blob: c9128f831a69a13504dbd73bddc9b713922618ce [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "verifier_deps.h"
#include <cstring>
#include <sstream>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/indenter.h"
#include "base/leb128.h"
#include "base/mutex-inl.h"
#include "compiler_callbacks.h"
#include "dex/class_accessor-inl.h"
#include "dex/dex_file-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "oat_file.h"
#include "obj_ptr-inl.h"
#include "reg_type.h"
#include "reg_type_cache-inl.h"
#include "runtime.h"
namespace art {
namespace verifier {
VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files, bool output_only)
: output_only_(output_only) {
for (const DexFile* dex_file : dex_files) {
DCHECK(GetDexFileDeps(*dex_file) == nullptr);
std::unique_ptr<DexFileDeps> deps(new DexFileDeps(dex_file->NumClassDefs()));
dex_deps_.emplace(dex_file, std::move(deps));
}
}
// Perform logical OR on two bit vectors and assign back to LHS, i.e. `to_update |= other`.
// Size of the two vectors must be equal.
// Size of `other` must be equal to size of `to_update`.
static inline void BitVectorOr(std::vector<bool>& to_update, const std::vector<bool>& other) {
DCHECK_EQ(to_update.size(), other.size());
std::transform(other.begin(),
other.end(),
to_update.begin(),
to_update.begin(),
std::logical_or<bool>());
}
void VerifierDeps::MergeWith(std::unique_ptr<VerifierDeps> other,
const std::vector<const DexFile*>& dex_files) {
DCHECK(other != nullptr);
DCHECK_EQ(dex_deps_.size(), other->dex_deps_.size());
for (const DexFile* dex_file : dex_files) {
DexFileDeps* my_deps = GetDexFileDeps(*dex_file);
DexFileDeps& other_deps = *other->GetDexFileDeps(*dex_file);
// We currently collect extra strings only on the main `VerifierDeps`,
// which should be the one passed as `this` in this method.
DCHECK(other_deps.strings_.empty());
// Size is the number of class definitions in the dex file, and must be the
// same between the two `VerifierDeps`.
DCHECK_EQ(my_deps->assignable_types_.size(), other_deps.assignable_types_.size());
for (uint32_t i = 0; i < my_deps->assignable_types_.size(); ++i) {
my_deps->assignable_types_[i].merge(other_deps.assignable_types_[i]);
}
BitVectorOr(my_deps->verified_classes_, other_deps.verified_classes_);
}
}
VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) {
auto it = dex_deps_.find(&dex_file);
return (it == dex_deps_.end()) ? nullptr : it->second.get();
}
const VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) const {
auto it = dex_deps_.find(&dex_file);
return (it == dex_deps_.end()) ? nullptr : it->second.get();
}
dex::StringIndex VerifierDeps::GetClassDescriptorStringId(const DexFile& dex_file,
ObjPtr<mirror::Class> klass) {
DCHECK(klass != nullptr);
ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
// Array and proxy classes do not have a dex cache.
if (!klass->IsArrayClass() && !klass->IsProxyClass()) {
DCHECK(dex_cache != nullptr) << klass->PrettyClass();
if (dex_cache->GetDexFile() == &dex_file) {
// FindStringId is slow, try to go through the class def if we have one.
const dex::ClassDef* class_def = klass->GetClassDef();
DCHECK(class_def != nullptr) << klass->PrettyClass();
const dex::TypeId& type_id = dex_file.GetTypeId(class_def->class_idx_);
if (kIsDebugBuild) {
std::string temp;
CHECK_EQ(GetIdFromString(dex_file, klass->GetDescriptor(&temp)), type_id.descriptor_idx_);
}
return type_id.descriptor_idx_;
}
}
std::string temp;
return GetIdFromString(dex_file, klass->GetDescriptor(&temp));
}
static inline VerifierDeps* GetMainVerifierDeps(VerifierDeps* local_deps) {
// The main VerifierDeps is the one set in the compiler callbacks, which at the
// end of verification will have all the per-thread VerifierDeps merged into it.
CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks();
if (callbacks == nullptr) {
DCHECK(!Runtime::Current()->IsAotCompiler());
return local_deps;
}
DCHECK(Runtime::Current()->IsAotCompiler());
return callbacks->GetVerifierDeps();
}
static bool FindExistingStringId(const std::vector<std::string>& strings,
const std::string& str,
uint32_t* found_id) {
uint32_t num_extra_ids = strings.size();
for (size_t i = 0; i < num_extra_ids; ++i) {
if (strings[i] == str) {
*found_id = i;
return true;
}
}
return false;
}
dex::StringIndex VerifierDeps::GetIdFromString(const DexFile& dex_file, const std::string& str) {
const dex::StringId* string_id = dex_file.FindStringId(str.c_str());
if (string_id != nullptr) {
// String is in the DEX file. Return its ID.
return dex_file.GetIndexForStringId(*string_id);
}
// String is not in the DEX file. Assign a new ID to it which is higher than
// the number of strings in the DEX file.
// We use the main `VerifierDeps` for adding new strings to simplify
// synchronization/merging of these entries between threads.
VerifierDeps* singleton = GetMainVerifierDeps(this);
DexFileDeps* deps = singleton->GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
uint32_t num_ids_in_dex = dex_file.NumStringIds();
uint32_t found_id;
{
ReaderMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
if (FindExistingStringId(deps->strings_, str, &found_id)) {
return dex::StringIndex(num_ids_in_dex + found_id);
}
}
{
WriterMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_);
if (FindExistingStringId(deps->strings_, str, &found_id)) {
return dex::StringIndex(num_ids_in_dex + found_id);
}
deps->strings_.push_back(str);
dex::StringIndex new_id(num_ids_in_dex + deps->strings_.size() - 1);
CHECK_GE(new_id.index_, num_ids_in_dex); // check for overflows
DCHECK_EQ(str, singleton->GetStringFromId(dex_file, new_id));
return new_id;
}
}
std::string VerifierDeps::GetStringFromId(const DexFile& dex_file, dex::StringIndex string_id)
const {
uint32_t num_ids_in_dex = dex_file.NumStringIds();
if (string_id.index_ < num_ids_in_dex) {
return std::string(dex_file.StringDataByIdx(string_id));
} else {
const DexFileDeps* deps = GetDexFileDeps(dex_file);
DCHECK(deps != nullptr);
string_id.index_ -= num_ids_in_dex;
CHECK_LT(string_id.index_, deps->strings_.size());
return deps->strings_[string_id.index_];
}
}
void VerifierDeps::AddAssignability(const DexFile& dex_file,
const dex::ClassDef& class_def,
ObjPtr<mirror::Class> destination,
ObjPtr<mirror::Class> source) {
// Test that the method is only called on reference types.
// Note that concurrent verification of `destination` and `source` may have
// set their status to erroneous. However, the tests performed below rely
// merely on no issues with linking (valid access flags, superclass and
// implemented interfaces). If the class at any point reached the IsResolved
// status, the requirement holds. This is guaranteed by RegTypeCache::ResolveClass.
DCHECK(destination != nullptr);
DCHECK(source != nullptr);
if (destination->IsPrimitive() || source->IsPrimitive()) {
// Primitive types are trivially non-assignable to anything else.
// We do not need to record trivial assignability, as it will
// not change across releases.
return;
}
if (destination == source || destination->IsObjectClass()) {
// Cases when `destination` is trivially assignable from `source`.
return;
}
if (destination->IsArrayClass() && source->IsArrayClass()) {
// Both types are arrays. Break down to component types and add recursively.
// This helps filter out destinations from compiled DEX files (see below)
// and deduplicate entries with the same canonical component type.
