blob: 1ba0c73ed018545cf6b3ff2230b6c34304554413 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debugger.h"
#include <sys/uio.h>
#include <set>
#include "class_linker.h"
#include "class_loader.h"
#include "dex_instruction.h"
#if !defined(ART_USE_LLVM_COMPILER)
#include "oat/runtime/context.h" // For VmapTable
#endif
#include "object_utils.h"
#include "safe_map.h"
#include "scoped_thread_list_lock.h"
#include "ScopedLocalRef.h"
#include "ScopedPrimitiveArray.h"
#include "space.h"
#include "stack_indirect_reference_table.h"
#include "thread_list.h"
extern "C" void dlmalloc_walk_heap(void(*)(const void*, size_t, const void*, size_t, void*), void*);
#ifndef HAVE_ANDROID_OS
void dlmalloc_walk_heap(void(*)(const void*, size_t, const void*, size_t, void*), void*) {
// No-op for glibc.
}
#endif
namespace art {
static const size_t kMaxAllocRecordStackDepth = 16; // Max 255.
static const size_t kNumAllocRecords = 512; // Must be power of 2.
static const uintptr_t kInvalidId = 1;
static const Object* kInvalidObject = reinterpret_cast<Object*>(kInvalidId);
class ObjectRegistry {
public:
ObjectRegistry() : lock_("ObjectRegistry lock") {
}
JDWP::ObjectId Add(Object* o) {
if (o == NULL) {
return 0;
}
JDWP::ObjectId id = static_cast<JDWP::ObjectId>(reinterpret_cast<uintptr_t>(o));
MutexLock mu(lock_);
map_.Overwrite(id, o);
return id;
}
void Clear() {
MutexLock mu(lock_);
LOG(DEBUG) << "Debugger has detached; object registry had " << map_.size() << " entries";
map_.clear();
}
bool Contains(JDWP::ObjectId id) {
MutexLock mu(lock_);
return map_.find(id) != map_.end();
}
template<typename T> T Get(JDWP::ObjectId id) {
if (id == 0) {
return NULL;
}
MutexLock mu(lock_);
typedef SafeMap<JDWP::ObjectId, Object*>::iterator It; // C++0x auto
It it = map_.find(id);
return (it != map_.end()) ? reinterpret_cast<T>(it->second) : reinterpret_cast<T>(kInvalidId);
}
void VisitRoots(Heap::RootVisitor* visitor, void* arg) {
MutexLock mu(lock_);
typedef SafeMap<JDWP::ObjectId, Object*>::iterator It; // C++0x auto
for (It it = map_.begin(); it != map_.end(); ++it) {
visitor(it->second, arg);
}
}
private:
Mutex lock_;
SafeMap<JDWP::ObjectId, Object*> map_;
};
struct AllocRecordStackTraceElement {
Method* method;
uintptr_t raw_pc;
int32_t LineNumber() const {
return MethodHelper(method).GetLineNumFromNativePC(raw_pc);
}
};
struct AllocRecord {
Class* type;
size_t byte_count;
uint16_t thin_lock_id;
AllocRecordStackTraceElement stack[kMaxAllocRecordStackDepth]; // Unused entries have NULL method.
size_t GetDepth() {
size_t depth = 0;
while (depth < kMaxAllocRecordStackDepth && stack[depth].method != NULL) {
++depth;
}
return depth;
}
};
struct Breakpoint {
Method* method;
uint32_t dex_pc;
Breakpoint(Method* method, uint32_t dex_pc) : method(method), dex_pc(dex_pc) {}
};
static std::ostream& operator<<(std::ostream& os, const Breakpoint& rhs) {
os << StringPrintf("Breakpoint[%s @%#x]", PrettyMethod(rhs.method).c_str(), rhs.dex_pc);
return os;
}
struct SingleStepControl {
// Are we single-stepping right now?
bool is_active;
Thread* thread;
JDWP::JdwpStepSize step_size;
JDWP::JdwpStepDepth step_depth;
const Method* method;
int32_t line_number; // Or -1 for native methods.
std::set<uint32_t> dex_pcs;
int stack_depth;
};
// JDWP is allowed unless the Zygote forbids it.
static bool gJdwpAllowed = true;
// Was there a -Xrunjdwp or -agentlib:jdwp= argument on the command line?
static bool gJdwpConfigured = false;
// Broken-down JDWP options. (Only valid if IsJdwpConfigured() is true.)
static JDWP::JdwpOptions gJdwpOptions;
// Runtime JDWP state.
static JDWP::JdwpState* gJdwpState = NULL;
static bool gDebuggerConnected; // debugger or DDMS is connected.
static bool gDebuggerActive; // debugger is making requests.
static bool gDisposed; // debugger called VirtualMachine.Dispose, so we should drop the connection.
static bool gDdmThreadNotification = false;
// DDMS GC-related settings.
static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmHpsgWhat;
static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmNhsgWhat;
static ObjectRegistry* gRegistry = NULL;
// Recent allocation tracking.
static Mutex gAllocTrackerLock("AllocTracker lock");
AllocRecord* Dbg::recent_allocation_records_ = NULL; // TODO: CircularBuffer<AllocRecord>
static size_t gAllocRecordHead = 0;
static size_t gAllocRecordCount = 0;
// Breakpoints and single-stepping.
static Mutex gBreakpointsLock("breakpoints lock");
static std::vector<Breakpoint> gBreakpoints;
static SingleStepControl gSingleStepControl;
static bool IsBreakpoint(Method* m, uint32_t dex_pc) {
MutexLock mu(gBreakpointsLock);
for (size_t i = 0; i < gBreakpoints.size(); ++i) {
if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == dex_pc) {
VLOG(jdwp) << "Hit breakpoint #" << i << ": " << gBreakpoints[i];
return true;
}
}
return false;
}
static Array* DecodeArray(JDWP::RefTypeId id, JDWP::JdwpError& status) {
Object* o = gRegistry->Get<Object*>(id);
if (o == NULL || o == kInvalidObject) {
status = JDWP::ERR_INVALID_OBJECT;
return NULL;
}
if (!o->IsArrayInstance()) {
status = JDWP::ERR_INVALID_ARRAY;
return NULL;
}
status = JDWP::ERR_NONE;
return o->AsArray();
}
static Class* DecodeClass(JDWP::RefTypeId id, JDWP::JdwpError& status) {
Object* o = gRegistry->Get<Object*>(id);
if (o == NULL || o == kInvalidObject) {
status = JDWP::ERR_INVALID_OBJECT;
return NULL;
}
if (!o->IsClass()) {
status = JDWP::ERR_INVALID_CLASS;
return NULL;
}
status = JDWP::ERR_NONE;
return o->AsClass();
}
static Thread* DecodeThread(JDWP::ObjectId threadId) {
Object* thread_peer = gRegistry->Get<Object*>(threadId);
if (thread_peer == NULL || thread_peer == kInvalidObject) {
return NULL;
}
return Thread::FromManagedThread(thread_peer);
}
static JDWP::JdwpTag BasicTagFromDescriptor(const char* descriptor) {
// JDWP deliberately uses the descriptor characters' ASCII values for its enum.
// Note that by "basic" we mean that we don't get more specific than JT_OBJECT.
return static_cast<JDWP::JdwpTag>(descriptor[0]);
}
static JDWP::JdwpTag TagFromClass(Class* c) {
CHECK(c != NULL);
if (c->IsArrayClass()) {
return JDWP::JT_ARRAY;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (c->IsStringClass()) {
return JDWP::JT_STRING;
} else if (c->IsClassClass()) {
return JDWP::JT_CLASS_OBJECT;
} else if (class_linker->FindSystemClass("Ljava/lang/Thread;")->IsAssignableFrom(c)) {
return JDWP::JT_THREAD;
} else if (class_linker->FindSystemClass("Ljava/lang/ThreadGroup;")->IsAssignableFrom(c)) {
return JDWP::JT_THREAD_GROUP;
} else if (class_linker->FindSystemClass("Ljava/lang/ClassLoader;")->IsAssignableFrom(c)) {
return JDWP::JT_CLASS_LOADER;
} else {
return JDWP::JT_OBJECT;
}
}
/*
* Objects declared to hold Object might actually hold a more specific
* type. The debugger may take a special interest in these (e.g. it
* wants to display the contents of Strings), so we want to return an
* appropriate tag.
*
* Null objects are tagged JT_OBJECT.
*/
static JDWP::JdwpTag TagFromObject(const Object* o) {
return (o == NULL) ? JDWP::JT_OBJECT : TagFromClass(o->GetClass());
}
static bool IsPrimitiveTag(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
case JDWP::JT_CHAR:
case JDWP::JT_FLOAT:
case JDWP::JT_DOUBLE:
case JDWP::JT_INT:
case JDWP::JT_LONG:
case JDWP::JT_SHORT:
case JDWP::JT_VOID:
return true;
default:
return false;
}
}
/*
* Handle one of the JDWP name/value pairs.
*
* JDWP options are:
* help: if specified, show help message and bail
* transport: may be dt_socket or dt_shmem
* address: for dt_socket, "host:port", or just "port" when listening
* server: if "y", wait for debugger to attach; if "n", attach to debugger
* timeout: how long to wait for debugger to connect / listen
*
* Useful with server=n (these aren't supported yet):
* onthrow=<exception-name>: connect to debugger when exception thrown
* onuncaught=y|n: connect to debugger when uncaught exception thrown
* launch=<command-line>: launch the debugger itself
*
* The "transport" option is required, as is "address" if server=n.
*/
static bool ParseJdwpOption(const std::string& name, const std::string& value) {
if (name == "transport") {
if (value == "dt_socket") {
gJdwpOptions.transport = JDWP::kJdwpTransportSocket;
} else if (value == "dt_android_adb") {
gJdwpOptions.transport = JDWP::kJdwpTransportAndroidAdb;
} else {
LOG(ERROR) << "JDWP transport not supported: " << value;
return false;
}
} else if (name == "server") {
if (value == "n") {
gJdwpOptions.server = false;
} else if (value == "y") {
gJdwpOptions.server = true;
} else {
LOG(ERROR) << "JDWP option 'server' must be 'y' or 'n'";
return false;
}
} else if (name == "suspend") {
if (value == "n") {
gJdwpOptions.suspend = false;
} else if (value == "y") {
gJdwpOptions.suspend = true;
} else {
LOG(ERROR) << "JDWP option 'suspend' must be 'y' or 'n'";
return false;
}
} else if (name == "address") {
/* this is either <port> or <host>:<port> */
std::string port_string;
gJdwpOptions.host.clear();
std::string::size_type colon = value.find(':');
if (colon != std::string::npos) {
gJdwpOptions.host = value.substr(0, colon);
port_string = value.substr(colon + 1);
} else {
port_string = value;
}
if (port_string.empty()) {
LOG(ERROR) << "JDWP address missing port: " << value;
return false;
}
char* end;
uint64_t port = strtoul(port_string.c_str(), &end, 10);
if (*end != '\0' || port > 0xffff) {
LOG(ERROR) << "JDWP address has junk in port field: " << value;
return false;
}
gJdwpOptions.port = port;
} else if (name == "launch" || name == "onthrow" || name == "oncaught" || name == "timeout") {
/* valid but unsupported */
LOG(INFO) << "Ignoring JDWP option '" << name << "'='" << value << "'";
} else {
LOG(INFO) << "Ignoring unrecognized JDWP option '" << name << "'='" << value << "'";
}
return true;
}
/*
* Parse the latter half of a -Xrunjdwp/-agentlib:jdwp= string, e.g.:
* "transport=dt_socket,address=8000,server=y,suspend=n"
*/
bool Dbg::ParseJdwpOptions(const std::string& options) {
VLOG(jdwp) << "ParseJdwpOptions: " << options;
std::vector<std::string> pairs;
Split(options, ',', pairs);
for (size_t i = 0; i < pairs.size(); ++i) {
std::string::size_type equals = pairs[i].find('=');
if (equals == std::string::npos) {
LOG(ERROR) << "Can't parse JDWP option '" << pairs[i] << "' in '" << options << "'";
return false;
}
ParseJdwpOption(pairs[i].substr(0, equals), pairs[i].substr(equals + 1));
}
if (gJdwpOptions.transport == JDWP::kJdwpTransportUnknown) {
LOG(ERROR) << "Must specify JDWP transport: " << options;
}
if (!gJdwpOptions.server && (gJdwpOptions.host.empty() || gJdwpOptions.port == 0)) {
LOG(ERROR) << "Must specify JDWP host and port when server=n: " << options;
return false;
}
gJdwpConfigured = true;
return true;
}
void Dbg::StartJdwp() {
if (!gJdwpAllowed || !IsJdwpConfigured()) {
// No JDWP for you!
return;
}
CHECK(gRegistry == NULL);
gRegistry = new ObjectRegistry;
// Init JDWP if the debugger is enabled. This may connect out to a
// debugger, passively listen for a debugger, or block waiting for a
// debugger.
gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions);
if (gJdwpState == NULL) {
// We probably failed because some other process has the port already, which means that
// if we don't abort the user is likely to think they're talking to us when they're actually
// talking to that other process.
