blob: f98969effd0866b517aa753230591c132fee5fe4 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/mir_field_info.h"
#include "global_value_numbering.h"
#include "local_value_numbering.h"
#include "gtest/gtest.h"
namespace art {
class LocalValueNumberingTest : public testing::Test {
protected:
struct IFieldDef {
uint16_t field_idx;
uintptr_t declaring_dex_file;
uint16_t declaring_field_idx;
bool is_volatile;
DexMemAccessType type;
};
struct SFieldDef {
uint16_t field_idx;
uintptr_t declaring_dex_file;
uint16_t declaring_field_idx;
bool is_volatile;
DexMemAccessType type;
};
struct MIRDef {
static constexpr size_t kMaxSsaDefs = 2;
static constexpr size_t kMaxSsaUses = 4;
Instruction::Code opcode;
int64_t value;
uint32_t field_info;
size_t num_uses;
int32_t uses[kMaxSsaUses];
size_t num_defs;
int32_t defs[kMaxSsaDefs];
};
#define DEF_CONST(opcode, reg, value) \
{ opcode, value, 0u, 0, { }, 1, { reg } }
#define DEF_CONST_WIDE(opcode, reg, value) \
{ opcode, value, 0u, 0, { }, 2, { reg, reg + 1 } }
#define DEF_CONST_STRING(opcode, reg, index) \
{ opcode, index, 0u, 0, { }, 1, { reg } }
#define DEF_IGET(opcode, reg, obj, field_info) \
{ opcode, 0u, field_info, 1, { obj }, 1, { reg } }
#define DEF_IGET_WIDE(opcode, reg, obj, field_info) \
{ opcode, 0u, field_info, 1, { obj }, 2, { reg, reg + 1 } }
#define DEF_IPUT(opcode, reg, obj, field_info) \
{ opcode, 0u, field_info, 2, { reg, obj }, 0, { } }
#define DEF_IPUT_WIDE(opcode, reg, obj, field_info) \
{ opcode, 0u, field_info, 3, { reg, reg + 1, obj }, 0, { } }
#define DEF_SGET(opcode, reg, field_info) \
{ opcode, 0u, field_info, 0, { }, 1, { reg } }
#define DEF_SGET_WIDE(opcode, reg, field_info) \
{ opcode, 0u, field_info, 0, { }, 2, { reg, reg + 1 } }
#define DEF_SPUT(opcode, reg, field_info) \
{ opcode, 0u, field_info, 1, { reg }, 0, { } }
#define DEF_SPUT_WIDE(opcode, reg, field_info) \
{ opcode, 0u, field_info, 2, { reg, reg + 1 }, 0, { } }
#define DEF_AGET(opcode, reg, obj, idx) \
{ opcode, 0u, 0u, 2, { obj, idx }, 1, { reg } }
#define DEF_AGET_WIDE(opcode, reg, obj, idx) \
{ opcode, 0u, 0u, 2, { obj, idx }, 2, { reg, reg + 1 } }
#define DEF_APUT(opcode, reg, obj, idx) \
{ opcode, 0u, 0u, 3, { reg, obj, idx }, 0, { } }
#define DEF_APUT_WIDE(opcode, reg, obj, idx) \
{ opcode, 0u, 0u, 4, { reg, reg + 1, obj, idx }, 0, { } }
#define DEF_INVOKE1(opcode, reg) \
{ opcode, 0u, 0u, 1, { reg }, 0, { } }
#define DEF_UNIQUE_REF(opcode, reg) \
{ opcode, 0u, 0u, 0, { }, 1, { reg } } // CONST_CLASS, CONST_STRING, NEW_ARRAY, ...
#define DEF_DIV_REM(opcode, result, dividend, divisor) \
{ opcode, 0u, 0u, 2, { dividend, divisor }, 1, { result } }
#define DEF_DIV_REM_WIDE(opcode, result, dividend, divisor) \
{ opcode, 0u, 0u, 4, { dividend, dividend + 1, divisor, divisor + 1 }, 2, { result, result + 1 } }
void DoPrepareIFields(const IFieldDef* defs, size_t count) {
cu_.mir_graph->ifield_lowering_infos_.clear();
cu_.mir_graph->ifield_lowering_infos_.reserve(count);
for (size_t i = 0u; i != count; ++i) {
const IFieldDef* def = &defs[i];
MirIFieldLoweringInfo field_info(def->field_idx, def->type, false);
if (def->declaring_dex_file != 0u) {
field_info.declaring_dex_file_ = reinterpret_cast<const DexFile*>(def->declaring_dex_file);
field_info.declaring_field_idx_ = def->declaring_field_idx;
field_info.flags_ &= ~(def->is_volatile ? 0u : MirSFieldLoweringInfo::kFlagIsVolatile);
}
cu_.mir_graph->ifield_lowering_infos_.push_back(field_info);
}
}
template <size_t count>
void PrepareIFields(const IFieldDef (&defs)[count]) {
DoPrepareIFields(defs, count);
}
void DoPrepareSFields(const SFieldDef* defs, size_t count) {
cu_.mir_graph->sfield_lowering_infos_.clear();
cu_.mir_graph->sfield_lowering_infos_.reserve(count);
for (size_t i = 0u; i != count; ++i) {
const SFieldDef* def = &defs[i];
MirSFieldLoweringInfo field_info(def->field_idx, def->type);
// Mark even unresolved fields as initialized.
field_info.flags_ |= MirSFieldLoweringInfo::kFlagClassIsInitialized;
// NOTE: MirSFieldLoweringInfo::kFlagClassIsInDexCache isn't used by LVN.