ObjPtr<mirror::Class> destination_component = destination->GetComponentType();
ObjPtr<mirror::Class> source_component = source->GetComponentType();
// Only perform the optimization if both types are resolved which guarantees
// that they linked successfully, as required at the top of this method.
if (destination_component->IsResolved() && source_component->IsResolved()) {
AddAssignability(dex_file,
class_def,
destination_component,
source_component);
return;
}
}
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a DEX file which is not being compiled.
return;
}
// Get string IDs for both descriptors and store in the appropriate set.
dex::StringIndex destination_id = GetClassDescriptorStringId(dex_file, destination);
dex::StringIndex source_id = GetClassDescriptorStringId(dex_file, source);
uint16_t index = dex_file.GetIndexForClassDef(class_def);
dex_deps->assignable_types_[index].emplace(TypeAssignability(destination_id, source_id));
}
void VerifierDeps::AddAssignability(const DexFile& dex_file,
const dex::ClassDef& class_def,
const RegType& destination,
const RegType& source) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
if (dex_deps == nullptr) {
// This invocation is from verification of a DEX file which is not being compiled.
return;
}
CHECK(destination.IsUnresolvedReference() || destination.HasClass());
CHECK(!destination.IsUnresolvedMergedReference());
if (source.IsUnresolvedReference() || source.HasClass()) {
// Get string IDs for both descriptors and store in the appropriate set.
dex::StringIndex destination_id =
GetIdFromString(dex_file, std::string(destination.GetDescriptor()));
dex::StringIndex source_id = GetIdFromString(dex_file, std::string(source.GetDescriptor()));
uint16_t index = dex_file.GetIndexForClassDef(class_def);
dex_deps->assignable_types_[index].emplace(TypeAssignability(destination_id, source_id));
} else if (source.IsZeroOrNull()) {
// Nothing to record, null is always assignable.
} else {
CHECK(source.IsUnresolvedMergedReference()) << source.Dump();
const UnresolvedMergedType& merge = *down_cast<const UnresolvedMergedType*>(&source);
AddAssignability(dex_file, class_def, destination, merge.GetResolvedPart());
for (uint32_t idx : merge.GetUnresolvedTypes().Indexes()) {
AddAssignability(dex_file, class_def, destination, merge.GetRegTypeCache()->GetFromId(idx));
}
}
}
void VerifierDeps::MaybeRecordVerificationStatus(VerifierDeps* verifier_deps,
const DexFile& dex_file,
const dex::ClassDef& class_def,
FailureKind failure_kind) {
if (verifier_deps != nullptr) {
switch (failure_kind) {
case verifier::FailureKind::kHardFailure:
case verifier::FailureKind::kSoftFailure: {
// Class will be verified at runtime.
DexFileDeps* dex_deps = verifier_deps->GetDexFileDeps(dex_file);
uint16_t index = dex_file.GetIndexForClassDef(class_def);
dex_deps->assignable_types_[index].clear();
break;
}
case verifier::FailureKind::kAccessChecksFailure:
case verifier::FailureKind::kTypeChecksFailure:
case verifier::FailureKind::kNoFailure: {
verifier_deps->RecordClassVerified(dex_file, class_def);
break;
}
}
}
}
void VerifierDeps::RecordClassVerified(const DexFile& dex_file, const dex::ClassDef& class_def) {
DexFileDeps* dex_deps = GetDexFileDeps(dex_file);
DCHECK_EQ(dex_deps->verified_classes_.size(), dex_file.NumClassDefs());
dex_deps->verified_classes_[dex_file.GetIndexForClassDef(class_def)] = true;
}
void VerifierDeps::MaybeRecordAssignability(VerifierDeps* verifier_deps,
const DexFile& dex_file,
const dex::ClassDef& class_def,
ObjPtr<mirror::Class> destination,
ObjPtr<mirror::Class> source) {
if (verifier_deps != nullptr) {
verifier_deps->AddAssignability(dex_file, class_def, destination, source);
}
}
void VerifierDeps::MaybeRecordAssignability(VerifierDeps* verifier_deps,
const DexFile& dex_file,
const dex::ClassDef& class_def,
const RegType& destination,
const RegType& source) {
if (verifier_deps != nullptr) {
verifier_deps->AddAssignability(dex_file, class_def, destination, source);
}
}
namespace {
template<typename T> inline uint32_t Encode(T in);