LOG(FATAL) << "Debugger thread failed to initialize";
}
// If a debugger has already attached, send the "welcome" message.
// This may cause us to suspend all threads.
if (gJdwpState->IsActive()) {
//ScopedThreadStateChange tsc(Thread::Current(), kRunnable);
if (!gJdwpState->PostVMStart()) {
LOG(WARNING) << "Failed to post 'start' message to debugger";
}
}
}
void Dbg::StopJdwp() {
delete gJdwpState;
delete gRegistry;
gRegistry = NULL;
}
void Dbg::GcDidFinish() {
if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
LOG(DEBUG) << "Sending heap info to DDM";
DdmSendHeapInfo(gDdmHpifWhen);
}
if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
LOG(DEBUG) << "Dumping heap to DDM";
DdmSendHeapSegments(false);
}
if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
LOG(DEBUG) << "Dumping native heap to DDM";
DdmSendHeapSegments(true);
}
}
void Dbg::SetJdwpAllowed(bool allowed) {
gJdwpAllowed = allowed;
}
DebugInvokeReq* Dbg::GetInvokeReq() {
return Thread::Current()->GetInvokeReq();
}
Thread* Dbg::GetDebugThread() {
return (gJdwpState != NULL) ? gJdwpState->GetDebugThread() : NULL;
}
void Dbg::ClearWaitForEventThread() {
gJdwpState->ClearWaitForEventThread();
}
void Dbg::Connected() {
CHECK(!gDebuggerConnected);
VLOG(jdwp) << "JDWP has attached";
gDebuggerConnected = true;
gDisposed = false;
}
void Dbg::Disposed() {
gDisposed = true;
}
bool Dbg::IsDisposed() {
return gDisposed;
}
static void SetDebuggerUpdatesEnabledCallback(Thread* t, void* user_data) {
t->SetDebuggerUpdatesEnabled(*reinterpret_cast<bool*>(user_data));
}
static void SetDebuggerUpdatesEnabled(bool enabled) {
Runtime* runtime = Runtime::Current();
ScopedThreadListLock thread_list_lock;
runtime->GetThreadList()->ForEach(SetDebuggerUpdatesEnabledCallback, &enabled);
}
void Dbg::GoActive() {
// Enable all debugging features, including scans for breakpoints.
// This is a no-op if we're already active.
// Only called from the JDWP handler thread.
if (gDebuggerActive) {
return;
}
LOG(INFO) << "Debugger is active";
{
// TODO: dalvik only warned if there were breakpoints left over. clear in Dbg::Disconnected?
MutexLock mu(gBreakpointsLock);
CHECK_EQ(gBreakpoints.size(), 0U);
}
gDebuggerActive = true;
SetDebuggerUpdatesEnabled(true);
}
void Dbg::Disconnected() {
CHECK(gDebuggerConnected);
LOG(INFO) << "Debugger is no longer active";
gDebuggerActive = false;
SetDebuggerUpdatesEnabled(false);
gRegistry->Clear();
gDebuggerConnected = false;
}
bool Dbg::IsDebuggerActive() {
return gDebuggerActive;
}
bool Dbg::IsJdwpConfigured() {
return gJdwpConfigured;
}
int64_t Dbg::LastDebuggerActivity() {
return gJdwpState->LastDebuggerActivity();
}
int Dbg::ThreadRunning() {
return static_cast<int>(Thread::Current()->SetState(kRunnable));
}
int Dbg::ThreadWaiting() {
return static_cast<int>(Thread::Current()->SetState(kVmWait));
}
int Dbg::ThreadContinuing(int new_state) {
return static_cast<int>(Thread::Current()->SetState(static_cast<ThreadState>(new_state)));
}
void Dbg::UndoDebuggerSuspensions() {
Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions();
}
void Dbg::Exit(int status) {
exit(status); // This is all dalvik did.
}
void Dbg::VisitRoots(Heap::RootVisitor* visitor, void* arg) {
if (gRegistry != NULL) {
gRegistry->VisitRoots(visitor, arg);
}
}
std::string Dbg::GetClassName(JDWP::RefTypeId classId) {
Object* o = gRegistry->Get<Object*>(classId);
if (o == NULL) {
return "NULL";
}
if (o == kInvalidObject) {
return StringPrintf("invalid object %p", reinterpret_cast<void*>(classId));
}
if (!o->IsClass()) {
return StringPrintf("non-class %p", o); // This is only used for debugging output anyway.
}
return DescriptorToName(ClassHelper(o->AsClass()).GetDescriptor());
}
JDWP::JdwpError Dbg::GetClassObject(JDWP::RefTypeId id, JDWP::ObjectId& classObjectId) {
JDWP::JdwpError status;
Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
classObjectId = gRegistry->Add(c);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSuperclass(JDWP::RefTypeId id, JDWP::RefTypeId& superclassId) {
JDWP::JdwpError status;
Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
if (c->IsInterface()) {
// http://code.google.com/p/android/issues/detail?id=20856
superclassId = NULL;
} else {
superclassId = gRegistry->Add(c->GetSuperClass());
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetClassLoader(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
Object* o = gRegistry->Get<Object*>(id);
if (o == NULL || o == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
expandBufAddObjectId(pReply, gRegistry->Add(o->GetClass()->GetClassLoader()));
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetModifiers(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
uint32_t access_flags = c->GetAccessFlags() & kAccJavaFlagsMask;
// Set ACC_SUPER; dex files don't contain this flag, but all classes are supposed to have it set.
// Class.getModifiers doesn't return it, but JDWP does, so we set it here.
access_flags |= kAccSuper;
expandBufAdd4BE(pReply, access_flags);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetReflectedType(JDWP::RefTypeId classId, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
expandBufAdd1(pReply, c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS);
expandBufAddRefTypeId(pReply, classId);
return JDWP::ERR_NONE;
}
void Dbg::GetClassList(std::vector<JDWP::RefTypeId>& classes) {
// Get the complete list of reference classes (i.e. all classes except
// the primitive types).
// Returns a newly-allocated buffer full of RefTypeId values.
struct ClassListCreator {
explicit ClassListCreator(std::vector<JDWP::RefTypeId>& classes) : classes(classes) {
}
static bool Visit(Class* c, void* arg) {
return reinterpret_cast<ClassListCreator*>(arg)->Visit(c);
}
bool Visit(Class* c) {
if (!c->IsPrimitive()) {
classes.push_back(static_cast<JDWP::RefTypeId>(gRegistry->Add(c)));
}
return true;
}
std::vector<JDWP::RefTypeId>& classes;
};
ClassListCreator clc(classes);
Runtime::Current()->GetClassLinker()->VisitClasses(ClassListCreator::Visit, &clc);
}
JDWP::JdwpError Dbg::GetClassInfo(JDWP::RefTypeId classId, JDWP::JdwpTypeTag* pTypeTag, uint32_t* pStatus, std::string* pDescriptor) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
if (c->IsArrayClass()) {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED;
*pTypeTag = JDWP::TT_ARRAY;
} else {
if (c->IsErroneous()) {
*pStatus = JDWP::CS_ERROR;
} else {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED | JDWP::CS_INITIALIZED;
}
*pTypeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
}
if (pDescriptor != NULL) {
*pDescriptor = ClassHelper(c).GetDescriptor();
}
return JDWP::ERR_NONE;
}
void Dbg::FindLoadedClassBySignature(const char* descriptor, std::vector<JDWP::RefTypeId>& ids) {
std::vector<Class*> classes;
Runtime::Current()->GetClassLinker()->LookupClasses(descriptor, classes);
ids.clear();
for (size_t i = 0; i < classes.size(); ++i) {
ids.push_back(gRegistry->Add(classes[i]));
}
}
JDWP::JdwpError Dbg::GetReferenceType(JDWP::ObjectId objectId, JDWP::ExpandBuf* pReply) {
Object* o = gRegistry->Get<Object*>(objectId);
if (o == NULL || o == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
JDWP::JdwpTypeTag type_tag;
if (o->GetClass()->IsArrayClass()) {
type_tag = JDWP::TT_ARRAY;
} else if (o->GetClass()->IsInterface()) {
type_tag = JDWP::TT_INTERFACE;
} else {
type_tag = JDWP::TT_CLASS;
}
JDWP::RefTypeId type_id = gRegistry->Add(o->GetClass());
expandBufAdd1(pReply, type_tag);
expandBufAddRefTypeId(pReply, type_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSignature(JDWP::RefTypeId classId, std::string& signature) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
signature = ClassHelper(c).GetDescriptor();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSourceFile(JDWP::RefTypeId classId, std::string& result) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
result = ClassHelper(c).GetSourceFile();
return JDWP::ERR_NONE;
}
uint8_t Dbg::GetObjectTag(JDWP::ObjectId objectId) {
Object* o = gRegistry->Get<Object*>(objectId);
return TagFromObject(o);
}
size_t Dbg::GetTagWidth(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_VOID:
return 0;
case JDWP::JT_BYTE:
case JDWP::JT_BOOLEAN:
return 1;
case JDWP::JT_CHAR:
case JDWP::JT_SHORT:
return 2;
case JDWP::JT_FLOAT:
case JDWP::JT_INT:
return 4;
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return sizeof(JDWP::ObjectId);
case JDWP::JT_DOUBLE:
case JDWP::JT_LONG:
return 8;
default:
LOG(FATAL) << "Unknown tag " << tag;
return -1;
}
}
JDWP::JdwpError Dbg::GetArrayLength(JDWP::ObjectId arrayId, int& length) {
JDWP::JdwpError status;
Array* a = DecodeArray(arrayId, status);
if (a == NULL) {
return status;
}
length = a->GetLength();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputArray(JDWP::ObjectId arrayId, int offset, int count, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Array* a = DecodeArray(arrayId, status);
if (a == NULL) {
return status;
}
if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
std::string descriptor(ClassHelper(a->GetClass()).GetDescriptor());
JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor.c_str() + 1);
expandBufAdd1(pReply, tag);
expandBufAdd4BE(pReply, count);
if (IsPrimitiveTag(tag)) {
size_t width = GetTagWidth(tag);
uint8_t* dst = expandBufAddSpace(pReply, count * width);
if (width == 8) {
const uint64_t* src8 = reinterpret_cast<uint64_t*>(a->GetRawData(sizeof(uint64_t)));
for (int i = 0; i < count; ++i) JDWP::Write8BE(&dst, src8[offset + i]);
} else if (width == 4) {
const uint32_t* src4 = reinterpret_cast<uint32_t*>(a->GetRawData(sizeof(uint32_t)));
for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[offset + i]);
} else if (width == 2) {
const uint16_t* src2 = reinterpret_cast<uint16_t*>(a->GetRawData(sizeof(uint16_t)));
for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[offset + i]);
} else {
const uint8_t* src = reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint8_t)));
memcpy(dst, &src[offset * width], count * width);
}
} else {
ObjectArray<Object>* oa = a->AsObjectArray<Object>();
for (int i = 0; i < count; ++i) {
Object* element = oa->Get(offset + i);
JDWP::JdwpTag specific_tag = (element != NULL) ? TagFromObject(element) : tag;
expandBufAdd1(pReply, specific_tag);
expandBufAddObjectId(pReply, gRegistry->Add(element));
}
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::SetArrayElements(JDWP::ObjectId arrayId, int offset, int count, const uint8_t* src) {
JDWP::JdwpError status;
Array* a = DecodeArray(arrayId, status);
if (a == NULL) {
return status;
}
if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
std::string descriptor(ClassHelper(a->GetClass()).GetDescriptor());
JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor.c_str() + 1);
if (IsPrimitiveTag(tag)) {
size_t width = GetTagWidth(tag);
if (width == 8) {
uint8_t* dst = &(reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint64_t)))[offset * width]);
for (int i = 0; i < count; ++i) {
// Handle potentially non-aligned memory access one byte at a time for ARM's benefit.
uint64_t value;
for (size_t j = 0; j < sizeof(uint64_t); ++j) reinterpret_cast<uint8_t*>(&value)[j] = src[j];
src += sizeof(uint64_t);
JDWP::Write8BE(&dst, value);
}
} else if (width == 4) {
uint8_t* dst = &(reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint32_t)))[offset * width]);
const uint32_t* src4 = reinterpret_cast<const uint32_t*>(src);
for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[i]);
} else if (width == 2) {
uint8_t* dst = &(reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint16_t)))[offset * width]);
const uint16_t* src2 = reinterpret_cast<const uint16_t*>(src);
for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[i]);
} else {
uint8_t* dst = &(reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint8_t)))[offset * width]);
memcpy(&dst[offset * width], src, count * width);
}
} else {
ObjectArray<Object>* oa = a->AsObjectArray<Object>();
for (int i = 0; i < count; ++i) {
JDWP::ObjectId id = JDWP::ReadObjectId(&src);
Object* o = gRegistry->Get<Object*>(id);
if (o == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
oa->Set(offset + i, o);
}
}
return JDWP::ERR_NONE;
}
JDWP::ObjectId Dbg::CreateString(const std::string& str) {
return gRegistry->Add(String::AllocFromModifiedUtf8(str.c_str()));
}
JDWP::JdwpError Dbg::CreateObject(JDWP::RefTypeId classId, JDWP::ObjectId& new_object) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
new_object = gRegistry->Add(c->AllocObject());
return JDWP::ERR_NONE;
}
/*
* Used by Eclipse's "Display" view to evaluate "new byte[5]" to get "(byte[]) [0, 0, 0, 0, 0]".
