blob: ce3efa3702c57f361d163cdc2467513938e04a41 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debugger.h"
#include <sys/uio.h>
#include <set>
#include "arch/context.h"
#include "class_linker.h"
#include "class_linker-inl.h"
#include "dex_file-inl.h"
#include "dex_instruction.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "invoke_arg_array_builder.h"
#include "jdwp/object_registry.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/throwable.h"
#include "object_utils.h"
#include "safe_map.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "ScopedPrimitiveArray.h"
#include "sirt_ref.h"
#include "stack_indirect_reference_table.h"
#include "thread_list.h"
#include "throw_location.h"
#include "utf.h"
#include "well_known_classes.h"
#ifdef HAVE_ANDROID_OS
#include "cutils/properties.h"
#endif
namespace art {
static const size_t kMaxAllocRecordStackDepth = 16; // Max 255.
static const size_t kDefaultNumAllocRecords = 64*1024; // Must be a power of 2.
struct AllocRecordStackTraceElement {
mirror::ArtMethod* method;
uint32_t dex_pc;
AllocRecordStackTraceElement() : method(nullptr), dex_pc(0) {
}
int32_t LineNumber() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return MethodHelper(method).GetLineNumFromDexPC(dex_pc);
}
};
struct AllocRecord {
mirror::Class* type;
size_t byte_count;
uint16_t thin_lock_id;
AllocRecordStackTraceElement stack[kMaxAllocRecordStackDepth]; // Unused entries have NULL method.
size_t GetDepth() {
size_t depth = 0;
while (depth < kMaxAllocRecordStackDepth && stack[depth].method != NULL) {
++depth;
}
return depth;
}
void UpdateObjectPointers(IsMarkedCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (type != nullptr) {
type = down_cast<mirror::Class*>(callback(type, arg));
}
for (size_t stack_frame = 0; stack_frame < kMaxAllocRecordStackDepth; ++stack_frame) {
mirror::ArtMethod*& m = stack[stack_frame].method;
if (m == nullptr) {
break;
}
m = down_cast<mirror::ArtMethod*>(callback(m, arg));
}
}
};
struct Breakpoint {
mirror::ArtMethod* method;
uint32_t dex_pc;
Breakpoint(mirror::ArtMethod* method, uint32_t dex_pc) : method(method), dex_pc(dex_pc) {}
};
static std::ostream& operator<<(std::ostream& os, const Breakpoint& rhs)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
os << StringPrintf("Breakpoint[%s @%#x]", PrettyMethod(rhs.method).c_str(), rhs.dex_pc);
return os;
}
class DebugInstrumentationListener : public instrumentation::InstrumentationListener {
public:
DebugInstrumentationListener() {}
virtual ~DebugInstrumentationListener() {}
virtual void MethodEntered(Thread* thread, mirror::Object* this_object,
mirror::ArtMethod* method, uint32_t dex_pc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (method->IsNative()) {
// TODO: post location events is a suspension point and native method entry stubs aren't.
return;
}
Dbg::PostLocationEvent(method, 0, this_object, Dbg::kMethodEntry, nullptr);
}
virtual void MethodExited(Thread* thread, mirror::Object* this_object,
mirror::ArtMethod* method,
uint32_t dex_pc, const JValue& return_value)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (method->IsNative()) {
// TODO: post location events is a suspension point and native method entry stubs aren't.
return;
}
Dbg::PostLocationEvent(method, dex_pc, this_object, Dbg::kMethodExit, &return_value);
}
virtual void MethodUnwind(Thread* thread, mirror::Object* this_object,
mirror::ArtMethod* method, uint32_t dex_pc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// We're not recorded to listen to this kind of event, so complain.
LOG(ERROR) << "Unexpected method unwind event in debugger " << PrettyMethod(method)
<< " " << dex_pc;
}
virtual void DexPcMoved(Thread* thread, mirror::Object* this_object,
mirror::ArtMethod* method, uint32_t new_dex_pc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Dbg::UpdateDebugger(thread, this_object, method, new_dex_pc);
}
virtual void ExceptionCaught(Thread* thread, const ThrowLocation& throw_location,
mirror::ArtMethod* catch_method, uint32_t catch_dex_pc,
mirror::Throwable* exception_object)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Dbg::PostException(thread, throw_location, catch_method, catch_dex_pc, exception_object);
}
} gDebugInstrumentationListener;
// JDWP is allowed unless the Zygote forbids it.
static bool gJdwpAllowed = true;
// Was there a -Xrunjdwp or -agentlib:jdwp= argument on the command line?
static bool gJdwpConfigured = false;
// Broken-down JDWP options. (Only valid if IsJdwpConfigured() is true.)
static JDWP::JdwpOptions gJdwpOptions;
// Runtime JDWP state.
static JDWP::JdwpState* gJdwpState = NULL;
static bool gDebuggerConnected; // debugger or DDMS is connected.
static bool gDebuggerActive; // debugger is making requests.
static bool gDisposed; // debugger called VirtualMachine.Dispose, so we should drop the connection.
static bool gDdmThreadNotification = false;
// DDMS GC-related settings.
static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmHpsgWhat;
static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmNhsgWhat;
static ObjectRegistry* gRegistry = nullptr;
// Recent allocation tracking.
Mutex* Dbg::alloc_tracker_lock_ = nullptr;
AllocRecord* Dbg::recent_allocation_records_ = nullptr; // TODO: CircularBuffer<AllocRecord>
size_t Dbg::alloc_record_max_ = 0;
size_t Dbg::alloc_record_head_ = 0;
size_t Dbg::alloc_record_count_ = 0;
// Deoptimization support.
struct MethodInstrumentationRequest {
bool deoptimize;
// Method for selective deoptimization. NULL means full deoptimization.
mirror::ArtMethod* method;
MethodInstrumentationRequest(bool deoptimize, mirror::ArtMethod* method)
: deoptimize(deoptimize), method(method) {}
};
// TODO we need to visit associated methods as roots.
static std::vector<MethodInstrumentationRequest> gDeoptimizationRequests GUARDED_BY(Locks::deoptimization_lock_);
// Breakpoints.
static std::vector<Breakpoint> gBreakpoints GUARDED_BY(Locks::breakpoint_lock_);
static bool IsBreakpoint(const mirror::ArtMethod* m, uint32_t dex_pc)
LOCKS_EXCLUDED(Locks::breakpoint_lock_)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) {
if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == dex_pc) {
VLOG(jdwp) << "Hit breakpoint #" << i << ": " << gBreakpoints[i];
return true;
}
}
return false;
}
static bool IsSuspendedForDebugger(ScopedObjectAccessUnchecked& soa, Thread* thread)
LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) {
MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
// A thread may be suspended for GC; in this code, we really want to know whether
// there's a debugger suspension active.
return thread->IsSuspended() && thread->GetDebugSuspendCount() > 0;
}
static mirror::Array* DecodeArray(JDWP::RefTypeId id, JDWP::JdwpError& status)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
status = JDWP::ERR_INVALID_OBJECT;
return NULL;
}
if (!o->IsArrayInstance()) {
status = JDWP::ERR_INVALID_ARRAY;
return NULL;
}
status = JDWP::ERR_NONE;
return o->AsArray();
}
static mirror::Class* DecodeClass(JDWP::RefTypeId id, JDWP::JdwpError& status)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
status = JDWP::ERR_INVALID_OBJECT;
return NULL;
}
if (!o->IsClass()) {
status = JDWP::ERR_INVALID_CLASS;
return NULL;
}
status = JDWP::ERR_NONE;
return o->AsClass();
}
static JDWP::JdwpError DecodeThread(ScopedObjectAccessUnchecked& soa, JDWP::ObjectId thread_id, Thread*& thread)
EXCLUSIVE_LOCKS_REQUIRED(Locks::thread_list_lock_)
LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* thread_peer = gRegistry->Get<mirror::Object*>(thread_id);
if (thread_peer == NULL || thread_peer == ObjectRegistry::kInvalidObject) {
// This isn't even an object.
return JDWP::ERR_INVALID_OBJECT;
}
mirror::Class* java_lang_Thread = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread);
if (!java_lang_Thread->IsAssignableFrom(thread_peer->GetClass())) {
// This isn't a thread.
return JDWP::ERR_INVALID_THREAD;
}
thread = Thread::FromManagedThread(soa, thread_peer);
if (thread == NULL) {
// This is a java.lang.Thread without a Thread*. Must be a zombie.
return JDWP::ERR_THREAD_NOT_ALIVE;
}
return JDWP::ERR_NONE;
}
static JDWP::JdwpTag BasicTagFromDescriptor(const char* descriptor) {
// JDWP deliberately uses the descriptor characters' ASCII values for its enum.
// Note that by "basic" we mean that we don't get more specific than JT_OBJECT.
return static_cast<JDWP::JdwpTag>(descriptor[0]);
}
static JDWP::JdwpTag TagFromClass(const ScopedObjectAccessUnchecked& soa, mirror::Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(c != NULL);
if (c->IsArrayClass()) {
return JDWP::JT_ARRAY;
}
if (c->IsStringClass()) {
return JDWP::JT_STRING;
}
if (c->IsClassClass()) {
return JDWP::JT_CLASS_OBJECT;
}
{
mirror::Class* thread_class = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread);
if (thread_class->IsAssignableFrom(c)) {
return JDWP::JT_THREAD;
}
}
{
mirror::Class* thread_group_class =
soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ThreadGroup);
if (thread_group_class->IsAssignableFrom(c)) {
return JDWP::JT_THREAD_GROUP;
}
}
{
mirror::Class* class_loader_class =
soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ClassLoader);
if (class_loader_class->IsAssignableFrom(c)) {
return JDWP::JT_CLASS_LOADER;
}
}
return JDWP::JT_OBJECT;
}
/*
* Objects declared to hold Object might actually hold a more specific
* type. The debugger may take a special interest in these (e.g. it
* wants to display the contents of Strings), so we want to return an
* appropriate tag.
*
* Null objects are tagged JT_OBJECT.
*/
static JDWP::JdwpTag TagFromObject(const ScopedObjectAccessUnchecked& soa, mirror::Object* o)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (o == NULL) ? JDWP::JT_OBJECT : TagFromClass(soa, o->GetClass());
}
static bool IsPrimitiveTag(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
case JDWP::JT_CHAR:
case JDWP::JT_FLOAT:
case JDWP::JT_DOUBLE:
case JDWP::JT_INT:
case JDWP::JT_LONG:
case JDWP::JT_SHORT:
case JDWP::JT_VOID:
return true;
default:
return false;
}
}
/*
* Handle one of the JDWP name/value pairs.
*
* JDWP options are:
* help: if specified, show help message and bail
* transport: may be dt_socket or dt_shmem
* address: for dt_socket, "host:port", or just "port" when listening
* server: if "y", wait for debugger to attach; if "n", attach to debugger
* timeout: how long to wait for debugger to connect / listen
*
* Useful with server=n (these aren't supported yet):
* onthrow=<exception-name>: connect to debugger when exception thrown
* onuncaught=y|n: connect to debugger when uncaught exception thrown
* launch=<command-line>: launch the debugger itself
*
* The "transport" option is required, as is "address" if server=n.
*/
static bool ParseJdwpOption(const std::string& name, const std::string& value) {
if (name == "transport") {
if (value == "dt_socket") {
gJdwpOptions.transport = JDWP::kJdwpTransportSocket;
} else if (value == "dt_android_adb") {
gJdwpOptions.transport = JDWP::kJdwpTransportAndroidAdb;
} else {
LOG(ERROR) << "JDWP transport not supported: " << value;
return false;
}
} else if (name == "server") {
if (value == "n") {
gJdwpOptions.server = false;
} else if (value == "y") {
gJdwpOptions.server = true;
} else {
LOG(ERROR) << "JDWP option 'server' must be 'y' or 'n'";
return false;
}
} else if (name == "suspend") {
if (value == "n") {
gJdwpOptions.suspend = false;
} else if (value == "y") {
gJdwpOptions.suspend = true;
} else {
LOG(ERROR) << "JDWP option 'suspend' must be 'y' or 'n'";
return false;
}
} else if (name == "address") {
/* this is either <port> or <host>:<port> */
std::string port_string;
gJdwpOptions.host.clear();
std::string::size_type colon = value.find(':');
if (colon != std::string::npos) {
gJdwpOptions.host = value.substr(0, colon);
port_string = value.substr(colon + 1);
} else {
port_string = value;
}
if (port_string.empty()) {
LOG(ERROR) << "JDWP address missing port: " << value;
return false;
}
char* end;
uint64_t port = strtoul(port_string.c_str(), &end, 10);
if (*end != '\0' || port > 0xffff) {
LOG(ERROR) << "JDWP address has junk in port field: " << value;
return false;
}
gJdwpOptions.port = port;
} else if (name == "launch" || name == "onthrow" || name == "oncaught" || name == "timeout") {
/* valid but unsupported */
LOG(INFO) << "Ignoring JDWP option '" << name << "'='" << value << "'";
} else {
LOG(INFO) << "Ignoring unrecognized JDWP option '" << name << "'='" << value << "'";
}
return true;
}
/*
* Parse the latter half of a -Xrunjdwp/-agentlib:jdwp= string, e.g.:
* "transport=dt_socket,address=8000,server=y,suspend=n"
*/
bool Dbg::ParseJdwpOptions(const std::string& options) {
VLOG(jdwp) << "ParseJdwpOptions: " << options;
std::vector<std::string> pairs;
Split(options, ',', pairs);
for (size_t i = 0; i < pairs.size(); ++i) {
std::string::size_type equals = pairs[i].find('=');
if (equals == std::string::npos) {
LOG(ERROR) << "Can't parse JDWP option '" << pairs[i] << "' in '" << options << "'";
return false;
}
ParseJdwpOption(pairs[i].substr(0, equals), pairs[i].substr(equals + 1));
}
if (gJdwpOptions.transport == JDWP::kJdwpTransportUnknown) {
LOG(ERROR) << "Must specify JDWP transport: " << options;
}
if (!gJdwpOptions.server && (gJdwpOptions.host.empty() || gJdwpOptions.port == 0)) {
LOG(ERROR) << "Must specify JDWP host and port when server=n: " << options;
return false;
}
gJdwpConfigured = true;
return true;
}
void Dbg::StartJdwp() {
if (!gJdwpAllowed || !IsJdwpConfigured()) {
// No JDWP for you!
return;
}
CHECK(gRegistry == nullptr);
gRegistry = new ObjectRegistry;
alloc_tracker_lock_ = new Mutex("AllocTracker lock");
// Init JDWP if the debugger is enabled. This may connect out to a
// debugger, passively listen for a debugger, or block waiting for a
// debugger.
gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions);
if (gJdwpState == NULL) {
// We probably failed because some other process has the port already, which means that
// if we don't abort the user is likely to think they're talking to us when they're actually
// talking to that other process.
LOG(FATAL) << "Debugger thread failed to initialize";
}
// If a debugger has already attached, send the "welcome" message.
// This may cause us to suspend all threads.
if (gJdwpState->IsActive()) {
ScopedObjectAccess soa(Thread::Current());
if (!gJdwpState->PostVMStart()) {
LOG(WARNING) << "Failed to post 'start' message to debugger";
}
}
}
void Dbg::StopJdwp() {
// Prevent the JDWP thread from processing JDWP incoming packets after we close the connection.