template<> inline uint32_t Encode<dex::StringIndex>(dex::StringIndex in) {
return in.index_;
}
template<typename T> inline T Decode(uint32_t in);
template<> inline dex::StringIndex Decode<dex::StringIndex>(uint32_t in) {
return dex::StringIndex(in);
}
template<typename T1, typename T2>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2>& t) {
EncodeUnsignedLeb128(out, Encode(std::get<0>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<1>(t)));
}
template<typename T1, typename T2>
static inline bool DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2>* t) {
uint32_t v1, v2;
if (UNLIKELY(!DecodeUnsignedLeb128Checked(in, end, &v1)) ||
UNLIKELY(!DecodeUnsignedLeb128Checked(in, end, &v2))) {
return false;
}
*t = std::make_tuple(Decode<T1>(v1), Decode<T2>(v2));
return true;
}
template<typename T1, typename T2, typename T3>
static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2, T3>& t) {
EncodeUnsignedLeb128(out, Encode(std::get<0>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<1>(t)));
EncodeUnsignedLeb128(out, Encode(std::get<2>(t)));
}
template<typename T1, typename T2, typename T3>
static inline bool DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2, T3>* t) {
uint32_t v1, v2, v3;
if (UNLIKELY(!DecodeUnsignedLeb128Checked(in, end, &v1)) ||
UNLIKELY(!DecodeUnsignedLeb128Checked(in, end, &v2)) ||
UNLIKELY(!DecodeUnsignedLeb128Checked(in, end, &v3))) {
return false;
}
*t = std::make_tuple(Decode<T1>(v1), Decode<T2>(v2), Decode<T3>(v3));
return true;
}
static void SetUint32InUint8Array(std::vector<uint8_t>* out,
uint32_t uint8_offset,
uint32_t uint32_offset,
uint32_t value) {
DCHECK(IsAligned<sizeof(uint32_t)>(out->data() + uint8_offset));
(reinterpret_cast<uint32_t*>(out->data() + uint8_offset))[uint32_offset] = value;
}
template<typename T>
static void EncodeSetVector(std::vector<uint8_t>* out,
const std::vector<std::set<T>>& vector,
const std::vector<bool>& verified_classes) {
uint32_t offsets_index = out->size();
// Make room for offsets for each class, +1 for marking the end of the
// assignability types data.
out->resize(out->size() + (vector.size() + 1) * sizeof(uint32_t));
uint32_t class_def_index = 0;
for (const std::set<T>& set : vector) {
if (verified_classes[class_def_index]) {
// Store the offset of the set for this class.
SetUint32InUint8Array(out, offsets_index, class_def_index, out->size());
for (const T& entry : set) {
EncodeTuple(out, entry);
}
} else {
SetUint32InUint8Array(out, offsets_index, class_def_index, VerifierDeps::kNotVerifiedMarker);
}
class_def_index++;
}
SetUint32InUint8Array(out, offsets_index, class_def_index, out->size());
}
template<bool kFillSet, typename T>
static bool DecodeSetVector(const uint8_t** cursor,
const uint8_t* start,
const uint8_t* end,
std::vector<std::set<T>>* vector,
std::vector<bool>* verified_classes,
size_t num_class_defs) {
const uint32_t* offsets = reinterpret_cast<const uint32_t*>(*cursor);
uint32_t next_valid_offset_index = 1;
// Put the cursor after the offsets of each class, +1 for the offset of the
// end of the assignable types data.
*cursor += (num_class_defs + 1) * sizeof(uint32_t);
for (uint32_t i = 0; i < num_class_defs; ++i) {
uint32_t offset = offsets[i];
if (offset == VerifierDeps::kNotVerifiedMarker) {
(*verified_classes)[i] = false;
continue;
}
(*verified_classes)[i] = true;
*cursor = start + offset;
// Fetch the assignability checks.
std::set<T>& set = (*vector)[i];
// Find the offset of the next entry. This will tell us where to stop when
// reading the checks. Note that the last entry in the `offsets` array points
// to the end of the assignability types data, so the loop will terminate correctly.
while (next_valid_offset_index <= i ||
offsets[next_valid_offset_index] == VerifierDeps::kNotVerifiedMarker) {
next_valid_offset_index++;
}
const uint8_t* set_end = start + offsets[next_valid_offset_index];
// Decode each check.
while (*cursor < set_end) {
T tuple;
if (UNLIKELY(!DecodeTuple(cursor, end, &tuple))) {
return false;
}
if (kFillSet) {
set.emplace(tuple);
}
}
}
// Align the cursor to start decoding the strings.