*/
JDWP::JdwpError Dbg::CreateArrayObject(JDWP::RefTypeId arrayClassId, uint32_t length, JDWP::ObjectId& new_array) {
JDWP::JdwpError status;
Class* c = DecodeClass(arrayClassId, status);
if (c == NULL) {
return status;
}
new_array = gRegistry->Add(Array::Alloc(c, length));
return JDWP::ERR_NONE;
}
bool Dbg::MatchType(JDWP::RefTypeId instClassId, JDWP::RefTypeId classId) {
JDWP::JdwpError status;
Class* c1 = DecodeClass(instClassId, status);
CHECK(c1 != NULL);
Class* c2 = DecodeClass(classId, status);
CHECK(c2 != NULL);
return c1->IsAssignableFrom(c2);
}
static JDWP::FieldId ToFieldId(const Field* f) {
#ifdef MOVING_GARBAGE_COLLECTOR
UNIMPLEMENTED(FATAL);
#else
return static_cast<JDWP::FieldId>(reinterpret_cast<uintptr_t>(f));
#endif
}
static JDWP::MethodId ToMethodId(const Method* m) {
#ifdef MOVING_GARBAGE_COLLECTOR
UNIMPLEMENTED(FATAL);
#else
return static_cast<JDWP::MethodId>(reinterpret_cast<uintptr_t>(m));
#endif
}
static Field* FromFieldId(JDWP::FieldId fid) {
#ifdef MOVING_GARBAGE_COLLECTOR
UNIMPLEMENTED(FATAL);
#else
return reinterpret_cast<Field*>(static_cast<uintptr_t>(fid));
#endif
}
static Method* FromMethodId(JDWP::MethodId mid) {
#ifdef MOVING_GARBAGE_COLLECTOR
UNIMPLEMENTED(FATAL);
#else
return reinterpret_cast<Method*>(static_cast<uintptr_t>(mid));
#endif
}
static void SetLocation(JDWP::JdwpLocation& location, Method* m, uintptr_t native_pc) {
if (m == NULL) {
memset(&location, 0, sizeof(location));
} else {
Class* c = m->GetDeclaringClass();
location.typeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
location.classId = gRegistry->Add(c);
location.methodId = ToMethodId(m);
location.dex_pc = m->IsNative() ? -1 : m->ToDexPC(native_pc);
}
}
std::string Dbg::GetMethodName(JDWP::RefTypeId, JDWP::MethodId methodId) {
Method* m = FromMethodId(methodId);
return MethodHelper(m).GetName();
}
/*
* Augment the access flags for synthetic methods and fields by setting
* the (as described by the spec) "0xf0000000 bit". Also, strip out any
* flags not specified by the Java programming language.
*/
static uint32_t MangleAccessFlags(uint32_t accessFlags) {
accessFlags &= kAccJavaFlagsMask;
if ((accessFlags & kAccSynthetic) != 0) {
accessFlags |= 0xf0000000;
}
return accessFlags;
}
static const uint16_t kEclipseWorkaroundSlot = 1000;
/*
* Eclipse appears to expect that the "this" reference is in slot zero.
* If it's not, the "variables" display will show two copies of "this",
* possibly because it gets "this" from SF.ThisObject and then displays
* all locals with nonzero slot numbers.
*
* So, we remap the item in slot 0 to 1000, and remap "this" to zero. On
* SF.GetValues / SF.SetValues we map them back.
*
* TODO: jdb uses the value to determine whether a variable is a local or an argument,
* by checking whether it's less than the number of arguments. To make that work, we'd
* have to "mangle" all the arguments to come first, not just the implicit argument 'this'.
*/
static uint16_t MangleSlot(uint16_t slot, const char* name) {
uint16_t newSlot = slot;
if (strcmp(name, "this") == 0) {
newSlot = 0;
} else if (slot == 0) {
newSlot = kEclipseWorkaroundSlot;
}
return newSlot;
}
static uint16_t DemangleSlot(uint16_t slot, Method* m) {
if (slot == kEclipseWorkaroundSlot) {
return 0;
} else if (slot == 0) {
const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
CHECK(code_item != NULL);
return code_item->registers_size_ - code_item->ins_size_;
}
return slot;
}
JDWP::JdwpError Dbg::OutputDeclaredFields(JDWP::RefTypeId classId, bool with_generic, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
size_t instance_field_count = c->NumInstanceFields();
size_t static_field_count = c->NumStaticFields();
expandBufAdd4BE(pReply, instance_field_count + static_field_count);
for (size_t i = 0; i < instance_field_count + static_field_count; ++i) {
Field* f = (i < instance_field_count) ? c->GetInstanceField(i) : c->GetStaticField(i - instance_field_count);
FieldHelper fh(f);
expandBufAddFieldId(pReply, ToFieldId(f));
expandBufAddUtf8String(pReply, fh.GetName());
expandBufAddUtf8String(pReply, fh.GetTypeDescriptor());
if (with_generic) {
static const char genericSignature[1] = "";
expandBufAddUtf8String(pReply, genericSignature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(f->GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredMethods(JDWP::RefTypeId classId, bool with_generic, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
size_t direct_method_count = c->NumDirectMethods();
size_t virtual_method_count = c->NumVirtualMethods();
expandBufAdd4BE(pReply, direct_method_count + virtual_method_count);
for (size_t i = 0; i < direct_method_count + virtual_method_count; ++i) {
Method* m = (i < direct_method_count) ? c->GetDirectMethod(i) : c->GetVirtualMethod(i - direct_method_count);
MethodHelper mh(m);
expandBufAddMethodId(pReply, ToMethodId(m));
expandBufAddUtf8String(pReply, mh.GetName());
expandBufAddUtf8String(pReply, mh.GetSignature());
if (with_generic) {
static const char genericSignature[1] = "";
expandBufAddUtf8String(pReply, genericSignature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(m->GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredInterfaces(JDWP::RefTypeId classId, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
ClassHelper kh(c);
size_t interface_count = kh.NumInterfaces();
expandBufAdd4BE(pReply, interface_count);
for (size_t i = 0; i < interface_count; ++i) {
expandBufAddRefTypeId(pReply, gRegistry->Add(kh.GetInterface(i)));
}
return JDWP::ERR_NONE;
}
void Dbg::OutputLineTable(JDWP::RefTypeId, JDWP::MethodId methodId, JDWP::ExpandBuf* pReply) {
struct DebugCallbackContext {
int numItems;
JDWP::ExpandBuf* pReply;
static bool Callback(void* context, uint32_t address, uint32_t line_number) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
expandBufAdd8BE(pContext->pReply, address);
expandBufAdd4BE(pContext->pReply, line_number);
pContext->numItems++;
return true;
}
};
Method* m = FromMethodId(methodId);
MethodHelper mh(m);
uint64_t start, end;
if (m->IsNative()) {
start = -1;
end = -1;
} else {
start = 0;
// TODO: what are the units supposed to be? *2?
end = mh.GetCodeItem()->insns_size_in_code_units_;
}
expandBufAdd8BE(pReply, start);
expandBufAdd8BE(pReply, end);
// Add numLines later
size_t numLinesOffset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.numItems = 0;
context.pReply = pReply;
mh.GetDexFile().DecodeDebugInfo(mh.GetCodeItem(), m->IsStatic(), m->GetDexMethodIndex(),
DebugCallbackContext::Callback, NULL, &context);
JDWP::Set4BE(expandBufGetBuffer(pReply) + numLinesOffset, context.numItems);
}
void Dbg::OutputVariableTable(JDWP::RefTypeId, JDWP::MethodId methodId, bool with_generic, JDWP::ExpandBuf* pReply) {
struct DebugCallbackContext {
JDWP::ExpandBuf* pReply;
size_t variable_count;
bool with_generic;
static void Callback(void* context, uint16_t slot, uint32_t startAddress, uint32_t endAddress, const char* name, const char* descriptor, const char* signature) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
VLOG(jdwp) << StringPrintf(" %2zd: %d(%d) '%s' '%s' '%s' actual slot=%d mangled slot=%d", pContext->variable_count, startAddress, endAddress - startAddress, name, descriptor, signature, slot, MangleSlot(slot, name));
slot = MangleSlot(slot, name);
expandBufAdd8BE(pContext->pReply, startAddress);
expandBufAddUtf8String(pContext->pReply, name);
expandBufAddUtf8String(pContext->pReply, descriptor);
if (pContext->with_generic) {
expandBufAddUtf8String(pContext->pReply, signature);
}
expandBufAdd4BE(pContext->pReply, endAddress - startAddress);
expandBufAdd4BE(pContext->pReply, slot);
++pContext->variable_count;
}
};
Method* m = FromMethodId(methodId);
MethodHelper mh(m);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
// arg_count considers doubles and longs to take 2 units.
// variable_count considers everything to take 1 unit.
std::string shorty(mh.GetShorty());
expandBufAdd4BE(pReply, m->NumArgRegisters(shorty));
// We don't know the total number of variables yet, so leave a blank and update it later.
size_t variable_count_offset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.pReply = pReply;
context.variable_count = 0;
context.with_generic = with_generic;
mh.GetDexFile().DecodeDebugInfo(code_item, m->IsStatic(), m->GetDexMethodIndex(), NULL,
DebugCallbackContext::Callback, &context);
JDWP::Set4BE(expandBufGetBuffer(pReply) + variable_count_offset, context.variable_count);
}
JDWP::JdwpTag Dbg::GetFieldBasicTag(JDWP::FieldId fieldId) {
return BasicTagFromDescriptor(FieldHelper(FromFieldId(fieldId)).GetTypeDescriptor());
}
JDWP::JdwpTag Dbg::GetStaticFieldBasicTag(JDWP::FieldId fieldId) {
return BasicTagFromDescriptor(FieldHelper(FromFieldId(fieldId)).GetTypeDescriptor());
}
static JDWP::JdwpError GetFieldValueImpl(JDWP::RefTypeId refTypeId, JDWP::ObjectId objectId, JDWP::FieldId fieldId, JDWP::ExpandBuf* pReply, bool is_static) {
JDWP::JdwpError status;
Class* c = DecodeClass(refTypeId, status);
if (refTypeId != 0 && c == NULL) {
return status;
}
Object* o = gRegistry->Get<Object*>(objectId);
if ((!is_static && o == NULL) || o == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
Field* f = FromFieldId(fieldId);
Class* receiver_class = c;
if (receiver_class == NULL && o != NULL) {
receiver_class = o->GetClass();
}
// TODO: should we give up now if receiver_class is NULL?