Disposed();
delete gJdwpState;
gJdwpState = nullptr;
delete gRegistry;
gRegistry = nullptr;
delete alloc_tracker_lock_;
alloc_tracker_lock_ = nullptr;
}
void Dbg::GcDidFinish() {
if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
LOG(DEBUG) << "Sending heap info to DDM";
DdmSendHeapInfo(gDdmHpifWhen);
}
if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
LOG(DEBUG) << "Dumping heap to DDM";
DdmSendHeapSegments(false);
}
if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
LOG(DEBUG) << "Dumping native heap to DDM";
DdmSendHeapSegments(true);
}
}
void Dbg::SetJdwpAllowed(bool allowed) {
gJdwpAllowed = allowed;
}
DebugInvokeReq* Dbg::GetInvokeReq() {
return Thread::Current()->GetInvokeReq();
}
Thread* Dbg::GetDebugThread() {
return (gJdwpState != NULL) ? gJdwpState->GetDebugThread() : NULL;
}
void Dbg::ClearWaitForEventThread() {
gJdwpState->ClearWaitForEventThread();
}
void Dbg::Connected() {
CHECK(!gDebuggerConnected);
VLOG(jdwp) << "JDWP has attached";
gDebuggerConnected = true;
gDisposed = false;
}
void Dbg::Disposed() {
gDisposed = true;
}
bool Dbg::IsDisposed() {
return gDisposed;
}
void Dbg::GoActive() {
// Enable all debugging features, including scans for breakpoints.
// This is a no-op if we're already active.
// Only called from the JDWP handler thread.
if (gDebuggerActive) {
return;
}
{
// TODO: dalvik only warned if there were breakpoints left over. clear in Dbg::Disconnected?
MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
CHECK_EQ(gBreakpoints.size(), 0U);
}
{
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
CHECK_EQ(gDeoptimizationRequests.size(), 0U);
}
Runtime* runtime = Runtime::Current();
runtime->GetThreadList()->SuspendAll();
Thread* self = Thread::Current();
ThreadState old_state = self->SetStateUnsafe(kRunnable);
CHECK_NE(old_state, kRunnable);
runtime->GetInstrumentation()->EnableDeoptimization();
runtime->GetInstrumentation()->AddListener(&gDebugInstrumentationListener,
instrumentation::Instrumentation::kMethodEntered |
instrumentation::Instrumentation::kMethodExited |
instrumentation::Instrumentation::kDexPcMoved |
instrumentation::Instrumentation::kExceptionCaught);
gDebuggerActive = true;
CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable);
runtime->GetThreadList()->ResumeAll();
LOG(INFO) << "Debugger is active";
}
void Dbg::Disconnected() {
CHECK(gDebuggerConnected);
LOG(INFO) << "Debugger is no longer active";
// Suspend all threads and exclusively acquire the mutator lock. Set the state of the thread
// to kRunnable to avoid scoped object access transitions. Remove the debugger as a listener
// and clear the object registry.
Runtime* runtime = Runtime::Current();
runtime->GetThreadList()->SuspendAll();
Thread* self = Thread::Current();
ThreadState old_state = self->SetStateUnsafe(kRunnable);
// Debugger may not be active at this point.
if (gDebuggerActive) {
{
// Since we're going to disable deoptimization, we clear the deoptimization requests queue.
// This prevents us from having any pending deoptimization request when the debugger attaches
// to us again while no event has been requested yet.
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
gDeoptimizationRequests.clear();
}
runtime->GetInstrumentation()->RemoveListener(&gDebugInstrumentationListener,
instrumentation::Instrumentation::kMethodEntered |
instrumentation::Instrumentation::kMethodExited |
instrumentation::Instrumentation::kDexPcMoved |
instrumentation::Instrumentation::kExceptionCaught);
runtime->GetInstrumentation()->DisableDeoptimization();
gDebuggerActive = false;
}
gRegistry->Clear();
gDebuggerConnected = false;
CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable);
runtime->GetThreadList()->ResumeAll();
}
bool Dbg::IsDebuggerActive() {
return gDebuggerActive;
}
bool Dbg::IsJdwpConfigured() {
return gJdwpConfigured;
}
int64_t Dbg::LastDebuggerActivity() {
return gJdwpState->LastDebuggerActivity();
}
void Dbg::UndoDebuggerSuspensions() {
Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions();
}
std::string Dbg::GetClassName(JDWP::RefTypeId class_id) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(class_id);
if (o == NULL) {
return "NULL";
}
if (o == ObjectRegistry::kInvalidObject) {
return StringPrintf("invalid object %p", reinterpret_cast<void*>(class_id));
}
if (!o->IsClass()) {
return StringPrintf("non-class %p", o); // This is only used for debugging output anyway.
}
return DescriptorToName(ClassHelper(o->AsClass()).GetDescriptor());
}
JDWP::JdwpError Dbg::GetClassObject(JDWP::RefTypeId id, JDWP::ObjectId& class_object_id) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
class_object_id = gRegistry->Add(c);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSuperclass(JDWP::RefTypeId id, JDWP::RefTypeId& superclass_id) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
if (c->IsInterface()) {
// http://code.google.com/p/android/issues/detail?id=20856
superclass_id = 0;
} else {
superclass_id = gRegistry->Add(c->GetSuperClass());
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetClassLoader(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
expandBufAddObjectId(pReply, gRegistry->Add(o->GetClass()->GetClassLoader()));
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetModifiers(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(id, status);
if (c == NULL) {
return status;
}
uint32_t access_flags = c->GetAccessFlags() & kAccJavaFlagsMask;
// Set ACC_SUPER. Dex files don't contain this flag but only classes are supposed to have it set,
// not interfaces.
// Class.getModifiers doesn't return it, but JDWP does, so we set it here.
if ((access_flags & kAccInterface) == 0) {
access_flags |= kAccSuper;
}
expandBufAdd4BE(pReply, access_flags);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetMonitorInfo(JDWP::ObjectId object_id, JDWP::ExpandBuf* reply)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
// Ensure all threads are suspended while we read objects' lock words.
Thread* self = Thread::Current();
Locks::mutator_lock_->SharedUnlock(self);
Locks::mutator_lock_->ExclusiveLock(self);
MonitorInfo monitor_info(o);
Locks::mutator_lock_->ExclusiveUnlock(self);
Locks::mutator_lock_->SharedLock(self);
if (monitor_info.owner_ != NULL) {
expandBufAddObjectId(reply, gRegistry->Add(monitor_info.owner_->GetPeer()));
} else {
expandBufAddObjectId(reply, gRegistry->Add(NULL));
}
expandBufAdd4BE(reply, monitor_info.entry_count_);
expandBufAdd4BE(reply, monitor_info.waiters_.size());
for (size_t i = 0; i < monitor_info.waiters_.size(); ++i) {
expandBufAddObjectId(reply, gRegistry->Add(monitor_info.waiters_[i]->GetPeer()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetOwnedMonitors(JDWP::ObjectId thread_id,
std::vector<JDWP::ObjectId>& monitors,
std::vector<uint32_t>& stack_depths) {
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
struct OwnedMonitorVisitor : public StackVisitor {
OwnedMonitorVisitor(Thread* thread, Context* context)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, context), current_stack_depth(0) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (!GetMethod()->IsRuntimeMethod()) {
Monitor::VisitLocks(this, AppendOwnedMonitors, this);
++current_stack_depth;
}
return true;
}
static void AppendOwnedMonitors(mirror::Object* owned_monitor, void* arg) {
OwnedMonitorVisitor* visitor = reinterpret_cast<OwnedMonitorVisitor*>(arg);
visitor->monitors.push_back(owned_monitor);
visitor->stack_depths.push_back(visitor->current_stack_depth);
}
size_t current_stack_depth;
std::vector<mirror::Object*> monitors;
std::vector<uint32_t> stack_depths;
};
UniquePtr<Context> context(Context::Create());
OwnedMonitorVisitor visitor(thread, context.get());
visitor.WalkStack();
for (size_t i = 0; i < visitor.monitors.size(); ++i) {
monitors.push_back(gRegistry->Add(visitor.monitors[i]));
stack_depths.push_back(visitor.stack_depths[i]);
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetContendedMonitor(JDWP::ObjectId thread_id,
JDWP::ObjectId& contended_monitor) {
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
contended_monitor = gRegistry->Add(Monitor::GetContendedMonitor(thread));
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetInstanceCounts(const std::vector<JDWP::RefTypeId>& class_ids,
std::vector<uint64_t>& counts)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false);
std::vector<mirror::Class*> classes;
counts.clear();
for (size_t i = 0; i < class_ids.size(); ++i) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_ids[i], status);
if (c == NULL) {
return status;
}
classes.push_back(c);
counts.push_back(0);
}
heap->CountInstances(classes, false, &counts[0]);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetInstances(JDWP::RefTypeId class_id, int32_t max_count, std::vector<JDWP::ObjectId>& instances)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gc::Heap* heap = Runtime::Current()->GetHeap();
// We only want reachable instances, so do a GC.
heap->CollectGarbage(false);
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == nullptr) {
return status;
}
std::vector<mirror::Object*> raw_instances;
Runtime::Current()->GetHeap()->GetInstances(c, max_count, raw_instances);
for (size_t i = 0; i < raw_instances.size(); ++i) {
instances.push_back(gRegistry->Add(raw_instances[i]));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetReferringObjects(JDWP::ObjectId object_id, int32_t max_count,
std::vector<JDWP::ObjectId>& referring_objects)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false);
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
std::vector<mirror::Object*> raw_instances;
heap->GetReferringObjects(o, max_count, raw_instances);
for (size_t i = 0; i < raw_instances.size(); ++i) {
referring_objects.push_back(gRegistry->Add(raw_instances[i]));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::DisableCollection(JDWP::ObjectId object_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
gRegistry->DisableCollection(object_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::EnableCollection(JDWP::ObjectId object_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
// Unlike DisableCollection, JDWP specs do not state an invalid object causes an error. The RI
// also ignores these cases and never return an error. However it's not obvious why this command
// should behave differently from DisableCollection and IsCollected commands. So let's be more
// strict and return an error if this happens.
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
gRegistry->EnableCollection(object_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::IsCollected(JDWP::ObjectId object_id, bool& is_collected)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (object_id == 0) {
// Null object id is invalid.
return JDWP::ERR_INVALID_OBJECT;
}
// JDWP specs state an INVALID_OBJECT error is returned if the object ID is not valid. However
// the RI seems to ignore this and assume object has been collected.
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
is_collected = true;
} else {
is_collected = gRegistry->IsCollected(object_id);
}
return JDWP::ERR_NONE;
}
void Dbg::DisposeObject(JDWP::ObjectId object_id, uint32_t reference_count)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gRegistry->DisposeObject(object_id, reference_count);
}
JDWP::JdwpError Dbg::GetReflectedType(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
expandBufAdd1(pReply, c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS);
expandBufAddRefTypeId(pReply, class_id);
return JDWP::ERR_NONE;
}
void Dbg::GetClassList(std::vector<JDWP::RefTypeId>& classes) {
// Get the complete list of reference classes (i.e. all classes except
// the primitive types).
// Returns a newly-allocated buffer full of RefTypeId values.
struct ClassListCreator {
explicit ClassListCreator(std::vector<JDWP::RefTypeId>& classes) : classes(classes) {
}
static bool Visit(mirror::Class* c, void* arg) {
return reinterpret_cast<ClassListCreator*>(arg)->Visit(c);
}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool Visit(mirror::Class* c) NO_THREAD_SAFETY_ANALYSIS {
if (!c->IsPrimitive()) {
classes.push_back(gRegistry->AddRefType(c));
}
return true;
}
std::vector<JDWP::RefTypeId>& classes;
};
ClassListCreator clc(classes);
Runtime::Current()->GetClassLinker()->VisitClasses(ClassListCreator::Visit, &clc);
}
JDWP::JdwpError Dbg::GetClassInfo(JDWP::RefTypeId class_id, JDWP::JdwpTypeTag* pTypeTag, uint32_t* pStatus, std::string* pDescriptor) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
if (c->IsArrayClass()) {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED;
*pTypeTag = JDWP::TT_ARRAY;
} else {
if (c->IsErroneous()) {
*pStatus = JDWP::CS_ERROR;
} else {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED | JDWP::CS_INITIALIZED;
}
*pTypeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
}
if (pDescriptor != NULL) {
*pDescriptor = ClassHelper(c).GetDescriptor();
}
return JDWP::ERR_NONE;
}
void Dbg::FindLoadedClassBySignature(const char* descriptor, std::vector<JDWP::RefTypeId>& ids) {
std::vector<mirror::Class*> classes;
Runtime::Current()->GetClassLinker()->LookupClasses(descriptor, classes);
ids.clear();
for (size_t i = 0; i < classes.size(); ++i) {
ids.push_back(gRegistry->Add(classes[i]));
}
}
JDWP::JdwpError Dbg::GetReferenceType(JDWP::ObjectId object_id, JDWP::ExpandBuf* pReply)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == NULL || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
JDWP::JdwpTypeTag type_tag;
if (o->GetClass()->IsArrayClass()) {
type_tag = JDWP::TT_ARRAY;
} else if (o->GetClass()->IsInterface()) {
type_tag = JDWP::TT_INTERFACE;
} else {
type_tag = JDWP::TT_CLASS;
}
JDWP::RefTypeId type_id = gRegistry->AddRefType(o->GetClass());
expandBufAdd1(pReply, type_tag);
expandBufAddRefTypeId(pReply, type_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSignature(JDWP::RefTypeId class_id, std::string* signature) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
*signature = ClassHelper(c).GetDescriptor();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSourceFile(JDWP::RefTypeId class_id, std::string& result) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
result = ClassHelper(c).GetSourceFile();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetObjectTag(JDWP::ObjectId object_id, uint8_t& tag) {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if (o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
tag = TagFromObject(soa, o);
return JDWP::ERR_NONE;
}
size_t Dbg::GetTagWidth(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_VOID:
return 0;
case JDWP::JT_BYTE:
case JDWP::JT_BOOLEAN:
return 1;
case JDWP::JT_CHAR:
case JDWP::JT_SHORT:
return 2;
case JDWP::JT_FLOAT:
case JDWP::JT_INT:
return 4;
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return sizeof(JDWP::ObjectId);
case JDWP::JT_DOUBLE:
case JDWP::JT_LONG:
return 8;
default:
LOG(FATAL) << "Unknown tag " << tag;
return -1;
}
}
JDWP::JdwpError Dbg::GetArrayLength(JDWP::ObjectId array_id, int& length) {
JDWP::JdwpError status;
mirror::Array* a = DecodeArray(array_id, status);
if (a == NULL) {
return status;
}
length = a->GetLength();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputArray(JDWP::ObjectId array_id, int offset, int count, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Array* a = DecodeArray(array_id, status);
if (a == nullptr) {
return status;
}
if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
std::string descriptor(ClassHelper(a->GetClass()).GetDescriptor());
JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor.c_str() + 1);
expandBufAdd1(pReply, tag);
expandBufAdd4BE(pReply, count);
if (IsPrimitiveTag(tag)) {
size_t width = GetTagWidth(tag);
uint8_t* dst = expandBufAddSpace(pReply, count * width);
if (width == 8) {
const uint64_t* src8 = reinterpret_cast<uint64_t*>(a->GetRawData(sizeof(uint64_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write8BE(&dst, src8[offset + i]);
} else if (width == 4) {
const uint32_t* src4 = reinterpret_cast<uint32_t*>(a->GetRawData(sizeof(uint32_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[offset + i]);
} else if (width == 2) {
const uint16_t* src2 = reinterpret_cast<uint16_t*>(a->GetRawData(sizeof(uint16_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[offset + i]);
} else {
const uint8_t* src = reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint8_t), 0));
memcpy(dst, &src[offset * width], count * width);
}
} else {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::ObjectArray<mirror::Object>* oa = a->AsObjectArray<mirror::Object>();
for (int i = 0; i < count; ++i) {
mirror::Object* element = oa->Get(offset + i);
JDWP::JdwpTag specific_tag = (element != nullptr) ? TagFromObject(soa, element)
: tag;
expandBufAdd1(pReply, specific_tag);
expandBufAddObjectId(pReply, gRegistry->Add(element));
}
}
return JDWP::ERR_NONE;
}
template <typename T>
static void CopyArrayData(mirror::Array* a, JDWP::Request& src, int offset, int count)
NO_THREAD_SAFETY_ANALYSIS {
// TODO: fix when annotalysis correctly handles non-member functions.