*cursor = AlignUp(*cursor, sizeof(uint32_t));
return true;
}
static inline void EncodeStringVector(std::vector<uint8_t>* out,
const std::vector<std::string>& strings) {
uint32_t offsets_index = out->size();
// Make room for offsets for each string, +1 for putting the number of
// strings.
out->resize(out->size() + (strings.size() + 1 ) * sizeof(uint32_t));
(reinterpret_cast<uint32_t*>(out->data() + offsets_index))[0] = strings.size();
uint32_t string_index = 1;
for (const std::string& str : strings) {
// Store the offset of the string.
(reinterpret_cast<uint32_t*>(out->data() + offsets_index))[string_index++] = out->size();
// Store the string data.
const uint8_t* data = reinterpret_cast<const uint8_t*>(str.c_str());
size_t length = str.length() + 1;
out->insert(out->end(), data, data + length);
DCHECK_EQ(0u, out->back());
}
}
template<bool kFillVector>
static inline bool DecodeStringVector(const uint8_t** cursor,
const uint8_t* start,
const uint8_t* end,
std::vector<std::string>* strings) {
DCHECK(strings->empty());
uint32_t num_strings = reinterpret_cast<const uint32_t*>(*cursor)[0];
if (kFillVector) {
strings->reserve(num_strings);
}
const uint8_t* offsets = *cursor;
*cursor += sizeof(uint32_t) + num_strings * sizeof(uint32_t);
for (uint32_t i = 0; i < num_strings; ++i) {
uint32_t string_offset = reinterpret_cast<const uint32_t*>(offsets)[i + 1];
const char* string_start = reinterpret_cast<const char*>(start + string_offset);
const char* string_end = reinterpret_cast<const char*>(
memchr(string_start, 0, end - start - string_offset));
if (UNLIKELY(string_end == nullptr)) {
return false;
}
size_t string_length = string_end - string_start;
if (kFillVector) {
strings->emplace_back(string_start, string_length);
}
*cursor = reinterpret_cast<const uint8_t*>(string_end + 1);
}
return true;
}
} // namespace
void VerifierDeps::Encode(const std::vector<const DexFile*>& dex_files,
std::vector<uint8_t>* buffer) const {
uint32_t offset = buffer->size();
buffer->resize(buffer->size() + dex_files.size() * sizeof(uint32_t));
uint32_t dex_file_index = 0;
for (const DexFile* dex_file : dex_files) {
// Four byte alignment before encoding the data.
buffer->resize(RoundUp(buffer->size(), sizeof(uint32_t)));
(reinterpret_cast<uint32_t*>(buffer->data() + offset))[dex_file_index++] = buffer->size();
const DexFileDeps& deps = *GetDexFileDeps(*dex_file);
EncodeSetVector(buffer, deps.assignable_types_, deps.verified_classes_);
// Four byte alignment before encoding strings.
buffer->resize(RoundUp(buffer->size(), sizeof(uint32_t)));
EncodeStringVector(buffer, deps.strings_);
}
}
template <bool kOnlyVerifiedClasses>
bool VerifierDeps::DecodeDexFileDeps(DexFileDeps& deps,
const uint8_t** cursor,
const uint8_t* data_start,
const uint8_t* data_end,
size_t num_class_defs) {
return
DecodeSetVector</*kFillSet=*/ !kOnlyVerifiedClasses>(
cursor,
data_start,
data_end,
&deps.assignable_types_,
&deps.verified_classes_,
num_class_defs) &&
DecodeStringVector</*kFillVector=*/ !kOnlyVerifiedClasses>(
cursor, data_start, data_end, &deps.strings_);
}
bool VerifierDeps::ParseStoredData(const std::vector<const DexFile*>& dex_files,
ArrayRef<const uint8_t> data) {
if (data.empty()) {
// Return eagerly, as the first thing we expect from VerifierDeps data is
// the number of created strings, even if there is no dependency.