if (receiver_class != NULL && !f->GetDeclaringClass()->IsAssignableFrom(receiver_class)) {
LOG(INFO) << "ERR_INVALID_FIELDID: " << PrettyField(f) << " " << PrettyClass(receiver_class);
return JDWP::ERR_INVALID_FIELDID;
}
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f);
o = NULL;
}
}
JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor());
if (IsPrimitiveTag(tag)) {
expandBufAdd1(pReply, tag);
if (tag == JDWP::JT_BOOLEAN || tag == JDWP::JT_BYTE) {
expandBufAdd1(pReply, f->Get32(o));
} else if (tag == JDWP::JT_CHAR || tag == JDWP::JT_SHORT) {
expandBufAdd2BE(pReply, f->Get32(o));
} else if (tag == JDWP::JT_FLOAT || tag == JDWP::JT_INT) {
expandBufAdd4BE(pReply, f->Get32(o));
} else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
expandBufAdd8BE(pReply, f->Get64(o));
} else {
LOG(FATAL) << "Unknown tag: " << tag;
}
} else {
Object* value = f->GetObject(o);
expandBufAdd1(pReply, TagFromObject(value));
expandBufAddObjectId(pReply, gRegistry->Add(value));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetFieldValue(JDWP::ObjectId objectId, JDWP::FieldId fieldId, JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(0, objectId, fieldId, pReply, false);
}
JDWP::JdwpError Dbg::GetStaticFieldValue(JDWP::RefTypeId refTypeId, JDWP::FieldId fieldId, JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(refTypeId, 0, fieldId, pReply, true);
}
static JDWP::JdwpError SetFieldValueImpl(JDWP::ObjectId objectId, JDWP::FieldId fieldId, uint64_t value, int width, bool is_static) {
Object* o = gRegistry->Get<Object*>(objectId);
if ((!is_static && o == NULL) || o == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
Field* f = FromFieldId(fieldId);
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f);
o = NULL;
}
}
JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor());
if (IsPrimitiveTag(tag)) {
if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
CHECK_EQ(width, 8);
f->Set64(o, value);
} else {
CHECK_LE(width, 4);
f->Set32(o, value);
}
} else {
Object* v = gRegistry->Get<Object*>(value);
if (v == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
if (v != NULL) {
Class* field_type = FieldHelper(f).GetType();
if (!field_type->IsAssignableFrom(v->GetClass())) {
return JDWP::ERR_INVALID_OBJECT;
}
}
f->SetObject(o, v);
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::SetFieldValue(JDWP::ObjectId objectId, JDWP::FieldId fieldId, uint64_t value, int width) {
return SetFieldValueImpl(objectId, fieldId, value, width, false);
}
JDWP::JdwpError Dbg::SetStaticFieldValue(JDWP::FieldId fieldId, uint64_t value, int width) {
return SetFieldValueImpl(0, fieldId, value, width, true);
}
std::string Dbg::StringToUtf8(JDWP::ObjectId strId) {
String* s = gRegistry->Get<String*>(strId);
return s->ToModifiedUtf8();
}
bool Dbg::GetThreadName(JDWP::ObjectId threadId, std::string& name) {
ScopedThreadListLock thread_list_lock;
Thread* thread = DecodeThread(threadId);
if (thread == NULL) {
return false;
}
thread->GetThreadName(name);
return true;
}
JDWP::JdwpError Dbg::GetThreadGroup(JDWP::ObjectId threadId, JDWP::ExpandBuf* pReply) {
Object* thread = gRegistry->Get<Object*>(threadId);
if (thread == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
// Okay, so it's an object, but is it actually a thread?
if (DecodeThread(threadId) == NULL) {
return JDWP::ERR_INVALID_THREAD;
}
Class* c = Runtime::Current()->GetClassLinker()->FindSystemClass("Ljava/lang/Thread;");
CHECK(c != NULL);
Field* f = c->FindInstanceField("group", "Ljava/lang/ThreadGroup;");
CHECK(f != NULL);
Object* group = f->GetObject(thread);
CHECK(group != NULL);
JDWP::ObjectId thread_group_id = gRegistry->Add(group);
expandBufAddObjectId(pReply, thread_group_id);
return JDWP::ERR_NONE;
}
std::string Dbg::GetThreadGroupName(JDWP::ObjectId threadGroupId) {
Object* thread_group = gRegistry->Get<Object*>(threadGroupId);
CHECK(thread_group != NULL);
Class* c = Runtime::Current()->GetClassLinker()->FindSystemClass("Ljava/lang/ThreadGroup;");
CHECK(c != NULL);
Field* f = c->FindInstanceField("name", "Ljava/lang/String;");
CHECK(f != NULL);
String* s = reinterpret_cast<String*>(f->GetObject(thread_group));
return s->ToModifiedUtf8();
}
JDWP::ObjectId Dbg::GetThreadGroupParent(JDWP::ObjectId threadGroupId) {
Object* thread_group = gRegistry->Get<Object*>(threadGroupId);
CHECK(thread_group != NULL);
Class* c = Runtime::Current()->GetClassLinker()->FindSystemClass("Ljava/lang/ThreadGroup;");
CHECK(c != NULL);
Field* f = c->FindInstanceField("parent", "Ljava/lang/ThreadGroup;");
CHECK(f != NULL);
Object* parent = f->GetObject(thread_group);
return gRegistry->Add(parent);
}
JDWP::ObjectId Dbg::GetSystemThreadGroupId() {
return gRegistry->Add(Thread::GetSystemThreadGroup());
}
JDWP::ObjectId Dbg::GetMainThreadGroupId() {
return gRegistry->Add(Thread::GetMainThreadGroup());
}
bool Dbg::GetThreadStatus(JDWP::ObjectId threadId, JDWP::JdwpThreadStatus* pThreadStatus, JDWP::JdwpSuspendStatus* pSuspendStatus) {
ScopedThreadListLock thread_list_lock;
Thread* thread = DecodeThread(threadId);
if (thread == NULL) {
return false;
}
// TODO: if we're in Thread.sleep(long), we should return TS_SLEEPING,
// even if it's implemented using Object.wait(long).
switch (thread->GetState()) {
case kTerminated: *pThreadStatus = JDWP::TS_ZOMBIE; break;
case kRunnable: *pThreadStatus = JDWP::TS_RUNNING; break;
case kTimedWaiting: *pThreadStatus = JDWP::TS_WAIT; break;
case kBlocked: *pThreadStatus = JDWP::TS_MONITOR; break;
case kWaiting: *pThreadStatus = JDWP::TS_WAIT; break;
case kStarting: *pThreadStatus = JDWP::TS_ZOMBIE; break;
case kNative: *pThreadStatus = JDWP::TS_RUNNING; break;
case kVmWait: *pThreadStatus = JDWP::TS_WAIT; break;
case kSuspended: *pThreadStatus = JDWP::TS_RUNNING; break;
// Don't add a 'default' here so the compiler can spot incompatible enum changes.
}
*pSuspendStatus = (thread->IsSuspended() ? JDWP::SUSPEND_STATUS_SUSPENDED : JDWP::SUSPEND_STATUS_NOT_SUSPENDED);
return true;
}
JDWP::JdwpError Dbg::GetThreadSuspendCount(JDWP::ObjectId threadId, JDWP::ExpandBuf* pReply) {
Thread* thread = DecodeThread(threadId);
if (thread == NULL) {
return JDWP::ERR_INVALID_THREAD;
}
expandBufAdd4BE(pReply, thread->GetSuspendCount());
return JDWP::ERR_NONE;
}
bool Dbg::ThreadExists(JDWP::ObjectId threadId) {
return DecodeThread(threadId) != NULL;
}
bool Dbg::IsSuspended(JDWP::ObjectId threadId) {
return DecodeThread(threadId)->IsSuspended();
}
void Dbg::GetThreadGroupThreadsImpl(Object* thread_group, JDWP::ObjectId** ppThreadIds, uint32_t* pThreadCount) {
struct ThreadListVisitor {
static void Visit(Thread* t, void* arg) {
reinterpret_cast<ThreadListVisitor*>(arg)->Visit(t);
}
void Visit(Thread* t) {
if (t == Dbg::GetDebugThread()) {
// Skip the JDWP thread. Some debuggers get bent out of shape when they can't suspend and
// query all threads, so it's easier if we just don't tell them about this thread.
return;
}
if (thread_group == NULL || t->GetThreadGroup() == thread_group) {
threads.push_back(gRegistry->Add(t->GetPeer()));
}
}
Object* thread_group;
std::vector<JDWP::ObjectId> threads;
};
ThreadListVisitor tlv;
tlv.thread_group = thread_group;
{
ScopedThreadListLock thread_list_lock;
Runtime::Current()->GetThreadList()->ForEach(ThreadListVisitor::Visit, &tlv);
}
*pThreadCount = tlv.threads.size();
if (*pThreadCount == 0) {
*ppThreadIds = NULL;
} else {
*ppThreadIds = new JDWP::ObjectId[*pThreadCount];
for (size_t i = 0; i < *pThreadCount; ++i) {
(*ppThreadIds)[i] = tlv.threads[i];
}
}
}
void Dbg::GetThreadGroupThreads(JDWP::ObjectId threadGroupId, JDWP::ObjectId** ppThreadIds, uint32_t* pThreadCount) {
GetThreadGroupThreadsImpl(gRegistry->Get<Object*>(threadGroupId), ppThreadIds, pThreadCount);
}
void Dbg::GetAllThreads(JDWP::ObjectId** ppThreadIds, uint32_t* pThreadCount) {
GetThreadGroupThreadsImpl(NULL, ppThreadIds, pThreadCount);
}
static int GetStackDepth(Thread* thread) {
struct CountStackDepthVisitor : public Thread::StackVisitor {
CountStackDepthVisitor() : depth(0) {}
bool VisitFrame(const Frame& f, uintptr_t) {
if (f.HasMethod()) {
++depth;
}
return true;
}
size_t depth;
};
CountStackDepthVisitor visitor;
thread->WalkStack(&visitor);
return visitor.depth;
}
int Dbg::GetThreadFrameCount(JDWP::ObjectId threadId) {
ScopedThreadListLock thread_list_lock;
return GetStackDepth(DecodeThread(threadId));
}
void Dbg::GetThreadFrame(JDWP::ObjectId threadId, int desired_frame_number, JDWP::FrameId* pFrameId, JDWP::JdwpLocation* pLoc) {
ScopedThreadListLock thread_list_lock;
struct GetFrameVisitor : public Thread::StackVisitor {
GetFrameVisitor(int desired_frame_number, JDWP::FrameId* pFrameId, JDWP::JdwpLocation* pLoc)
: depth(0), desired_frame_number(desired_frame_number), pFrameId(pFrameId), pLoc(pLoc) {
}
bool VisitFrame(const Frame& f, uintptr_t pc) {
if (!f.HasMethod()) {
return true; // The debugger can't do anything useful with a frame that has no Method*.
}
if (depth == desired_frame_number) {
*pFrameId = reinterpret_cast<JDWP::FrameId>(f.GetSP());
SetLocation(*pLoc, f.GetMethod(), pc);
return false;
}
++depth;
return true;
}
int depth;
int desired_frame_number;
JDWP::FrameId* pFrameId;
JDWP::JdwpLocation* pLoc;
};
GetFrameVisitor visitor(desired_frame_number, pFrameId, pLoc);
visitor.desired_frame_number = desired_frame_number;
DecodeThread(threadId)->WalkStack(&visitor);
}
JDWP::ObjectId Dbg::GetThreadSelfId() {
return gRegistry->Add(Thread::Current()->GetPeer());
}
void Dbg::SuspendVM() {
ScopedThreadStateChange tsc(Thread::Current(), kRunnable); // TODO: do we really want to change back? should the JDWP thread be Runnable usually?
Runtime::Current()->GetThreadList()->SuspendAll(true);
}
void Dbg::ResumeVM() {
Runtime::Current()->GetThreadList()->ResumeAll(true);
}
void Dbg::SuspendThread(JDWP::ObjectId threadId) {
Object* peer = gRegistry->Get<Object*>(threadId);
ScopedThreadListLock thread_list_lock;
Thread* thread = Thread::FromManagedThread(peer);
if (thread == NULL) {
LOG(WARNING) << "No such thread for suspend: " << peer;
return;
}
Runtime::Current()->GetThreadList()->Suspend(thread, true);
}
void Dbg::ResumeThread(JDWP::ObjectId threadId) {
Object* peer = gRegistry->Get<Object*>(threadId);
ScopedThreadListLock thread_list_lock;
Thread* thread = Thread::FromManagedThread(peer);
if (thread == NULL) {
LOG(WARNING) << "No such thread for resume: " << peer;
return;
}
Runtime::Current()->GetThreadList()->Resume(thread, true);
}
void Dbg::SuspendSelf() {
Runtime::Current()->GetThreadList()->SuspendSelfForDebugger();
}
static Object* GetThis(Frame& f) {
Method* m = f.GetMethod();
Object* o = NULL;
if (!m->IsNative() && !m->IsStatic()) {
uint16_t reg = DemangleSlot(0, m);
o = reinterpret_cast<Object*>(f.GetVReg(m, reg));
}
return o;
}
void Dbg::GetThisObject(JDWP::FrameId frameId, JDWP::ObjectId* pThisId) {
Method** sp = reinterpret_cast<Method**>(frameId);
Frame f(sp);
Object* o = GetThis(f);
*pThisId = gRegistry->Add(o);
}
void Dbg::GetLocalValue(JDWP::ObjectId /*threadId*/, JDWP::FrameId frameId, int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width) {
Method** sp = reinterpret_cast<Method**>(frameId);
Frame f(sp);
Method* m = f.GetMethod();
uint16_t reg = DemangleSlot(slot, m);
#if defined(ART_USE_LLVM_COMPILER)
UNIMPLEMENTED(FATAL);
#else
const VmapTable vmap_table(m->GetVmapTableRaw());
uint32_t vmap_offset;
if (vmap_table.IsInContext(reg, vmap_offset)) {
UNIMPLEMENTED(FATAL) << "Don't know how to pull locals from callee save frames: " << vmap_offset;
}
#endif
// TODO: check that the tag is compatible with the actual type of the slot!
