blob: bcdc1c15c94349a04decdf4cd693adf789e60c78 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_writer.h"
#include <sys/stat.h>
#include <vector>
#include "base/logging.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "elf_writer.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "globals.h"
#include "image.h"
#include "intern_table.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "object_utils.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "sirt_ref.h"
#include "UniquePtr.h"
#include "utils.h"
using ::art::mirror::ArtField;
using ::art::mirror::ArtMethod;
using ::art::mirror::Class;
using ::art::mirror::DexCache;
using ::art::mirror::EntryPointFromInterpreter;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
using ::art::mirror::String;
namespace art {
bool ImageWriter::Write(const std::string& image_filename,
uintptr_t image_begin,
const std::string& oat_filename,
const std::string& oat_location) {
CHECK(!image_filename.empty());
CHECK_NE(image_begin, 0U);
image_begin_ = reinterpret_cast<byte*>(image_begin);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const std::vector<DexCache*>& all_dex_caches = class_linker->GetDexCaches();
dex_caches_.insert(all_dex_caches.begin(), all_dex_caches.end());
UniquePtr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
if (oat_file.get() == NULL) {
LOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location;
return false;
}
oat_file_ = OatFile::OpenWritable(oat_file.get(), oat_location);
if (oat_file_ == NULL) {
LOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location;
return false;
}
class_linker->RegisterOatFile(*oat_file_);
interpreter_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset();
interpreter_to_compiled_code_bridge_offset_ =
oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset();
jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset();
portable_resolution_trampoline_offset_ =
oat_file_->GetOatHeader().GetPortableResolutionTrampolineOffset();
portable_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetPortableToInterpreterBridgeOffset();
quick_resolution_trampoline_offset_ =
oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset();
quick_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset();
{
Thread::Current()->TransitionFromSuspendedToRunnable();
PruneNonImageClasses(); // Remove junk
ComputeLazyFieldsForImageClasses(); // Add useful information
ComputeEagerResolvedStrings();
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
}
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false); // Remove garbage.
// Trim size of alloc spaces.
for (const auto& space : heap->GetContinuousSpaces()) {
if (space->IsDlMallocSpace()) {
space->AsDlMallocSpace()->Trim();
}
}
if (!AllocMemory()) {
return false;
}
#ifndef NDEBUG
{ // NOLINT(whitespace/braces)
ScopedObjectAccess soa(Thread::Current());
CheckNonImageClassesRemoved();
}
#endif
Thread::Current()->TransitionFromSuspendedToRunnable();
size_t oat_loaded_size = 0;
size_t oat_data_offset = 0;
ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset);
CalculateNewObjectOffsets(oat_loaded_size, oat_data_offset);
CopyAndFixupObjects();
PatchOatCodeAndMethods();
// Record allocations into the image bitmap.
RecordImageAllocations();
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
UniquePtr<File> image_file(OS::CreateEmptyFile(image_filename.c_str()));
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
if (image_file.get() == NULL) {
LOG(ERROR) << "Failed to open image file " << image_filename;
return false;
}
if (fchmod(image_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
return EXIT_FAILURE;
}
// Write out the image.
CHECK_EQ(image_end_, image_header->GetImageSize());
if (!image_file->WriteFully(image_->Begin(), image_end_)) {
PLOG(ERROR) << "Failed to write image file " << image_filename;
return false;
}
// Write out the image bitmap at the page aligned start of the image end.
CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize);
if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()),
image_header->GetImageBitmapSize(),
image_header->GetImageBitmapOffset())) {
PLOG(ERROR) << "Failed to write image file " << image_filename;
return false;
}
return true;
}
void ImageWriter::RecordImageAllocations() {
uint64_t start_time = NanoTime();
CHECK(image_bitmap_.get() != nullptr);
for (const auto& it : offsets_) {
mirror::Object* obj = reinterpret_cast<mirror::Object*>(image_->Begin() + it.second);
DCHECK_ALIGNED(obj, kObjectAlignment);
image_bitmap_->Set(obj);
}
LOG(INFO) << "RecordImageAllocations took " << PrettyDuration(NanoTime() - start_time);
}
bool ImageWriter::AllocMemory() {
size_t size = 0;
for (const auto& space : Runtime::Current()->GetHeap()->GetContinuousSpaces()) {
if (space->IsDlMallocSpace()) {
size += space->Size();
}
}
int prot = PROT_READ | PROT_WRITE;
size_t length = RoundUp(size, kPageSize);
image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, prot));
if (image_.get() == NULL) {
LOG(ERROR) << "Failed to allocate memory for image file generation";
return false;
}
return true;
}
void ImageWriter::ComputeLazyFieldsForImageClasses() {
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL);
}
bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) {
c->ComputeName();
return true;
}
void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg) {
if (!obj->GetClass()->IsStringClass()) {
return;
}
String* string = obj->AsString();
const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset();
ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
for (DexCache* dex_cache : writer->dex_caches_) {
const DexFile& dex_file = *dex_cache->GetDexFile();
const DexFile::StringId* string_id = dex_file.FindStringId(utf16_string);
if (string_id != NULL) {
// This string occurs in this dex file, assign the dex cache entry.
uint32_t string_idx = dex_file.GetIndexForStringId(*string_id);
if (dex_cache->GetResolvedString(string_idx) == NULL) {
dex_cache->SetResolvedString(string_idx, string);
}
}
}
}
void ImageWriter::ComputeEagerResolvedStrings()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// TODO: Check image spaces only?
gc::Heap* heap = Runtime::Current()->GetHeap();
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
heap->GetLiveBitmap()->Walk(ComputeEagerResolvedStringsCallback, this);
}
bool ImageWriter::IsImageClass(const Class* klass) {
return compiler_driver_.IsImageClass(ClassHelper(klass).GetDescriptorAsStringPiece());
}
struct NonImageClasses {
ImageWriter* image_writer;
std::set<std::string>* non_image_classes;
};
void ImageWriter::PruneNonImageClasses() {
if (compiler_driver_.GetImageClasses() == NULL) {
return;
}
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
// Make a list of classes we would like to prune.
std::set<std::string> non_image_classes;
NonImageClasses context;
context.image_writer = this;
context.non_image_classes = &non_image_classes;
class_linker->VisitClasses(NonImageClassesVisitor, &context);
// Remove the undesired classes from the class roots.
for (const std::string& it : non_image_classes) {
class_linker->RemoveClass(it.c_str(), NULL);
}
// Clear references to removed classes from the DexCaches.
ArtMethod* resolution_method = runtime->GetResolutionMethod();
for (DexCache* dex_cache : dex_caches_) {
for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
Class* klass = dex_cache->GetResolvedType(i);
if (klass != NULL && !IsImageClass(klass)) {
dex_cache->SetResolvedType(i, NULL);
dex_cache->GetInitializedStaticStorage()->Set(i, NULL);
}
}
for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) {
ArtMethod* method = dex_cache->GetResolvedMethod(i);
if (method != NULL && !IsImageClass(method->GetDeclaringClass())) {
dex_cache->SetResolvedMethod(i, resolution_method);
}
}
for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
ArtField* field = dex_cache->GetResolvedField(i);
if (field != NULL && !IsImageClass(field->GetDeclaringClass())) {
dex_cache->SetResolvedField(i, NULL);
}
}
}
}
bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) {
NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg);
if (!context->image_writer->IsImageClass(klass)) {
context->non_image_classes->insert(ClassHelper(klass).GetDescriptorAsStringPiece().as_string());
}
return true;
}
void ImageWriter::CheckNonImageClassesRemoved()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (compiler_driver_.GetImageClasses() == NULL) {
return;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
Thread* self = Thread::Current();
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
}
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->GetLiveBitmap()->Walk(CheckNonImageClassesRemovedCallback, this);
}
void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
if (!obj->IsClass()) {
return;
}
Class* klass = obj->AsClass();
if (!image_writer->IsImageClass(klass)) {
image_writer->DumpImageClasses();
CHECK(image_writer->IsImageClass(klass)) << ClassHelper(klass).GetDescriptor()
<< " " << PrettyDescriptor(klass);
}
}
void ImageWriter::DumpImageClasses() {
CompilerDriver::DescriptorSet* image_classes = compiler_driver_.GetImageClasses();
CHECK(image_classes != NULL);
for (const std::string& image_class : *image_classes) {
LOG(INFO) << " " << image_class;
}
}
void ImageWriter::CalculateNewObjectOffsetsCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
// if it is a string, we want to intern it if its not interned.