DCHECK(a->GetClass()->IsPrimitiveArray());
T* dst = reinterpret_cast<T*>(a->GetRawData(sizeof(T), offset));
for (int i = 0; i < count; ++i) {
*dst++ = src.ReadValue(sizeof(T));
}
}
JDWP::JdwpError Dbg::SetArrayElements(JDWP::ObjectId array_id, int offset, int count,
JDWP::Request& request)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
JDWP::JdwpError status;
mirror::Array* dst = DecodeArray(array_id, status);
if (dst == NULL) {
return status;
}
if (offset < 0 || count < 0 || offset > dst->GetLength() || dst->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
const char* descriptor = ClassHelper(dst->GetClass()).GetDescriptor();
JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor + 1);
if (IsPrimitiveTag(tag)) {
size_t width = GetTagWidth(tag);
if (width == 8) {
CopyArrayData<uint64_t>(dst, request, offset, count);
} else if (width == 4) {
CopyArrayData<uint32_t>(dst, request, offset, count);
} else if (width == 2) {
CopyArrayData<uint16_t>(dst, request, offset, count);
} else {
CopyArrayData<uint8_t>(dst, request, offset, count);
}
} else {
mirror::ObjectArray<mirror::Object>* oa = dst->AsObjectArray<mirror::Object>();
for (int i = 0; i < count; ++i) {
JDWP::ObjectId id = request.ReadObjectId();
mirror::Object* o = gRegistry->Get<mirror::Object*>(id);
if (o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
oa->Set<false>(offset + i, o);
}
}
return JDWP::ERR_NONE;
}
JDWP::ObjectId Dbg::CreateString(const std::string& str) {
return gRegistry->Add(mirror::String::AllocFromModifiedUtf8(Thread::Current(), str.c_str()));
}
JDWP::JdwpError Dbg::CreateObject(JDWP::RefTypeId class_id, JDWP::ObjectId& new_object) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
new_object = gRegistry->Add(c->AllocObject(Thread::Current()));
return JDWP::ERR_NONE;
}
/*
* Used by Eclipse's "Display" view to evaluate "new byte[5]" to get "(byte[]) [0, 0, 0, 0, 0]".
*/
JDWP::JdwpError Dbg::CreateArrayObject(JDWP::RefTypeId array_class_id, uint32_t length,
JDWP::ObjectId& new_array) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(array_class_id, status);
if (c == NULL) {
return status;
}
new_array = gRegistry->Add(mirror::Array::Alloc<true>(Thread::Current(), c, length,
c->GetComponentSize(),
Runtime::Current()->GetHeap()->GetCurrentAllocator()));
return JDWP::ERR_NONE;
}
bool Dbg::MatchType(JDWP::RefTypeId instance_class_id, JDWP::RefTypeId class_id) {
JDWP::JdwpError status;
mirror::Class* c1 = DecodeClass(instance_class_id, status);
CHECK(c1 != NULL);
mirror::Class* c2 = DecodeClass(class_id, status);
CHECK(c2 != NULL);
return c2->IsAssignableFrom(c1);
}
static JDWP::FieldId ToFieldId(const mirror::ArtField* f)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(!kMovingFields);
return static_cast<JDWP::FieldId>(reinterpret_cast<uintptr_t>(f));
}
static JDWP::MethodId ToMethodId(const mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(!kMovingMethods);
return static_cast<JDWP::MethodId>(reinterpret_cast<uintptr_t>(m));
}
static mirror::ArtField* FromFieldId(JDWP::FieldId fid)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(!kMovingFields);
return reinterpret_cast<mirror::ArtField*>(static_cast<uintptr_t>(fid));
}
static mirror::ArtMethod* FromMethodId(JDWP::MethodId mid)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(!kMovingMethods);
return reinterpret_cast<mirror::ArtMethod*>(static_cast<uintptr_t>(mid));
}
static void SetLocation(JDWP::JdwpLocation& location, mirror::ArtMethod* m, uint32_t dex_pc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (m == NULL) {
memset(&location, 0, sizeof(location));
} else {
mirror::Class* c = m->GetDeclaringClass();
location.type_tag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
location.class_id = gRegistry->Add(c);
location.method_id = ToMethodId(m);
location.dex_pc = dex_pc;
}
}
std::string Dbg::GetMethodName(JDWP::MethodId method_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* m = FromMethodId(method_id);
return MethodHelper(m).GetName();
}
std::string Dbg::GetFieldName(JDWP::FieldId field_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtField* f = FromFieldId(field_id);
return FieldHelper(f).GetName();
}
/*
* Augment the access flags for synthetic methods and fields by setting
* the (as described by the spec) "0xf0000000 bit". Also, strip out any
* flags not specified by the Java programming language.
*/
static uint32_t MangleAccessFlags(uint32_t accessFlags) {
accessFlags &= kAccJavaFlagsMask;
if ((accessFlags & kAccSynthetic) != 0) {
accessFlags |= 0xf0000000;
}
return accessFlags;
}
/*
* Circularly shifts registers so that arguments come first. Debuggers
* expect slots to begin with arguments, but dex code places them at
* the end.
*/
static uint16_t MangleSlot(uint16_t slot, mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
uint16_t ins_size = code_item->ins_size_;
uint16_t locals_size = code_item->registers_size_ - ins_size;
if (slot >= locals_size) {
return slot - locals_size;
} else {
return slot + ins_size;
}
}
/*
* Circularly shifts registers so that arguments come last. Reverts
* slots to dex style argument placement.
*/
static uint16_t DemangleSlot(uint16_t slot, mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem();
uint16_t ins_size = code_item->ins_size_;
uint16_t locals_size = code_item->registers_size_ - ins_size;
if (slot < ins_size) {
return slot + locals_size;
} else {
return slot - ins_size;
}
}
JDWP::JdwpError Dbg::OutputDeclaredFields(JDWP::RefTypeId class_id, bool with_generic, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
size_t instance_field_count = c->NumInstanceFields();
size_t static_field_count = c->NumStaticFields();
expandBufAdd4BE(pReply, instance_field_count + static_field_count);
for (size_t i = 0; i < instance_field_count + static_field_count; ++i) {
mirror::ArtField* f = (i < instance_field_count) ? c->GetInstanceField(i) : c->GetStaticField(i - instance_field_count);
FieldHelper fh(f);
expandBufAddFieldId(pReply, ToFieldId(f));
expandBufAddUtf8String(pReply, fh.GetName());
expandBufAddUtf8String(pReply, fh.GetTypeDescriptor());
if (with_generic) {
static const char genericSignature[1] = "";
expandBufAddUtf8String(pReply, genericSignature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(f->GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredMethods(JDWP::RefTypeId class_id, bool with_generic,
JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
size_t direct_method_count = c->NumDirectMethods();
size_t virtual_method_count = c->NumVirtualMethods();
expandBufAdd4BE(pReply, direct_method_count + virtual_method_count);
for (size_t i = 0; i < direct_method_count + virtual_method_count; ++i) {
mirror::ArtMethod* m = (i < direct_method_count) ? c->GetDirectMethod(i) : c->GetVirtualMethod(i - direct_method_count);
MethodHelper mh(m);
expandBufAddMethodId(pReply, ToMethodId(m));
expandBufAddUtf8String(pReply, mh.GetName());
expandBufAddUtf8String(pReply, mh.GetSignature().ToString());
if (with_generic) {
static const char genericSignature[1] = "";
expandBufAddUtf8String(pReply, genericSignature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(m->GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredInterfaces(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
ClassHelper kh(c);
size_t interface_count = kh.NumDirectInterfaces();
expandBufAdd4BE(pReply, interface_count);
for (size_t i = 0; i < interface_count; ++i) {
expandBufAddRefTypeId(pReply, gRegistry->AddRefType(kh.GetDirectInterface(i)));
}
return JDWP::ERR_NONE;
}
void Dbg::OutputLineTable(JDWP::RefTypeId, JDWP::MethodId method_id, JDWP::ExpandBuf* pReply)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
struct DebugCallbackContext {
int numItems;
JDWP::ExpandBuf* pReply;
static bool Callback(void* context, uint32_t address, uint32_t line_number) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
expandBufAdd8BE(pContext->pReply, address);
expandBufAdd4BE(pContext->pReply, line_number);
pContext->numItems++;
return false;
}
};
mirror::ArtMethod* m = FromMethodId(method_id);
MethodHelper mh(m);
uint64_t start, end;
if (m->IsNative()) {
start = -1;
end = -1;
} else {
start = 0;
// Return the index of the last instruction
end = mh.GetCodeItem()->insns_size_in_code_units_ - 1;
}
expandBufAdd8BE(pReply, start);
expandBufAdd8BE(pReply, end);
// Add numLines later
size_t numLinesOffset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.numItems = 0;
context.pReply = pReply;
mh.GetDexFile().DecodeDebugInfo(mh.GetCodeItem(), m->IsStatic(), m->GetDexMethodIndex(),
DebugCallbackContext::Callback, NULL, &context);
JDWP::Set4BE(expandBufGetBuffer(pReply) + numLinesOffset, context.numItems);
}
void Dbg::OutputVariableTable(JDWP::RefTypeId, JDWP::MethodId method_id, bool with_generic, JDWP::ExpandBuf* pReply) {
struct DebugCallbackContext {
mirror::ArtMethod* method;
JDWP::ExpandBuf* pReply;
size_t variable_count;
bool with_generic;
static void Callback(void* context, uint16_t slot, uint32_t startAddress, uint32_t endAddress, const char* name, const char* descriptor, const char* signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
VLOG(jdwp) << StringPrintf(" %2zd: %d(%d) '%s' '%s' '%s' actual slot=%d mangled slot=%d", pContext->variable_count, startAddress, endAddress - startAddress, name, descriptor, signature, slot, MangleSlot(slot, pContext->method));
slot = MangleSlot(slot, pContext->method);
expandBufAdd8BE(pContext->pReply, startAddress);
expandBufAddUtf8String(pContext->pReply, name);
expandBufAddUtf8String(pContext->pReply, descriptor);
if (pContext->with_generic) {
expandBufAddUtf8String(pContext->pReply, signature);
}
expandBufAdd4BE(pContext->pReply, endAddress - startAddress);
expandBufAdd4BE(pContext->pReply, slot);
++pContext->variable_count;
}
};
mirror::ArtMethod* m = FromMethodId(method_id);
MethodHelper mh(m);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
// arg_count considers doubles and longs to take 2 units.
// variable_count considers everything to take 1 unit.
std::string shorty(mh.GetShorty());
expandBufAdd4BE(pReply, mirror::ArtMethod::NumArgRegisters(shorty));
// We don't know the total number of variables yet, so leave a blank and update it later.
size_t variable_count_offset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.method = m;
context.pReply = pReply;
context.variable_count = 0;
context.with_generic = with_generic;
mh.GetDexFile().DecodeDebugInfo(code_item, m->IsStatic(), m->GetDexMethodIndex(), NULL,
DebugCallbackContext::Callback, &context);
JDWP::Set4BE(expandBufGetBuffer(pReply) + variable_count_offset, context.variable_count);
}
void Dbg::OutputMethodReturnValue(JDWP::MethodId method_id, const JValue* return_value,
JDWP::ExpandBuf* pReply) {
mirror::ArtMethod* m = FromMethodId(method_id);
JDWP::JdwpTag tag = BasicTagFromDescriptor(MethodHelper(m).GetShorty());
OutputJValue(tag, return_value, pReply);
}
JDWP::JdwpError Dbg::GetBytecodes(JDWP::RefTypeId, JDWP::MethodId method_id,
std::vector<uint8_t>& bytecodes)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* m = FromMethodId(method_id);
if (m == NULL) {
return JDWP::ERR_INVALID_METHODID;
}
MethodHelper mh(m);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
size_t byte_count = code_item->insns_size_in_code_units_ * 2;
const uint8_t* begin = reinterpret_cast<const uint8_t*>(code_item->insns_);
const uint8_t* end = begin + byte_count;
for (const uint8_t* p = begin; p != end; ++p) {
bytecodes.push_back(*p);
}
return JDWP::ERR_NONE;
}
JDWP::JdwpTag Dbg::GetFieldBasicTag(JDWP::FieldId field_id) {
return BasicTagFromDescriptor(FieldHelper(FromFieldId(field_id)).GetTypeDescriptor());
}
JDWP::JdwpTag Dbg::GetStaticFieldBasicTag(JDWP::FieldId field_id) {
return BasicTagFromDescriptor(FieldHelper(FromFieldId(field_id)).GetTypeDescriptor());
}
static JDWP::JdwpError GetFieldValueImpl(JDWP::RefTypeId ref_type_id, JDWP::ObjectId object_id,
JDWP::FieldId field_id, JDWP::ExpandBuf* pReply,
bool is_static)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(ref_type_id, status);
if (ref_type_id != 0 && c == NULL) {
return status;
}
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if ((!is_static && o == NULL) || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
mirror::ArtField* f = FromFieldId(field_id);
mirror::Class* receiver_class = c;
if (receiver_class == NULL && o != NULL) {
receiver_class = o->GetClass();
}
// TODO: should we give up now if receiver_class is NULL?
if (receiver_class != NULL && !f->GetDeclaringClass()->IsAssignableFrom(receiver_class)) {
LOG(INFO) << "ERR_INVALID_FIELDID: " << PrettyField(f) << " " << PrettyClass(receiver_class);
return JDWP::ERR_INVALID_FIELDID;
}
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f);
}
}
if (f->IsStatic()) {
o = f->GetDeclaringClass();
}
JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor());
JValue field_value;
if (tag == JDWP::JT_VOID) {
LOG(FATAL) << "Unknown tag: " << tag;
} else if (!IsPrimitiveTag(tag)) {
field_value.SetL(f->GetObject(o));
} else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
field_value.SetJ(f->Get64(o));
} else {
field_value.SetI(f->Get32(o));
}
Dbg::OutputJValue(tag, &field_value, pReply);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id,
JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(0, object_id, field_id, pReply, false);
}
JDWP::JdwpError Dbg::GetStaticFieldValue(JDWP::RefTypeId ref_type_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(ref_type_id, 0, field_id, pReply, true);
}
static JDWP::JdwpError SetFieldValueImpl(JDWP::ObjectId object_id, JDWP::FieldId field_id,
uint64_t value, int width, bool is_static)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id);
if ((!is_static && o == NULL) || o == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
mirror::ArtField* f = FromFieldId(field_id);
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f);
}
}
if (f->IsStatic()) {
o = f->GetDeclaringClass();
}
JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor());
if (IsPrimitiveTag(tag)) {
if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
CHECK_EQ(width, 8);
// Debugging can't use transactional mode (runtime only).
