtMethod::PrettyMethod(method); |
| } |
| } |
| |
| return reinterpret_cast<uint8_t*>(method_header); |
| } |
| |
| size_t JitCodeCache::CodeCacheSize() { |
| MutexLock mu(Thread::Current(), lock_); |
| return CodeCacheSizeLocked(); |
| } |
| |
| // This notifies the code cache that the given method has been redefined and that it should remove |
| // any cached information it has on the method. All threads must be suspended before calling this |
| // method. The compiled code for the method (if there is any) must not be in any threads call stack. |
| void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| if (method->IsNative()) { |
| return; |
| } |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| auto profile = std::find(profiling_infos_.begin(), profiling_infos_.end(), info); |
| DCHECK(profile != profiling_infos_.end()); |
| profiling_infos_.erase(profile); |
| } |
| method->SetProfilingInfo(nullptr); |
| ScopedCodeCacheWrite ccw(code_map_.get()); |
| for (auto code_iter = method_code_map_.begin(); |
| code_iter != method_code_map_.end(); |
| ++code_iter) { |
| if (code_iter->second == method) { |
| FreeCode(code_iter->first); |
| method_code_map_.erase(code_iter); |
| } |
| } |
| auto code_map = osr_code_map_.find(method); |
| if (code_map != osr_code_map_.end()) { |
| osr_code_map_.erase(code_map); |
| } |
| } |
| |
| // This invalidates old_method. Once this function returns one can no longer use old_method to |
| // execute code unless it is fixed up. This fixup will happen later in the process of installing a |
| // class redefinition. |
| // TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and |
| // shouldn't be used since it is no longer logically in the jit code cache. |
| // TODO We should add DCHECKS that validate that the JIT is paused when this method is entered. |
| void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { |
| // Native methods have no profiling info and need no special handling from the JIT code cache. |
| if (old_method->IsNative()) { |
| return; |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| // Update ProfilingInfo to the new one and remove it from the old_method. |
| if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) { |
| DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method); |
| ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize); |
| old_method->SetProfilingInfo(nullptr); |
| // Since the JIT should be paused and all threads suspended by the time this is called these |
| // checks should always pass. |
| DCHECK(!info->IsInUseByCompiler()); |
| new_method->SetProfilingInfo(info); |
| info->method_ = new_method; |
| } |
| // Update method_code_map_ to point to the new method. |
| for (auto& it : method_code_map_) { |
| if (it.second == old_method) { |
| it.second = new_method; |
| } |
| } |
| // Update osr_code_map_ to point to the new method. |
| auto code_map = osr_code_map_.find(old_method); |
| if (code_map != osr_code_map_.end()) { |
| osr_code_map_.Put(new_method, code_map->second); |
| osr_code_map_.erase(old_method); |
| } |
| } |
| |
| size_t JitCodeCache::CodeCacheSizeLocked() { |
| return used_memory_for_code_; |
| } |
| |
| size_t JitCodeCache::DataCacheSize() { |
| MutexLock mu(Thread::Current(), lock_); |
| return DataCacheSizeLocked(); |
| } |
| |
| size_t JitCodeCache::DataCacheSizeLocked() { |
| return used_memory_for_data_; |
| } |
| |
| void JitCodeCache::ClearData(Thread* self, |
| uint8_t* stack_map_data, |
| uint8_t* roots_data) { |
| DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data); |
| MutexLock mu(self, lock_); |
| FreeData(reinterpret_cast<uint8_t*>(roots_data)); |
| } |
| |
| size_t JitCodeCache::ReserveData(Thread* self, |
| size_t stack_map_size, |
| size_t number_of_roots, |
| ArtMethod* method, |
| uint8_t** stack_map_data, |
| uint8_t** roots_data) { |
| size_t table_size = ComputeRootTableSize(number_of_roots); |
| size_t size = RoundUp(stack_map_size + table_size, sizeof(void*)); |
| uint8_t* result = nullptr; |
| |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| result = AllocateData(size); |
