blob: 6fcaf83ce4351c26a40b835b4700e4435913ff49 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mark_sweep.h"
#include <functional>
#include <numeric>
#include <climits>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "card_table.h"
#include "card_table-inl.h"
#include "heap.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "large_object_space.h"
#include "monitor.h"
#include "mark_sweep-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/field.h"
#include "mirror/field-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
#include "mirror/object_array-inl.h"
#include "runtime.h"
#include "space.h"
#include "space_bitmap-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"
using namespace art::mirror;
namespace art {
// Performance options.
static const bool kParallelMarkStack = true;
static const bool kDisableFinger = kParallelMarkStack;
static const bool kUseMarkStackPrefetch = true;
// Profiling and information flags.
static const bool kCountClassesMarked = false;
static const bool kProfileLargeObjects = false;
static const bool kMeasureOverhead = false;
static const bool kCountTasks = false;
static const bool kCountJavaLangRefs = false;
class SetFingerVisitor {
public:
SetFingerVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {
}
void operator ()(void* finger) const {
mark_sweep_->SetFinger(reinterpret_cast<Object*>(finger));
}
private:
MarkSweep* const mark_sweep_;
};
std::string MarkSweep::GetName() const {
std::ostringstream ss;
ss << (IsConcurrent() ? "Concurrent" : "") << GetGcType();
return ss.str();
}
void MarkSweep::ImmuneSpace(ContinuousSpace* space) {
// Bind live to mark bitmap if necessary.
if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
BindLiveToMarkBitmap(space);
}
// Add the space to the immune region.
if (immune_begin_ == NULL) {
DCHECK(immune_end_ == NULL);
SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
reinterpret_cast<Object*>(space->End()));
} else {
const Spaces& spaces = GetHeap()->GetSpaces();
const ContinuousSpace* prev_space = NULL;
// Find out if the previous space is immune.
// TODO: C++0x
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
if (*it == space) {
break;
}
prev_space = *it;
}
// If previous space was immune, then extend the immune region.
if (prev_space != NULL &&
immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
}
}
}
// Bind the live bits to the mark bits of bitmaps based on the gc type.
void MarkSweep::BindBitmaps() {
Spaces& spaces = GetHeap()->GetSpaces();
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
// Mark all of the spaces we never collect as immune.
for (Spaces::iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
if (space->GetGcRetentionPolicy() == kGcRetentionPolicyNeverCollect) {
ImmuneSpace(space);
}
}
}
MarkSweep::MarkSweep(Heap* heap, bool is_concurrent)
: GarbageCollector(heap),
gc_barrier_(new Barrier(0)),
large_object_lock_("large object lock"),
mark_stack_expand_lock_("mark stack expand lock"),
timings_(GetName(), true),
cumulative_timings_(GetName()),
is_concurrent_(is_concurrent) {
cumulative_timings_.SetName(GetName());
ResetCumulativeStatistics();
}
void MarkSweep::InitializePhase() {
mark_stack_ = GetHeap()->mark_stack_.get();
DCHECK(mark_stack_ != NULL);
finger_ = NULL;
SetImmuneRange(NULL, NULL);
soft_reference_list_ = NULL;
weak_reference_list_ = NULL;
finalizer_reference_list_ = NULL;
phantom_reference_list_ = NULL;
cleared_reference_list_ = NULL;
freed_bytes_ = 0;
freed_objects_ = 0;
class_count_ = 0;
array_count_ = 0;
other_count_ = 0;
large_object_test_ = 0;
large_object_mark_ = 0;
classes_marked_ = 0;
overhead_time_ = 0;
work_chunks_created_ = 0;
work_chunks_deleted_ = 0;
reference_count_ = 0;
java_lang_Class_ = Class::GetJavaLangClass();
CHECK(java_lang_Class_ != NULL);
FindDefaultMarkBitmap();
// Mark any concurrent roots as dirty since we need to scan them at least once during this GC.