f->Set64<false>(o, value);
} else {
CHECK_LE(width, 4);
// Debugging can't use transactional mode (runtime only).
f->Set32<false>(o, value);
}
} else {
mirror::Object* v = gRegistry->Get<mirror::Object*>(value);
if (v == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
if (v != NULL) {
mirror::Class* field_type = FieldHelper(f).GetType();
if (!field_type->IsAssignableFrom(v->GetClass())) {
return JDWP::ERR_INVALID_OBJECT;
}
}
// Debugging can't use transactional mode (runtime only).
f->SetObject<false>(o, v);
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::SetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value,
int width) {
return SetFieldValueImpl(object_id, field_id, value, width, false);
}
JDWP::JdwpError Dbg::SetStaticFieldValue(JDWP::FieldId field_id, uint64_t value, int width) {
return SetFieldValueImpl(0, field_id, value, width, true);
}
std::string Dbg::StringToUtf8(JDWP::ObjectId string_id) {
mirror::String* s = gRegistry->Get<mirror::String*>(string_id);
return s->ToModifiedUtf8();
}
void Dbg::OutputJValue(JDWP::JdwpTag tag, const JValue* return_value, JDWP::ExpandBuf* pReply) {
if (IsPrimitiveTag(tag)) {
expandBufAdd1(pReply, tag);
if (tag == JDWP::JT_BOOLEAN || tag == JDWP::JT_BYTE) {
expandBufAdd1(pReply, return_value->GetI());
} else if (tag == JDWP::JT_CHAR || tag == JDWP::JT_SHORT) {
expandBufAdd2BE(pReply, return_value->GetI());
} else if (tag == JDWP::JT_FLOAT || tag == JDWP::JT_INT) {
expandBufAdd4BE(pReply, return_value->GetI());
} else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
expandBufAdd8BE(pReply, return_value->GetJ());
} else {
CHECK_EQ(tag, JDWP::JT_VOID);
}
} else {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* value = return_value->GetL();
expandBufAdd1(pReply, TagFromObject(soa, value));
expandBufAddObjectId(pReply, gRegistry->Add(value));
}
}
JDWP::JdwpError Dbg::GetThreadName(JDWP::ObjectId thread_id, std::string& name) {
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE && error != JDWP::ERR_THREAD_NOT_ALIVE) {
return error;
}
// We still need to report the zombie threads' names, so we can't just call Thread::GetThreadName.
mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id);
mirror::ArtField* java_lang_Thread_name_field =
soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
mirror::String* s =
reinterpret_cast<mirror::String*>(java_lang_Thread_name_field->GetObject(thread_object));
if (s != NULL) {
name = s->ToModifiedUtf8();
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadGroup(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccess soa(Thread::Current());
mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id);
if (thread_object == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroup");
// Okay, so it's an object, but is it actually a thread?
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error == JDWP::ERR_THREAD_NOT_ALIVE) {
// Zombie threads are in the null group.
expandBufAddObjectId(pReply, JDWP::ObjectId(0));
error = JDWP::ERR_NONE;
} else if (error == JDWP::ERR_NONE) {
mirror::Class* c = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread);
CHECK(c != nullptr);
mirror::ArtField* f = c->FindInstanceField("group", "Ljava/lang/ThreadGroup;");
CHECK(f != NULL);
mirror::Object* group = f->GetObject(thread_object);
CHECK(group != NULL);
JDWP::ObjectId thread_group_id = gRegistry->Add(group);
expandBufAddObjectId(pReply, thread_group_id);
}
soa.Self()->EndAssertNoThreadSuspension(old_cause);
return error;
}
std::string Dbg::GetThreadGroupName(JDWP::ObjectId thread_group_id) {
ScopedObjectAccess soa(Thread::Current());
mirror::Object* thread_group = gRegistry->Get<mirror::Object*>(thread_group_id);
CHECK(thread_group != nullptr);
const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroupName");
mirror::Class* c = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ThreadGroup);
CHECK(c != nullptr);
mirror::ArtField* f = c->FindInstanceField("name", "Ljava/lang/String;");
CHECK(f != NULL);
mirror::String* s = reinterpret_cast<mirror::String*>(f->GetObject(thread_group));
soa.Self()->EndAssertNoThreadSuspension(old_cause);
return s->ToModifiedUtf8();
}
JDWP::ObjectId Dbg::GetThreadGroupParent(JDWP::ObjectId thread_group_id) {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* thread_group = gRegistry->Get<mirror::Object*>(thread_group_id);
CHECK(thread_group != nullptr);
const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroupParent");
mirror::Class* c = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ThreadGroup);
CHECK(c != nullptr);
mirror::ArtField* f = c->FindInstanceField("parent", "Ljava/lang/ThreadGroup;");
CHECK(f != NULL);
mirror::Object* parent = f->GetObject(thread_group);
soa.Self()->EndAssertNoThreadSuspension(old_cause);
return gRegistry->Add(parent);
}
JDWP::ObjectId Dbg::GetSystemThreadGroupId() {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup);
mirror::Object* group = f->GetObject(f->GetDeclaringClass());
return gRegistry->Add(group);
}
JDWP::ObjectId Dbg::GetMainThreadGroupId() {
ScopedObjectAccess soa(Thread::Current());
mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup);
mirror::Object* group = f->GetObject(f->GetDeclaringClass());
return gRegistry->Add(group);
}
JDWP::JdwpThreadStatus Dbg::ToJdwpThreadStatus(ThreadState state) {
switch (state) {
case kBlocked:
return JDWP::TS_MONITOR;
case kNative:
case kRunnable:
case kSuspended:
return JDWP::TS_RUNNING;
case kSleeping:
return JDWP::TS_SLEEPING;
case kStarting:
case kTerminated:
return JDWP::TS_ZOMBIE;
case kTimedWaiting:
case kWaitingForDebuggerSend:
case kWaitingForDebuggerSuspension:
case kWaitingForDebuggerToAttach:
case kWaitingForDeoptimization:
case kWaitingForGcToComplete:
case kWaitingForCheckPointsToRun:
case kWaitingForJniOnLoad:
case kWaitingForSignalCatcherOutput:
case kWaitingInMainDebuggerLoop:
case kWaitingInMainSignalCatcherLoop:
case kWaitingPerformingGc:
case kWaiting:
return JDWP::TS_WAIT;
// Don't add a 'default' here so the compiler can spot incompatible enum changes.
}
LOG(FATAL) << "Unknown thread state: " << state;
return JDWP::TS_ZOMBIE;
}
JDWP::JdwpError Dbg::GetThreadStatus(JDWP::ObjectId thread_id, JDWP::JdwpThreadStatus* pThreadStatus,
JDWP::JdwpSuspendStatus* pSuspendStatus) {
ScopedObjectAccess soa(Thread::Current());
*pSuspendStatus = JDWP::SUSPEND_STATUS_NOT_SUSPENDED;
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
if (error == JDWP::ERR_THREAD_NOT_ALIVE) {
*pThreadStatus = JDWP::TS_ZOMBIE;
return JDWP::ERR_NONE;
}
return error;
}
if (IsSuspendedForDebugger(soa, thread)) {
*pSuspendStatus = JDWP::SUSPEND_STATUS_SUSPENDED;
}
*pThreadStatus = ToJdwpThreadStatus(thread->GetState());
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadDebugSuspendCount(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccess soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
expandBufAdd4BE(pReply, thread->GetDebugSuspendCount());
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::Interrupt(JDWP::ObjectId thread_id) {
ScopedObjectAccess soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
thread->Interrupt();
return JDWP::ERR_NONE;
}
void Dbg::GetThreads(JDWP::ObjectId thread_group_id, std::vector<JDWP::ObjectId>& thread_ids) {
class ThreadListVisitor {
public:
ThreadListVisitor(const ScopedObjectAccessUnchecked& soa, mirror::Object* desired_thread_group,
std::vector<JDWP::ObjectId>& thread_ids)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: soa_(soa), desired_thread_group_(desired_thread_group), thread_ids_(thread_ids) {}
static void Visit(Thread* t, void* arg) {
reinterpret_cast<ThreadListVisitor*>(arg)->Visit(t);
}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
void Visit(Thread* t) NO_THREAD_SAFETY_ANALYSIS {
if (t == Dbg::GetDebugThread()) {
// Skip the JDWP thread. Some debuggers get bent out of shape when they can't suspend and
// query all threads, so it's easier if we just don't tell them about this thread.
return;
}
mirror::Object* peer = t->GetPeer();
if (IsInDesiredThreadGroup(peer)) {
thread_ids_.push_back(gRegistry->Add(peer));
}
}
private:
bool IsInDesiredThreadGroup(mirror::Object* peer)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// peer might be NULL if the thread is still starting up.
if (peer == NULL) {
// We can't tell the debugger about this thread yet.
// TODO: if we identified threads to the debugger by their Thread*
// rather than their peer's mirror::Object*, we could fix this.
// Doing so might help us report ZOMBIE threads too.
return false;
}
// Do we want threads from all thread groups?
if (desired_thread_group_ == NULL) {
return true;
}
mirror::Object* group = soa_.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(peer);
return (group == desired_thread_group_);
}
const ScopedObjectAccessUnchecked& soa_;
mirror::Object* const desired_thread_group_;
std::vector<JDWP::ObjectId>& thread_ids_;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* thread_group = gRegistry->Get<mirror::Object*>(thread_group_id);
ThreadListVisitor tlv(soa, thread_group, thread_ids);
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Runtime::Current()->GetThreadList()->ForEach(ThreadListVisitor::Visit, &tlv);
}
void Dbg::GetChildThreadGroups(JDWP::ObjectId thread_group_id, std::vector<JDWP::ObjectId>& child_thread_group_ids) {
ScopedObjectAccess soa(Thread::Current());
mirror::Object* thread_group = gRegistry->Get<mirror::Object*>(thread_group_id);
// Get the ArrayList<ThreadGroup> "groups" out of this thread group...
mirror::ArtField* groups_field = thread_group->GetClass()->FindInstanceField("groups", "Ljava/util/List;");
mirror::Object* groups_array_list = groups_field->GetObject(thread_group);
// Get the array and size out of the ArrayList<ThreadGroup>...
mirror::ArtField* array_field = groups_array_list->GetClass()->FindInstanceField("array", "[Ljava/lang/Object;");
mirror::ArtField* size_field = groups_array_list->GetClass()->FindInstanceField("size", "I");
mirror::ObjectArray<mirror::Object>* groups_array =
array_field->GetObject(groups_array_list)->AsObjectArray<mirror::Object>();
const int32_t size = size_field->GetInt(groups_array_list);
// Copy the first 'size' elements out of the array into the result.
for (int32_t i = 0; i < size; ++i) {
child_thread_group_ids.push_back(gRegistry->Add(groups_array->Get(i)));
}
}
static int GetStackDepth(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
struct CountStackDepthVisitor : public StackVisitor {
explicit CountStackDepthVisitor(Thread* thread)
: StackVisitor(thread, NULL), depth(0) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (!GetMethod()->IsRuntimeMethod()) {
++depth;
}
return true;
}
size_t depth;
};
CountStackDepthVisitor visitor(thread);
visitor.WalkStack();
return visitor.depth;
}
JDWP::JdwpError Dbg::GetThreadFrameCount(JDWP::ObjectId thread_id, size_t& result) {
ScopedObjectAccess soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
result = GetStackDepth(thread);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadFrames(JDWP::ObjectId thread_id, size_t start_frame,
size_t frame_count, JDWP::ExpandBuf* buf) {
class GetFrameVisitor : public StackVisitor {
public:
GetFrameVisitor(Thread* thread, size_t start_frame, size_t frame_count, JDWP::ExpandBuf* buf)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, NULL), depth_(0),
start_frame_(start_frame), frame_count_(frame_count), buf_(buf) {
expandBufAdd4BE(buf_, frame_count_);
}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (GetMethod()->IsRuntimeMethod()) {
return true; // The debugger can't do anything useful with a frame that has no Method*.
}
if (depth_ >= start_frame_ + frame_count_) {
return false;
}
if (depth_ >= start_frame_) {
JDWP::FrameId frame_id(GetFrameId());
JDWP::JdwpLocation location;
SetLocation(location, GetMethod(), GetDexPc());
VLOG(jdwp) << StringPrintf(" Frame %3zd: id=%3" PRIu64 " ", depth_, frame_id) << location;
expandBufAdd8BE(buf_, frame_id);
expandBufAddLocation(buf_, location);
}
++depth_;
return true;
}
private:
size_t depth_;
const size_t start_frame_;
const size_t frame_count_;
JDWP::ExpandBuf* buf_;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
GetFrameVisitor visitor(thread, start_frame, frame_count, buf);
visitor.WalkStack();
return JDWP::ERR_NONE;
}
JDWP::ObjectId Dbg::GetThreadSelfId() {
ScopedObjectAccessUnchecked soa(Thread::Current());
return gRegistry->Add(soa.Self()->GetPeer());
}
void Dbg::SuspendVM() {
Runtime::Current()->GetThreadList()->SuspendAllForDebugger();
}
void Dbg::ResumeVM() {
Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions();
}
JDWP::JdwpError Dbg::SuspendThread(JDWP::ObjectId thread_id, bool request_suspension) {
ScopedLocalRef<jobject> peer(Thread::Current()->GetJniEnv(), NULL);
{
ScopedObjectAccess soa(Thread::Current());
peer.reset(soa.AddLocalReference<jobject>(gRegistry->Get<mirror::Object*>(thread_id)));
}
if (peer.get() == NULL) {
return JDWP::ERR_THREAD_NOT_ALIVE;
}
// Suspend thread to build stack trace.
bool timed_out;
Thread* thread = ThreadList::SuspendThreadByPeer(peer.get(), request_suspension, true,
&timed_out);
if (thread != NULL) {
return JDWP::ERR_NONE;
} else if (timed_out) {
return JDWP::ERR_INTERNAL;
} else {
return JDWP::ERR_THREAD_NOT_ALIVE;
}
}
void Dbg::ResumeThread(JDWP::ObjectId thread_id) {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* peer = gRegistry->Get<mirror::Object*>(thread_id);
Thread* thread;
{
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
thread = Thread::FromManagedThread(soa, peer);
}
if (thread == NULL) {
LOG(WARNING) << "No such thread for resume: " << peer;
return;
}
bool needs_resume;
{
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
needs_resume = thread->GetSuspendCount() > 0;
}
if (needs_resume) {
Runtime::Current()->GetThreadList()->Resume(thread, true);
}
}
void Dbg::SuspendSelf() {
Runtime::Current()->GetThreadList()->SuspendSelfForDebugger();
}
struct GetThisVisitor : public StackVisitor {
GetThisVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, context), this_object(NULL), frame_id(frame_id) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (frame_id != GetFrameId()) {
return true; // continue
} else {
this_object = GetThisObject();
return false;
}
}
mirror::Object* this_object;
JDWP::FrameId frame_id;
};
JDWP::JdwpError Dbg::GetThisObject(JDWP::ObjectId thread_id, JDWP::FrameId frame_id,
JDWP::ObjectId* result) {
ScopedObjectAccessUnchecked soa(Thread::Current());
Thread* thread;
{
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
}
UniquePtr<Context> context(Context::Create());
GetThisVisitor visitor(thread, context.get(), frame_id);
visitor.WalkStack();
*result = gRegistry->Add(visitor.this_object);
return JDWP::ERR_NONE;
}
void Dbg::GetLocalValue(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, int slot,
JDWP::JdwpTag tag, uint8_t* buf, size_t width) {
struct GetLocalVisitor : public StackVisitor {
GetLocalVisitor(const ScopedObjectAccessUnchecked& soa, Thread* thread, Context* context,
JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, context), soa_(soa), frame_id_(frame_id), slot_(slot), tag_(tag),
buf_(buf), width_(width) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (GetFrameId() != frame_id_) {
return true; // Not our frame, carry on.