if (def->declaring_dex_file != 0u) {
field_info.declaring_dex_file_ = reinterpret_cast<const DexFile*>(def->declaring_dex_file);
field_info.declaring_field_idx_ = def->declaring_field_idx;
field_info.flags_ &= ~(def->is_volatile ? 0u : MirSFieldLoweringInfo::kFlagIsVolatile);
}
cu_.mir_graph->sfield_lowering_infos_.push_back(field_info);
}
}
template <size_t count>
void PrepareSFields(const SFieldDef (&defs)[count]) {
DoPrepareSFields(defs, count);
}
void DoPrepareMIRs(const MIRDef* defs, size_t count) {
mir_count_ = count;
mirs_ = cu_.arena.AllocArray<MIR>(count, kArenaAllocMIR);
ssa_reps_.resize(count);
for (size_t i = 0u; i != count; ++i) {
const MIRDef* def = &defs[i];
MIR* mir = &mirs_[i];
mir->dalvikInsn.opcode = def->opcode;
mir->dalvikInsn.vB = static_cast<int32_t>(def->value);
mir->dalvikInsn.vB_wide = def->value;
if (IsInstructionIGetOrIPut(def->opcode)) {
ASSERT_LT(def->field_info, cu_.mir_graph->ifield_lowering_infos_.size());
mir->meta.ifield_lowering_info = def->field_info;
ASSERT_EQ(cu_.mir_graph->ifield_lowering_infos_[def->field_info].MemAccessType(),
IGetOrIPutMemAccessType(def->opcode));
} else if (IsInstructionSGetOrSPut(def->opcode)) {
ASSERT_LT(def->field_info, cu_.mir_graph->sfield_lowering_infos_.size());
mir->meta.sfield_lowering_info = def->field_info;
ASSERT_EQ(cu_.mir_graph->sfield_lowering_infos_[def->field_info].MemAccessType(),
SGetOrSPutMemAccessType(def->opcode));
}
mir->ssa_rep = &ssa_reps_[i];
mir->ssa_rep->num_uses = def->num_uses;
mir->ssa_rep->uses = const_cast<int32_t*>(def->uses); // Not modified by LVN.
mir->ssa_rep->num_defs = def->num_defs;
mir->ssa_rep->defs = const_cast<int32_t*>(def->defs); // Not modified by LVN.
mir->dalvikInsn.opcode = def->opcode;
mir->offset = i; // LVN uses offset only for debug output
mir->optimization_flags = 0u;
if (i != 0u) {
mirs_[i - 1u].next = mir;
}
}
mirs_[count - 1u].next = nullptr;
}
template <size_t count>
void PrepareMIRs(const MIRDef (&defs)[count]) {
DoPrepareMIRs(defs, count);
}
void MakeSFieldUninitialized(uint32_t sfield_index) {
CHECK_LT(sfield_index, cu_.mir_graph->sfield_lowering_infos_.size());
cu_.mir_graph->sfield_lowering_infos_[sfield_index].flags_ &=
~MirSFieldLoweringInfo::kFlagClassIsInitialized;
}
template <size_t count>
void MarkAsWideSRegs(const int32_t (&sregs)[count]) {
for (int32_t sreg : sregs) {
cu_.mir_graph->reg_location_[sreg].wide = true;
cu_.mir_graph->reg_location_[sreg + 1].wide = true;
cu_.mir_graph->reg_location_[sreg + 1].high_word = true;
}
}
void PerformLVN() {
cu_.mir_graph->temp_.gvn.ifield_ids = GlobalValueNumbering::PrepareGvnFieldIds(
allocator_.get(), cu_.mir_graph->ifield_lowering_infos_);
cu_.mir_graph->temp_.gvn.sfield_ids = GlobalValueNumbering::PrepareGvnFieldIds(
allocator_.get(), cu_.mir_graph->sfield_lowering_infos_);
gvn_.reset(new (allocator_.get()) GlobalValueNumbering(&cu_, allocator_.get(),
GlobalValueNumbering::kModeLvn));
lvn_.reset(new (allocator_.get()) LocalValueNumbering(gvn_.get(), 0u, allocator_.get()));
value_names_.resize(mir_count_);
for (size_t i = 0; i != mir_count_; ++i) {
value_names_[i] = lvn_->GetValueNumber(&mirs_[i]);
}
EXPECT_TRUE(gvn_->Good());
}
LocalValueNumberingTest()
: pool_(),
cu_(&pool_, kRuntimeISA, nullptr, nullptr),
mir_count_(0u),
mirs_(nullptr),
ssa_reps_(),
allocator_(),
gvn_(),
lvn_(),
value_names_() {
cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena));
allocator_.reset(ScopedArenaAllocator::Create(&cu_.arena_stack));
// By default, the zero-initialized reg_location_[.] with ref == false tells LVN that
// 0 constants are integral, not references, and the values are all narrow.
// Nothing else is used by LVN/GVN. Tests can override the default values as needed.
cu_.mir_graph->reg_location_ = static_cast<RegLocation*>(cu_.arena.Alloc(
kMaxSsaRegs * sizeof(cu_.mir_graph->reg_location_[0]), kArenaAllocRegAlloc));
cu_.mir_graph->num_ssa_regs_ = kMaxSsaRegs;
}
static constexpr size_t kMaxSsaRegs = 16384u;
ArenaPool pool_;
CompilationUnit cu_;
size_t mir_count_;
MIR* mirs_;
std::vector<SSARepresentation> ssa_reps_;
std::unique_ptr<ScopedArenaAllocator> allocator_;
std::unique_ptr<GlobalValueNumbering> gvn_;
std::unique_ptr<LocalValueNumbering> lvn_;
std::vector<uint16_t> value_names_;
};
TEST_F(LocalValueNumberingTest, IGetIGetInvokeIGet) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_IGET(Instruction::IGET, 0u, 10u, 0u),
DEF_IGET(Instruction::IGET, 1u, 10u, 0u),
DEF_INVOKE1(Instruction::INVOKE_VIRTUAL, 11u),
DEF_IGET(Instruction::IGET, 2u, 10u, 0u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 4u);
EXPECT_EQ(value_names_[0], value_names_[1]);
EXPECT_NE(value_names_[0], value_names_[3]);
EXPECT_EQ(mirs_[0].optimization_flags, 0u);
EXPECT_EQ(mirs_[1].optimization_flags, MIR_IGNORE_NULL_CHECK);
EXPECT_EQ(mirs_[2].optimization_flags, 0u);
EXPECT_EQ(mirs_[3].optimization_flags, MIR_IGNORE_NULL_CHECK);
}
TEST_F(LocalValueNumberingTest, IGetIPutIGetIGetIGet) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessObject },
{ 2u, 1u, 2u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_IGET(Instruction::IGET_OBJECT, 0u, 10u, 0u),
DEF_IPUT(Instruction::IPUT_OBJECT, 1u, 11u, 0u), // May alias.