switch (tag) {
case JDWP::JT_BOOLEAN:
{
CHECK_EQ(width, 1U);
uint32_t intVal = f.GetVReg(m, reg);
VLOG(jdwp) << "get boolean local " << reg << " = " << intVal;
JDWP::Set1(buf+1, intVal != 0);
}
break;
case JDWP::JT_BYTE:
{
CHECK_EQ(width, 1U);
uint32_t intVal = f.GetVReg(m, reg);
VLOG(jdwp) << "get byte local " << reg << " = " << intVal;
JDWP::Set1(buf+1, intVal);
}
break;
case JDWP::JT_SHORT:
case JDWP::JT_CHAR:
{
CHECK_EQ(width, 2U);
uint32_t intVal = f.GetVReg(m, reg);
VLOG(jdwp) << "get short/char local " << reg << " = " << intVal;
JDWP::Set2BE(buf+1, intVal);
}
break;
case JDWP::JT_INT:
case JDWP::JT_FLOAT:
{
CHECK_EQ(width, 4U);
uint32_t intVal = f.GetVReg(m, reg);
VLOG(jdwp) << "get int/float local " << reg << " = " << intVal;
JDWP::Set4BE(buf+1, intVal);
}
break;
case JDWP::JT_ARRAY:
{
CHECK_EQ(width, sizeof(JDWP::ObjectId));
Object* o = reinterpret_cast<Object*>(f.GetVReg(m, reg));
VLOG(jdwp) << "get array local " << reg << " = " << o;
if (!Runtime::Current()->GetHeap()->IsHeapAddress(o)) {
LOG(FATAL) << "Register " << reg << " expected to hold array: " << o;
}
JDWP::SetObjectId(buf+1, gRegistry->Add(o));
}
break;
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
{
CHECK_EQ(width, sizeof(JDWP::ObjectId));
Object* o = reinterpret_cast<Object*>(f.GetVReg(m, reg));
VLOG(jdwp) << "get object local " << reg << " = " << o;
if (!Runtime::Current()->GetHeap()->IsHeapAddress(o)) {
LOG(FATAL) << "Register " << reg << " expected to hold object: " << o;
}
tag = TagFromObject(o);
JDWP::SetObjectId(buf+1, gRegistry->Add(o));
}
break;
case JDWP::JT_DOUBLE:
case JDWP::JT_LONG:
{
CHECK_EQ(width, 8U);
uint32_t lo = f.GetVReg(m, reg);
uint64_t hi = f.GetVReg(m, reg + 1);
uint64_t longVal = (hi << 32) | lo;
VLOG(jdwp) << "get double/long local " << hi << ":" << lo << " = " << longVal;
JDWP::Set8BE(buf+1, longVal);
}
break;
default:
LOG(FATAL) << "Unknown tag " << tag;
break;
}
// Prepend tag, which may have been updated.
JDWP::Set1(buf, tag);
}
void Dbg::SetLocalValue(JDWP::ObjectId /*threadId*/, JDWP::FrameId frameId, int slot, JDWP::JdwpTag tag, uint64_t value, size_t width) {
Method** sp = reinterpret_cast<Method**>(frameId);
Frame f(sp);
Method* m = f.GetMethod();
uint16_t reg = DemangleSlot(slot, m);
#if defined(ART_USE_LLVM_COMPILER)
UNIMPLEMENTED(FATAL);
#else
const VmapTable vmap_table(m->GetVmapTableRaw());
uint32_t vmap_offset;
if (vmap_table.IsInContext(reg, vmap_offset)) {
UNIMPLEMENTED(FATAL) << "Don't know how to pull locals from callee save frames: " << vmap_offset;
}
#endif
// TODO: check that the tag is compatible with the actual type of the slot!
switch (tag) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
CHECK_EQ(width, 1U);
f.SetVReg(m, reg, static_cast<uint32_t>(value));
break;
case JDWP::JT_SHORT:
case JDWP::JT_CHAR:
CHECK_EQ(width, 2U);
f.SetVReg(m, reg, static_cast<uint32_t>(value));
break;
case JDWP::JT_INT:
case JDWP::JT_FLOAT:
CHECK_EQ(width, 4U);
f.SetVReg(m, reg, static_cast<uint32_t>(value));
break;
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
{
CHECK_EQ(width, sizeof(JDWP::ObjectId));
Object* o = gRegistry->Get<Object*>(static_cast<JDWP::ObjectId>(value));
if (o == kInvalidObject) {
UNIMPLEMENTED(FATAL) << "return an error code when given an invalid object to store";
}
f.SetVReg(m, reg, static_cast<uint32_t>(reinterpret_cast<uintptr_t>(o)));
}
break;
case JDWP::JT_DOUBLE:
case JDWP::JT_LONG:
CHECK_EQ(width, 8U);
f.SetVReg(m, reg, static_cast<uint32_t>(value));
f.SetVReg(m, reg + 1, static_cast<uint32_t>(value >> 32));
break;
default:
LOG(FATAL) << "Unknown tag " << tag;
break;
}
}
void Dbg::PostLocationEvent(const Method* m, int dex_pc, Object* this_object, int event_flags) {
Class* c = m->GetDeclaringClass();
JDWP::JdwpLocation location;
location.typeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
location.classId = gRegistry->Add(c);
location.methodId = ToMethodId(m);
location.dex_pc = m->IsNative() ? -1 : dex_pc;
// Note we use "NoReg" so we don't keep track of references that are
// never actually sent to the debugger. 'this_id' is only used to
// compare against registered events...
JDWP::ObjectId this_id = static_cast<JDWP::ObjectId>(reinterpret_cast<uintptr_t>(this_object));
if (gJdwpState->PostLocationEvent(&location, this_id, event_flags)) {
// ...unless there's a registered event, in which case we
// need to really track the class and 'this'.
gRegistry->Add(c);
gRegistry->Add(this_object);
}
}
void Dbg::PostException(Method** sp, Method* throwMethod, uintptr_t throwNativePc, Method* catchMethod, uintptr_t catchNativePc, Object* exception) {
if (!IsDebuggerActive()) {
return;
}
JDWP::JdwpLocation throw_location;
SetLocation(throw_location, throwMethod, throwNativePc);
JDWP::JdwpLocation catch_location;
SetLocation(catch_location, catchMethod, catchNativePc);
// We need 'this' for InstanceOnly filters.
JDWP::ObjectId this_id;
GetThisObject(reinterpret_cast<JDWP::FrameId>(sp), &this_id);
/*
* Hand the event to the JDWP exception handler. Note we're using the
* "NoReg" objectID on the exception, which is not strictly correct --
* the exception object WILL be passed up to the debugger if the
* debugger is interested in the event. We do this because the current
* implementation of the debugger object registry never throws anything
* away, and some people were experiencing a fatal build up of exception
* objects when dealing with certain libraries.
*/
JDWP::ObjectId exception_id = static_cast<JDWP::ObjectId>(reinterpret_cast<uintptr_t>(exception));
JDWP::RefTypeId exception_class_id = gRegistry->Add(exception->GetClass());
gJdwpState->PostException(&throw_location, exception_id, exception_class_id, &catch_location, this_id);
}
void Dbg::PostClassPrepare(Class* c) {
if (!IsDebuggerActive()) {
return;
}
// OLD-TODO - we currently always send both "verified" and "prepared" since
// debuggers seem to like that. There might be some advantage to honesty,
// since the class may not yet be verified.
int state = JDWP::CS_VERIFIED | JDWP::CS_PREPARED;
JDWP::JdwpTypeTag tag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
gJdwpState->PostClassPrepare(tag, gRegistry->Add(c), ClassHelper(c).GetDescriptor(), state);
}
void Dbg::UpdateDebugger(int32_t dex_pc, Thread* self, Method** sp) {
if (!IsDebuggerActive() || dex_pc == -2 /* fake method exit */) {
return;
}
Frame f(sp);
f.Next(); // Skip callee save frame.
Method* m = f.GetMethod();
if (dex_pc == -1) {
// We use a pc of -1 to represent method entry, since we might branch back to pc 0 later.
// This means that for this special notification, there can't be anything else interesting
// going on, so we're done already.
Dbg::PostLocationEvent(m, 0, GetThis(f), kMethodEntry);
return;
}
int event_flags = 0;
if (IsBreakpoint(m, dex_pc)) {
event_flags |= kBreakpoint;
}
// If the debugger is single-stepping one of our threads, check to
// see if we're that thread and we've reached a step point.
if (gSingleStepControl.is_active && gSingleStepControl.thread == self) {
CHECK(!m->IsNative());
if (gSingleStepControl.step_depth == JDWP::SD_INTO) {
// Step into method calls. We break when the line number
// or method pointer changes. If we're in SS_MIN mode, we
// always stop.
if (gSingleStepControl.method != m) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new method";
} else if (gSingleStepControl.step_size == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (gSingleStepControl.dex_pcs.find(dex_pc) == gSingleStepControl.dex_pcs.end()) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
} else if (gSingleStepControl.step_depth == JDWP::SD_OVER) {
// Step over method calls. We break when the line number is
// different and the frame depth is <= the original frame
// depth. (We can't just compare on the method, because we
// might get unrolled past it by an exception, and it's tricky
// to identify recursion.)
// TODO: can we just use the value of 'sp'?
int stack_depth = GetStackDepth(self);
if (stack_depth < gSingleStepControl.stack_depth) {
// popped up one or more frames, always trigger
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
} else if (stack_depth == gSingleStepControl.stack_depth) {
// same depth, see if we moved
if (gSingleStepControl.step_size == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (gSingleStepControl.dex_pcs.find(dex_pc) == gSingleStepControl.dex_pcs.end()) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
}
} else {
CHECK_EQ(gSingleStepControl.step_depth, JDWP::SD_OUT);
// Return from the current method. We break when the frame
// depth pops up.
// This differs from the "method exit" break in that it stops
// with the PC at the next instruction in the returned-to
// function, rather than the end of the returning function.
// TODO: can we just use the value of 'sp'?
int stack_depth = GetStackDepth(self);
if (stack_depth < gSingleStepControl.stack_depth) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
}
}
}
// Check to see if this is a "return" instruction. JDWP says we should
// send the event *after* the code has been executed, but it also says
// the location we provide is the last instruction. Since the "return"
// instruction has no interesting side effects, we should be safe.
// (We can't just move this down to the returnFromMethod label because
// we potentially need to combine it with other events.)
// We're also not supposed to generate a method exit event if the method
// terminates "with a thrown exception".
if (dex_pc >= 0) {
const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
CHECK(code_item != NULL);
CHECK_LT(dex_pc, static_cast<int32_t>(code_item->insns_size_in_code_units_));
if (Instruction::At(&code_item->insns_[dex_pc])->IsReturn()) {
event_flags |= kMethodExit;
}
}
// If there's something interesting going on, see if it matches one
// of the debugger filters.
if (event_flags != 0) {
Dbg::PostLocationEvent(m, dex_pc, GetThis(f), event_flags);
}
}
void Dbg::WatchLocation(const JDWP::JdwpLocation* location) {
MutexLock mu(gBreakpointsLock);
Method* m = FromMethodId(location->methodId);
gBreakpoints.push_back(Breakpoint(m, location->dex_pc));
VLOG(jdwp) << "Set breakpoint #" << (gBreakpoints.size() - 1) << ": " << gBreakpoints[gBreakpoints.size() - 1];
}
void Dbg::UnwatchLocation(const JDWP::JdwpLocation* location) {
MutexLock mu(gBreakpointsLock);
Method* m = FromMethodId(location->methodId);
for (size_t i = 0; i < gBreakpoints.size(); ++i) {
if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == location->dex_pc) {
VLOG(jdwp) << "Removed breakpoint #" << i << ": " << gBreakpoints[i];
gBreakpoints.erase(gBreakpoints.begin() + i);
return;
}
}
}
JDWP::JdwpError Dbg::ConfigureStep(JDWP::ObjectId threadId, JDWP::JdwpStepSize step_size, JDWP::JdwpStepDepth step_depth) {
Thread* thread = DecodeThread(threadId);
if (thread == NULL) {
return JDWP::ERR_INVALID_THREAD;
}
// TODO: there's no theoretical reason why we couldn't support single-stepping
// of multiple threads at once, but we never did so historically.
if (gSingleStepControl.thread != NULL && thread != gSingleStepControl.thread) {
LOG(WARNING) << "single-step already active for " << *gSingleStepControl.thread
<< "; switching to " << *thread;
}
//
// Work out what Method* we're in, the current line number, and how deep the stack currently
// is for step-out.