if (obj->GetClass()->IsStringClass()) {
// we must be an interned string that was forward referenced and already assigned
if (image_writer->IsImageOffsetAssigned(obj)) {
DCHECK_EQ(obj, obj->AsString()->Intern());
return;
}
SirtRef<String> interned(Thread::Current(), obj->AsString()->Intern());
if (obj != interned.get()) {
if (!image_writer->IsImageOffsetAssigned(interned.get())) {
// interned obj is after us, allocate its location early
image_writer->AssignImageOffset(interned.get());
}
// point those looking for this object to the interned version.
image_writer->SetImageOffset(obj, image_writer->GetImageOffset(interned.get()));
return;
}
// else (obj == interned), nothing to do but fall through to the normal case
}
image_writer->AssignImageOffset(obj);
}
ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
Class* object_array_class = class_linker->FindSystemClass("[Ljava/lang/Object;");
Thread* self = Thread::Current();
// build an Object[] of all the DexCaches used in the source_space_
ObjectArray<Object>* dex_caches = ObjectArray<Object>::Alloc(self, object_array_class,
dex_caches_.size());
int i = 0;
for (DexCache* dex_cache : dex_caches_) {
dex_caches->Set(i++, dex_cache);
}
// build an Object[] of the roots needed to restore the runtime
SirtRef<ObjectArray<Object> >
image_roots(self,
ObjectArray<Object>::Alloc(self, object_array_class,
ImageHeader::kImageRootsMax));
image_roots->Set(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod());
image_roots->Set(ImageHeader::kCalleeSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kSaveAll));
image_roots->Set(ImageHeader::kRefsOnlySaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsOnly));
image_roots->Set(ImageHeader::kRefsAndArgsSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
image_roots->Set(ImageHeader::kOatLocation,
String::AllocFromModifiedUtf8(self, oat_file_->GetLocation().c_str()));
image_roots->Set(ImageHeader::kDexCaches,
dex_caches);
image_roots->Set(ImageHeader::kClassRoots,
class_linker->GetClassRoots());
for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
CHECK(image_roots->Get(i) != NULL);
}
return image_roots.get();
}
void ImageWriter::CalculateNewObjectOffsets(size_t oat_loaded_size, size_t oat_data_offset) {
CHECK_NE(0U, oat_loaded_size);
Thread* self = Thread::Current();
SirtRef<ObjectArray<Object> > image_roots(self, CreateImageRoots());
gc::Heap* heap = Runtime::Current()->GetHeap();
const auto& spaces = heap->GetContinuousSpaces();
DCHECK(!spaces.empty());
DCHECK_EQ(0U, image_end_);
// Leave space for the header, but do not write it yet, we need to
// know where image_roots is going to end up
image_end_ += RoundUp(sizeof(ImageHeader), 8); // 64-bit-alignment
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
// TODO: Image spaces only?
// TODO: Add InOrderWalk to heap bitmap.
const char* old = self->StartAssertNoThreadSuspension("ImageWriter");
DCHECK(heap->GetLargeObjectsSpace()->GetLiveObjects()->IsEmpty());
for (const auto& space : spaces) {
space->GetLiveBitmap()->InOrderWalk(CalculateNewObjectOffsetsCallback, this);
DCHECK_LT(image_end_, image_->Size());
}
self->EndAssertNoThreadSuspension(old);
}
// Create the image bitmap.
image_bitmap_.reset(gc::accounting::SpaceBitmap::Create("image bitmap", image_->Begin(),
image_end_));
const byte* oat_file_begin = image_begin_ + RoundUp(image_end_, kPageSize);
const byte* oat_file_end = oat_file_begin + oat_loaded_size;
oat_data_begin_ = oat_file_begin + oat_data_offset;
const byte* oat_data_end = oat_data_begin_ + oat_file_->Size();
// Return to write header at start of image with future location of image_roots. At this point,
// image_end_ is the size of the image (excluding bitmaps).