Runtime::Current()->DirtyRoots();
timings_.Reset();
// Do any pre GC verification.
heap_->PreGcVerification(this);
}
void MarkSweep::ProcessReferences(Thread* self) {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
&finalizer_reference_list_, &phantom_reference_list_);
timings_.AddSplit("ProcessReferences");
}
bool MarkSweep::HandleDirtyObjectsPhase() {
Thread* self = Thread::Current();
ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
Locks::mutator_lock_->AssertExclusiveHeld(self);
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Re-mark root set.
ReMarkRoots();
timings_.AddSplit("ReMarkRoots");
// Scan dirty objects, this is only required if we are not doing concurrent GC.
RecursiveMarkDirtyObjects(CardTable::kCardDirty);
}
ProcessReferences(self);
// Only need to do this if we have the card mark verification on, and only during concurrent GC.
if (GetHeap()->verify_missing_card_marks_) {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// This second sweep makes sure that we don't have any objects in the live stack which point to
// freed objects. These cause problems since their references may be previously freed objects.
SweepArray(timings_, allocation_stack, false);
} else {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// We only sweep over the live stack, and the live stack should not intersect with the
// allocation stack, so it should be safe to UnMark anything in the allocation stack as live.
heap_->UnMarkAllocStack(GetHeap()->alloc_space_->GetMarkBitmap(),
GetHeap()->large_object_space_->GetMarkObjects(),
allocation_stack);
timings_.AddSplit("UnMarkAllocStack");
}
return true;
}
bool MarkSweep::IsConcurrent() const {
return is_concurrent_;
}
void MarkSweep::MarkingPhase() {
Heap* heap = GetHeap();
Thread* self = Thread::Current();
BindBitmaps();
FindDefaultMarkBitmap();
timings_.AddSplit("BindBitmaps");
// Process dirty cards and add dirty cards to mod union tables.
heap->ProcessCards(timings_);
// Need to do this before the checkpoint since we don't want any threads to add references to
// the live stack during the recursive mark.
heap->SwapStacks();
timings_.AddSplit("SwapStacks");
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
// If we exclusively hold the mutator lock, all threads must be suspended.
MarkRoots();
timings_.AddSplit("MarkConcurrentRoots");
} else {
MarkRootsCheckpoint();
timings_.AddSplit("MarkRootsCheckpoint");
MarkNonThreadRoots();
timings_.AddSplit("MarkNonThreadRoots");
}
MarkConcurrentRoots();
timings_.AddSplit("MarkConcurrentRoots");
heap->UpdateAndMarkModUnion(this, timings_, GetGcType());
MarkReachableObjects();
}
void MarkSweep::MarkReachableObjects() {
// Mark everything allocated since the last as GC live so that we can sweep concurrently,
// knowing that new allocations won't be marked as live.
ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
heap_->large_object_space_->GetLiveObjects(),
live_stack);
live_stack->Reset();
timings_.AddSplit("MarkStackAsLive");
// Recursively mark all the non-image bits set in the mark bitmap.
RecursiveMark();
DisableFinger();
}
void MarkSweep::ReclaimPhase() {
Thread* self = Thread::Current();
if (!IsConcurrent()) {
ProcessReferences(self);
}
// Before freeing anything, lets verify the heap.
if (kIsDebugBuild) {
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
VerifyImageRoots();
}
heap_->PreSweepingGcVerification(this);
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(timings_, false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
SwapBitmaps();
timings_.AddSplit("SwapBitmaps");
// Unbind the live and mark bitmaps.
UnBindBitmaps();
}
}
void MarkSweep::SwapBitmaps() {
// Swap the live and mark bitmaps for each alloc space. This is needed since sweep re-swaps
// these bitmaps. The bitmap swapping is an optimization so that we do not need to clear the live
// bits of dead objects in the live bitmap.
const GcType gc_type = GetGcType();
// TODO: C++0x
Spaces& spaces = heap_->GetSpaces();
for (Spaces::iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
// We never allocate into zygote spaces.