DEF_IGET(Instruction::IGET_OBJECT, 2u, 10u, 0u),
DEF_IGET(Instruction::IGET, 3u, 0u, 1u),
DEF_IGET(Instruction::IGET, 4u, 2u, 1u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 5u);
EXPECT_NE(value_names_[0], value_names_[2]);
EXPECT_NE(value_names_[3], value_names_[4]);
for (size_t i = 0; i != arraysize(mirs); ++i) {
EXPECT_EQ((i == 2u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UniquePreserve1) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 10u),
DEF_IGET(Instruction::IGET, 0u, 10u, 0u),
DEF_IPUT(Instruction::IPUT, 1u, 11u, 0u), // No aliasing since 10u is unique.
DEF_IGET(Instruction::IGET, 2u, 10u, 0u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 4u);
EXPECT_EQ(value_names_[1], value_names_[3]);
for (size_t i = 0; i != arraysize(mirs); ++i) {
EXPECT_EQ((i == 1u || i == 3u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UniquePreserve2) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 11u),
DEF_IGET(Instruction::IGET, 0u, 10u, 0u),
DEF_IPUT(Instruction::IPUT, 1u, 11u, 0u), // No aliasing since 11u is unique.
DEF_IGET(Instruction::IGET, 2u, 10u, 0u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 4u);
EXPECT_EQ(value_names_[1], value_names_[3]);
for (size_t i = 0; i != arraysize(mirs); ++i) {
EXPECT_EQ((i == 2u || i == 3u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UniquePreserveAndEscape) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 10u),
DEF_IGET(Instruction::IGET, 0u, 10u, 0u),
DEF_INVOKE1(Instruction::INVOKE_VIRTUAL, 11u), // 10u still unique.
DEF_IGET(Instruction::IGET, 2u, 10u, 0u),
DEF_INVOKE1(Instruction::INVOKE_VIRTUAL, 10u), // 10u not unique anymore.
DEF_IGET(Instruction::IGET, 3u, 10u, 0u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 6u);
EXPECT_EQ(value_names_[1], value_names_[3]);
EXPECT_NE(value_names_[1], value_names_[5]);
for (size_t i = 0; i != arraysize(mirs); ++i) {
EXPECT_EQ((i == 1u || i == 3u || i == 4u || i == 5u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, Volatile) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
{ 2u, 1u, 2u, true, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_IGET(Instruction::IGET, 0u, 10u, 1u), // Volatile.
DEF_IGET(Instruction::IGET, 1u, 0u, 0u), // Non-volatile.
DEF_IGET(Instruction::IGET, 2u, 10u, 1u), // Volatile.
DEF_IGET(Instruction::IGET, 3u, 2u, 1u), // Non-volatile.
DEF_IGET(Instruction::IGET, 4u, 0u, 0u), // Non-volatile.
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 5u);
EXPECT_NE(value_names_[0], value_names_[2]); // Volatile has always different value name.
EXPECT_NE(value_names_[1], value_names_[3]); // Used different base because of volatile.
EXPECT_NE(value_names_[1], value_names_[4]); // Not guaranteed to be the same after "acquire".
for (size_t i = 0; i != arraysize(mirs); ++i) {
EXPECT_EQ((i == 2u || i == 4u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UnresolvedIField) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord }, // Resolved field #1.
{ 2u, 1u, 2u, false, kDexMemAccessWide }, // Resolved field #2.
{ 3u, 0u, 0u, false, kDexMemAccessWord }, // Unresolved field.
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 30u),
DEF_IGET(Instruction::IGET, 1u, 30u, 0u), // Resolved field #1, unique object.
DEF_IGET(Instruction::IGET, 2u, 31u, 0u), // Resolved field #1.
DEF_IGET_WIDE(Instruction::IGET_WIDE, 3u, 31u, 1u), // Resolved field #2.
DEF_IGET(Instruction::IGET, 5u, 32u, 2u), // Unresolved IGET can be "acquire".
DEF_IGET(Instruction::IGET, 6u, 30u, 0u), // Resolved field #1, unique object.
DEF_IGET(Instruction::IGET, 7u, 31u, 0u), // Resolved field #1.
DEF_IGET_WIDE(Instruction::IGET_WIDE, 8u, 31u, 1u), // Resolved field #2.
DEF_IPUT(Instruction::IPUT, 10u, 32u, 2u), // IPUT clobbers field #1 (#2 is wide).
DEF_IGET(Instruction::IGET, 11u, 30u, 0u), // Resolved field #1, unique object.
DEF_IGET(Instruction::IGET, 12u, 31u, 0u), // Resolved field #1, new value name.
DEF_IGET_WIDE(Instruction::IGET_WIDE, 13u, 31u, 1u), // Resolved field #2.
DEF_IGET_WIDE(Instruction::IGET_WIDE, 15u, 30u, 1u), // Resolved field #2, unique object.
DEF_IPUT(Instruction::IPUT, 17u, 30u, 2u), // IPUT clobbers field #1 (#2 is wide).
DEF_IGET(Instruction::IGET, 18u, 30u, 0u), // Resolved field #1, unique object.