| } |
| |
| if (result == nullptr) { |
| // Retry. |
| GarbageCollectCache(self); |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| result = AllocateData(size); |
| } |
| |
| MutexLock mu(self, lock_); |
| histogram_stack_map_memory_use_.AddValue(size); |
| if (size > kStackMapSizeLogThreshold) { |
| LOG(INFO) << "JIT allocated " |
| << PrettySize(size) |
| << " for stack maps of " |
| << ArtMethod::PrettyMethod(method); |
| } |
| if (result != nullptr) { |
| *roots_data = result; |
| *stack_map_data = result + table_size; |
| FillRootTableLength(*roots_data, number_of_roots); |
| return size; |
| } else { |
| *roots_data = nullptr; |
| *stack_map_data = nullptr; |
| return 0; |
| } |
| } |
| |
| class MarkCodeVisitor FINAL : public StackVisitor { |
| public: |
| MarkCodeVisitor(Thread* thread_in, JitCodeCache* code_cache_in) |
| : StackVisitor(thread_in, nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames), |
| code_cache_(code_cache_in), |
| bitmap_(code_cache_->GetLiveBitmap()) {} |
| |
| bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { |
| const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); |
| if (method_header == nullptr) { |
| return true; |
| } |
| const void* code = method_header->GetCode(); |
| if (code_cache_->ContainsPc(code)) { |
| // Use the atomic set version, as multiple threads are executing this code. |
| bitmap_->AtomicTestAndSet(FromCodeToAllocation(code)); |
| } |
| return true; |
| } |
| |
| private: |
| JitCodeCache* const code_cache_; |
| CodeCacheBitmap* const bitmap_; |
| }; |
| |
| class MarkCodeClosure FINAL : public Closure { |
| public: |
| MarkCodeClosure(JitCodeCache* code_cache, Barrier* barrier) |
| : code_cache_(code_cache), barrier_(barrier) {} |
| |
| void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| DCHECK(thread == Thread::Current() || thread->IsSuspended()); |
| MarkCodeVisitor visitor(thread, code_cache_); |
| visitor.WalkStack(); |
| if (kIsDebugBuild) { |
| // The stack walking code queries the side instrumentation stack if it |
| // sees an instrumentation exit pc, so the JIT code of methods in that stack |
| // must have been seen. We sanity check this below. |
| for (const instrumentation::InstrumentationStackFrame& frame |
| : *thread->GetInstrumentationStack()) { |
| // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in |
| // its stack frame, it is not the method owning return_pc_. We just pass null to |
| // LookupMethodHeader: the method is only checked against in debug builds. |
| OatQuickMethodHeader* method_header = |
| code_cache_->LookupMethodHeader(frame.return_pc_, nullptr); |
| if (method_header != nullptr) { |
| const void* code = method_header->GetCode(); |
| CHECK(code_cache_->GetLiveBitmap()->Test(FromCodeToAllocation(code))); |
| } |
| } |
| } |
| barrier_->Pass(Thread::Current()); |
| } |
| |
| private: |
| JitCodeCache* const code_cache_; |
| Barrier* const barrier_; |
| }; |
| |
| void JitCodeCache::NotifyCollectionDone(Thread* self) { |
| collection_in_progress_ = false; |
| lock_cond_.Broadcast(self); |
| } |
| |
| void JitCodeCache::SetFootprintLimit(size_t new_footprint) { |
| size_t per_space_footprint = new_footprint / 2; |
| DCHECK(IsAlignedParam(per_space_footprint, kPageSize)); |
| DCHECK_EQ(per_space_footprint * 2, new_footprint); |
| mspace_set_footprint_limit(data_mspace_, per_space_footprint); |
| { |
| ScopedCodeCacheWrite scc(code_map_.get()); |
| mspace_set_footprint_limit(code_mspace_, per_space_footprint); |
| } |
| } |
| |
| bool JitCodeCache::IncreaseCodeCacheCapacity() { |
| if (current_capacity_ == max_capacity_) { |
| return false; |
| } |
| |
| // Double the capacity if we're below 1MB, or increase it by 1MB if |
| // we're above. |
| if (current_capacity_ < 1 * MB) { |
| current_capacity_ *= 2; |
| } else { |
| current_capacity_ += 1 * MB; |
| } |
| if (current_capacity_ > max_capacity_) { |
| current_capacity_ = max_capacity_; |
| } |
| |
| if (!kIsDebugBuild || VLOG_IS_ON(jit)) { |
| LOG(INFO) << "Increasing code cache capacity to " << PrettySize(current_capacity_); |