if (space->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect ||
(gc_type == kGcTypeFull &&
space->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect)) {
SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
if (live_bitmap != mark_bitmap) {
heap_->GetLiveBitmap()->ReplaceBitmap(live_bitmap, mark_bitmap);
heap_->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
space->AsAllocSpace()->SwapBitmaps();
}
}
}
SwapLargeObjects();
}
void MarkSweep::SwapLargeObjects() {
LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
large_object_space->SwapBitmaps();
heap_->GetLiveBitmap()->SetLargeObjects(large_object_space->GetLiveObjects());
heap_->GetMarkBitmap()->SetLargeObjects(large_object_space->GetMarkObjects());
}
void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
immune_begin_ = begin;
immune_end_ = end;
}
void MarkSweep::FindDefaultMarkBitmap() {
const Spaces& spaces = heap_->GetSpaces();
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
if ((*it)->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect) {
current_mark_bitmap_ = (*it)->GetMarkBitmap();
CHECK(current_mark_bitmap_ != NULL);
return;
}
}
GetHeap()->DumpSpaces();
LOG(FATAL) << "Could not find a default mark bitmap";
}
void MarkSweep::ExpandMarkStack() {
// Rare case, no need to have Thread::Current be a parameter.
MutexLock mu(Thread::Current(), mark_stack_expand_lock_);
if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
// Someone else acquired the lock and expanded the mark stack before us.
return;
}
std::vector<Object*> temp;
temp.insert(temp.begin(), mark_stack_->Begin(), mark_stack_->End());
mark_stack_->Resize(mark_stack_->Capacity() * 2);
for (size_t i = 0; i < temp.size(); ++i) {
mark_stack_->PushBack(temp[i]);
}
}
inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj, bool check_finger) {
DCHECK(obj != NULL);
if (MarkObjectParallel(obj)) {
if (kDisableFinger || (check_finger && obj < finger_)) {
while (UNLIKELY(!mark_stack_->AtomicPushBack(const_cast<Object*>(obj)))) {
// Only reason a push can fail is that the mark stack is full.
ExpandMarkStack();
}
}
}
}
inline void MarkSweep::MarkObjectNonNull(const Object* obj, bool check_finger) {
DCHECK(obj != NULL);
if (obj >= immune_begin_ && obj < immune_end_) {
DCHECK(IsMarked(obj));
return;
}
// Try to take advantage of locality of references within a space, failing this find the space
// the hard way.
SpaceBitmap* object_bitmap = current_mark_bitmap_;
if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetSpaceBitmap(obj);
if (new_bitmap != NULL) {
object_bitmap = new_bitmap;
} else {
MarkLargeObject(obj);
return;
}
}
// This object was not previously marked.
if (!object_bitmap->Test(obj)) {
object_bitmap->Set(obj);
if (kDisableFinger || (check_finger && obj < finger_)) {
// Do we need to expand the mark stack?
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
ExpandMarkStack();
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(const_cast<Object*>(obj));
}
}
}
// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
bool MarkSweep::MarkLargeObject(const Object* obj) {
LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
if (kProfileLargeObjects) {
++large_object_test_;
}
if (UNLIKELY(!large_objects->Test(obj))) {
if (!large_object_space->Contains(obj)) {
LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
LOG(ERROR) << "Attempting see if it's a bad root";
VerifyRoots();
LOG(FATAL) << "Can't mark bad root";
}
if (kProfileLargeObjects) {
++large_object_mark_;
}
large_objects->Set(obj);
// Don't need to check finger since large objects never have any object references.
return true;
}
return false;
}
inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
DCHECK(obj != NULL);
if (obj >= immune_begin_ && obj < immune_end_) {
DCHECK(IsMarked(obj));
return false;
}
// Try to take advantage of locality of references within a space, failing this find the space
// the hard way.
SpaceBitmap* object_bitmap = current_mark_bitmap_;
if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetSpaceBitmap(obj);
if (new_bitmap != NULL) {
object_bitmap = new_bitmap;
} else {
// TODO: Remove the Thread::Current here?
// TODO: Convert this to some kind of atomic marking?