ImageHeader image_header(reinterpret_cast<uint32_t>(image_begin_),
static_cast<uint32_t>(image_end_),
RoundUp(image_end_, kPageSize),
image_bitmap_->Size(),
reinterpret_cast<uint32_t>(GetImageAddress(image_roots.get())),
oat_file_->GetOatHeader().GetChecksum(),
reinterpret_cast<uint32_t>(oat_file_begin),
reinterpret_cast<uint32_t>(oat_data_begin_),
reinterpret_cast<uint32_t>(oat_data_end),
reinterpret_cast<uint32_t>(oat_file_end));
memcpy(image_->Begin(), &image_header, sizeof(image_header));
// Note that image_end_ is left at end of used space
}
void ImageWriter::CopyAndFixupObjects()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
gc::Heap* heap = Runtime::Current()->GetHeap();
// TODO: heap validation can't handle this fix up pass
heap->DisableObjectValidation();
// TODO: Image spaces only?
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
heap->GetLiveBitmap()->Walk(CopyAndFixupObjectsCallback, this);
self->EndAssertNoThreadSuspension(old_cause);
}
void ImageWriter::CopyAndFixupObjectsCallback(Object* object, void* arg) {
DCHECK(object != NULL);
DCHECK(arg != NULL);
const Object* obj = object;
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
// see GetLocalAddress for similar computation
size_t offset = image_writer->GetImageOffset(obj);
byte* dst = image_writer->image_->Begin() + offset;
const byte* src = reinterpret_cast<const byte*>(obj);
size_t n = obj->SizeOf();
DCHECK_LT(offset + n, image_writer->image_->Size());
memcpy(dst, src, n);
Object* copy = reinterpret_cast<Object*>(dst);
copy->SetField32(Object::MonitorOffset(), 0, false); // We may have inflated the lock during compilation.
image_writer->FixupObject(obj, copy);
}
void ImageWriter::FixupObject(const Object* orig, Object* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
copy->SetClass(down_cast<Class*>(GetImageAddress(orig->GetClass())));
// TODO: special case init of pointers to malloc data (or removal of these pointers)
if (orig->IsClass()) {
FixupClass(orig->AsClass(), down_cast<Class*>(copy));
} else if (orig->IsObjectArray()) {
FixupObjectArray(orig->AsObjectArray<Object>(), down_cast<ObjectArray<Object>*>(copy));
} else if (orig->IsArtMethod()) {
FixupMethod(orig->AsArtMethod(), down_cast<ArtMethod*>(copy));
} else {
FixupInstanceFields(orig, copy);
}
}
void ImageWriter::FixupClass(const Class* orig, Class* copy) {
FixupInstanceFields(orig, copy);
FixupStaticFields(orig, copy);
}
void ImageWriter::FixupMethod(const ArtMethod* orig, ArtMethod* copy) {
FixupInstanceFields(orig, copy);
// OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
// oat_begin_
// The resolution method has a special trampoline to call.
if (UNLIKELY(orig == Runtime::Current()->GetResolutionMethod())) {
#if defined(ART_USE_PORTABLE_COMPILER)
copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_resolution_trampoline_offset_));
#else
copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_resolution_trampoline_offset_));
#endif
} else {
// We assume all methods have code. If they don't currently then we set them to the use the
// resolution trampoline. Abstract methods never have code and so we need to make sure their
// use results in an AbstractMethodError. We use the interpreter to achieve this.