DEF_IGET_WIDE(Instruction::IGET_WIDE, 19u, 30u, 1u), // Resolved field #2, unique object.
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
static const int32_t wide_sregs[] = { 3, 8, 13, 15, 19 };
MarkAsWideSRegs(wide_sregs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 16u);
// Unresolved field is potentially volatile, so we need to adhere to the volatile semantics.
EXPECT_EQ(value_names_[1], value_names_[5]); // Unique object.
EXPECT_NE(value_names_[2], value_names_[6]); // Not guaranteed to be the same after "acquire".
EXPECT_NE(value_names_[3], value_names_[7]); // Not guaranteed to be the same after "acquire".
EXPECT_EQ(value_names_[1], value_names_[9]); // Unique object.
EXPECT_NE(value_names_[6], value_names_[10]); // This aliased with unresolved IPUT.
EXPECT_EQ(value_names_[7], value_names_[11]); // Still the same after "release".
EXPECT_EQ(value_names_[12], value_names_[15]); // Still the same after "release".
EXPECT_NE(value_names_[1], value_names_[14]); // This aliased with unresolved IPUT.
EXPECT_EQ(mirs_[0].optimization_flags, 0u);
EXPECT_EQ(mirs_[1].optimization_flags, MIR_IGNORE_NULL_CHECK);
EXPECT_EQ(mirs_[2].optimization_flags, 0u);
EXPECT_EQ(mirs_[3].optimization_flags, MIR_IGNORE_NULL_CHECK);
EXPECT_EQ(mirs_[4].optimization_flags, 0u);
for (size_t i = 5u; i != mir_count_; ++i) {
EXPECT_EQ((i == 1u || i == 3u || i >=5u) ? MIR_IGNORE_NULL_CHECK : 0,
mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UnresolvedSField) {
static const SFieldDef sfields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord }, // Resolved field #1.
{ 2u, 1u, 2u, false, kDexMemAccessWide }, // Resolved field #2.
{ 3u, 0u, 0u, false, kDexMemAccessWord }, // Unresolved field.
};
static const MIRDef mirs[] = {
DEF_SGET(Instruction::SGET, 0u, 0u), // Resolved field #1.
DEF_SGET_WIDE(Instruction::SGET_WIDE, 1u, 1u), // Resolved field #2.
DEF_SGET(Instruction::SGET, 3u, 2u), // Unresolved SGET can be "acquire".
DEF_SGET(Instruction::SGET, 4u, 0u), // Resolved field #1.
DEF_SGET_WIDE(Instruction::SGET_WIDE, 5u, 1u), // Resolved field #2.
DEF_SPUT(Instruction::SPUT, 7u, 2u), // SPUT clobbers field #1 (#2 is wide).
DEF_SGET(Instruction::SGET, 8u, 0u), // Resolved field #1.
DEF_SGET_WIDE(Instruction::SGET_WIDE, 9u, 1u), // Resolved field #2.
};
PrepareSFields(sfields);
PrepareMIRs(mirs);
static const int32_t wide_sregs[] = { 1, 5, 9 };
MarkAsWideSRegs(wide_sregs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 8u);
// Unresolved field is potentially volatile, so we need to adhere to the volatile semantics.
EXPECT_NE(value_names_[0], value_names_[3]); // Not guaranteed to be the same after "acquire".
EXPECT_NE(value_names_[1], value_names_[4]); // Not guaranteed to be the same after "acquire".
EXPECT_NE(value_names_[3], value_names_[6]); // This aliased with unresolved IPUT.
EXPECT_EQ(value_names_[4], value_names_[7]); // Still the same after "release".
for (size_t i = 0u; i != mir_count_; ++i) {
EXPECT_EQ(0, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UninitializedSField) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord }, // Resolved field #1.
};
static const SFieldDef sfields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord }, // Resolved field #1.
{ 2u, 1u, 2u, false, kDexMemAccessWord }, // Resolved field #2; uninitialized.
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 200u),
DEF_IGET(Instruction::IGET, 1u, 100u, 0u),
DEF_IGET(Instruction::IGET, 2u, 200u, 0u),
DEF_SGET(Instruction::SGET, 3u, 0u),
DEF_SGET(Instruction::SGET, 4u, 1u), // Can call <clinit>().
DEF_IGET(Instruction::IGET, 5u, 100u, 0u), // Differs from 1u.
DEF_IGET(Instruction::IGET, 6u, 200u, 0u), // Same as 2u.
DEF_SGET(Instruction::SGET, 7u, 0u), // Differs from 3u.