}
// TODO: check that the tag is compatible with the actual type of the slot!
mirror::ArtMethod* m = GetMethod();
uint16_t reg = DemangleSlot(slot_, m);
switch (tag_) {
case JDWP::JT_BOOLEAN:
{
CHECK_EQ(width_, 1U);
uint32_t intVal = GetVReg(m, reg, kIntVReg);
VLOG(jdwp) << "get boolean local " << reg << " = " << intVal;
JDWP::Set1(buf_+1, intVal != 0);
}
break;
case JDWP::JT_BYTE:
{
CHECK_EQ(width_, 1U);
uint32_t intVal = GetVReg(m, reg, kIntVReg);
VLOG(jdwp) << "get byte local " << reg << " = " << intVal;
JDWP::Set1(buf_+1, intVal);
}
break;
case JDWP::JT_SHORT:
case JDWP::JT_CHAR:
{
CHECK_EQ(width_, 2U);
uint32_t intVal = GetVReg(m, reg, kIntVReg);
VLOG(jdwp) << "get short/char local " << reg << " = " << intVal;
JDWP::Set2BE(buf_+1, intVal);
}
break;
case JDWP::JT_INT:
{
CHECK_EQ(width_, 4U);
uint32_t intVal = GetVReg(m, reg, kIntVReg);
VLOG(jdwp) << "get int local " << reg << " = " << intVal;
JDWP::Set4BE(buf_+1, intVal);
}
break;
case JDWP::JT_FLOAT:
{
CHECK_EQ(width_, 4U);
uint32_t intVal = GetVReg(m, reg, kFloatVReg);
VLOG(jdwp) << "get int/float local " << reg << " = " << intVal;
JDWP::Set4BE(buf_+1, intVal);
}
break;
case JDWP::JT_ARRAY:
{
CHECK_EQ(width_, sizeof(JDWP::ObjectId));
mirror::Object* o = reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kReferenceVReg));
VLOG(jdwp) << "get array local " << reg << " = " << o;
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) {
LOG(FATAL) << "Register " << reg << " expected to hold array: " << o;
}
JDWP::SetObjectId(buf_+1, gRegistry->Add(o));
}
break;
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
{
CHECK_EQ(width_, sizeof(JDWP::ObjectId));
mirror::Object* o = reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kReferenceVReg));
VLOG(jdwp) << "get object local " << reg << " = " << o;
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) {
LOG(FATAL) << "Register " << reg << " expected to hold object: " << o;
}
tag_ = TagFromObject(soa_, o);
JDWP::SetObjectId(buf_+1, gRegistry->Add(o));
}
break;
case JDWP::JT_DOUBLE:
{
CHECK_EQ(width_, 8U);
uint32_t lo = GetVReg(m, reg, kDoubleLoVReg);
uint64_t hi = GetVReg(m, reg + 1, kDoubleHiVReg);
uint64_t longVal = (hi << 32) | lo;
VLOG(jdwp) << "get double/long local " << hi << ":" << lo << " = " << longVal;
JDWP::Set8BE(buf_+1, longVal);
}
break;
case JDWP::JT_LONG:
{
CHECK_EQ(width_, 8U);
uint32_t lo = GetVReg(m, reg, kLongLoVReg);
uint64_t hi = GetVReg(m, reg + 1, kLongHiVReg);
uint64_t longVal = (hi << 32) | lo;
VLOG(jdwp) << "get double/long local " << hi << ":" << lo << " = " << longVal;
JDWP::Set8BE(buf_+1, longVal);
}
break;
default:
LOG(FATAL) << "Unknown tag " << tag_;
break;
}
// Prepend tag, which may have been updated.
JDWP::Set1(buf_, tag_);
return false;
}
const ScopedObjectAccessUnchecked& soa_;
const JDWP::FrameId frame_id_;
const int slot_;
JDWP::JdwpTag tag_;
uint8_t* const buf_;
const size_t width_;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return;
}
UniquePtr<Context> context(Context::Create());
GetLocalVisitor visitor(soa, thread, context.get(), frame_id, slot, tag, buf, width);
visitor.WalkStack();
}
void Dbg::SetLocalValue(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag,
uint64_t value, size_t width) {
struct SetLocalVisitor : public StackVisitor {
SetLocalVisitor(Thread* thread, Context* context,
JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint64_t value,
size_t width)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, context),
frame_id_(frame_id), slot_(slot), tag_(tag), value_(value), width_(width) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (GetFrameId() != frame_id_) {
return true; // Not our frame, carry on.
}
// TODO: check that the tag is compatible with the actual type of the slot!
mirror::ArtMethod* m = GetMethod();
uint16_t reg = DemangleSlot(slot_, m);
switch (tag_) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
CHECK_EQ(width_, 1U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kIntVReg);
break;
case JDWP::JT_SHORT:
case JDWP::JT_CHAR:
CHECK_EQ(width_, 2U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kIntVReg);
break;
case JDWP::JT_INT:
CHECK_EQ(width_, 4U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kIntVReg);
break;
case JDWP::JT_FLOAT:
CHECK_EQ(width_, 4U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kFloatVReg);
break;
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
{
CHECK_EQ(width_, sizeof(JDWP::ObjectId));
mirror::Object* o = gRegistry->Get<mirror::Object*>(static_cast<JDWP::ObjectId>(value_));
if (o == ObjectRegistry::kInvalidObject) {
UNIMPLEMENTED(FATAL) << "return an error code when given an invalid object to store";
}
SetVReg(m, reg, static_cast<uint32_t>(reinterpret_cast<uintptr_t>(o)), kReferenceVReg);
}
break;
case JDWP::JT_DOUBLE:
CHECK_EQ(width_, 8U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kDoubleLoVReg);
SetVReg(m, reg + 1, static_cast<uint32_t>(value_ >> 32), kDoubleHiVReg);
break;
case JDWP::JT_LONG:
CHECK_EQ(width_, 8U);
SetVReg(m, reg, static_cast<uint32_t>(value_), kLongLoVReg);
SetVReg(m, reg + 1, static_cast<uint32_t>(value_ >> 32), kLongHiVReg);
break;
default:
LOG(FATAL) << "Unknown tag " << tag_;
break;
}
return false;
}
const JDWP::FrameId frame_id_;
const int slot_;
const JDWP::JdwpTag tag_;
const uint64_t value_;
const size_t width_;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error != JDWP::ERR_NONE) {
return;
}
UniquePtr<Context> context(Context::Create());
SetLocalVisitor visitor(thread, context.get(), frame_id, slot, tag, value, width);
visitor.WalkStack();
}
void Dbg::PostLocationEvent(mirror::ArtMethod* m, int dex_pc, mirror::Object* this_object,
int event_flags, const JValue* return_value) {
mirror::Class* c = m->GetDeclaringClass();
JDWP::JdwpLocation location;
location.type_tag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
location.class_id = gRegistry->AddRefType(c);
location.method_id = ToMethodId(m);
location.dex_pc = m->IsNative() ? -1 : dex_pc;
// If 'this_object' isn't already in the registry, we know that we're not looking for it,
// so there's no point adding it to the registry and burning through ids.
JDWP::ObjectId this_id = 0;
if (gRegistry->Contains(this_object)) {
this_id = gRegistry->Add(this_object);
}
gJdwpState->PostLocationEvent(&location, this_id, event_flags, return_value);
}
void Dbg::PostException(Thread* thread, const ThrowLocation& throw_location,
mirror::ArtMethod* catch_method,
uint32_t catch_dex_pc, mirror::Throwable* exception_object) {
if (!IsDebuggerActive()) {
return;
}
JDWP::JdwpLocation jdwp_throw_location;
SetLocation(jdwp_throw_location, throw_location.GetMethod(), throw_location.GetDexPc());
JDWP::JdwpLocation catch_location;
SetLocation(catch_location, catch_method, catch_dex_pc);
// We need 'this' for InstanceOnly filters.
JDWP::ObjectId this_id = gRegistry->Add(throw_location.GetThis());
JDWP::ObjectId exception_id = gRegistry->Add(exception_object);
JDWP::RefTypeId exception_class_id = gRegistry->AddRefType(exception_object->GetClass());
gJdwpState->PostException(&jdwp_throw_location, exception_id, exception_class_id, &catch_location,
this_id);
}
void Dbg::PostClassPrepare(mirror::Class* c) {
if (!IsDebuggerActive()) {
return;
}
// OLD-TODO - we currently always send both "verified" and "prepared" since
// debuggers seem to like that. There might be some advantage to honesty,
// since the class may not yet be verified.
int state = JDWP::CS_VERIFIED | JDWP::CS_PREPARED;
JDWP::JdwpTypeTag tag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
gJdwpState->PostClassPrepare(tag, gRegistry->Add(c),
ClassHelper(c).GetDescriptor(), state);
}
void Dbg::UpdateDebugger(Thread* thread, mirror::Object* this_object,
mirror::ArtMethod* m, uint32_t dex_pc) {
if (!IsDebuggerActive() || dex_pc == static_cast<uint32_t>(-2) /* fake method exit */) {
return;
}
int event_flags = 0;
if (IsBreakpoint(m, dex_pc)) {
event_flags |= kBreakpoint;
}
// If the debugger is single-stepping one of our threads, check to
// see if we're that thread and we've reached a step point.
const SingleStepControl* single_step_control = thread->GetSingleStepControl();
DCHECK(single_step_control != nullptr);
if (single_step_control->is_active) {
CHECK(!m->IsNative());
if (single_step_control->step_depth == JDWP::SD_INTO) {
// Step into method calls. We break when the line number
// or method pointer changes. If we're in SS_MIN mode, we
// always stop.
if (single_step_control->method != m) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new method";
} else if (single_step_control->step_size == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (single_step_control->dex_pcs.find(dex_pc) == single_step_control->dex_pcs.end()) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
} else if (single_step_control->step_depth == JDWP::SD_OVER) {
// Step over method calls. We break when the line number is
// different and the frame depth is <= the original frame
// depth. (We can't just compare on the method, because we
// might get unrolled past it by an exception, and it's tricky
// to identify recursion.)
int stack_depth = GetStackDepth(thread);
if (stack_depth < single_step_control->stack_depth) {
// Popped up one or more frames, always trigger.
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
} else if (stack_depth == single_step_control->stack_depth) {
// Same depth, see if we moved.
if (single_step_control->step_size == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (single_step_control->dex_pcs.find(dex_pc) == single_step_control->dex_pcs.end()) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
}
} else {
CHECK_EQ(single_step_control->step_depth, JDWP::SD_OUT);
// Return from the current method. We break when the frame
// depth pops up.
// This differs from the "method exit" break in that it stops
// with the PC at the next instruction in the returned-to
// function, rather than the end of the returning function.
int stack_depth = GetStackDepth(thread);
if (stack_depth < single_step_control->stack_depth) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
}
}
}
// If there's something interesting going on, see if it matches one
// of the debugger filters.
if (event_flags != 0) {
Dbg::PostLocationEvent(m, dex_pc, this_object, event_flags, nullptr);
}
}
static void ProcessDeoptimizationRequests()
LOCKS_EXCLUDED(Locks::deoptimization_lock_)
EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
for (const MethodInstrumentationRequest& request : gDeoptimizationRequests) {
mirror::ArtMethod* const method = request.method;
if (method != nullptr) {
// Selective deoptimization.
if (request.deoptimize) {
VLOG(jdwp) << "Deoptimize method " << PrettyMethod(method);
instrumentation->Deoptimize(method);
} else {
VLOG(jdwp) << "Undeoptimize method " << PrettyMethod(method);
instrumentation->Undeoptimize(method);
}
} else {
// Full deoptimization.
if (request.deoptimize) {
VLOG(jdwp) << "Deoptimize the world";
instrumentation->DeoptimizeEverything();
} else {
VLOG(jdwp) << "Undeoptimize the world";
instrumentation->UndeoptimizeEverything();
}
}
}
gDeoptimizationRequests.clear();
}
// Process deoptimization requests after suspending all mutator threads.
void Dbg::ManageDeoptimization() {
Thread* const self = Thread::Current();
{
// Avoid suspend/resume if there is no pending request.
MutexLock mu(self, *Locks::deoptimization_lock_);
if (gDeoptimizationRequests.empty()) {
return;
}
}
CHECK_EQ(self->GetState(), kRunnable);
self->TransitionFromRunnableToSuspended(kWaitingForDeoptimization);
// We need to suspend mutator threads first.
Runtime* const runtime = Runtime::Current();
runtime->GetThreadList()->SuspendAll();
const ThreadState old_state = self->SetStateUnsafe(kRunnable);
ProcessDeoptimizationRequests();
CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable);
runtime->GetThreadList()->ResumeAll();
self->TransitionFromSuspendedToRunnable();
}
// Enable full deoptimization.
void Dbg::EnableFullDeoptimization() {
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
VLOG(jdwp) << "Request full deoptimization";
gDeoptimizationRequests.push_back(MethodInstrumentationRequest(true, nullptr));
}
// Disable full deoptimization.
void Dbg::DisableFullDeoptimization() {
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
VLOG(jdwp) << "Request full undeoptimization";
gDeoptimizationRequests.push_back(MethodInstrumentationRequest(false, nullptr));
}
void Dbg::WatchLocation(const JDWP::JdwpLocation* location) {
bool need_deoptimization = true;
mirror::ArtMethod* m = FromMethodId(location->method_id);
{
MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
// If there is no breakpoint on this method yet, we need to deoptimize it.
for (const Breakpoint& breakpoint : gBreakpoints) {
if (breakpoint.method == m) {
// We already set a breakpoint on this method, hence we deoptimized it.
DCHECK(Runtime::Current()->GetInstrumentation()->IsDeoptimized(m));
need_deoptimization = false;
break;
}
}
gBreakpoints.push_back(Breakpoint(m, location->dex_pc));
VLOG(jdwp) << "Set breakpoint #" << (gBreakpoints.size() - 1) << ": " << gBreakpoints[gBreakpoints.size() - 1];
}
if (need_deoptimization) {
// Request its deoptimization. This will be done after updating the JDWP event list.