MutexLock mu(Thread::Current(), large_object_lock_);
return MarkLargeObject(obj);
}
}
// Return true if the object was not previously marked.
return !object_bitmap->AtomicTestAndSet(obj);
}
// Used to mark objects when recursing. Recursion is done by moving
// the finger across the bitmaps in address order and marking child
// objects. Any newly-marked objects whose addresses are lower than
// the finger won't be visited by the bitmap scan, so those objects
// need to be added to the mark stack.
void MarkSweep::MarkObject(const Object* obj) {
if (obj != NULL) {
MarkObjectNonNull(obj, true);
}
}
void MarkSweep::MarkRoot(const Object* obj) {
if (obj != NULL) {
MarkObjectNonNull(obj, false);
}
}
void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->MarkObjectNonNullParallel(root, false);
}
void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->MarkObjectNonNull(root, false);
}
void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->MarkObjectNonNull(root, true);
}
void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
const StackVisitor* visitor) {
reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
}
void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
// See if the root is on any space bitmap.
if (GetHeap()->GetLiveBitmap()->GetSpaceBitmap(root) == NULL) {
LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
if (!large_object_space->Contains(root)) {
LOG(ERROR) << "Found invalid root: " << root;
if (visitor != NULL) {
LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
}
}
}
}
void MarkSweep::VerifyRoots() {
Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
}
// Marks all objects in the root set.
void MarkSweep::MarkRoots() {
Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
}
void MarkSweep::MarkNonThreadRoots() {
Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
}
void MarkSweep::MarkConcurrentRoots() {
Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this);
}
class CheckObjectVisitor {
public:
CheckObjectVisitor(MarkSweep* const mark_sweep)
: mark_sweep_(mark_sweep) {
}
void operator ()(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) const
NO_THREAD_SAFETY_ANALYSIS {
if (kDebugLocking) {
Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
}
mark_sweep_->CheckReference(obj, ref, offset, is_static);
}
private:
MarkSweep* const mark_sweep_;
};
void MarkSweep::CheckObject(const Object* obj) {
DCHECK(obj != NULL);
CheckObjectVisitor visitor(this);
VisitObjectReferences(obj, visitor);
}
void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
mark_sweep->CheckObject(root);
}
void MarkSweep::BindLiveToMarkBitmap(ContinuousSpace* space) {
CHECK(space->IsAllocSpace());
DlMallocSpace* alloc_space = space->AsAllocSpace();
SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
alloc_space->temp_bitmap_.reset(mark_bitmap);
alloc_space->mark_bitmap_.reset(live_bitmap);
}
class ScanObjectVisitor {
public:
ScanObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {
}
// TODO: Fixme when anotatalysis works with visitors.
void operator ()(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
if (kDebugLocking) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_sweep_->ScanObject(obj);
}
private:
MarkSweep* const mark_sweep_;
};
void MarkSweep::ScanGrayObjects(byte minimum_age) {
const Spaces& spaces = heap_->GetSpaces();
CardTable* card_table = heap_->GetCardTable();
ScanObjectVisitor visitor(this);
SetFingerVisitor finger_visitor(this);
// TODO: C++ 0x auto
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
byte* begin = space->Begin();
byte* end = space->End();
// Image spaces are handled properly since live == marked for them.
SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
card_table->Scan(mark_bitmap, begin, end, visitor, VoidFunctor(), minimum_age);
}
}
class CheckBitmapVisitor {
public:
CheckBitmapVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
}
void operator ()(const Object* obj) const
NO_THREAD_SAFETY_ANALYSIS {
if (kDebugLocking) {
Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
}
DCHECK(obj != NULL);
mark_sweep_->CheckObject(obj);
}
private:
MarkSweep* mark_sweep_;
};
void MarkSweep::VerifyImageRoots() {
// Verify roots ensures that all the references inside the image space point
// objects which are either in the image space or marked objects in the alloc
// space
CheckBitmapVisitor visitor(this);
const Spaces& spaces = heap_->GetSpaces();
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
if ((*it)->IsImageSpace()) {
ImageSpace* space = (*it)->AsImageSpace();
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
SpaceBitmap* live_bitmap = space->GetLiveBitmap();
DCHECK(live_bitmap != NULL);
live_bitmap->VisitMarkedRange(begin, end, visitor, VoidFunctor());
}
}
}
// Populates the mark stack based on the set of marked objects and
// recursively marks until the mark stack is emptied.
void MarkSweep::RecursiveMark() {
// RecursiveMark will build the lists of known instances of the Reference classes.