};
PrepareIFields(ifields);
PrepareSFields(sfields);
MakeSFieldUninitialized(1u);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 8u);
EXPECT_NE(value_names_[1], value_names_[5]);
EXPECT_EQ(value_names_[2], value_names_[6]);
EXPECT_NE(value_names_[3], value_names_[7]);
}
TEST_F(LocalValueNumberingTest, ConstString) {
static const MIRDef mirs[] = {
DEF_CONST_STRING(Instruction::CONST_STRING, 0u, 0u),
DEF_CONST_STRING(Instruction::CONST_STRING, 1u, 0u),
DEF_CONST_STRING(Instruction::CONST_STRING, 2u, 2u),
DEF_CONST_STRING(Instruction::CONST_STRING, 3u, 0u),
DEF_INVOKE1(Instruction::INVOKE_DIRECT, 2u),
DEF_CONST_STRING(Instruction::CONST_STRING, 4u, 2u),
};
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 6u);
EXPECT_EQ(value_names_[1], value_names_[0]);
EXPECT_NE(value_names_[2], value_names_[0]);
EXPECT_EQ(value_names_[3], value_names_[0]);
EXPECT_EQ(value_names_[5], value_names_[2]);
}
TEST_F(LocalValueNumberingTest, SameValueInDifferentMemoryLocations) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
{ 2u, 1u, 2u, false, kDexMemAccessWord },
};
static const SFieldDef sfields[] = {
{ 3u, 1u, 3u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_ARRAY, 201u),
DEF_IGET(Instruction::IGET, 0u, 100u, 0u),
DEF_IPUT(Instruction::IPUT, 0u, 100u, 1u),
DEF_IPUT(Instruction::IPUT, 0u, 101u, 1u),
DEF_APUT(Instruction::APUT, 0u, 200u, 300u),
DEF_APUT(Instruction::APUT, 0u, 200u, 301u),
DEF_APUT(Instruction::APUT, 0u, 201u, 300u),
DEF_APUT(Instruction::APUT, 0u, 201u, 301u),
DEF_SPUT(Instruction::SPUT, 0u, 0u),
DEF_IGET(Instruction::IGET, 9u, 100u, 0u),
DEF_IGET(Instruction::IGET, 10u, 100u, 1u),
DEF_IGET(Instruction::IGET, 11u, 101u, 1u),
DEF_AGET(Instruction::AGET, 12u, 200u, 300u),
DEF_AGET(Instruction::AGET, 13u, 200u, 301u),
DEF_AGET(Instruction::AGET, 14u, 201u, 300u),
DEF_AGET(Instruction::AGET, 15u, 201u, 301u),
DEF_SGET(Instruction::SGET, 16u, 0u),
};
PrepareIFields(ifields);
PrepareSFields(sfields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 17u);
for (size_t i = 9; i != arraysize(mirs); ++i) {
EXPECT_EQ(value_names_[1], value_names_[i]) << i;
}
for (size_t i = 0; i != arraysize(mirs); ++i) {
int expected_flags =
((i == 2u || (i >= 5u && i <= 7u) || (i >= 9u && i <= 15u)) ? MIR_IGNORE_NULL_CHECK : 0) |
((i >= 12u && i <= 15u) ? MIR_IGNORE_RANGE_CHECK : 0);
EXPECT_EQ(expected_flags, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, UniqueArrayAliasing) {
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_ARRAY, 20u),
DEF_AGET(Instruction::AGET, 1u, 20u, 40u),
DEF_APUT(Instruction::APUT, 2u, 20u, 41u), // May alias with index for sreg 40u.
DEF_AGET(Instruction::AGET, 3u, 20u, 40u),
};
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 4u);
EXPECT_NE(value_names_[1], value_names_[3]);
for (size_t i = 0; i != arraysize(mirs); ++i) {
int expected_flags =
((i >= 1u) ? MIR_IGNORE_NULL_CHECK : 0) |
((i == 3u) ? MIR_IGNORE_RANGE_CHECK : 0);
EXPECT_EQ(expected_flags, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, EscapingRefs) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord }, // Field #1.
{ 2u, 1u, 2u, false, kDexMemAccessWord }, // Field #2.
{ 3u, 1u, 3u, false, kDexMemAccessObject }, // For storing escaping refs.
{ 4u, 1u, 4u, false, kDexMemAccessWide }, // Wide.
{ 5u, 0u, 0u, false, kDexMemAccessWord }, // Unresolved field, int.
{ 6u, 0u, 0u, false, kDexMemAccessWide }, // Unresolved field, wide.
};
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 20u),
DEF_IGET(Instruction::IGET, 1u, 20u, 0u),
DEF_IGET(Instruction::IGET, 2u, 20u, 1u),
DEF_IPUT(Instruction::IPUT_OBJECT, 20u, 30u, 2u), // Ref escapes.
DEF_IGET(Instruction::IGET, 4u, 20u, 0u),
DEF_IGET(Instruction::IGET, 5u, 20u, 1u),
DEF_IPUT(Instruction::IPUT, 6u, 31u, 0u), // May alias with field #1.
DEF_IGET(Instruction::IGET, 7u, 20u, 0u), // New value.
DEF_IGET(Instruction::IGET, 8u, 20u, 1u), // Still the same.
DEF_IPUT_WIDE(Instruction::IPUT_WIDE, 9u, 31u, 3u), // No aliasing, different type.
DEF_IGET(Instruction::IGET, 11u, 20u, 0u),
DEF_IGET(Instruction::IGET, 12u, 20u, 1u),
DEF_IPUT_WIDE(Instruction::IPUT_WIDE, 13u, 31u, 5u), // No aliasing, different type.
DEF_IGET(Instruction::IGET, 15u, 20u, 0u),
DEF_IGET(Instruction::IGET, 16u, 20u, 1u),
DEF_IPUT(Instruction::IPUT, 17u, 31u, 4u), // Aliasing, same type.
DEF_IGET(Instruction::IGET, 18u, 20u, 0u),
DEF_IGET(Instruction::IGET, 19u, 20u, 1u),
};
PrepareIFields(ifields);
PrepareMIRs(mirs);
static const int32_t wide_sregs[] = { 9, 13 };
MarkAsWideSRegs(wide_sregs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 18u);
EXPECT_EQ(value_names_[1], value_names_[4]);
EXPECT_EQ(value_names_[2], value_names_[5]);
EXPECT_NE(value_names_[4], value_names_[7]); // New value.
EXPECT_EQ(value_names_[5], value_names_[8]);
EXPECT_EQ(value_names_[7], value_names_[10]);
EXPECT_EQ(value_names_[8], value_names_[11]);
EXPECT_EQ(value_names_[10], value_names_[13]);
EXPECT_EQ(value_names_[11], value_names_[14]);
EXPECT_NE(value_names_[13], value_names_[16]); // New value.
EXPECT_NE(value_names_[14], value_names_[17]); // New value.
for (size_t i = 0u; i != mir_count_; ++i) {
int expected =
((i != 0u && i != 3u && i != 6u) ? MIR_IGNORE_NULL_CHECK : 0) |
((i == 3u) ? MIR_STORE_NON_NULL_VALUE: 0);
EXPECT_EQ(expected, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, EscapingArrayRefs) {
static const MIRDef mirs[] = {
DEF_UNIQUE_REF(Instruction::NEW_ARRAY, 20u),
DEF_AGET(Instruction::AGET, 1u, 20u, 40u),
DEF_AGET(Instruction::AGET, 2u, 20u, 41u),
DEF_APUT(Instruction::APUT_OBJECT, 20u, 30u, 42u), // Array ref escapes.