| } |
| |
| SetFootprintLimit(current_capacity_); |
| |
| return true; |
| } |
| |
| void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) { |
| Barrier barrier(0); |
| size_t threads_running_checkpoint = 0; |
| MarkCodeClosure closure(this, &barrier); |
| threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); |
| // Now that we have run our checkpoint, move to a suspended state and wait |
| // for other threads to run the checkpoint. |
| ScopedThreadSuspension sts(self, kSuspended); |
| if (threads_running_checkpoint != 0) { |
| barrier.Increment(self, threads_running_checkpoint); |
| } |
| } |
| |
| bool JitCodeCache::ShouldDoFullCollection() { |
| if (current_capacity_ == max_capacity_) { |
| // Always do a full collection when the code cache is full. |
| return true; |
| } else if (current_capacity_ < kReservedCapacity) { |
| // Always do partial collection when the code cache size is below the reserved |
| // capacity. |
| return false; |
| } else if (last_collection_increased_code_cache_) { |
| // This time do a full collection. |
| return true; |
| } else { |
| // This time do a partial collection. |
| return false; |
| } |
| } |
| |
| void JitCodeCache::GarbageCollectCache(Thread* self) { |
| ScopedTrace trace(__FUNCTION__); |
| if (!garbage_collect_code_) { |
| MutexLock mu(self, lock_); |
| IncreaseCodeCacheCapacity(); |
| return; |
| } |
| |
| // Wait for an existing collection, or let everyone know we are starting one. |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| if (WaitForPotentialCollectionToComplete(self)) { |
| return; |
| } else { |
| number_of_collections_++; |
| live_bitmap_.reset(CodeCacheBitmap::Create( |
| "code-cache-bitmap", |
| reinterpret_cast<uintptr_t>(code_map_->Begin()), |
| reinterpret_cast<uintptr_t>(code_map_->Begin() + current_capacity_ / 2))); |
| collection_in_progress_ = true; |
| } |
| } |
| |
| TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit)); |
| { |
| TimingLogger::ScopedTiming st("Code cache collection", &logger); |
| |
| bool do_full_collection = false; |
| { |
| MutexLock mu(self, lock_); |
| do_full_collection = ShouldDoFullCollection(); |
| } |
| |
| if (!kIsDebugBuild || VLOG_IS_ON(jit)) { |
| LOG(INFO) << "Do " |
| << (do_full_collection ? "full" : "partial") |
| << " code cache collection, code=" |
| << PrettySize(CodeCacheSize()) |
| << ", data=" << PrettySize(DataCacheSize()); |
| } |
| |
| DoCollection(self, /* collect_profiling_info */ do_full_collection); |
| |
| if (!kIsDebugBuild || VLOG_IS_ON(jit)) { |
| LOG(INFO) << "After code cache collection, code=" |
| << PrettySize(CodeCacheSize()) |
| << ", data=" << PrettySize(DataCacheSize()); |
| } |
| |
| { |
| MutexLock mu(self, lock_); |
| |
| // Increase the code cache only when we do partial collections. |
| // TODO: base this strategy on how full the code cache is? |
| if (do_full_collection) { |
| last_collection_increased_code_cache_ = false; |
| } else { |
| last_collection_increased_code_cache_ = true; |
| IncreaseCodeCacheCapacity(); |
| } |
| |
| bool next_collection_will_be_full = ShouldDoFullCollection(); |
| |
| // Start polling the liveness of compiled code to prepare for the next full collection. |
| if (next_collection_will_be_full) { |
| // Save the entry point of methods we have compiled, and update the entry |
| // point of those methods to the interpreter. If the method is invoked, the |
| // interpreter will update its entry point to the compiled code and call it. |
| for (ProfilingInfo* info : profiling_infos_) { |
| const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| if (ContainsPc(entry_point)) { |
| info->SetSavedEntryPoint(entry_point); |
| // Don't call Instrumentation::UpdateMethods, as it can check the declaring |
| // class of the method. We may be concurrently running a GC which makes accessing |
| // the class unsafe. We know it is OK to bypass the instrumentation as we've just |
| // checked that the current entry point is JIT compiled code. |
| info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); |