//
struct SingleStepStackVisitor : public Thread::StackVisitor {
SingleStepStackVisitor() {
gSingleStepControl.method = NULL;
gSingleStepControl.stack_depth = 0;
}
bool VisitFrame(const Frame& f, uintptr_t pc) {
if (f.HasMethod()) {
++gSingleStepControl.stack_depth;
if (gSingleStepControl.method == NULL) {
const Method* m = f.GetMethod();
const DexCache* dex_cache = m->GetDeclaringClass()->GetDexCache();
gSingleStepControl.method = m;
gSingleStepControl.line_number = -1;
if (dex_cache != NULL) {
const DexFile& dex_file = Runtime::Current()->GetClassLinker()->FindDexFile(dex_cache);
gSingleStepControl.line_number = dex_file.GetLineNumFromPC(m, m->ToDexPC(pc));
}
}
}
return true;
}
};
SingleStepStackVisitor visitor;
thread->WalkStack(&visitor);
//
// Find the dex_pc values that correspond to the current line, for line-based single-stepping.
//
struct DebugCallbackContext {
DebugCallbackContext() {
last_pc_valid = false;
last_pc = 0;
}
static bool Callback(void* raw_context, uint32_t address, uint32_t line_number) {
DebugCallbackContext* context = reinterpret_cast<DebugCallbackContext*>(raw_context);
if (static_cast<int32_t>(line_number) == gSingleStepControl.line_number) {
if (!context->last_pc_valid) {
// Everything from this address until the next line change is ours.
context->last_pc = address;
context->last_pc_valid = true;
}
// Otherwise, if we're already in a valid range for this line,
// just keep going (shouldn't really happen)...
} else if (context->last_pc_valid) { // and the line number is new
// Add everything from the last entry up until here to the set
for (uint32_t dex_pc = context->last_pc; dex_pc < address; ++dex_pc) {
gSingleStepControl.dex_pcs.insert(dex_pc);
}
context->last_pc_valid = false;
}
return false; // There may be multiple entries for any given line.
}
~DebugCallbackContext() {
// If the line number was the last in the position table...
if (last_pc_valid) {
size_t end = MethodHelper(gSingleStepControl.method).GetCodeItem()->insns_size_in_code_units_;
for (uint32_t dex_pc = last_pc; dex_pc < end; ++dex_pc) {
gSingleStepControl.dex_pcs.insert(dex_pc);
}
}
}
bool last_pc_valid;
uint32_t last_pc;
};
gSingleStepControl.dex_pcs.clear();
const Method* m = gSingleStepControl.method;
if (m->IsNative()) {
gSingleStepControl.line_number = -1;
} else {
DebugCallbackContext context;
MethodHelper mh(m);
mh.GetDexFile().DecodeDebugInfo(mh.GetCodeItem(), m->IsStatic(), m->GetDexMethodIndex(),
DebugCallbackContext::Callback, NULL, &context);
}
//
// Everything else...
//
gSingleStepControl.thread = thread;
gSingleStepControl.step_size = step_size;
gSingleStepControl.step_depth = step_depth;
gSingleStepControl.is_active = true;
if (VLOG_IS_ON(jdwp)) {
VLOG(jdwp) << "Single-step thread: " << *gSingleStepControl.thread;
VLOG(jdwp) << "Single-step step size: " << gSingleStepControl.step_size;
VLOG(jdwp) << "Single-step step depth: " << gSingleStepControl.step_depth;
VLOG(jdwp) << "Single-step current method: " << PrettyMethod(gSingleStepControl.method);
VLOG(jdwp) << "Single-step current line: " << gSingleStepControl.line_number;
VLOG(jdwp) << "Single-step current stack depth: " << gSingleStepControl.stack_depth;
VLOG(jdwp) << "Single-step dex_pc values:";
for (std::set<uint32_t>::iterator it = gSingleStepControl.dex_pcs.begin() ; it != gSingleStepControl.dex_pcs.end(); ++it) {
VLOG(jdwp) << StringPrintf(" %#x", *it);
}
}
return JDWP::ERR_NONE;
}
void Dbg::UnconfigureStep(JDWP::ObjectId /*threadId*/) {
gSingleStepControl.is_active = false;
gSingleStepControl.thread = NULL;
gSingleStepControl.dex_pcs.clear();
}
static char JdwpTagToShortyChar(JDWP::JdwpTag tag) {
switch (tag) {
default:
LOG(FATAL) << "unknown JDWP tag: " << PrintableChar(tag);
// Primitives.
case JDWP::JT_BYTE: return 'B';
case JDWP::JT_CHAR: return 'C';
case JDWP::JT_FLOAT: return 'F';
case JDWP::JT_DOUBLE: return 'D';
case JDWP::JT_INT: return 'I';
case JDWP::JT_LONG: return 'J';
case JDWP::JT_SHORT: return 'S';
case JDWP::JT_VOID: return 'V';
case JDWP::JT_BOOLEAN: return 'Z';
// Reference types.
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return 'L';
}
}
JDWP::JdwpError Dbg::InvokeMethod(JDWP::ObjectId threadId, JDWP::ObjectId objectId, JDWP::RefTypeId classId, JDWP::MethodId methodId, uint32_t arg_count, uint64_t* arg_values, JDWP::JdwpTag* arg_types, uint32_t options, JDWP::JdwpTag* pResultTag, uint64_t* pResultValue, JDWP::ObjectId* pExceptionId) {
ThreadList* thread_list = Runtime::Current()->GetThreadList();
Thread* targetThread = NULL;
DebugInvokeReq* req = NULL;
{
ScopedThreadListLock thread_list_lock;
targetThread = DecodeThread(threadId);
if (targetThread == NULL) {
LOG(ERROR) << "InvokeMethod request for non-existent thread " << threadId;
return JDWP::ERR_INVALID_THREAD;
}
req = targetThread->GetInvokeReq();
if (!req->ready) {
LOG(ERROR) << "InvokeMethod request for thread not stopped by event: " << *targetThread;
return JDWP::ERR_INVALID_THREAD;
}
/*
* We currently have a bug where we don't successfully resume the
* target thread if the suspend count is too deep. We're expected to
* require one "resume" for each "suspend", but when asked to execute
* a method we have to resume fully and then re-suspend it back to the
* same level. (The easiest way to cause this is to type "suspend"
* multiple times in jdb.)
*
* It's unclear what this means when the event specifies "resume all"
* and some threads are suspended more deeply than others. This is
* a rare problem, so for now we just prevent it from hanging forever
* by rejecting the method invocation request. Without this, we will
* be stuck waiting on a suspended thread.
*/
int suspend_count = targetThread->GetSuspendCount();
if (suspend_count > 1) {
LOG(ERROR) << *targetThread << " suspend count too deep for method invocation: " << suspend_count;
return JDWP::ERR_THREAD_SUSPENDED; // Probably not expected here.
}
JDWP::JdwpError status;
Object* receiver = gRegistry->Get<Object*>(objectId);
if (receiver == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
Object* thread = gRegistry->Get<Object*>(threadId);
if (thread == kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
// TODO: check that 'thread' is actually a java.lang.Thread!
Class* c = DecodeClass(classId, status);
if (c == NULL) {
return status;
}
Method* m = FromMethodId(methodId);
if (m->IsStatic() != (receiver == NULL)) {
return JDWP::ERR_INVALID_METHODID;
}
if (m->IsStatic()) {
if (m->GetDeclaringClass() != c) {
return JDWP::ERR_INVALID_METHODID;
}
} else {
if (!m->GetDeclaringClass()->IsAssignableFrom(c)) {
return JDWP::ERR_INVALID_METHODID;
}
}
// Check the argument list matches the method.
MethodHelper mh(m);
if (mh.GetShortyLength() - 1 != arg_count) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
const char* shorty = mh.GetShorty();
for (size_t i = 0; i < arg_count; ++i) {
if (shorty[i + 1] != JdwpTagToShortyChar(arg_types[i])) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
}
req->receiver_ = receiver;
req->thread_ = thread;
req->class_ = c;
req->method_ = m;
req->arg_count_ = arg_count;
req->arg_values_ = arg_values;
req->options_ = options;
req->invoke_needed_ = true;
}
// The fact that we've released the thread list lock is a bit risky --- if the thread goes
// away we're sitting high and dry -- but we must release this before the ResumeAllThreads
// call, and it's unwise to hold it during WaitForSuspend.
{
/*
* We change our (JDWP thread) status, which should be THREAD_RUNNING,
* so we can suspend for a GC if the invoke request causes us to
* run out of memory. It's also a good idea to change it before locking
* the invokeReq mutex, although that should never be held for long.
*/
ScopedThreadStateChange tsc(Thread::Current(), kVmWait);
VLOG(jdwp) << " Transferring control to event thread";
{
MutexLock mu(req->lock_);
if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) {
VLOG(jdwp) << " Resuming all threads";
thread_list->ResumeAll(true);
} else {
VLOG(jdwp) << " Resuming event thread only";
thread_list->Resume(targetThread, true);
}
// Wait for the request to finish executing.
while (req->invoke_needed_) {
req->cond_.Wait(req->lock_);
}
}
VLOG(jdwp) << " Control has returned from event thread";
/* wait for thread to re-suspend itself */
targetThread->WaitUntilSuspended();
//dvmWaitForSuspend(targetThread);
}
/*
* Suspend the threads. We waited for the target thread to suspend
* itself, so all we need to do is suspend the others.
*
* The suspendAllThreads() call will double-suspend the event thread,
* so we want to resume the target thread once to keep the books straight.
*/
if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) {
VLOG(jdwp) << " Suspending all threads";
thread_list->SuspendAll(true);
VLOG(jdwp) << " Resuming event thread to balance the count";
thread_list->Resume(targetThread, true);
}
// Copy the result.
*pResultTag = req->result_tag;
if (IsPrimitiveTag(req->result_tag)) {
*pResultValue = req->result_value.GetJ();
} else {
*pResultValue = gRegistry->Add(req->result_value.GetL());
}
*pExceptionId = req->exception;
return req->error;
}
void Dbg::ExecuteMethod(DebugInvokeReq* pReq) {
Thread* self = Thread::Current();
// We can be called while an exception is pending. We need
// to preserve that across the method invocation.
SirtRef<Throwable> old_exception(self->GetException());
self->ClearException();
ScopedThreadStateChange tsc(self, kRunnable);
// Translate the method through the vtable, unless the debugger wants to suppress it.
Method* m = pReq->method_;
if ((pReq->options_ & JDWP::INVOKE_NONVIRTUAL) == 0 && pReq->receiver_ != NULL) {
Method* actual_method = pReq->class_->FindVirtualMethodForVirtualOrInterface(pReq->method_);
if (actual_method != m) {
VLOG(jdwp) << "ExecuteMethod translated " << PrettyMethod(m) << " to " << PrettyMethod(actual_method);
m = actual_method;
}
}
VLOG(jdwp) << "ExecuteMethod " << PrettyMethod(m);
CHECK(m != NULL);
CHECK_EQ(sizeof(jvalue), sizeof(uint64_t));
LOG(INFO) << "self=" << self << " pReq->receiver_=" << pReq->receiver_ << " m=" << m << " #" << pReq->arg_count_ << " " << pReq->arg_values_;
pReq->result_value = InvokeWithJValues(self, pReq->receiver_, m, reinterpret_cast<JValue*>(pReq->arg_values_));
pReq->exception = gRegistry->Add(self->GetException());
pReq->result_tag = BasicTagFromDescriptor(MethodHelper(m).GetShorty());
if (pReq->exception != 0) {
Object* exc = self->GetException();
VLOG(jdwp) << " JDWP invocation returning with exception=" << exc << " " << PrettyTypeOf(exc);
self->ClearException();
pReq->result_value.SetJ(0);
} else if (pReq->result_tag == JDWP::JT_OBJECT) {
/* if no exception thrown, examine object result more closely */
JDWP::JdwpTag new_tag = TagFromObject(pReq->result_value.GetL());
if (new_tag != pReq->result_tag) {
VLOG(jdwp) << " JDWP promoted result from " << pReq->result_tag << " to " << new_tag;
pReq->result_tag = new_tag;
}
/*
* Register the object. We don't actually need an ObjectId yet,
* but we do need to be sure that the GC won't move or discard the
* object when we switch out of RUNNING. The ObjectId conversion
* will add the object to the "do not touch" list.
*
* We can't use the "tracked allocation" mechanism here because
* the object is going to be handed off to a different thread.
*/
gRegistry->Add(pReq->result_value.GetL());
}
if (old_exception.get() != NULL) {
self->SetException(old_exception.get());
}
}
/*
* Register an object ID that might not have been registered previously.
*
* Normally this wouldn't happen -- the conversion to an ObjectId would
* have added the object to the registry -- but in some cases (e.g.
* throwing exceptions) we really want to do the registration late.
*/
void Dbg::RegisterObjectId(JDWP::ObjectId id) {
gRegistry->Add(reinterpret_cast<Object*>(id));
}
/*
* "buf" contains a full JDWP packet, possibly with multiple chunks. We
* need to process each, accumulate the replies, and ship the whole thing
* back.