DEF_AGET(Instruction::AGET, 4u, 20u, 40u),
DEF_AGET(Instruction::AGET, 5u, 20u, 41u),
DEF_APUT_WIDE(Instruction::APUT_WIDE, 6u, 31u, 43u), // No aliasing, different type.
DEF_AGET(Instruction::AGET, 8u, 20u, 40u),
DEF_AGET(Instruction::AGET, 9u, 20u, 41u),
DEF_APUT(Instruction::APUT, 10u, 32u, 40u), // May alias with all elements.
DEF_AGET(Instruction::AGET, 11u, 20u, 40u), // New value (same index name).
DEF_AGET(Instruction::AGET, 12u, 20u, 41u), // New value (different index name).
};
PrepareMIRs(mirs);
static const int32_t wide_sregs[] = { 6 };
MarkAsWideSRegs(wide_sregs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 12u);
EXPECT_EQ(value_names_[1], value_names_[4]);
EXPECT_EQ(value_names_[2], value_names_[5]);
EXPECT_EQ(value_names_[4], value_names_[7]);
EXPECT_EQ(value_names_[5], value_names_[8]);
EXPECT_NE(value_names_[7], value_names_[10]); // New value.
EXPECT_NE(value_names_[8], value_names_[11]); // New value.
for (size_t i = 0u; i != mir_count_; ++i) {
int expected =
((i != 0u && i != 3u && i != 6u && i != 9u) ? MIR_IGNORE_NULL_CHECK : 0u) |
((i >= 4 && i != 6u && i != 9u) ? MIR_IGNORE_RANGE_CHECK : 0u) |
((i == 3u) ? MIR_STORE_NON_NULL_VALUE: 0);
EXPECT_EQ(expected, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, StoringSameValueKeepsMemoryVersion) {
static const IFieldDef ifields[] = {
{ 1u, 1u, 1u, false, kDexMemAccessWord },
{ 2u, 1u, 2u, false, kDexMemAccessWord },
};
static const SFieldDef sfields[] = {
{ 2u, 1u, 2u, false, kDexMemAccessWord },
};
static const MIRDef mirs[] = {
DEF_IGET(Instruction::IGET, 0u, 30u, 0u),
DEF_IGET(Instruction::IGET, 1u, 31u, 0u),
DEF_IPUT(Instruction::IPUT, 1u, 31u, 0u), // Store the same value.
DEF_IGET(Instruction::IGET, 3u, 30u, 0u),
DEF_AGET(Instruction::AGET, 4u, 32u, 40u),
DEF_AGET(Instruction::AGET, 5u, 33u, 40u),
DEF_APUT(Instruction::APUT, 5u, 33u, 40u), // Store the same value.
DEF_AGET(Instruction::AGET, 7u, 32u, 40u),
DEF_SGET(Instruction::SGET, 8u, 0u),
DEF_SPUT(Instruction::SPUT, 8u, 0u), // Store the same value.
DEF_SGET(Instruction::SGET, 10u, 0u),
DEF_UNIQUE_REF(Instruction::NEW_INSTANCE, 50u), // Test with unique references.
{ Instruction::FILLED_NEW_ARRAY, 0, 0u, 2, { 12u, 13u }, 0, { } },
DEF_UNIQUE_REF(Instruction::MOVE_RESULT_OBJECT, 51u),
DEF_IGET(Instruction::IGET, 14u, 50u, 0u),
DEF_IGET(Instruction::IGET, 15u, 50u, 1u),
DEF_IPUT(Instruction::IPUT, 15u, 50u, 1u), // Store the same value.
DEF_IGET(Instruction::IGET, 17u, 50u, 0u),
DEF_AGET(Instruction::AGET, 18u, 51u, 40u),
DEF_AGET(Instruction::AGET, 19u, 51u, 41u),
DEF_APUT(Instruction::APUT, 19u, 51u, 41u), // Store the same value.
DEF_AGET(Instruction::AGET, 21u, 51u, 40u),
};
PrepareIFields(ifields);
PrepareSFields(sfields);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 22u);
EXPECT_NE(value_names_[0], value_names_[1]);
EXPECT_EQ(value_names_[0], value_names_[3]);
EXPECT_NE(value_names_[4], value_names_[5]);
EXPECT_EQ(value_names_[4], value_names_[7]);
EXPECT_EQ(value_names_[8], value_names_[10]);
EXPECT_NE(value_names_[14], value_names_[15]);
EXPECT_EQ(value_names_[14], value_names_[17]);
EXPECT_NE(value_names_[18], value_names_[19]);
EXPECT_EQ(value_names_[18], value_names_[21]);
for (size_t i = 0u; i != mir_count_; ++i) {
int expected =
((i == 2u || i == 3u || i == 6u || i == 7u || (i >= 14u)) ? MIR_IGNORE_NULL_CHECK : 0u) |
((i == 6u || i == 7u || i >= 20u) ? MIR_IGNORE_RANGE_CHECK : 0u);
EXPECT_EQ(expected, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, FilledNewArrayTracking) {
if (!kLocalValueNumberingEnableFilledNewArrayTracking) {
// Feature disabled.