| } |
| } |
| |
| DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); |
| } |
| live_bitmap_.reset(nullptr); |
| NotifyCollectionDone(self); |
| } |
| } |
| Runtime::Current()->GetJit()->AddTimingLogger(logger); |
| } |
| |
| void JitCodeCache::RemoveUnmarkedCode(Thread* self) { |
| ScopedTrace trace(__FUNCTION__); |
| std::unordered_set<OatQuickMethodHeader*> method_headers; |
| { |
| MutexLock mu(self, lock_); |
| ScopedCodeCacheWrite scc(code_map_.get()); |
| // Iterate over all compiled code and remove entries that are not marked. |
| for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { |
| const void* code_ptr = it->first; |
| uintptr_t allocation = FromCodeToAllocation(code_ptr); |
| if (GetLiveBitmap()->Test(allocation)) { |
| ++it; |
| } else { |
| method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); |
| it = method_code_map_.erase(it); |
| } |
| } |
| } |
| FreeAllMethodHeaders(method_headers); |
| } |
| |
| void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) { |
| ScopedTrace trace(__FUNCTION__); |
| { |
| MutexLock mu(self, lock_); |
| if (collect_profiling_info) { |
| // Clear the profiling info of methods that do not have compiled code as entrypoint. |
| // Also remove the saved entry point from the ProfilingInfo objects. |
| for (ProfilingInfo* info : profiling_infos_) { |
| const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| if (!ContainsPc(ptr) && !info->IsInUseByCompiler()) { |
| info->GetMethod()->SetProfilingInfo(nullptr); |
| } |
| |
| if (info->GetSavedEntryPoint() != nullptr) { |
| info->SetSavedEntryPoint(nullptr); |
| // We are going to move this method back to interpreter. Clear the counter now to |
| // give it a chance to be hot again. |
| info->GetMethod()->ClearCounter(); |
| } |
| } |
| } else if (kIsDebugBuild) { |
| // Sanity check that the profiling infos do not have a dangling entry point. |
| for (ProfilingInfo* info : profiling_infos_) { |
| DCHECK(info->GetSavedEntryPoint() == nullptr); |
| } |
| } |
| |
| // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not |
| // an entry point is either: |
| // - an osr compiled code, that will be removed if not in a thread call stack. |
| // - discarded compiled code, that will be removed if not in a thread call stack. |
| for (const auto& it : method_code_map_) { |
| ArtMethod* method = it.second; |
| const void* code_ptr = it.first; |
| const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { |
| GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); |
| } |
| } |
| |
| // Empty osr method map, as osr compiled code will be deleted (except the ones |
| // on thread stacks). |
| osr_code_map_.clear(); |
| } |
| |
| // Run a checkpoint on all threads to mark the JIT compiled code they are running. |
| MarkCompiledCodeOnThreadStacks(self); |
| |
| // At this point, mutator threads are still running, and entrypoints of methods can |
| // change. We do know they cannot change to a code cache entry that is not marked, |
| // therefore we can safely remove those entries. |
| RemoveUnmarkedCode(self); |
| |
| if (collect_profiling_info) { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| // Free all profiling infos of methods not compiled nor being compiled. |
| auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(), |
| [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS { |
| const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope |
| // that the compiled code would not get revived. As mutator threads run concurrently, |
| // they may have revived the compiled code, and now we are in the situation where |
| // a method has compiled code but no ProfilingInfo. |
| // We make sure compiled methods have a ProfilingInfo object. It is needed for |
| // code cache collection. |
| if (ContainsPc(ptr) && |
| info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) { |
| info->GetMethod()->SetProfilingInfo(info); |
| } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) { |
| // No need for this ProfilingInfo object anymore. |
| FreeData(reinterpret_cast<uint8_t*>(info)); |