// See DelayReferenceReferent for details.
CHECK(soft_reference_list_ == NULL);
CHECK(weak_reference_list_ == NULL);
CHECK(finalizer_reference_list_ == NULL);
CHECK(phantom_reference_list_ == NULL);
CHECK(cleared_reference_list_ == NULL);
const bool partial = GetGcType() == kGcTypePartial;
const Spaces& spaces = heap_->GetSpaces();
SetFingerVisitor set_finger_visitor(this);
ScanObjectVisitor scan_visitor(this);
if (!kDisableFinger) {
finger_ = NULL;
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
if ((space->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect) ||
(!partial && space->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect)
) {
current_mark_bitmap_ = space->GetMarkBitmap();
if (current_mark_bitmap_ == NULL) {
GetHeap()->DumpSpaces();
LOG(FATAL) << "invalid bitmap";
}
// This function does not handle heap end increasing, so we must use the space end.
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor, set_finger_visitor);
}
}
}
DisableFinger();
timings_.AddSplit("RecursiveMark");
ProcessMarkStack();
timings_.AddSplit("ProcessMarkStack");
}
bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
return
reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) ||
!reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object);
}
void MarkSweep::RecursiveMarkDirtyObjects(byte minimum_age) {
ScanGrayObjects(minimum_age);
timings_.AddSplit("ScanGrayObjects");
ProcessMarkStack();
timings_.AddSplit("ProcessMarkStack");
}
void MarkSweep::ReMarkRoots() {
Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this);
}
void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
MutexLock mu(Thread::Current(), vm->weak_globals_lock);
IndirectReferenceTable* table = &vm->weak_globals;
typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto
for (It it = table->begin(), end = table->end(); it != end; ++it) {
const Object** entry = *it;
if (!is_marked(*entry, arg)) {
*entry = kClearedJniWeakGlobal;
}
}
}
struct ArrayMarkedCheck {
ObjectStack* live_stack;
MarkSweep* mark_sweep;
};
// Either marked or not live.
bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
if (array_check->mark_sweep->IsMarked(object)) {
return true;
}
ObjectStack* live_stack = array_check->live_stack;
return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End();
}
void MarkSweep::SweepSystemWeaksArray(ObjectStack* allocations) {
Runtime* runtime = Runtime::Current();
// The callbacks check
// !is_marked where is_marked is the callback but we want
// !IsMarked && IsLive
// So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
// Or for swapped (IsLive || !IsMarked).
ArrayMarkedCheck visitor;
visitor.live_stack = allocations;
visitor.mark_sweep = this;
runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor);
runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor);
SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor);
}
void MarkSweep::SweepSystemWeaks() {
Runtime* runtime = Runtime::Current();
// The callbacks check
// !is_marked where is_marked is the callback but we want
// !IsMarked && IsLive
// So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
// Or for swapped (IsLive || !IsMarked).
runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
SweepJniWeakGlobals(IsMarkedCallback, this);
}
bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
// We don't actually want to sweep the object, so lets return "marked"
return true;
}
void MarkSweep::VerifyIsLive(const Object* obj) {
Heap* heap = GetHeap();
if (!heap->GetLiveBitmap()->Test(obj)) {
LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
if (!large_object_space->GetLiveObjects()->Test(obj)) {
if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
heap->allocation_stack_->End()) {
// Object not found!
heap->DumpSpaces();
LOG(FATAL) << "Found dead object " << obj;
}
}
}
}
void MarkSweep::VerifySystemWeaks() {
Runtime* runtime = Runtime::Current();
// Verify system weaks, uses a special IsMarked callback which always returns true.
runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
JavaVMExt* vm = runtime->GetJavaVM();
MutexLock mu(Thread::Current(), vm->weak_globals_lock);
IndirectReferenceTable* table = &vm->weak_globals;
typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto
for (It it = table->begin(), end = table->end(); it != end; ++it) {
const Object** entry = *it;
VerifyIsLive(*entry);
}
}
struct SweepCallbackContext {
MarkSweep* mark_sweep;
AllocSpace* space;
Thread* self;
};
class CheckpointMarkThreadRoots : public Closure {
public:
CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
}
virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
// Note: self is not necessarily equal to thread since thread may be suspended.