*
* Returns "true" if we have a reply. The reply buffer is newly allocated,
* and includes the chunk type/length, followed by the data.
*
* OLD-TODO: we currently assume that the request and reply include a single
* chunk. If this becomes inconvenient we will need to adapt.
*/
bool Dbg::DdmHandlePacket(const uint8_t* buf, int dataLen, uint8_t** pReplyBuf, int* pReplyLen) {
CHECK_GE(dataLen, 0);
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
static jclass Chunk_class = CacheClass(env, "org/apache/harmony/dalvik/ddmc/Chunk");
static jclass DdmServer_class = CacheClass(env, "org/apache/harmony/dalvik/ddmc/DdmServer");
static jmethodID dispatch_mid = env->GetStaticMethodID(DdmServer_class, "dispatch", "(I[BII)Lorg/apache/harmony/dalvik/ddmc/Chunk;");
static jfieldID data_fid = env->GetFieldID(Chunk_class, "data", "[B");
static jfieldID length_fid = env->GetFieldID(Chunk_class, "length", "I");
static jfieldID offset_fid = env->GetFieldID(Chunk_class, "offset", "I");
static jfieldID type_fid = env->GetFieldID(Chunk_class, "type", "I");
// Create a byte[] corresponding to 'buf'.
ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(dataLen));
if (dataArray.get() == NULL) {
LOG(WARNING) << "byte[] allocation failed: " << dataLen;
env->ExceptionClear();
return false;
}
env->SetByteArrayRegion(dataArray.get(), 0, dataLen, reinterpret_cast<const jbyte*>(buf));
const int kChunkHdrLen = 8;
// Run through and find all chunks. [Currently just find the first.]
ScopedByteArrayRO contents(env, dataArray.get());
jint type = JDWP::Get4BE(reinterpret_cast<const uint8_t*>(&contents[0]));
jint length = JDWP::Get4BE(reinterpret_cast<const uint8_t*>(&contents[4]));
jint offset = kChunkHdrLen;
if (offset + length > dataLen) {
LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%d)", length, dataLen);
return false;
}
// Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
ScopedLocalRef<jobject> chunk(env, env->CallStaticObjectMethod(DdmServer_class, dispatch_mid, type, dataArray.get(), offset, length));
if (env->ExceptionCheck()) {
LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type);
env->ExceptionDescribe();
env->ExceptionClear();
return false;
}
if (chunk.get() == NULL) {
return false;
}
/*
* Pull the pieces out of the chunk. We copy the results into a
* newly-allocated buffer that the caller can free. We don't want to
* continue using the Chunk object because nothing has a reference to it.
*
* We could avoid this by returning type/data/offset/length and having
* the caller be aware of the object lifetime issues, but that
* integrates the JDWP code more tightly into the rest of the runtime, and doesn't work
* if we have responses for multiple chunks.
*
* So we're pretty much stuck with copying data around multiple times.
*/
ScopedLocalRef<jbyteArray> replyData(env, reinterpret_cast<jbyteArray>(env->GetObjectField(chunk.get(), data_fid)));
length = env->GetIntField(chunk.get(), length_fid);
offset = env->GetIntField(chunk.get(), offset_fid);
type = env->GetIntField(chunk.get(), type_fid);
VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length);
if (length == 0 || replyData.get() == NULL) {
return false;
}
jsize replyLength = env->GetArrayLength(replyData.get());
if (offset + length > replyLength) {
LOG(WARNING) << StringPrintf("chunk off=%d len=%d exceeds reply array len %d", offset, length, replyLength);
return false;
}
uint8_t* reply = new uint8_t[length + kChunkHdrLen];
if (reply == NULL) {
LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen);
return false;
}
JDWP::Set4BE(reply + 0, type);
JDWP::Set4BE(reply + 4, length);
env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast<jbyte*>(reply + kChunkHdrLen));
*pReplyBuf = reply;
*pReplyLen = length + kChunkHdrLen;
VLOG(jdwp) << StringPrintf("dvmHandleDdm returning type=%.4s buf=%p len=%d", reinterpret_cast<char*>(reply), reply, length);
return true;
}
void Dbg::DdmBroadcast(bool connect) {
VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";
Thread* self = Thread::Current();
if (self->GetState() != kRunnable) {
LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
/* try anyway? */
}
JNIEnv* env = self->GetJniEnv();
static jclass DdmServer_class = CacheClass(env, "org/apache/harmony/dalvik/ddmc/DdmServer");
static jmethodID broadcast_mid = env->GetStaticMethodID(DdmServer_class, "broadcast", "(I)V");
jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
env->CallStaticVoidMethod(DdmServer_class, broadcast_mid, event);
if (env->ExceptionCheck()) {
LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
env->ExceptionDescribe();
env->ExceptionClear();
}
}
void Dbg::DdmConnected() {
Dbg::DdmBroadcast(true);
}
void Dbg::DdmDisconnected() {
Dbg::DdmBroadcast(false);
gDdmThreadNotification = false;
}
/*
* Send a notification when a thread starts, stops, or changes its name.
*
* Because we broadcast the full set of threads when the notifications are
* first enabled, it's possible for "thread" to be actively executing.
*/
void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
if (!gDdmThreadNotification) {
return;
}
if (type == CHUNK_TYPE("THDE")) {
uint8_t buf[4];
JDWP::Set4BE(&buf[0], t->GetThinLockId());
Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf);
} else {
CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
SirtRef<String> name(t->GetThreadName());
size_t char_count = (name.get() != NULL) ? name->GetLength() : 0;
const jchar* chars = name->GetCharArray()->GetData();
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, t->GetThinLockId());
JDWP::AppendUtf16BE(bytes, chars, char_count);
CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2);
Dbg::DdmSendChunk(type, bytes);
}
}
static void DdmSendThreadStartCallback(Thread* t, void*) {
Dbg::DdmSendThreadNotification(t, CHUNK_TYPE("THCR"));
}
void Dbg::DdmSetThreadNotification(bool enable) {
// We lock the thread list to avoid sending duplicate events or missing
// a thread change. We should be okay holding this lock while sending
// the messages out. (We have to hold it while accessing a live thread.)
ScopedThreadListLock thread_list_lock;
gDdmThreadNotification = enable;
if (enable) {
Runtime::Current()->GetThreadList()->ForEach(DdmSendThreadStartCallback, NULL);
}
}
void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) {
if (IsDebuggerActive()) {
JDWP::ObjectId id = gRegistry->Add(t->GetPeer());
gJdwpState->PostThreadChange(id, type == CHUNK_TYPE("THCR"));
// If this thread's just joined the party while we're already debugging, make sure it knows
// to give us updates when it's running.
t->SetDebuggerUpdatesEnabled(true);
}
Dbg::DdmSendThreadNotification(t, type);
}
void Dbg::PostThreadStart(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
}
void Dbg::PostThreadDeath(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
}
void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) {
CHECK(buf != NULL);
iovec vec[1];
vec[0].iov_base = reinterpret_cast<void*>(const_cast<uint8_t*>(buf));
vec[0].iov_len = byte_count;
Dbg::DdmSendChunkV(type, vec, 1);
}
void Dbg::DdmSendChunk(uint32_t type, const std::vector<uint8_t>& bytes) {
DdmSendChunk(type, bytes.size(), &bytes[0]);
}
void Dbg::DdmSendChunkV(uint32_t type, const struct iovec* iov, int iov_count) {
if (gJdwpState == NULL) {
VLOG(jdwp) << "Debugger thread not active, ignoring DDM send: " << type;
} else {
gJdwpState->DdmSendChunkV(type, iov, iov_count);
}
}
int Dbg::DdmHandleHpifChunk(HpifWhen when) {
if (when == HPIF_WHEN_NOW) {
DdmSendHeapInfo(when);
return true;
}
if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
return false;
}
gDdmHpifWhen = when;
return true;
}
bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
return false;
}
if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
return false;
}
if (native) {
gDdmNhsgWhen = when;
gDdmNhsgWhat = what;
} else {
gDdmHpsgWhen = when;
gDdmHpsgWhat = what;
}
return true;
}
void Dbg::DdmSendHeapInfo(HpifWhen reason) {
// If there's a one-shot 'when', reset it.
if (reason == gDdmHpifWhen) {
if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
gDdmHpifWhen = HPIF_WHEN_NEVER;
}
}
/*
* Chunk HPIF (client --> server)
*
* Heap Info. General information about the heap,
* suitable for a summary display.
*
* [u4]: number of heaps
*
* For each heap:
* [u4]: heap ID
* [u8]: timestamp in ms since Unix epoch
* [u1]: capture reason (same as 'when' value from server)
* [u4]: max heap size in bytes (-Xmx)
* [u4]: current heap size in bytes
* [u4]: current number of bytes allocated
* [u4]: current number of objects allocated
*/
uint8_t heap_count = 1;
Heap* heap = Runtime::Current()->GetHeap();
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, heap_count);
JDWP::Append4BE(bytes, 1); // Heap id (bogus; we only have one heap).
JDWP::Append8BE(bytes, MilliTime());
JDWP::Append1BE(bytes, reason);
JDWP::Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes.
JDWP::Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes.
JDWP::Append4BE(bytes, heap->GetBytesAllocated());
JDWP::Append4BE(bytes, heap->GetObjectsAllocated());
CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes);
}
enum HpsgSolidity {
SOLIDITY_FREE = 0,
SOLIDITY_HARD = 1,
SOLIDITY_SOFT = 2,
SOLIDITY_WEAK = 3,
SOLIDITY_PHANTOM = 4,
SOLIDITY_FINALIZABLE = 5,
SOLIDITY_SWEEP = 6,
};
enum HpsgKind {
KIND_OBJECT = 0,
KIND_CLASS_OBJECT = 1,
KIND_ARRAY_1 = 2,
KIND_ARRAY_2 = 3,
KIND_ARRAY_4 = 4,
KIND_ARRAY_8 = 5,
KIND_UNKNOWN = 6,
KIND_NATIVE = 7,
};
#define HPSG_PARTIAL (1<<7)
#define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
class HeapChunkContext {
public:
// Maximum chunk size. Obtain this from the formula:
// (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
HeapChunkContext(bool merge, bool native)
: buf_(16384 - 16),
type_(0),
merge_(merge) {
Reset();
if (native) {
type_ = CHUNK_TYPE("NHSG");
} else {
type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
}
}
~HeapChunkContext() {
if (p_ > &buf_[0]) {
Flush();
}
}
void EnsureHeader(const void* chunk_ptr) {
if (!needHeader_) {
return;
}
// Start a new HPSx chunk.
JDWP::Write4BE(&p_, 1); // Heap id (bogus; we only have one heap).
JDWP::Write1BE(&p_, 8); // Size of allocation unit, in bytes.
JDWP::Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr)); // virtual address of segment start.
JDWP::Write4BE(&p_, 0); // offset of this piece (relative to the virtual address).
// [u4]: length of piece, in allocation units
// We won't know this until we're done, so save the offset and stuff in a dummy value.
pieceLenField_ = p_;
JDWP::Write4BE(&p_, 0x55555555);
needHeader_ = false;
}
void Flush() {
// Patch the "length of piece" field.
CHECK_LE(&buf_[0], pieceLenField_);
CHECK_LE(pieceLenField_, p_);
JDWP::Set4BE(pieceLenField_, totalAllocationUnits_);
Dbg::DdmSendChunk(type_, p_ - &buf_[0], &buf_[0]);
Reset();
}
static void HeapChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkCallback(start, end, used_bytes);
}
private:
enum { ALLOCATION_UNIT_SIZE = 8 };
void Reset() {
p_ = &buf_[0];
totalAllocationUnits_ = 0;
needHeader_ = true;
pieceLenField_ = NULL;
}
void HeapChunkCallback(void* start, void* /*end*/, size_t used_bytes) {
// Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken
// in the following code not to allocate memory, by ensuring buf_ is of the correct size
const void* user_ptr = used_bytes > 0 ? const_cast<void*>(start) : NULL;
// from malloc.c mem2chunk(mem)
const void* chunk_ptr =
reinterpret_cast<const void*>(reinterpret_cast<const char*>(const_cast<void*>(start)) -
(2 * sizeof(size_t)));
// from malloc.c chunksize
size_t chunk_len = (*reinterpret_cast<size_t* const*>(chunk_ptr))[1] & ~7;
//size_t chunk_len = malloc_usable_size(user_ptr);
CHECK_EQ((chunk_len & (ALLOCATION_UNIT_SIZE-1)), 0U);
/* Make sure there's enough room left in the buffer.
* We need to use two bytes for every fractional 256
* allocation units used by the chunk.
*/
{
size_t needed = (((chunk_len/ALLOCATION_UNIT_SIZE + 255) / 256) * 2);
size_t bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]);
if (bytesLeft < needed) {
Flush();
}
bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]);
if (bytesLeft < needed) {
LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << chunk_len << ", " << needed << " bytes)";
return;
}
}
// OLD-TODO: notice when there's a gap and start a new heap, or at least a new range.