| return true; |
| } |
| return false; |
| }); |
| profiling_infos_.erase(profiling_kept_end, profiling_infos_.end()); |
| DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); |
| } |
| } |
| |
| bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() { |
| ScopedTrace trace(__FUNCTION__); |
| // Check that methods we have compiled do have a ProfilingInfo object. We would |
| // have memory leaks of compiled code otherwise. |
| for (const auto& it : method_code_map_) { |
| ArtMethod* method = it.second; |
| if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) { |
| const void* code_ptr = it.first; |
| const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { |
| // If the code is not dead, then we have a problem. Note that this can even |
| // happen just after a collection, as mutator threads are running in parallel |
| // and could deoptimize an existing compiled code. |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) { |
| static_assert(kRuntimeISA != kThumb2, "kThumb2 cannot be a runtime ISA"); |
| if (kRuntimeISA == kArm) { |
| // On Thumb-2, the pc is offset by one. |
| --pc; |
| } |
| if (!ContainsPc(reinterpret_cast<const void*>(pc))) { |
| return nullptr; |
| } |
| |
| MutexLock mu(Thread::Current(), lock_); |
| if (method_code_map_.empty()) { |
| return nullptr; |
| } |
| auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc)); |
| --it; |
| |
| const void* code_ptr = it->first; |
| OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (!method_header->Contains(pc)) { |
| return nullptr; |
| } |
| if (kIsDebugBuild && method != nullptr) { |
| // When we are walking the stack to redefine classes and creating obsolete methods it is |
| // possible that we might have updated the method_code_map by making this method obsolete in a |
| // previous frame. Therefore we should just check that the non-obsolete version of this method |
| // is the one we expect. We change to the non-obsolete versions in the error message since the |
| // obsolete version of the method might not be fully initialized yet. This situation can only |
| // occur when we are in the process of allocating and setting up obsolete methods. Otherwise |
| // method and it->second should be identical. (See runtime/openjdkjvmti/ti_redefine.cc for more |
| // information.) |
| DCHECK_EQ(it->second->GetNonObsoleteMethod(), method->GetNonObsoleteMethod()) |
| << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " " |
| << ArtMethod::PrettyMethod(it->second->GetNonObsoleteMethod()) << " " |
| << std::hex << pc; |
| } |
| return method_header; |
| } |
| |
| OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = osr_code_map_.find(method); |
| if (it == osr_code_map_.end()) { |
| return nullptr; |
| } |
| return OatQuickMethodHeader::FromCodePointer(it->second); |
| } |
| |
| ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self, |
| ArtMethod* method, |
| const std::vector<uint32_t>& entries, |
| bool retry_allocation) |
| // No thread safety analysis as we are using TryLock/Unlock explicitly. |
| NO_THREAD_SAFETY_ANALYSIS { |
| ProfilingInfo* info = nullptr; |
| if (!retry_allocation) { |
| // If we are allocating for the interpreter, just try to lock, to avoid |
| // lock contention with the JIT. |
| if (lock_.ExclusiveTryLock(self)) { |
| info = AddProfilingInfoInternal(self, method, entries); |
| lock_.ExclusiveUnlock(self); |
| } |
| } else { |
| { |
| MutexLock mu(self, lock_); |
| info = AddProfilingInfoInternal(self, method, entries); |
| } |
| |
| if (info == nullptr) { |
| GarbageCollectCache(self); |
| MutexLock mu(self, lock_); |
| info = AddProfilingInfoInternal(self, method, entries); |
| } |
| } |
| return info; |
| } |
| |
| ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED, |
| ArtMethod* method, |
| const std::vector<uint32_t>& entries) { |
| size_t profile_info_size = RoundUp( |
| sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(), |
| sizeof(void*)); |
| |
| // Check whether some other thread has concurrently created it. |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| return info; |