if (UNLIKELY(orig->IsAbstract())) {
#if defined(ART_USE_PORTABLE_COMPILER)
copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_to_interpreter_bridge_offset_));
#else
copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_to_interpreter_bridge_offset_));
#endif
copy->SetEntryPointFromInterpreter(reinterpret_cast<EntryPointFromInterpreter*>
(GetOatAddress(interpreter_to_interpreter_bridge_offset_)));
} else {
copy->SetEntryPointFromInterpreter(reinterpret_cast<EntryPointFromInterpreter*>
(GetOatAddress(interpreter_to_compiled_code_bridge_offset_)));
// Use original code if it exists. Otherwise, set the code pointer to the resolution
// trampoline.
const byte* code = GetOatAddress(orig->GetOatCodeOffset());
if (code != NULL) {
copy->SetEntryPointFromCompiledCode(code);
} else {
#if defined(ART_USE_PORTABLE_COMPILER)
copy->SetEntryPointFromCompiledCode(GetOatAddress(portable_resolution_trampoline_offset_));
#else
copy->SetEntryPointFromCompiledCode(GetOatAddress(quick_resolution_trampoline_offset_));
#endif
}
if (orig->IsNative()) {
// The native method's pointer is set to a stub to lookup via dlsym.
// Note this is not the code_ pointer, that is handled above.
copy->SetNativeMethod(GetOatAddress(jni_dlsym_lookup_offset_));
} else {
// Normal (non-abstract non-native) methods have various tables to relocate.
uint32_t mapping_table_off = orig->GetOatMappingTableOffset();
const byte* mapping_table = GetOatAddress(mapping_table_off);
copy->SetMappingTable(mapping_table);
uint32_t vmap_table_offset = orig->GetOatVmapTableOffset();
const byte* vmap_table = GetOatAddress(vmap_table_offset);
copy->SetVmapTable(vmap_table);
uint32_t native_gc_map_offset = orig->GetOatNativeGcMapOffset();
const byte* native_gc_map = GetOatAddress(native_gc_map_offset);
copy->SetNativeGcMap(reinterpret_cast<const uint8_t*>(native_gc_map));
}
}
}
}
void ImageWriter::FixupObjectArray(const ObjectArray<Object>* orig, ObjectArray<Object>* copy) {
for (int32_t i = 0; i < orig->GetLength(); ++i) {
const Object* element = orig->Get(i);
copy->SetPtrWithoutChecks(i, GetImageAddress(element));
}
}
void ImageWriter::FixupInstanceFields(const Object* orig, Object* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
Class* klass = orig->GetClass();
DCHECK(klass != NULL);
FixupFields(orig,
copy,
klass->GetReferenceInstanceOffsets(),
false);
}
void ImageWriter::FixupStaticFields(const Class* orig, Class* copy) {
DCHECK(orig != NULL);
DCHECK(copy != NULL);
FixupFields(orig,
copy,
orig->GetReferenceStaticOffsets(),
true);
}
void ImageWriter::FixupFields(const Object* orig,
Object* copy,
uint32_t ref_offsets,
bool is_static) {
if (ref_offsets != CLASS_WALK_SUPER) {
// Found a reference offset bitmap. Fixup the specified offsets.
while (ref_offsets != 0) {
size_t right_shift = CLZ(ref_offsets);
MemberOffset byte_offset = CLASS_OFFSET_FROM_CLZ(right_shift);
const Object* ref = orig->GetFieldObject<const Object*>(byte_offset, false);
// Use SetFieldPtr to avoid card marking since we are writing to the image.
copy->SetFieldPtr(byte_offset, GetImageAddress(ref), false);
ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift);
}
} else {
// There is no reference offset bitmap. In the non-static case,
// walk up the class inheritance hierarchy and find reference
// offsets the hard way. In the static case, just consider this
// class.
for (const Class *klass = is_static ? orig->AsClass() : orig->GetClass();
klass != NULL;
klass = is_static ? NULL : klass->GetSuperClass()) {
size_t num_reference_fields = (is_static
? klass->NumReferenceStaticFields()
: klass->NumReferenceInstanceFields());
for (size_t i = 0; i < num_reference_fields; ++i) {
ArtField* field = (is_static
? klass->GetStaticField(i)
: klass->GetInstanceField(i));
MemberOffset field_offset = field->GetOffset();
const Object* ref = orig->GetFieldObject<const Object*>(field_offset, false);
// Use SetFieldPtr to avoid card marking since we are writing to the image.
copy->SetFieldPtr(field_offset, GetImageAddress(ref), false);
}
}
}
if (!is_static && orig->IsReferenceInstance()) {
// Fix-up referent, that isn't marked as an object field, for References.