// Currently, only the boot image does not have any VerifierDeps data.
return true;
}
const uint8_t* data_start = data.data();
const uint8_t* data_end = data_start + data.size();
const uint8_t* cursor = data_start;
uint32_t dex_file_index = 0;
for (const DexFile* dex_file : dex_files) {
DexFileDeps* deps = GetDexFileDeps(*dex_file);
// Fetch the offset of this dex file's verifier data.
cursor = data_start + reinterpret_cast<const uint32_t*>(data_start)[dex_file_index++];
size_t num_class_defs = dex_file->NumClassDefs();
if (UNLIKELY(!DecodeDexFileDeps</*kOnlyVerifiedClasses=*/ false>(*deps,
&cursor,
data_start,
data_end,
num_class_defs))) {
LOG(ERROR) << "Failed to parse dex file dependencies for " << dex_file->GetLocation();
return false;
}
}
// TODO: We should check that `data_start == data_end`. Why are we passing excessive data?
return true;
}
bool VerifierDeps::ParseVerifiedClasses(
const std::vector<const DexFile*>& dex_files,
ArrayRef<const uint8_t> data,
/*out*/std::vector<std::vector<bool>>* verified_classes_per_dex) {
DCHECK(!data.empty());
DCHECK(!dex_files.empty());
DCHECK(verified_classes_per_dex->empty());
verified_classes_per_dex->reserve(dex_files.size());
const uint8_t* data_start = data.data();
const uint8_t* data_end = data_start + data.size();
const uint8_t* cursor = data_start;
uint32_t dex_file_index = 0;
for (const DexFile* dex_file : dex_files) {
DexFileDeps deps(/*num_class_defs=*/ 0u); // Do not initialize vectors.
// Fetch the offset of this dex file's verifier data.
cursor = data_start + reinterpret_cast<const uint32_t*>(data_start)[dex_file_index++];
size_t num_class_defs = dex_file->NumClassDefs();
deps.verified_classes_.resize(num_class_defs);
if (UNLIKELY(!DecodeDexFileDeps</*kOnlyVerifiedClasses=*/ true>(deps,
&cursor,
data_start,
data_end,
num_class_defs))) {
LOG(ERROR) << "Failed to parse dex file dependencies for " << dex_file->GetLocation();
return false;
}
verified_classes_per_dex->push_back(std::move(deps.verified_classes_));
}
// TODO: We should check that `data_start == data_end`. Why are we passing excessive data?
return true;
}
bool VerifierDeps::Equals(const VerifierDeps& rhs) const {
if (dex_deps_.size() != rhs.dex_deps_.size()) {
return false;
}
auto lhs_it = dex_deps_.begin();
auto rhs_it = rhs.dex_deps_.begin();
for (; (lhs_it != dex_deps_.end()) && (rhs_it != rhs.dex_deps_.end()); lhs_it++, rhs_it++) {
const DexFile* lhs_dex_file = lhs_it->first;
const DexFile* rhs_dex_file = rhs_it->first;
if (lhs_dex_file != rhs_dex_file) {
return false;
}
DexFileDeps* lhs_deps = lhs_it->second.get();
DexFileDeps* rhs_deps = rhs_it->second.get();
if (!lhs_deps->Equals(*rhs_deps)) {
return false;
}
}
DCHECK((lhs_it == dex_deps_.end()) && (rhs_it == rhs.dex_deps_.end()));
return true;
}
bool VerifierDeps::DexFileDeps::Equals(const VerifierDeps::DexFileDeps& rhs) const {
return (strings_ == rhs.strings_) &&
(assignable_types_ == rhs.assignable_types_) &&
(verified_classes_ == rhs.verified_classes_);
}
void VerifierDeps::Dump(VariableIndentationOutputStream* vios) const {
// Sort dex files by their location to ensure deterministic ordering.