return;
}
static const MIRDef mirs[] = {
DEF_CONST(Instruction::CONST, 0u, 100),
DEF_CONST(Instruction::CONST, 1u, 200),
{ Instruction::FILLED_NEW_ARRAY, 0, 0u, 2, { 0u, 1u }, 0, { } },
DEF_UNIQUE_REF(Instruction::MOVE_RESULT_OBJECT, 10u),
DEF_CONST(Instruction::CONST, 20u, 0),
DEF_CONST(Instruction::CONST, 21u, 1),
DEF_AGET(Instruction::AGET, 6u, 10u, 20u),
DEF_AGET(Instruction::AGET, 7u, 10u, 21u),
};
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 8u);
EXPECT_EQ(value_names_[0], value_names_[6]);
EXPECT_EQ(value_names_[1], value_names_[7]);
for (size_t i = 0u; i != mir_count_; ++i) {
int expected = (i == 6u || i == 7u) ? (MIR_IGNORE_NULL_CHECK | MIR_IGNORE_RANGE_CHECK) : 0u;
EXPECT_EQ(expected, mirs_[i].optimization_flags) << i;
}
}
TEST_F(LocalValueNumberingTest, ClInitOnSget) {
static const SFieldDef sfields[] = {
{ 0u, 1u, 0u, false, kDexMemAccessObject },
{ 1u, 2u, 1u, false, kDexMemAccessObject },
};
static const MIRDef mirs[] = {
DEF_SGET(Instruction::SGET_OBJECT, 0u, 0u),
DEF_AGET(Instruction::AGET, 1u, 0u, 100u),
DEF_SGET(Instruction::SGET_OBJECT, 2u, 1u),
DEF_SGET(Instruction::SGET_OBJECT, 3u, 0u),
DEF_AGET(Instruction::AGET, 4u, 3u, 100u),
};
PrepareSFields(sfields);
MakeSFieldUninitialized(1u);
PrepareMIRs(mirs);
PerformLVN();
ASSERT_EQ(value_names_.size(), 5u);
EXPECT_NE(value_names_[0], value_names_[3]);
}
TEST_F(LocalValueNumberingTest, DivZeroCheck) {
static const MIRDef mirs[] = {
DEF_DIV_REM(Instruction::DIV_INT, 1u, 10u, 20u),
DEF_DIV_REM(Instruction::DIV_INT, 2u, 20u, 20u),
DEF_DIV_REM(Instruction::DIV_INT_2ADDR, 3u, 10u, 1u),
DEF_DIV_REM(Instruction::REM_INT, 4u, 30u, 20u),
DEF_DIV_REM_WIDE(Instruction::REM_LONG, 5u, 12u, 14u),
DEF_DIV_REM_WIDE(Instruction::DIV_LONG_2ADDR, 7u, 16u, 14u),
};
static const bool expected_ignore_div_zero_check[] = {
false, true, false, true, false, true,
};
PrepareMIRs(mirs);
static const int32_t wide_sregs[] = { 5, 7, 12, 14, 16 };
MarkAsWideSRegs(wide_sregs);
PerformLVN();
for (size_t i = 0u; i != mir_count_; ++i) {
int expected = expected_ignore_div_zero_check[i] ? MIR_IGNORE_DIV_ZERO_CHECK : 0u;
EXPECT_EQ(expected, mirs_[i].optimization_flags) << i;
}
}
static constexpr int64_t shift_minus_1(size_t by) {
return static_cast<int64_t>(static_cast<uint64_t>(INT64_C(-1)) << by);
}
TEST_F(LocalValueNumberingTest, ConstWide) {
static const MIRDef mirs[] = {
// Core reg constants.
DEF_CONST(Instruction::CONST_WIDE_16, 0u, 0),
DEF_CONST(Instruction::CONST_WIDE_16, 2u, 1),
DEF_CONST(Instruction::CONST_WIDE_16, 4u, -1),
DEF_CONST(Instruction::CONST_WIDE_32, 6u, 1 << 16),
DEF_CONST(Instruction::CONST_WIDE_32, 8u, shift_minus_1(16)),
DEF_CONST(Instruction::CONST_WIDE_32, 10u, (1 << 16) + 1),
DEF_CONST(Instruction::CONST_WIDE_32, 12u, (1 << 16) - 1),
DEF_CONST(Instruction::CONST_WIDE_32, 14u, -(1 << 16) + 1),
DEF_CONST(Instruction::CONST_WIDE_32, 16u, -(1 << 16) - 1),
DEF_CONST(Instruction::CONST_WIDE, 18u, INT64_C(1) << 32),
DEF_CONST(Instruction::CONST_WIDE, 20u, shift_minus_1(32)),
DEF_CONST(Instruction::CONST_WIDE, 22u, (INT64_C(1) << 32) + 1),
DEF_CONST(Instruction::CONST_WIDE, 24u, (INT64_C(1) << 32) - 1),
DEF_CONST(Instruction::CONST_WIDE, 26u, shift_minus_1(32) + 1),
DEF_CONST(Instruction::CONST_WIDE, 28u, shift_minus_1(32) - 1),
DEF_CONST(Instruction::CONST_WIDE_HIGH16, 30u, 1), // Effectively 1 << 48.
DEF_CONST(Instruction::CONST_WIDE_HIGH16, 32u, 0xffff), // Effectively -1 << 48.
DEF_CONST(Instruction::CONST_WIDE, 34u, (INT64_C(1) << 48) + 1),
DEF_CONST(Instruction::CONST_WIDE, 36u, (INT64_C(1) << 48) - 1),
DEF_CONST(Instruction::CONST_WIDE, 38u, shift_minus_1(48) + 1),
DEF_CONST(Instruction::CONST_WIDE, 40u, shift_minus_1(48) - 1),
// FP reg constants.