EnsureHeader(chunk_ptr);
// Determine the type of this chunk.
// OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
// If it's the same, we should combine them.
uint8_t state = ExamineObject(reinterpret_cast<const Object*>(user_ptr), (type_ == CHUNK_TYPE("NHSG")));
// Write out the chunk description.
chunk_len /= ALLOCATION_UNIT_SIZE; // convert to allocation units
totalAllocationUnits_ += chunk_len;
while (chunk_len > 256) {
*p_++ = state | HPSG_PARTIAL;
*p_++ = 255; // length - 1
chunk_len -= 256;
}
*p_++ = state;
*p_++ = chunk_len - 1;
}
uint8_t ExamineObject(const Object* o, bool is_native_heap) {
if (o == NULL) {
return HPSG_STATE(SOLIDITY_FREE, 0);
}
// It's an allocated chunk. Figure out what it is.
// If we're looking at the native heap, we'll just return
// (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks.
if (is_native_heap || !Runtime::Current()->GetHeap()->IsLiveObjectLocked(o)) {
return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
Class* c = o->GetClass();
if (c == NULL) {
// The object was probably just created but hasn't been initialized yet.
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
if (!Runtime::Current()->GetHeap()->IsHeapAddress(c)) {
LOG(WARNING) << "Invalid class for managed heap object: " << o << " " << c;
return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
}
if (c->IsClassClass()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
}
if (c->IsArrayClass()) {
if (o->IsObjectArray()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
}
switch (c->GetComponentSize()) {
case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
}
}
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
std::vector<uint8_t> buf_;
uint8_t* p_;
uint8_t* pieceLenField_;
size_t totalAllocationUnits_;
uint32_t type_;
bool merge_;
bool needHeader_;
DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
};
void Dbg::DdmSendHeapSegments(bool native) {
Dbg::HpsgWhen when;
Dbg::HpsgWhat what;
if (!native) {
when = gDdmHpsgWhen;
what = gDdmHpsgWhat;
} else {
when = gDdmNhsgWhen;
what = gDdmNhsgWhat;
}
if (when == HPSG_WHEN_NEVER) {
return;
}
// Figure out what kind of chunks we'll be sending.
CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast<int>(what);
// First, send a heap start chunk.
uint8_t heap_id[4];
JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap).
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id);
// Send a series of heap segment chunks.
HeapChunkContext context((what == HPSG_WHAT_MERGED_OBJECTS), native);
if (native) {
// TODO: enable when bionic has moved to dlmalloc 2.8.5
// dlmalloc_inspect_all(HeapChunkContext::HeapChunkCallback, &context);
UNIMPLEMENTED(WARNING) << "Native heap send heap segments";
} else {
Heap* heap = Runtime::Current()->GetHeap();
heap->GetAllocSpace()->Walk(HeapChunkContext::HeapChunkCallback, &context);
}
// Finally, send a heap end chunk.
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id);
}
void Dbg::SetAllocTrackingEnabled(bool enabled) {
MutexLock mu(gAllocTrackerLock);
if (enabled) {
if (recent_allocation_records_ == NULL) {
LOG(INFO) << "Enabling alloc tracker (" << kNumAllocRecords << " entries, "
<< kMaxAllocRecordStackDepth << " frames --> "
<< (sizeof(AllocRecord) * kNumAllocRecords) << " bytes)";
gAllocRecordHead = gAllocRecordCount = 0;
recent_allocation_records_ = new AllocRecord[kNumAllocRecords];
CHECK(recent_allocation_records_ != NULL);
}
} else {
delete[] recent_allocation_records_;
recent_allocation_records_ = NULL;
}
}
struct AllocRecordStackVisitor : public Thread::StackVisitor {
explicit AllocRecordStackVisitor(AllocRecord* record) : record(record), depth(0) {
}
bool VisitFrame(const Frame& f, uintptr_t pc) {
if (depth >= kMaxAllocRecordStackDepth) {
return false;
}
if (f.HasMethod()) {
record->stack[depth].method = f.GetMethod();
record->stack[depth].raw_pc = pc;
++depth;
}
return true;
}
~AllocRecordStackVisitor() {
// Clear out any unused stack trace elements.
for (; depth < kMaxAllocRecordStackDepth; ++depth) {
record->stack[depth].method = NULL;
record->stack[depth].raw_pc = 0;
}
}
AllocRecord* record;
size_t depth;
};
void Dbg::RecordAllocation(Class* type, size_t byte_count) {
Thread* self = Thread::Current();
CHECK(self != NULL);
MutexLock mu(gAllocTrackerLock);
if (recent_allocation_records_ == NULL) {
return;
}
// Advance and clip.
if (++gAllocRecordHead == kNumAllocRecords) {
gAllocRecordHead = 0;
}
// Fill in the basics.
AllocRecord* record = &recent_allocation_records_[gAllocRecordHead];
record->type = type;
record->byte_count = byte_count;
record->thin_lock_id = self->GetThinLockId();
// Fill in the stack trace.
AllocRecordStackVisitor visitor(record);
self->WalkStack(&visitor);
if (gAllocRecordCount < kNumAllocRecords) {
++gAllocRecordCount;
}
}
/*
* Return the index of the head element.
*
* We point at the most-recently-written record, so if allocRecordCount is 1
* we want to use the current element. Take "head+1" and subtract count
* from it.
*
* We need to handle underflow in our circular buffer, so we add
* kNumAllocRecords and then mask it back down.
*/
inline static int headIndex() {
return (gAllocRecordHead+1 + kNumAllocRecords - gAllocRecordCount) & (kNumAllocRecords-1);
}
void Dbg::DumpRecentAllocations() {
MutexLock mu(gAllocTrackerLock);
if (recent_allocation_records_ == NULL) {
LOG(INFO) << "Not recording tracked allocations";
return;
}
// "i" is the head of the list. We want to start at the end of the
// list and move forward to the tail.
size_t i = headIndex();
size_t count = gAllocRecordCount;
LOG(INFO) << "Tracked allocations, (head=" << gAllocRecordHead << " count=" << count << ")";
while (count--) {
AllocRecord* record = &recent_allocation_records_[i];
LOG(INFO) << StringPrintf(" T=%-2d %6zd ", record->thin_lock_id, record->byte_count)
<< PrettyClass(record->type);
for (size_t stack_frame = 0; stack_frame < kMaxAllocRecordStackDepth; ++stack_frame) {
const Method* m = record->stack[stack_frame].method;
if (m == NULL) {
break;
}
LOG(INFO) << " " << PrettyMethod(m) << " line " << record->stack[stack_frame].LineNumber();
}
// pause periodically to help logcat catch up
if ((count % 5) == 0) {
usleep(40000);
}
i = (i + 1) & (kNumAllocRecords-1);
}
}
class StringTable {
public:
StringTable() {
}
void Add(const char* s) {
table_.insert(s);
}
size_t IndexOf(const char* s) {
return std::distance(table_.begin(), table_.find(s));
}
size_t Size() {
return table_.size();
}
void WriteTo(std::vector<uint8_t>& bytes) {
typedef std::set<const char*>::const_iterator It; // TODO: C++0x auto
for (It it = table_.begin(); it != table_.end(); ++it) {
const char* s = *it;
size_t s_len = CountModifiedUtf8Chars(s);
UniquePtr<uint16_t> s_utf16(new uint16_t[s_len]);
ConvertModifiedUtf8ToUtf16(s_utf16.get(), s);
JDWP::AppendUtf16BE(bytes, s_utf16.get(), s_len);
}
}
private:
std::set<const char*> table_;
DISALLOW_COPY_AND_ASSIGN(StringTable);
};
/*
* The data we send to DDMS contains everything we have recorded.
*
* Message header (all values big-endian):
* (1b) message header len (to allow future expansion); includes itself
* (1b) entry header len
* (1b) stack frame len
* (2b) number of entries
* (4b) offset to string table from start of message
* (2b) number of class name strings
* (2b) number of method name strings
* (2b) number of source file name strings
* For each entry:
* (4b) total allocation size
* (2b) threadId
* (2b) allocated object's class name index
* (1b) stack depth
* For each stack frame:
* (2b) method's class name
* (2b) method name
* (2b) method source file
* (2b) line number, clipped to 32767; -2 if native; -1 if no source
* (xb) class name strings
* (xb) method name strings
* (xb) source file strings
*
* As with other DDM traffic, strings are sent as a 4-byte length
* followed by UTF-16 data.
*
* We send up 16-bit unsigned indexes into string tables. In theory there
* can be (kMaxAllocRecordStackDepth * kNumAllocRecords) unique strings in
* each table, but in practice there should be far fewer.
*
* The chief reason for using a string table here is to keep the size of
* the DDMS message to a minimum. This is partly to make the protocol
* efficient, but also because we have to form the whole thing up all at
* once in a memory buffer.
*
* We use separate string tables for class names, method names, and source
* files to keep the indexes small. There will generally be no overlap
* between the contents of these tables.
*/
jbyteArray Dbg::GetRecentAllocations() {
if (false) {
DumpRecentAllocations();
}
MutexLock mu(gAllocTrackerLock);
/*
* Part 1: generate string tables.
*/
StringTable class_names;
StringTable method_names;
StringTable filenames;
int count = gAllocRecordCount;
int idx = headIndex();
while (count--) {
AllocRecord* record = &recent_allocation_records_[idx];
class_names.Add(ClassHelper(record->type).GetDescriptor());
MethodHelper mh;
for (size_t i = 0; i < kMaxAllocRecordStackDepth; i++) {
Method* m = record->stack[i].method;
mh.ChangeMethod(m);
if (m != NULL) {
class_names.Add(mh.GetDeclaringClassDescriptor());
method_names.Add(mh.GetName());
filenames.Add(mh.GetDeclaringClassSourceFile());
}
}
idx = (idx + 1) & (kNumAllocRecords-1);
}
LOG(INFO) << "allocation records: " << gAllocRecordCount;
/*
* Part 2: allocate a buffer and generate the output.
*/
std::vector<uint8_t> bytes;
// (1b) message header len (to allow future expansion); includes itself
// (1b) entry header len
// (1b) stack frame len
const int kMessageHeaderLen = 15;
const int kEntryHeaderLen = 9;
const int kStackFrameLen = 8;
JDWP::Append1BE(bytes, kMessageHeaderLen);
JDWP::Append1BE(bytes, kEntryHeaderLen);
JDWP::Append1BE(bytes, kStackFrameLen);
// (2b) number of entries
// (4b) offset to string table from start of message
// (2b) number of class name strings
// (2b) number of method name strings
// (2b) number of source file name strings
JDWP::Append2BE(bytes, gAllocRecordCount);
size_t string_table_offset = bytes.size();
JDWP::Append4BE(bytes, 0); // We'll patch this later...
JDWP::Append2BE(bytes, class_names.Size());
JDWP::Append2BE(bytes, method_names.Size());
JDWP::Append2BE(bytes, filenames.Size());
count = gAllocRecordCount;
idx = headIndex();
ClassHelper kh;
while (count--) {
// For each entry:
// (4b) total allocation size
// (2b) thread id
// (2b) allocated object's class name index
// (1b) stack depth
AllocRecord* record = &recent_allocation_records_[idx];
size_t stack_depth = record->GetDepth();
JDWP::Append4BE(bytes, record->byte_count);
JDWP::Append2BE(bytes, record->thin_lock_id);
kh.ChangeClass(record->type);
JDWP::Append2BE(bytes, class_names.IndexOf(kh.GetDescriptor()));
JDWP::Append1BE(bytes, stack_depth);
MethodHelper mh;
for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) {
// For each stack frame:
// (2b) method's class name
// (2b) method name
// (2b) method source file
// (2b) line number, clipped to 32767; -2 if native; -1 if no source
mh.ChangeMethod(record->stack[stack_frame].method);
JDWP::Append2BE(bytes, class_names.IndexOf(mh.GetDeclaringClassDescriptor()));
JDWP::Append2BE(bytes, method_names.IndexOf(mh.GetName()));
JDWP::Append2BE(bytes, filenames.IndexOf(mh.GetDeclaringClassSourceFile()));
JDWP::Append2BE(bytes, record->stack[stack_frame].LineNumber());
}
idx = (idx + 1) & (kNumAllocRecords-1);
}
// (xb) class name strings
// (xb) method name strings
// (xb) source file strings
JDWP::Set4BE(&bytes[string_table_offset], bytes.size());
class_names.WriteTo(bytes);
method_names.WriteTo(bytes);
filenames.WriteTo(bytes);
JNIEnv* env = Thread::Current()->GetJniEnv();
jbyteArray result = env->NewByteArray(bytes.size());
if (result != NULL) {
env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0]));
}
return result;
}
} // namespace art