| } |
| |
| uint8_t* data = AllocateData(profile_info_size); |
| if (data == nullptr) { |
| return nullptr; |
| } |
| info = new (data) ProfilingInfo(method, entries); |
| |
| // Make sure other threads see the data in the profiling info object before the |
| // store in the ArtMethod's ProfilingInfo pointer. |
| QuasiAtomic::ThreadFenceRelease(); |
| |
| method->SetProfilingInfo(info); |
| profiling_infos_.push_back(info); |
| histogram_profiling_info_memory_use_.AddValue(profile_info_size); |
| return info; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock |
| // is already held. |
| void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS { |
| if (code_mspace_ == mspace) { |
| size_t result = code_end_; |
| code_end_ += increment; |
| return reinterpret_cast<void*>(result + code_map_->Begin()); |
| } else { |
| DCHECK_EQ(data_mspace_, mspace); |
| size_t result = data_end_; |
| data_end_ += increment; |
| return reinterpret_cast<void*>(result + data_map_->Begin()); |
| } |
| } |
| |
| void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations, |
| std::vector<ProfileMethodInfo>& methods) { |
| ScopedTrace trace(__FUNCTION__); |
| MutexLock mu(Thread::Current(), lock_); |
| for (const ProfilingInfo* info : profiling_infos_) { |
| ArtMethod* method = info->GetMethod(); |
| const DexFile* dex_file = method->GetDexFile(); |
| if (!ContainsElement(dex_base_locations, dex_file->GetBaseLocation())) { |
| // Skip dex files which are not profiled. |
| continue; |
| } |
| std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches; |
| for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { |
| std::vector<ProfileMethodInfo::ProfileClassReference> profile_classes; |
| const InlineCache& cache = info->cache_[i]; |
| for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) { |
| mirror::Class* cls = cache.classes_[k].Read(); |
| if (cls == nullptr) { |
| break; |
| } |
| |
| const DexFile* class_dex_file = nullptr; |
| dex::TypeIndex type_index; |
| |
| if (cls->GetDexCache() == nullptr) { |
| DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); |
| // Make a best effort to find the type index in the method's dex file. |
| // We could search all open dex files but that might turn expensive |
| // and probably not worth it. |
| class_dex_file = dex_file; |
| type_index = cls->FindTypeIndexInOtherDexFile(*dex_file); |
| } else { |
| class_dex_file = &(cls->GetDexFile()); |
| type_index = cls->GetDexTypeIndex(); |
| } |
| if (!type_index.IsValid()) { |
| // Could be a proxy class or an array for which we couldn't find the type index. |
| continue; |
| } |
| if (ContainsElement(dex_base_locations, class_dex_file->GetBaseLocation())) { |
| // Only consider classes from the same apk (including multidex). |
| profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/ |
| class_dex_file, type_index); |
| } |
| } |
| if (!profile_classes.empty()) { |
| inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/ |
| cache.dex_pc_, profile_classes); |
| } |
| } |
| methods.emplace_back(/*ProfileMethodInfo*/ |
| dex_file, method->GetDexMethodIndex(), inline_caches); |
| } |
| } |
| |
| uint64_t JitCodeCache::GetLastUpdateTimeNs() const { |
| return last_update_time_ns_.LoadAcquire(); |
| } |
| |
| bool JitCodeCache::IsOsrCompiled(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| return osr_code_map_.find(method) != osr_code_map_.end(); |
| } |
| |
| bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) { |
| if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| return false; |
| } |
| |
| MutexLock mu(self, lock_); |
| if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) { |
| return false; |
| } |
| |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info == nullptr) { |
| VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled"; |
| // Because the counter is not atomic, there are some rare cases where we may not |
| // hit the threshold for creating the ProfilingInfo. Reset the counter now to |
| // "correct" this. |
| method->ClearCounter(); |
| return false; |