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
gDeoptimizationRequests.push_back(MethodInstrumentationRequest(true, m));
VLOG(jdwp) << "Request deoptimization of " << PrettyMethod(m);
}
}
void Dbg::UnwatchLocation(const JDWP::JdwpLocation* location) {
bool can_undeoptimize = true;
mirror::ArtMethod* m = FromMethodId(location->method_id);
DCHECK(Runtime::Current()->GetInstrumentation()->IsDeoptimized(m));
{
MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) {
if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == location->dex_pc) {
VLOG(jdwp) << "Removed breakpoint #" << i << ": " << gBreakpoints[i];
gBreakpoints.erase(gBreakpoints.begin() + i);
break;
}
}
// If there is no breakpoint on this method, we can undeoptimize it.
for (const Breakpoint& breakpoint : gBreakpoints) {
if (breakpoint.method == m) {
can_undeoptimize = false;
break;
}
}
}
if (can_undeoptimize) {
// Request its undeoptimization. This will be done after updating the JDWP event list.
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
gDeoptimizationRequests.push_back(MethodInstrumentationRequest(false, m));
VLOG(jdwp) << "Request undeoptimization of " << PrettyMethod(m);
}
}
// Scoped utility class to suspend a thread so that we may do tasks such as walk its stack. Doesn't
// cause suspension if the thread is the current thread.
class ScopedThreadSuspension {
public:
ScopedThreadSuspension(Thread* self, JDWP::ObjectId thread_id)
LOCKS_EXCLUDED(Locks::thread_list_lock_)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
thread_(NULL),
error_(JDWP::ERR_NONE),
self_suspend_(false),
other_suspend_(false) {
ScopedObjectAccessUnchecked soa(self);
{
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
error_ = DecodeThread(soa, thread_id, thread_);
}
if (error_ == JDWP::ERR_NONE) {
if (thread_ == soa.Self()) {
self_suspend_ = true;
} else {
soa.Self()->TransitionFromRunnableToSuspended(kWaitingForDebuggerSuspension);
jobject thread_peer = gRegistry->GetJObject(thread_id);
bool timed_out;
Thread* suspended_thread = ThreadList::SuspendThreadByPeer(thread_peer, true, true,
&timed_out);
CHECK_EQ(soa.Self()->TransitionFromSuspendedToRunnable(), kWaitingForDebuggerSuspension);
if (suspended_thread == NULL) {
// Thread terminated from under us while suspending.
error_ = JDWP::ERR_INVALID_THREAD;
} else {
CHECK_EQ(suspended_thread, thread_);
other_suspend_ = true;
}
}
}
}
Thread* GetThread() const {
return thread_;
}
JDWP::JdwpError GetError() const {
return error_;
}
~ScopedThreadSuspension() {
if (other_suspend_) {
Runtime::Current()->GetThreadList()->Resume(thread_, true);
}
}
private:
Thread* thread_;
JDWP::JdwpError error_;
bool self_suspend_;
bool other_suspend_;
};
JDWP::JdwpError Dbg::ConfigureStep(JDWP::ObjectId thread_id, JDWP::JdwpStepSize step_size,
JDWP::JdwpStepDepth step_depth) {
Thread* self = Thread::Current();
ScopedThreadSuspension sts(self, thread_id);
if (sts.GetError() != JDWP::ERR_NONE) {
return sts.GetError();
}
//
// Work out what Method* we're in, the current line number, and how deep the stack currently
// is for step-out.
//
struct SingleStepStackVisitor : public StackVisitor {
explicit SingleStepStackVisitor(Thread* thread, SingleStepControl* single_step_control,
int32_t* line_number)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, NULL), single_step_control_(single_step_control),
line_number_(line_number) {
DCHECK_EQ(single_step_control_, thread->GetSingleStepControl());
single_step_control_->method = NULL;
single_step_control_->stack_depth = 0;
}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
mirror::ArtMethod* m = GetMethod();
if (!m->IsRuntimeMethod()) {
++single_step_control_->stack_depth;
if (single_step_control_->method == NULL) {
mirror::DexCache* dex_cache = m->GetDeclaringClass()->GetDexCache();
single_step_control_->method = m;
*line_number_ = -1;
if (dex_cache != NULL) {
const DexFile& dex_file = *dex_cache->GetDexFile();
*line_number_ = dex_file.GetLineNumFromPC(m, GetDexPc());
}
}
}
return true;
}
SingleStepControl* const single_step_control_;
int32_t* const line_number_;
};
Thread* const thread = sts.GetThread();
SingleStepControl* const single_step_control = thread->GetSingleStepControl();
DCHECK(single_step_control != nullptr);
int32_t line_number = -1;
SingleStepStackVisitor visitor(thread, single_step_control, &line_number);
visitor.WalkStack();
//
// Find the dex_pc values that correspond to the current line, for line-based single-stepping.
//
struct DebugCallbackContext {
explicit DebugCallbackContext(SingleStepControl* single_step_control, int32_t line_number)
: single_step_control_(single_step_control), line_number_(line_number),
last_pc_valid(false), last_pc(0) {
}
static bool Callback(void* raw_context, uint32_t address, uint32_t line_number) {
DebugCallbackContext* context = reinterpret_cast<DebugCallbackContext*>(raw_context);
if (static_cast<int32_t>(line_number) == context->line_number_) {
if (!context->last_pc_valid) {
// Everything from this address until the next line change is ours.
context->last_pc = address;
context->last_pc_valid = true;
}
// Otherwise, if we're already in a valid range for this line,
// just keep going (shouldn't really happen)...
} else if (context->last_pc_valid) { // and the line number is new
// Add everything from the last entry up until here to the set
for (uint32_t dex_pc = context->last_pc; dex_pc < address; ++dex_pc) {
context->single_step_control_->dex_pcs.insert(dex_pc);
}
context->last_pc_valid = false;
}
return false; // There may be multiple entries for any given line.
}
~DebugCallbackContext() {
// If the line number was the last in the position table...
if (last_pc_valid) {
size_t end = MethodHelper(single_step_control_->method).GetCodeItem()->insns_size_in_code_units_;
for (uint32_t dex_pc = last_pc; dex_pc < end; ++dex_pc) {
single_step_control_->dex_pcs.insert(dex_pc);
}
}
}
SingleStepControl* const single_step_control_;
const int32_t line_number_;
bool last_pc_valid;
uint32_t last_pc;
};
single_step_control->dex_pcs.clear();
mirror::ArtMethod* m = single_step_control->method;
if (!m->IsNative()) {
DebugCallbackContext context(single_step_control, line_number);
MethodHelper mh(m);
mh.GetDexFile().DecodeDebugInfo(mh.GetCodeItem(), m->IsStatic(), m->GetDexMethodIndex(),
DebugCallbackContext::Callback, NULL, &context);
}
//
// Everything else...
//
single_step_control->step_size = step_size;
single_step_control->step_depth = step_depth;
single_step_control->is_active = true;
if (VLOG_IS_ON(jdwp)) {
VLOG(jdwp) << "Single-step thread: " << *thread;
VLOG(jdwp) << "Single-step step size: " << single_step_control->step_size;
VLOG(jdwp) << "Single-step step depth: " << single_step_control->step_depth;
VLOG(jdwp) << "Single-step current method: " << PrettyMethod(single_step_control->method);
VLOG(jdwp) << "Single-step current line: " << line_number;
VLOG(jdwp) << "Single-step current stack depth: " << single_step_control->stack_depth;
VLOG(jdwp) << "Single-step dex_pc values:";
for (std::set<uint32_t>::iterator it = single_step_control->dex_pcs.begin(); it != single_step_control->dex_pcs.end(); ++it) {
VLOG(jdwp) << StringPrintf(" %#x", *it);
}
}
return JDWP::ERR_NONE;
}
void Dbg::UnconfigureStep(JDWP::ObjectId thread_id) {
ScopedObjectAccessUnchecked soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread;
JDWP::JdwpError error = DecodeThread(soa, thread_id, thread);
if (error == JDWP::ERR_NONE) {
SingleStepControl* single_step_control = thread->GetSingleStepControl();
DCHECK(single_step_control != nullptr);
single_step_control->is_active = false;
single_step_control->dex_pcs.clear();
}
}
static char JdwpTagToShortyChar(JDWP::JdwpTag tag) {
switch (tag) {
default:
LOG(FATAL) << "unknown JDWP tag: " << PrintableChar(tag);
// Primitives.
case JDWP::JT_BYTE: return 'B';
case JDWP::JT_CHAR: return 'C';
case JDWP::JT_FLOAT: return 'F';
case JDWP::JT_DOUBLE: return 'D';
case JDWP::JT_INT: return 'I';
case JDWP::JT_LONG: return 'J';
case JDWP::JT_SHORT: return 'S';
case JDWP::JT_VOID: return 'V';
case JDWP::JT_BOOLEAN: return 'Z';
// Reference types.
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return 'L';
}
}
JDWP::JdwpError Dbg::InvokeMethod(JDWP::ObjectId thread_id, JDWP::ObjectId object_id,
JDWP::RefTypeId class_id, JDWP::MethodId method_id,
uint32_t arg_count, uint64_t* arg_values,
JDWP::JdwpTag* arg_types, uint32_t options,
JDWP::JdwpTag* pResultTag, uint64_t* pResultValue,
JDWP::ObjectId* pExceptionId) {
ThreadList* thread_list = Runtime::Current()->GetThreadList();
Thread* targetThread = NULL;
DebugInvokeReq* req = NULL;
Thread* self = Thread::Current();
{
ScopedObjectAccessUnchecked soa(self);
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
JDWP::JdwpError error = DecodeThread(soa, thread_id, targetThread);
if (error != JDWP::ERR_NONE) {
LOG(ERROR) << "InvokeMethod request for invalid thread id " << thread_id;
return error;
}
req = targetThread->GetInvokeReq();
if (!req->ready) {
LOG(ERROR) << "InvokeMethod request for thread not stopped by event: " << *targetThread;
return JDWP::ERR_INVALID_THREAD;
}
/*
* We currently have a bug where we don't successfully resume the
* target thread if the suspend count is too deep. We're expected to
* require one "resume" for each "suspend", but when asked to execute
* a method we have to resume fully and then re-suspend it back to the
* same level. (The easiest way to cause this is to type "suspend"
* multiple times in jdb.)
*
* It's unclear what this means when the event specifies "resume all"
* and some threads are suspended more deeply than others. This is
* a rare problem, so for now we just prevent it from hanging forever
* by rejecting the method invocation request. Without this, we will
* be stuck waiting on a suspended thread.
*/
int suspend_count;
{
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
suspend_count = targetThread->GetSuspendCount();
}
if (suspend_count > 1) {
LOG(ERROR) << *targetThread << " suspend count too deep for method invocation: " << suspend_count;
return JDWP::ERR_THREAD_SUSPENDED; // Probably not expected here.
}
JDWP::JdwpError status;
mirror::Object* receiver = gRegistry->Get<mirror::Object*>(object_id);
if (receiver == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
mirror::Object* thread = gRegistry->Get<mirror::Object*>(thread_id);
if (thread == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
// TODO: check that 'thread' is actually a java.lang.Thread!
mirror::Class* c = DecodeClass(class_id, status);
if (c == NULL) {
return status;
}
mirror::ArtMethod* m = FromMethodId(method_id);
if (m->IsStatic() != (receiver == NULL)) {
return JDWP::ERR_INVALID_METHODID;
}
if (m->IsStatic()) {
if (m->GetDeclaringClass() != c) {
return JDWP::ERR_INVALID_METHODID;
}
} else {
if (!m->GetDeclaringClass()->IsAssignableFrom(c)) {
return JDWP::ERR_INVALID_METHODID;
}
}
// Check the argument list matches the method.
MethodHelper mh(m);
if (mh.GetShortyLength() - 1 != arg_count) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
const char* shorty = mh.GetShorty();
const DexFile::TypeList* types = mh.GetParameterTypeList();
for (size_t i = 0; i < arg_count; ++i) {
if (shorty[i + 1] != JdwpTagToShortyChar(arg_types[i])) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
if (shorty[i + 1] == 'L') {
// Did we really get an argument of an appropriate reference type?
mirror::Class* parameter_type = mh.GetClassFromTypeIdx(types->GetTypeItem(i).type_idx_);
mirror::Object* argument = gRegistry->Get<mirror::Object*>(arg_values[i]);
if (argument == ObjectRegistry::kInvalidObject) {
return JDWP::ERR_INVALID_OBJECT;
}
if (argument != NULL && !argument->InstanceOf(parameter_type)) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
// Turn the on-the-wire ObjectId into a jobject.
jvalue& v = reinterpret_cast<jvalue&>(arg_values[i]);
v.l = gRegistry->GetJObject(arg_values[i]);
}
}
req->receiver = receiver;
req->thread = thread;
req->klass = c;
req->method = m;
req->arg_count = arg_count;
req->arg_values = arg_values;
req->options = options;
req->invoke_needed = true;
}
// The fact that we've released the thread list lock is a bit risky --- if the thread goes
// away we're sitting high and dry -- but we must release this before the ResumeAllThreads
// call, and it's unwise to hold it during WaitForSuspend.
{
/*
* We change our (JDWP thread) status, which should be THREAD_RUNNING,
* so we can suspend for a GC if the invoke request causes us to
* run out of memory. It's also a good idea to change it before locking
* the invokeReq mutex, although that should never be held for long.
*/
self->TransitionFromRunnableToSuspended(kWaitingForDebuggerSend);
VLOG(jdwp) << " Transferring control to event thread";
{
MutexLock mu(self, req->lock);
if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) {
VLOG(jdwp) << " Resuming all threads";
thread_list->UndoDebuggerSuspensions();
} else {
VLOG(jdwp) << " Resuming event thread only";
thread_list->Resume(targetThread, true);
}
// Wait for the request to finish executing.
while (req->invoke_needed) {
req->cond.Wait(self);
}
}
VLOG(jdwp) << " Control has returned from event thread";
/* wait for thread to re-suspend itself */
SuspendThread(thread_id, false /* request_suspension */);
self->TransitionFromSuspendedToRunnable();
}
/*
* Suspend the threads. We waited for the target thread to suspend
* itself, so all we need to do is suspend the others.
*
* The suspendAllThreads() call will double-suspend the event thread,
* so we want to resume the target thread once to keep the books straight.
*/
if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) {
self->TransitionFromRunnableToSuspended(kWaitingForDebuggerSuspension);
VLOG(jdwp) << " Suspending all threads";
thread_list->SuspendAllForDebugger();
self->TransitionFromSuspendedToRunnable();
VLOG(jdwp) << " Resuming event thread to balance the count";
thread_list->Resume(targetThread, true);
}
// Copy the result.
*pResultTag = req->result_tag;
if (IsPrimitiveTag(req->result_tag)) {
*pResultValue = req->result_value.GetJ();
} else {
*pResultValue = gRegistry->Add(req->result_value.GetL());
}
*pExceptionId = req->exception;
return req->error;
}
void Dbg::ExecuteMethod(DebugInvokeReq* pReq) {
ScopedObjectAccess soa(Thread::Current());
// We can be called while an exception is pending. We need
// to preserve that across the method invocation.
SirtRef<mirror::Object> old_throw_this_object(soa.Self(), NULL);
SirtRef<mirror::ArtMethod> old_throw_method(soa.Self(), NULL);
SirtRef<mirror::Throwable> old_exception(soa.Self(), NULL);
uint32_t old_throw_dex_pc;
{
ThrowLocation old_throw_location;
mirror::Throwable* old_exception_obj = soa.Self()->GetException(&old_throw_location);
old_throw_this_object.reset(old_throw_location.GetThis());
old_throw_method.reset(old_throw_location.GetMethod());
old_exception.reset(old_exception_obj);
old_throw_dex_pc = old_throw_location.GetDexPc();
soa.Self()->ClearException();
}
// Translate the method through the vtable, unless the debugger wants to suppress it.