ArtField* field = orig->GetClass()->FindInstanceField("referent", "Ljava/lang/Object;");
MemberOffset field_offset = field->GetOffset();
const Object* ref = orig->GetFieldObject<const Object*>(field_offset, false);
// Use SetFieldPtr to avoid card marking since we are writing to the image.
copy->SetFieldPtr(field_offset, GetImageAddress(ref), false);
}
}
static ArtMethod* GetTargetMethod(const CompilerDriver::PatchInformation* patch)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DexCache* dex_cache = class_linker->FindDexCache(patch->GetDexFile());
ArtMethod* method = class_linker->ResolveMethod(patch->GetDexFile(),
patch->GetTargetMethodIdx(),
dex_cache,
NULL,
NULL,
patch->GetTargetInvokeType());
CHECK(method != NULL)
<< patch->GetDexFile().GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(!method->IsRuntimeMethod())
<< patch->GetDexFile().GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx()) == method)
<< patch->GetDexFile().GetLocation() << " " << patch->GetReferrerMethodIdx() << " "
<< PrettyMethod(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx())) << " "
<< PrettyMethod(method);
return method;
}
void ImageWriter::PatchOatCodeAndMethods() {
Thread* self = Thread::Current();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
typedef std::vector<const CompilerDriver::PatchInformation*> Patches;
const Patches& code_to_patch = compiler_driver_.GetCodeToPatch();
for (size_t i = 0; i < code_to_patch.size(); i++) {
const CompilerDriver::PatchInformation* patch = code_to_patch[i];
ArtMethod* target = GetTargetMethod(patch);
uint32_t code = reinterpret_cast<uint32_t>(class_linker->GetOatCodeFor(target));
uint32_t code_base = reinterpret_cast<uint32_t>(&oat_file_->GetOatHeader());
uint32_t code_offset = code - code_base;
SetPatchLocation(patch, reinterpret_cast<uint32_t>(GetOatAddress(code_offset)));
}
const Patches& methods_to_patch = compiler_driver_.GetMethodsToPatch();
for (size_t i = 0; i < methods_to_patch.size(); i++) {
const CompilerDriver::PatchInformation* patch = methods_to_patch[i];
ArtMethod* target = GetTargetMethod(patch);
SetPatchLocation(patch, reinterpret_cast<uint32_t>(GetImageAddress(target)));
}
// Update the image header with the new checksum after patching
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
image_header->SetOatChecksum(oat_file_->GetOatHeader().GetChecksum());
self->EndAssertNoThreadSuspension(old_cause);
}
void ImageWriter::SetPatchLocation(const CompilerDriver::PatchInformation* patch, uint32_t value) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const void* oat_code = class_linker->GetOatCodeFor(patch->GetDexFile(),
patch->GetReferrerClassDefIdx(),
patch->GetReferrerMethodIdx());
OatHeader& oat_header = const_cast<OatHeader&>(oat_file_->GetOatHeader());
// TODO: make this Thumb2 specific
uint8_t* base = reinterpret_cast<uint8_t*>(reinterpret_cast<uint32_t>(oat_code) & ~0x1);
uint32_t* patch_location = reinterpret_cast<uint32_t*>(base + patch->GetLiteralOffset());
#ifndef NDEBUG
const DexFile::MethodId& id = patch->GetDexFile().GetMethodId(patch->GetTargetMethodIdx());
uint32_t expected = reinterpret_cast<uint32_t>(&id);
uint32_t actual = *patch_location;
CHECK(actual == expected || actual == value) << std::hex
<< "actual=" << actual
<< "expected=" << expected
<< "value=" << value;
#endif
*patch_location = value;
oat_header.UpdateChecksum(patch_location, sizeof(value));
}
} // namespace art