| } |
| |
| if (info->IsMethodBeingCompiled(osr)) { |
| return false; |
| } |
| |
| info->SetIsMethodBeingCompiled(true, osr); |
| return true; |
| } |
| |
| ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) { |
| MutexLock mu(self, lock_); |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| info->IncrementInlineUse(); |
| } |
| return info; |
| } |
| |
| void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) { |
| MutexLock mu(self, lock_); |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| DCHECK(info != nullptr); |
| info->DecrementInlineUse(); |
| } |
| |
| void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self ATTRIBUTE_UNUSED, bool osr) { |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| DCHECK(info->IsMethodBeingCompiled(osr)); |
| info->SetIsMethodBeingCompiled(false, osr); |
| } |
| |
| size_t JitCodeCache::GetMemorySizeOfCodePointer(const void* ptr) { |
| MutexLock mu(Thread::Current(), lock_); |
| return mspace_usable_size(reinterpret_cast<const void*>(FromCodeToAllocation(ptr))); |
| } |
| |
| void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method, |
| const OatQuickMethodHeader* header) { |
| ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); |
| if ((profiling_info != nullptr) && |
| (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) { |
| // Prevent future uses of the compiled code. |
| profiling_info->SetSavedEntryPoint(nullptr); |
| } |
| |
| if (method->GetEntryPointFromQuickCompiledCode() == header->GetEntryPoint()) { |
| // The entrypoint is the one to invalidate, so we just update |
| // it to the interpreter entry point and clear the counter to get the method |
| // Jitted again. |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, GetQuickToInterpreterBridge()); |
| method->ClearCounter(); |
| } else { |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = osr_code_map_.find(method); |
| if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) { |
| // Remove the OSR method, to avoid using it again. |
| osr_code_map_.erase(it); |
| } |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| number_of_deoptimizations_++; |
| } |
| |
| uint8_t* JitCodeCache::AllocateCode(size_t code_size) { |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| uint8_t* result = reinterpret_cast<uint8_t*>( |
| mspace_memalign(code_mspace_, alignment, code_size)); |
| size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| // Ensure the header ends up at expected instruction alignment. |
| DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment); |
| used_memory_for_code_ += mspace_usable_size(result); |
| return result; |
| } |
| |
| void JitCodeCache::FreeCode(uint8_t* code) { |
| used_memory_for_code_ -= mspace_usable_size(code); |
| mspace_free(code_mspace_, code); |
| } |
| |
| uint8_t* JitCodeCache::AllocateData(size_t data_size) { |
| void* result = mspace_malloc(data_mspace_, data_size); |
| used_memory_for_data_ += mspace_usable_size(result); |
| return reinterpret_cast<uint8_t*>(result); |
| } |
| |
| void JitCodeCache::FreeData(uint8_t* data) { |
| used_memory_for_data_ -= mspace_usable_size(data); |
| mspace_free(data_mspace_, data); |
| } |
| |
| void JitCodeCache::Dump(std::ostream& os) { |
| MutexLock mu(Thread::Current(), lock_); |
| os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n" |
| << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n" |
| << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n" |
| << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n" |
| << "Total number of JIT compilations: " << number_of_compilations_ << "\n" |
| << "Total number of JIT compilations for on stack replacement: " |
| << number_of_osr_compilations_ << "\n" |
| << "Total number of deoptimizations: " << number_of_deoptimizations_ << "\n" |
| << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl; |
| histogram_stack_map_memory_use_.PrintMemoryUse(os); |
| histogram_code_memory_use_.PrintMemoryUse(os); |
| histogram_profiling_info_memory_use_.PrintMemoryUse(os); |
| } |
| |
| } // namespace jit |
| } // namespace art |