SirtRef<mirror::ArtMethod> m(soa.Self(), pReq->method);
if ((pReq->options & JDWP::INVOKE_NONVIRTUAL) == 0 && pReq->receiver != NULL) {
mirror::ArtMethod* actual_method = pReq->klass->FindVirtualMethodForVirtualOrInterface(pReq->method);
if (actual_method != m.get()) {
VLOG(jdwp) << "ExecuteMethod translated " << PrettyMethod(m.get()) << " to " << PrettyMethod(actual_method);
m.reset(actual_method);
}
}
VLOG(jdwp) << "ExecuteMethod " << PrettyMethod(m.get())
<< " receiver=" << pReq->receiver
<< " arg_count=" << pReq->arg_count;
CHECK(m.get() != nullptr);
CHECK_EQ(sizeof(jvalue), sizeof(uint64_t));
MethodHelper mh(m.get());
ArgArray arg_array(mh.GetShorty(), mh.GetShortyLength());
arg_array.BuildArgArray(soa, pReq->receiver, reinterpret_cast<jvalue*>(pReq->arg_values));
InvokeWithArgArray(soa, m.get(), &arg_array, &pReq->result_value, mh.GetShorty());
mirror::Throwable* exception = soa.Self()->GetException(NULL);
soa.Self()->ClearException();
pReq->exception = gRegistry->Add(exception);
pReq->result_tag = BasicTagFromDescriptor(MethodHelper(m.get()).GetShorty());
if (pReq->exception != 0) {
VLOG(jdwp) << " JDWP invocation returning with exception=" << exception
<< " " << exception->Dump();
pReq->result_value.SetJ(0);
} else if (pReq->result_tag == JDWP::JT_OBJECT) {
/* if no exception thrown, examine object result more closely */
JDWP::JdwpTag new_tag = TagFromObject(soa, pReq->result_value.GetL());
if (new_tag != pReq->result_tag) {
VLOG(jdwp) << " JDWP promoted result from " << pReq->result_tag << " to " << new_tag;
pReq->result_tag = new_tag;
}
/*
* Register the object. We don't actually need an ObjectId yet,
* but we do need to be sure that the GC won't move or discard the
* object when we switch out of RUNNING. The ObjectId conversion
* will add the object to the "do not touch" list.
*
* We can't use the "tracked allocation" mechanism here because
* the object is going to be handed off to a different thread.
*/
gRegistry->Add(pReq->result_value.GetL());
}
if (old_exception.get() != NULL) {
ThrowLocation gc_safe_throw_location(old_throw_this_object.get(), old_throw_method.get(),
old_throw_dex_pc);
soa.Self()->SetException(gc_safe_throw_location, old_exception.get());
}
}
/*
* "request" contains a full JDWP packet, possibly with multiple chunks. We
* need to process each, accumulate the replies, and ship the whole thing
* back.
*
* Returns "true" if we have a reply. The reply buffer is newly allocated,
* and includes the chunk type/length, followed by the data.
*
* OLD-TODO: we currently assume that the request and reply include a single
* chunk. If this becomes inconvenient we will need to adapt.
*/
bool Dbg::DdmHandlePacket(JDWP::Request& request, uint8_t** pReplyBuf, int* pReplyLen) {
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
uint32_t type = request.ReadUnsigned32("type");
uint32_t length = request.ReadUnsigned32("length");
// Create a byte[] corresponding to 'request'.
size_t request_length = request.size();
ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(request_length));
if (dataArray.get() == NULL) {
LOG(WARNING) << "byte[] allocation failed: " << request_length;
env->ExceptionClear();
return false;
}
env->SetByteArrayRegion(dataArray.get(), 0, request_length, reinterpret_cast<const jbyte*>(request.data()));
request.Skip(request_length);
// Run through and find all chunks. [Currently just find the first.]
ScopedByteArrayRO contents(env, dataArray.get());
if (length != request_length) {
LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%zd)", length, request_length);
return false;
}
// Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
ScopedLocalRef<jobject> chunk(env, env->CallStaticObjectMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch,
type, dataArray.get(), 0, length));
if (env->ExceptionCheck()) {
LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type);
env->ExceptionDescribe();
env->ExceptionClear();
return false;
}
if (chunk.get() == NULL) {
return false;
}
/*
* Pull the pieces out of the chunk. We copy the results into a
* newly-allocated buffer that the caller can free. We don't want to
* continue using the Chunk object because nothing has a reference to it.
*
* We could avoid this by returning type/data/offset/length and having
* the caller be aware of the object lifetime issues, but that
* integrates the JDWP code more tightly into the rest of the runtime, and doesn't work
* if we have responses for multiple chunks.
*
* So we're pretty much stuck with copying data around multiple times.
*/
ScopedLocalRef<jbyteArray> replyData(env, reinterpret_cast<jbyteArray>(env->GetObjectField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data)));
jint offset = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset);
length = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length);
type = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type);
VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length);
if (length == 0 || replyData.get() == NULL) {
return false;
}
const int kChunkHdrLen = 8;
uint8_t* reply = new uint8_t[length + kChunkHdrLen];
if (reply == NULL) {
LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen);
return false;
}
JDWP::Set4BE(reply + 0, type);
JDWP::Set4BE(reply + 4, length);
env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast<jbyte*>(reply + kChunkHdrLen));
*pReplyBuf = reply;
*pReplyLen = length + kChunkHdrLen;
VLOG(jdwp) << StringPrintf("dvmHandleDdm returning type=%.4s %p len=%d", reinterpret_cast<char*>(reply), reply, length);
return true;
}
void Dbg::DdmBroadcast(bool connect) {
VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";
Thread* self = Thread::Current();
if (self->GetState() != kRunnable) {
LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
/* try anyway? */
}
JNIEnv* env = self->GetJniEnv();
jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast,
event);
if (env->ExceptionCheck()) {
LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
env->ExceptionDescribe();
env->ExceptionClear();
}
}
void Dbg::DdmConnected() {
Dbg::DdmBroadcast(true);
}
void Dbg::DdmDisconnected() {
Dbg::DdmBroadcast(false);
gDdmThreadNotification = false;
}
/*
* Send a notification when a thread starts, stops, or changes its name.
*
* Because we broadcast the full set of threads when the notifications are
* first enabled, it's possible for "thread" to be actively executing.
*/
void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
if (!gDdmThreadNotification) {
return;
}
if (type == CHUNK_TYPE("THDE")) {
uint8_t buf[4];
JDWP::Set4BE(&buf[0], t->GetThreadId());
Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf);
} else {
CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
ScopedObjectAccessUnchecked soa(Thread::Current());
SirtRef<mirror::String> name(soa.Self(), t->GetThreadName(soa));
size_t char_count = (name.get() != NULL) ? name->GetLength() : 0;
const jchar* chars = (name.get() != NULL) ? name->GetCharArray()->GetData() : NULL;
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, t->GetThreadId());
JDWP::AppendUtf16BE(bytes, chars, char_count);
CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2);
Dbg::DdmSendChunk(type, bytes);
}
}
void Dbg::DdmSetThreadNotification(bool enable) {
// Enable/disable thread notifications.
gDdmThreadNotification = enable;
if (enable) {
// Suspend the VM then post thread start notifications for all threads. Threads attaching will
// see a suspension in progress and block until that ends. They then post their own start
// notification.
SuspendVM();
std::list<Thread*> threads;
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::thread_list_lock_);
threads = Runtime::Current()->GetThreadList()->GetList();
}
{
ScopedObjectAccess soa(self);
for (Thread* thread : threads) {
Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR"));
}
}
ResumeVM();
}
}
void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) {
if (IsDebuggerActive()) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::ObjectId id = gRegistry->Add(t->GetPeer());
gJdwpState->PostThreadChange(id, type == CHUNK_TYPE("THCR"));
}
Dbg::DdmSendThreadNotification(t, type);
}
void Dbg::PostThreadStart(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
}
void Dbg::PostThreadDeath(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
}
void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) {
CHECK(buf != NULL);
iovec vec[1];
vec[0].iov_base = reinterpret_cast<void*>(const_cast<uint8_t*>(buf));
vec[0].iov_len = byte_count;
Dbg::DdmSendChunkV(type, vec, 1);
}
void Dbg::DdmSendChunk(uint32_t type, const std::vector<uint8_t>& bytes) {
DdmSendChunk(type, bytes.size(), &bytes[0]);
}
void Dbg::DdmSendChunkV(uint32_t type, const iovec* iov, int iov_count) {
if (gJdwpState == NULL) {
VLOG(jdwp) << "Debugger thread not active, ignoring DDM send: " << type;
} else {
gJdwpState->DdmSendChunkV(type, iov, iov_count);
}
}
int Dbg::DdmHandleHpifChunk(HpifWhen when) {
if (when == HPIF_WHEN_NOW) {
DdmSendHeapInfo(when);
return true;
}
if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
return false;
}
gDdmHpifWhen = when;
return true;
}
bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
return false;
}
if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
return false;
}
if (native) {
gDdmNhsgWhen = when;
gDdmNhsgWhat = what;
} else {
gDdmHpsgWhen = when;
gDdmHpsgWhat = what;
}
return true;
}
void Dbg::DdmSendHeapInfo(HpifWhen reason) {
// If there's a one-shot 'when', reset it.
if (reason == gDdmHpifWhen) {
if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
gDdmHpifWhen = HPIF_WHEN_NEVER;
}
}
/*
* Chunk HPIF (client --> server)
*
* Heap Info. General information about the heap,
* suitable for a summary display.
*
* [u4]: number of heaps
*
* For each heap:
* [u4]: heap ID
* [u8]: timestamp in ms since Unix epoch
* [u1]: capture reason (same as 'when' value from server)
* [u4]: max heap size in bytes (-Xmx)
* [u4]: current heap size in bytes
* [u4]: current number of bytes allocated
* [u4]: current number of objects allocated
*/
uint8_t heap_count = 1;
gc::Heap* heap = Runtime::Current()->GetHeap();
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, heap_count);
JDWP::Append4BE(bytes, 1); // Heap id (bogus; we only have one heap).
JDWP::Append8BE(bytes, MilliTime());
JDWP::Append1BE(bytes, reason);
JDWP::Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes.
JDWP::Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes.
JDWP::Append4BE(bytes, heap->GetBytesAllocated());
JDWP::Append4BE(bytes, heap->GetObjectsAllocated());
CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes);
}
enum HpsgSolidity {
SOLIDITY_FREE = 0,
SOLIDITY_HARD = 1,
SOLIDITY_SOFT = 2,
SOLIDITY_WEAK = 3,
SOLIDITY_PHANTOM = 4,
SOLIDITY_FINALIZABLE = 5,
SOLIDITY_SWEEP = 6,
};
enum HpsgKind {
KIND_OBJECT = 0,
KIND_CLASS_OBJECT = 1,
KIND_ARRAY_1 = 2,
KIND_ARRAY_2 = 3,
KIND_ARRAY_4 = 4,
KIND_ARRAY_8 = 5,
KIND_UNKNOWN = 6,
KIND_NATIVE = 7,
};
#define HPSG_PARTIAL (1<<7)
#define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
class HeapChunkContext {
public:
// Maximum chunk size. Obtain this from the formula:
// (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
HeapChunkContext(bool merge, bool native)
: buf_(16384 - 16),
type_(0),
merge_(merge) {
Reset();
if (native) {
type_ = CHUNK_TYPE("NHSG");
} else {
type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
}
}
~HeapChunkContext() {
if (p_ > &buf_[0]) {
Flush();
}
}
void EnsureHeader(const void* chunk_ptr) {
if (!needHeader_) {
return;
}
// Start a new HPSx chunk.
JDWP::Write4BE(&p_, 1); // Heap id (bogus; we only have one heap).
JDWP::Write1BE(&p_, 8); // Size of allocation unit, in bytes.
JDWP::Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr)); // virtual address of segment start.
JDWP::Write4BE(&p_, 0); // offset of this piece (relative to the virtual address).
// [u4]: length of piece, in allocation units
// We won't know this until we're done, so save the offset and stuff in a dummy value.
pieceLenField_ = p_;
JDWP::Write4BE(&p_, 0x55555555);
needHeader_ = false;
}
void Flush() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (pieceLenField_ == NULL) {
// Flush immediately post Reset (maybe back-to-back Flush). Ignore.
CHECK(needHeader_);
return;
}
// Patch the "length of piece" field.
CHECK_LE(&buf_[0], pieceLenField_);
CHECK_LE(pieceLenField_, p_);
JDWP::Set4BE(pieceLenField_, totalAllocationUnits_);
Dbg::DdmSendChunk(type_, p_ - &buf_[0], &buf_[0]);
Reset();
}
static void HeapChunkCallback(void* start, void* end, size_t used_bytes, void* arg)
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_,
Locks::mutator_lock_) {
reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkCallback(start, end, used_bytes);
}
private:
enum { ALLOCATION_UNIT_SIZE = 8 };
void Reset() {
p_ = &buf_[0];
startOfNextMemoryChunk_ = NULL;
totalAllocationUnits_ = 0;
needHeader_ = true;
pieceLenField_ = NULL;
}
void HeapChunkCallback(void* start, void* /*end*/, size_t used_bytes)
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_,
Locks::mutator_lock_) {
// Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken
// in the following code not to allocate memory, by ensuring buf_ is of the correct size
if (used_bytes == 0) {
if (start == NULL) {
// Reset for start of new heap.
startOfNextMemoryChunk_ = NULL;
Flush();
}
// Only process in use memory so that free region information
// also includes dlmalloc book keeping.
return;
}
/* If we're looking at the native heap, we'll just return
* (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks
*/
bool native = type_ == CHUNK_TYPE("NHSG");
if (startOfNextMemoryChunk_ != NULL) {
// Transmit any pending free memory. Native free memory of
// over kMaxFreeLen could be because of the use of mmaps, so
// don't report. If not free memory then start a new segment.
bool flush = true;
if (start > startOfNextMemoryChunk_) {
const size_t kMaxFreeLen = 2 * kPageSize;
void* freeStart = startOfNextMemoryChunk_;
void* freeEnd = start;
size_t freeLen = reinterpret_cast<char*>(freeEnd) - reinterpret_cast<char*>(freeStart);
if (!native || freeLen < kMaxFreeLen) {
AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), freeStart, freeLen);
flush = false;
}
}
if (flush) {
startOfNextMemoryChunk_ = NULL;
Flush();
}
}
mirror::Object* obj = reinterpret_cast<mirror::Object*>(start);
// Determine the type of this chunk.
// OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
// If it's the same, we should combine them.
uint8_t state = ExamineObject(obj, native);
// dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an
// allocation then the first sizeof(size_t) may belong to it.
const size_t dlMallocOverhead = sizeof(size_t);
AppendChunk(state, start, used_bytes + dlMallocOverhead);
startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + dlMallocOverhead;
}
void AppendChunk(uint8_t state, void* ptr, size_t length)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Make sure there's enough room left in the buffer.