DEF_CONST(Instruction::CONST_WIDE_16, 42u, 0),
DEF_CONST(Instruction::CONST_WIDE_16, 44u, 1),
DEF_CONST(Instruction::CONST_WIDE_16, 46u, -1),
DEF_CONST(Instruction::CONST_WIDE_32, 48u, 1 << 16),
DEF_CONST(Instruction::CONST_WIDE_32, 50u, shift_minus_1(16)),
DEF_CONST(Instruction::CONST_WIDE_32, 52u, (1 << 16) + 1),
DEF_CONST(Instruction::CONST_WIDE_32, 54u, (1 << 16) - 1),
DEF_CONST(Instruction::CONST_WIDE_32, 56u, -(1 << 16) + 1),
DEF_CONST(Instruction::CONST_WIDE_32, 58u, -(1 << 16) - 1),
DEF_CONST(Instruction::CONST_WIDE, 60u, INT64_C(1) << 32),
DEF_CONST(Instruction::CONST_WIDE, 62u, shift_minus_1(32)),
DEF_CONST(Instruction::CONST_WIDE, 64u, (INT64_C(1) << 32) + 1),
DEF_CONST(Instruction::CONST_WIDE, 66u, (INT64_C(1) << 32) - 1),
DEF_CONST(Instruction::CONST_WIDE, 68u, shift_minus_1(32) + 1),
DEF_CONST(Instruction::CONST_WIDE, 70u, shift_minus_1(32) - 1),
DEF_CONST(Instruction::CONST_WIDE_HIGH16, 72u, 1), // Effectively 1 << 48.
DEF_CONST(Instruction::CONST_WIDE_HIGH16, 74u, 0xffff), // Effectively -1 << 48.
DEF_CONST(Instruction::CONST_WIDE, 76u, (INT64_C(1) << 48) + 1),
DEF_CONST(Instruction::CONST_WIDE, 78u, (INT64_C(1) << 48) - 1),
DEF_CONST(Instruction::CONST_WIDE, 80u, shift_minus_1(48) + 1),
DEF_CONST(Instruction::CONST_WIDE, 82u, shift_minus_1(48) - 1),
};
PrepareMIRs(mirs);
for (size_t i = 0; i != arraysize(mirs); ++i) {
const int32_t wide_sregs[] = { mirs_[i].ssa_rep->defs[0] };
MarkAsWideSRegs(wide_sregs);
}
for (size_t i = arraysize(mirs) / 2u; i != arraysize(mirs); ++i) {
cu_.mir_graph->reg_location_[mirs_[i].ssa_rep->defs[0]].fp = true;
}
PerformLVN();
for (size_t i = 0u; i != mir_count_; ++i) {
for (size_t j = i + 1u; j != mir_count_; ++j) {
EXPECT_NE(value_names_[i], value_names_[j]) << i << " " << j;
}
}
}
TEST_F(LocalValueNumberingTest, Const) {
static const MIRDef mirs[] = {
// Core reg constants.
DEF_CONST(Instruction::CONST_4, 0u, 0),
DEF_CONST(Instruction::CONST_4, 1u, 1),
DEF_CONST(Instruction::CONST_4, 2u, -1),
DEF_CONST(Instruction::CONST_16, 3u, 1 << 4),
DEF_CONST(Instruction::CONST_16, 4u, shift_minus_1(4)),
DEF_CONST(Instruction::CONST_16, 5u, (1 << 4) + 1),
DEF_CONST(Instruction::CONST_16, 6u, (1 << 4) - 1),
DEF_CONST(Instruction::CONST_16, 7u, -(1 << 4) + 1),
DEF_CONST(Instruction::CONST_16, 8u, -(1 << 4) - 1),
DEF_CONST(Instruction::CONST_HIGH16, 9u, 1), // Effectively 1 << 16.
DEF_CONST(Instruction::CONST_HIGH16, 10u, 0xffff), // Effectively -1 << 16.
DEF_CONST(Instruction::CONST, 11u, (1 << 16) + 1),
DEF_CONST(Instruction::CONST, 12u, (1 << 16) - 1),
DEF_CONST(Instruction::CONST, 13u, shift_minus_1(16) + 1),
DEF_CONST(Instruction::CONST, 14u, shift_minus_1(16) - 1),
// FP reg constants.
DEF_CONST(Instruction::CONST_4, 15u, 0),
DEF_CONST(Instruction::CONST_4, 16u, 1),
DEF_CONST(Instruction::CONST_4, 17u, -1),
DEF_CONST(Instruction::CONST_16, 18u, 1 << 4),
DEF_CONST(Instruction::CONST_16, 19u, shift_minus_1(4)),
DEF_CONST(Instruction::CONST_16, 20u, (1 << 4) + 1),
DEF_CONST(Instruction::CONST_16, 21u, (1 << 4) - 1),
DEF_CONST(Instruction::CONST_16, 22u, -(1 << 4) + 1),
DEF_CONST(Instruction::CONST_16, 23u, -(1 << 4) - 1),
DEF_CONST(Instruction::CONST_HIGH16, 24u, 1), // Effectively 1 << 16.
DEF_CONST(Instruction::CONST_HIGH16, 25u, 0xffff), // Effectively -1 << 16.
DEF_CONST(Instruction::CONST, 26u, (1 << 16) + 1),
DEF_CONST(Instruction::CONST, 27u, (1 << 16) - 1),
DEF_CONST(Instruction::CONST, 28u, shift_minus_1(16) + 1),
DEF_CONST(Instruction::CONST, 29u, shift_minus_1(16) - 1),
// null reference constant.
DEF_CONST(Instruction::CONST_4, 30u, 0),
};
PrepareMIRs(mirs);
static_assert((arraysize(mirs) & 1) != 0, "missing null or unmatched fp/core");
cu_.mir_graph->reg_location_[arraysize(mirs) - 1].ref = true;
for (size_t i = arraysize(mirs) / 2u; i != arraysize(mirs) - 1; ++i) {
cu_.mir_graph->reg_location_[mirs_[i].ssa_rep->defs[0]].fp = true;
}
PerformLVN();
for (size_t i = 0u; i != mir_count_; ++i) {
for (size_t j = i + 1u; j != mir_count_; ++j) {
EXPECT_NE(value_names_[i], value_names_[j]) << i << " " << j;
}
}
}
} // namespace art