using DepsEntry = std::pair<const DexFile*, const DexFileDeps*>;
std::vector<DepsEntry> dex_deps;
dex_deps.reserve(dex_deps_.size());
for (const auto& dep : dex_deps_) {
dex_deps.emplace_back(dep.first, dep.second.get());
}
std::sort(
dex_deps.begin(),
dex_deps.end(),
[](const DepsEntry& lhs, const DepsEntry& rhs) {
return lhs.first->GetLocation() < rhs.first->GetLocation();
});
for (const auto& dep : dex_deps) {
const DexFile& dex_file = *dep.first;
vios->Stream()
<< "Dependencies of "
<< dex_file.GetLocation()
<< ":\n";
ScopedIndentation indent(vios);
for (const std::string& str : dep.second->strings_) {
vios->Stream() << "Extra string: " << str << "\n";
}
for (size_t idx = 0; idx < dep.second->assignable_types_.size(); idx++) {
vios->Stream()
<< "Dependencies of "
<< dex_file.GetClassDescriptor(dex_file.GetClassDef(idx))
<< ":\n";
for (const TypeAssignability& entry : dep.second->assignable_types_[idx]) {
vios->Stream()
<< GetStringFromId(dex_file, entry.GetSource())
<< " must be assignable to "
<< GetStringFromId(dex_file, entry.GetDestination())
<< "\n";
}
}
for (size_t idx = 0; idx < dep.second->verified_classes_.size(); idx++) {
if (!dep.second->verified_classes_[idx]) {
vios->Stream()
<< dex_file.GetClassDescriptor(dex_file.GetClassDef(idx))
<< " will be verified at runtime\n";
}
}
}
}
bool VerifierDeps::ValidateDependencies(Thread* self,
Handle<mirror::ClassLoader> class_loader,
/* out */ std::string* error_msg) const {
for (const auto& entry : dex_deps_) {
if (!VerifyDexFile(class_loader, *entry.first, *entry.second, self, error_msg)) {
return false;
}
}
return true;
}
// TODO: share that helper with other parts of the compiler that have
// the same lookup pattern.
static ObjPtr<mirror::Class> FindClassAndClearException(ClassLinker* class_linker,
Thread* self,
const std::string& name,
Handle<mirror::ClassLoader> class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> result = class_linker->FindClass(self, name.c_str(), class_loader);
if (result == nullptr) {
DCHECK(self->IsExceptionPending());
self->ClearException();
}
return result;
}
bool VerifierDeps::VerifyAssignability(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const std::vector<std::set<TypeAssignability>>& assignables,
Thread* self,
/* out */ std::string* error_msg) const {
StackHandleScope<2> hs(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::Class> source(hs.NewHandle<mirror::Class>(nullptr));
MutableHandle<mirror::Class> destination(hs.NewHandle<mirror::Class>(nullptr));
for (const auto& vec : assignables) {
for (const auto& entry : vec) {
const std::string& destination_desc = GetStringFromId(dex_file, entry.GetDestination());
destination.Assign(
FindClassAndClearException(class_linker, self, destination_desc.c_str(), class_loader));
const std::string& source_desc = GetStringFromId(dex_file, entry.GetSource());
source.Assign(
FindClassAndClearException(class_linker, self, source_desc.c_str(), class_loader));
if (destination == nullptr || source == nullptr) {
// We currently don't use assignability information for unresolved
// types, as the status of the class using unresolved types will be soft
// fail in the vdex.
continue;
}
DCHECK(destination->IsResolved() && source->IsResolved());
if (!destination->IsAssignableFrom(source.Get())) {
*error_msg = "Class " + destination_desc + " not assignable from " + source_desc;
return false;
}
}
}
return true;
}
bool VerifierDeps::VerifyDexFile(Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const DexFileDeps& deps,
Thread* self,
/* out */ std::string* error_msg) const {
return VerifyAssignability(class_loader,
dex_file,
deps.assignable_types_,
self,
error_msg);
}
} // namespace verifier
} // namespace art