// We need to use two bytes for every fractional 256 allocation units used by the chunk plus
// 17 bytes for any header.
size_t needed = (((length/ALLOCATION_UNIT_SIZE + 255) / 256) * 2) + 17;
size_t bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]);
if (bytesLeft < needed) {
Flush();
}
bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]);
if (bytesLeft < needed) {
LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", "
<< needed << " bytes)";
return;
}
EnsureHeader(ptr);
// Write out the chunk description.
length /= ALLOCATION_UNIT_SIZE; // Convert to allocation units.
totalAllocationUnits_ += length;
while (length > 256) {
*p_++ = state | HPSG_PARTIAL;
*p_++ = 255; // length - 1
length -= 256;
}
*p_++ = state;
*p_++ = length - 1;
}
uint8_t ExamineObject(mirror::Object* o, bool is_native_heap)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
if (o == NULL) {
return HPSG_STATE(SOLIDITY_FREE, 0);
}
// It's an allocated chunk. Figure out what it is.
// If we're looking at the native heap, we'll just return
// (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks.
if (is_native_heap) {
return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
if (!Runtime::Current()->GetHeap()->IsLiveObjectLocked(o)) {
return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
mirror::Class* c = o->GetClass();
if (c == NULL) {
// The object was probably just created but hasn't been initialized yet.
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(c)) {
LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c;
return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
}
if (c->IsClassClass()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
}
if (c->IsArrayClass()) {
if (o->IsObjectArray()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
}
switch (c->GetComponentSize()) {
case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
}
}
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
std::vector<uint8_t> buf_;
uint8_t* p_;
uint8_t* pieceLenField_;
void* startOfNextMemoryChunk_;
size_t totalAllocationUnits_;
uint32_t type_;
bool merge_;
bool needHeader_;
DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
};
void Dbg::DdmSendHeapSegments(bool native) {
Dbg::HpsgWhen when;
Dbg::HpsgWhat what;
if (!native) {
when = gDdmHpsgWhen;
what = gDdmHpsgWhat;
} else {
when = gDdmNhsgWhen;
what = gDdmNhsgWhat;
}
if (when == HPSG_WHEN_NEVER) {
return;
}
// Figure out what kind of chunks we'll be sending.
CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast<int>(what);
// First, send a heap start chunk.
uint8_t heap_id[4];
JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap).
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id);
Thread* self = Thread::Current();
// To allow the Walk/InspectAll() below to exclusively-lock the
// mutator lock, temporarily release the shared access to the
// mutator lock here by transitioning to the suspended state.
Locks::mutator_lock_->AssertSharedHeld(self);
self->TransitionFromRunnableToSuspended(kSuspended);
// Send a series of heap segment chunks.
HeapChunkContext context((what == HPSG_WHAT_MERGED_OBJECTS), native);
if (native) {
dlmalloc_inspect_all(HeapChunkContext::HeapChunkCallback, &context);
} else {
gc::Heap* heap = Runtime::Current()->GetHeap();
const std::vector<gc::space::ContinuousSpace*>& spaces = heap->GetContinuousSpaces();
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
typedef std::vector<gc::space::ContinuousSpace*>::const_iterator It;
for (It cur = spaces.begin(), end = spaces.end(); cur != end; ++cur) {
if ((*cur)->IsMallocSpace()) {
(*cur)->AsMallocSpace()->Walk(HeapChunkContext::HeapChunkCallback, &context);
}
}
// Walk the large objects, these are not in the AllocSpace.
heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkCallback, &context);
}
// Shared-lock the mutator lock back.
self->TransitionFromSuspendedToRunnable();
Locks::mutator_lock_->AssertSharedHeld(self);
// Finally, send a heap end chunk.
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id);
}
static size_t GetAllocTrackerMax() {
#ifdef HAVE_ANDROID_OS
// Check whether there's a system property overriding the number of records.
const char* propertyName = "dalvik.vm.allocTrackerMax";
char allocRecordMaxString[PROPERTY_VALUE_MAX];
if (property_get(propertyName, allocRecordMaxString, "") > 0) {
char* end;
size_t value = strtoul(allocRecordMaxString, &end, 10);
if (*end != '\0') {
LOG(ERROR) << "Ignoring " << propertyName << " '" << allocRecordMaxString
<< "' --- invalid";
return kDefaultNumAllocRecords;
}
if (!IsPowerOfTwo(value)) {
LOG(ERROR) << "Ignoring " << propertyName << " '" << allocRecordMaxString
<< "' --- not power of two";
return kDefaultNumAllocRecords;
}
return value;
}
#endif
return kDefaultNumAllocRecords;
}
void Dbg::SetAllocTrackingEnabled(bool enabled) {
MutexLock mu(Thread::Current(), *alloc_tracker_lock_);
if (enabled) {
if (recent_allocation_records_ == NULL) {
alloc_record_max_ = GetAllocTrackerMax();
LOG(INFO) << "Enabling alloc tracker (" << alloc_record_max_ << " entries of "
<< kMaxAllocRecordStackDepth << " frames, taking "
<< PrettySize(sizeof(AllocRecord) * alloc_record_max_) << ")";
alloc_record_head_ = alloc_record_count_ = 0;
recent_allocation_records_ = new AllocRecord[alloc_record_max_];
CHECK(recent_allocation_records_ != NULL);
}
Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
} else {
Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
delete[] recent_allocation_records_;
recent_allocation_records_ = NULL;
}
}
struct AllocRecordStackVisitor : public StackVisitor {
AllocRecordStackVisitor(Thread* thread, AllocRecord* record)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: StackVisitor(thread, NULL), record(record), depth(0) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (depth >= kMaxAllocRecordStackDepth) {
return false;
}
mirror::ArtMethod* m = GetMethod();
if (!m->IsRuntimeMethod()) {
record->stack[depth].method = m;
record->stack[depth].dex_pc = GetDexPc();
++depth;
}
return true;
}
~AllocRecordStackVisitor() {
// Clear out any unused stack trace elements.
for (; depth < kMaxAllocRecordStackDepth; ++depth) {
record->stack[depth].method = NULL;
record->stack[depth].dex_pc = 0;
}
}
AllocRecord* record;
size_t depth;
};
void Dbg::RecordAllocation(mirror::Class* type, size_t byte_count) {
Thread* self = Thread::Current();
CHECK(self != NULL);
MutexLock mu(self, *alloc_tracker_lock_);
if (recent_allocation_records_ == NULL) {
return;
}
// Advance and clip.
if (++alloc_record_head_ == alloc_record_max_) {
alloc_record_head_ = 0;
}
// Fill in the basics.
AllocRecord* record = &recent_allocation_records_[alloc_record_head_];
record->type = type;
record->byte_count = byte_count;
record->thin_lock_id = self->GetThreadId();
// Fill in the stack trace.
AllocRecordStackVisitor visitor(self, record);
visitor.WalkStack();
if (alloc_record_count_ < alloc_record_max_) {
++alloc_record_count_;
}
}
// Returns the index of the head element.
//
// We point at the most-recently-written record, so if gAllocRecordCount is 1
// we want to use the current element. Take "head+1" and subtract count
// from it.
//
// We need to handle underflow in our circular buffer, so we add
// gAllocRecordMax and then mask it back down.
size_t Dbg::HeadIndex() {
return (Dbg::alloc_record_head_ + 1 + Dbg::alloc_record_max_ - Dbg::alloc_record_count_) &
(Dbg::alloc_record_max_ - 1);
}
void Dbg::DumpRecentAllocations() {
ScopedObjectAccess soa(Thread::Current());
MutexLock mu(soa.Self(), *alloc_tracker_lock_);
if (recent_allocation_records_ == NULL) {
LOG(INFO) << "Not recording tracked allocations";
return;
}
// "i" is the head of the list. We want to start at the end of the
// list and move forward to the tail.
size_t i = HeadIndex();
size_t count = alloc_record_count_;
LOG(INFO) << "Tracked allocations, (head=" << alloc_record_head_ << " count=" << count << ")";
while (count--) {
AllocRecord* record = &recent_allocation_records_[i];
LOG(INFO) << StringPrintf(" Thread %-2d %6zd bytes ", record->thin_lock_id, record->byte_count)
<< PrettyClass(record->type);
for (size_t stack_frame = 0; stack_frame < kMaxAllocRecordStackDepth; ++stack_frame) {
mirror::ArtMethod* m = record->stack[stack_frame].method;
if (m == NULL) {
break;
}
LOG(INFO) << " " << PrettyMethod(m) << " line " << record->stack[stack_frame].LineNumber();
}
// pause periodically to help logcat catch up
if ((count % 5) == 0) {
usleep(40000);
}
i = (i + 1) & (alloc_record_max_ - 1);
}
}
void Dbg::UpdateObjectPointers(IsMarkedCallback* visitor, void* arg) {
if (recent_allocation_records_ != nullptr) {
MutexLock mu(Thread::Current(), *alloc_tracker_lock_);
size_t i = HeadIndex();
size_t count = alloc_record_count_;
while (count--) {
AllocRecord* record = &recent_allocation_records_[i];
DCHECK(record != nullptr);
record->UpdateObjectPointers(visitor, arg);
i = (i + 1) & (alloc_record_max_ - 1);
}
}
if (gRegistry != nullptr) {
gRegistry->UpdateObjectPointers(visitor, arg);
}
}
void Dbg::AllowNewObjectRegistryObjects() {
if (gRegistry != nullptr) {
gRegistry->AllowNewObjects();
}
}
void Dbg::DisallowNewObjectRegistryObjects() {
if (gRegistry != nullptr) {
gRegistry->DisallowNewObjects();
}
}
class StringTable {
public:
StringTable() {
}
void Add(const char* s) {
table_.insert(s);
}
size_t IndexOf(const char* s) const {
auto it = table_.find(s);
if (it == table_.end()) {
LOG(FATAL) << "IndexOf(\"" << s << "\") failed";
}
return std::distance(table_.begin(), it);
}
size_t Size() const {
return table_.size();
}
void WriteTo(std::vector<uint8_t>& bytes) const {
for (const std::string& str : table_) {
const char* s = str.c_str();
size_t s_len = CountModifiedUtf8Chars(s);
UniquePtr<uint16_t> s_utf16(new uint16_t[s_len]);
ConvertModifiedUtf8ToUtf16(s_utf16.get(), s);
JDWP::AppendUtf16BE(bytes, s_utf16.get(), s_len);
}
}
private:
std::set<std::string> table_;
DISALLOW_COPY_AND_ASSIGN(StringTable);
};
/*
* The data we send to DDMS contains everything we have recorded.
*
* Message header (all values big-endian):
* (1b) message header len (to allow future expansion); includes itself
* (1b) entry header len
* (1b) stack frame len
* (2b) number of entries
* (4b) offset to string table from start of message
* (2b) number of class name strings
* (2b) number of method name strings
* (2b) number of source file name strings
* For each entry:
* (4b) total allocation size
* (2b) thread id
* (2b) allocated object's class name index
* (1b) stack depth
* For each stack frame:
* (2b) method's class name
* (2b) method name
* (2b) method source file
* (2b) line number, clipped to 32767; -2 if native; -1 if no source
* (xb) class name strings
* (xb) method name strings
* (xb) source file strings
*
* As with other DDM traffic, strings are sent as a 4-byte length
* followed by UTF-16 data.
*
* We send up 16-bit unsigned indexes into string tables. In theory there
* can be (kMaxAllocRecordStackDepth * gAllocRecordMax) unique strings in
* each table, but in practice there should be far fewer.
*
* The chief reason for using a string table here is to keep the size of
* the DDMS message to a minimum. This is partly to make the protocol
* efficient, but also because we have to form the whole thing up all at
* once in a memory buffer.
*
* We use separate string tables for class names, method names, and source
* files to keep the indexes small. There will generally be no overlap
* between the contents of these tables.
*/
jbyteArray Dbg::GetRecentAllocations() {
if (false) {
DumpRecentAllocations();
}
Thread* self = Thread::Current();
std::vector<uint8_t> bytes;
{
MutexLock mu(self, *alloc_tracker_lock_);
//
// Part 1: generate string tables.
//
StringTable class_names;
StringTable method_names;
StringTable filenames;
int count = alloc_record_count_;
int idx = HeadIndex();
while (count--) {
AllocRecord* record = &recent_allocation_records_[idx];
class_names.Add(ClassHelper(record->type).GetDescriptor());
MethodHelper mh;
for (size_t i = 0; i < kMaxAllocRecordStackDepth; i++) {
mirror::ArtMethod* m = record->stack[i].method;
if (m != NULL) {
mh.ChangeMethod(m);
class_names.Add(mh.GetDeclaringClassDescriptor());
method_names.Add(mh.GetName());
filenames.Add(mh.GetDeclaringClassSourceFile());
}
}
idx = (idx + 1) & (alloc_record_max_ - 1);
}
LOG(INFO) << "allocation records: " << alloc_record_count_;
//
// Part 2: Generate the output and store it in the buffer.
//
// (1b) message header len (to allow future expansion); includes itself
// (1b) entry header len
// (1b) stack frame len
const int kMessageHeaderLen = 15;
const int kEntryHeaderLen = 9;
const int kStackFrameLen = 8;
JDWP::Append1BE(bytes, kMessageHeaderLen);
JDWP::Append1BE(bytes, kEntryHeaderLen);
JDWP::Append1BE(bytes, kStackFrameLen);
// (2b) number of entries
// (4b) offset to string table from start of message
// (2b) number of class name strings
// (2b) number of method name strings
// (2b) number of source file name strings
JDWP::Append2BE(bytes, alloc_record_count_);
size_t string_table_offset = bytes.size();
JDWP::Append4BE(bytes, 0); // We'll patch this later...
JDWP::Append2BE(bytes, class_names.Size());
JDWP::Append2BE(bytes, method_names.Size());
JDWP::Append2BE(bytes, filenames.Size());
count = alloc_record_count_;
idx = HeadIndex();
while (count--) {
// For each entry:
// (4b) total allocation size
// (2b) thread id
// (2b) allocated object's class name index
// (1b) stack depth
AllocRecord* record = &recent_allocation_records_[idx];
size_t stack_depth = record->GetDepth();
ClassHelper kh(record->type);
size_t allocated_object_class_name_index = class_names.IndexOf(kh.GetDescriptor());
JDWP::Append4BE(bytes, record->byte_count);
JDWP::Append2BE(bytes, record->thin_lock_id);
JDWP::Append2BE(bytes, allocated_object_class_name_index);
JDWP::Append1BE(bytes, stack_depth);
MethodHelper mh;
for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) {
// For each stack frame:
// (2b) method's class name
// (2b) method name
// (2b) method source file
// (2b) line number, clipped to 32767; -2 if native; -1 if no source
mh.ChangeMethod(record->stack[stack_frame].method);
size_t class_name_index = class_names.IndexOf(mh.GetDeclaringClassDescriptor());
size_t method_name_index = method_names.IndexOf(mh.GetName());
size_t file_name_index = filenames.IndexOf(mh.GetDeclaringClassSourceFile());
JDWP::Append2BE(bytes, class_name_index);
JDWP::Append2BE(bytes, method_name_index);
JDWP::Append2BE(bytes, file_name_index);
JDWP::Append2BE(bytes, record->stack[stack_frame].LineNumber());
}
idx = (idx + 1) & (alloc_record_max_ - 1);
}
// (xb) class name strings
// (xb) method name strings
// (xb) source file strings
JDWP::Set4BE(&bytes[string_table_offset], bytes.size());
class_names.WriteTo(bytes);
method_names.WriteTo(bytes);
filenames.WriteTo(bytes);
}
JNIEnv* env = self->GetJniEnv();
jbyteArray result = env->NewByteArray(bytes.size());
if (result != NULL) {
env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0]));
}
return result;
}
} // namespace art