Thread* self = Thread::Current();
CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
<< thread->GetState() << " thread " << thread << " self " << self;
thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
mark_sweep_->GetBarrier().Pass(self);
}
private:
MarkSweep* mark_sweep_;
};
void MarkSweep::ResetCumulativeStatistics() {
cumulative_timings_.Reset();
total_time_ = 0;
total_paused_time_ = 0;
total_freed_objects_ = 0;
total_freed_bytes_ = 0;
}
void MarkSweep::MarkRootsCheckpoint() {
CheckpointMarkThreadRoots check_point(this);
ThreadList* thread_list = Runtime::Current()->GetThreadList();
// Increment the count of the barrier. If all of the checkpoints have already been finished then
// will hit 0 and continue. Otherwise we are still waiting for some checkpoints, so the counter
// will go positive and we will unblock when it hits zero.
gc_barrier_->Increment(Thread::Current(), thread_list->RunCheckpoint(&check_point));
}
void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
MarkSweep* mark_sweep = context->mark_sweep;
Heap* heap = mark_sweep->GetHeap();
AllocSpace* space = context->space;
Thread* self = context->self;
Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
// Use a bulk free, that merges consecutive objects before freeing or free per object?
// Documentation suggests better free performance with merging, but this may be at the expensive
// of allocation.
size_t freed_objects = num_ptrs;
// AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
heap->RecordFree(freed_objects, freed_bytes);
mark_sweep->freed_objects_ += freed_objects;
mark_sweep->freed_bytes_ += freed_bytes;
}
void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
Heap* heap = context->mark_sweep->GetHeap();
// We don't free any actual memory to avoid dirtying the shared zygote pages.
for (size_t i = 0; i < num_ptrs; ++i) {
Object* obj = static_cast<Object*>(ptrs[i]);
heap->GetLiveBitmap()->Clear(obj);
heap->GetCardTable()->MarkCard(obj);
}
}
void MarkSweep::SweepArray(TimingLogger& logger, ObjectStack* allocations, bool swap_bitmaps) {
size_t freed_bytes = 0;
DlMallocSpace* space = heap_->GetAllocSpace();
// If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
// bitmap, resulting in occasional frees of Weaks which are still in use.
SweepSystemWeaksArray(allocations);
logger.AddSplit("SweepSystemWeaks");
// Newly allocated objects MUST be in the alloc space and those are the only objects which we are
// going to free.
SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
if (swap_bitmaps) {
std::swap(live_bitmap, mark_bitmap);
std::swap(large_live_objects, large_mark_objects);
}
size_t freed_large_objects = 0;
size_t count = allocations->Size();
Object** objects = const_cast<Object**>(allocations->Begin());
Object** out = objects;
// Empty the allocation stack.
Thread* self = Thread::Current();
for (size_t i = 0;i < count;++i) {
Object* obj = objects[i];
// There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
if (LIKELY(mark_bitmap->HasAddress(obj))) {
if (!mark_bitmap->Test(obj)) {
// Don't bother un-marking since we clear the mark bitmap anyways.
*(out++) = obj;
}
} else if (!large_mark_objects->Test(obj)) {
++freed_large_objects;
freed_bytes += large_object_space->Free(self, obj);
}
}
logger.AddSplit("Process allocation stack");
size_t freed_objects = out - objects;
freed_bytes += space->FreeList(self, freed_objects, objects);
VLOG(heap) << "Freed " << freed_objects << "/" << count
<< " objects with size " << PrettySize(freed_bytes);
heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes);
freed_objects_ += freed_objects;
freed_bytes_ += freed_bytes;
logger.AddSplit("FreeList");
allocations->Reset();
logger.AddSplit("ResetStack");
}
void MarkSweep::Sweep(TimingLogger& timings, bool swap_bitmaps) {
DCHECK(mark_stack_->IsEmpty());
// If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
// bitmap, resulting in occasional frees of Weaks which are still in use.
SweepSystemWeaks();
timings.AddSplit("SweepSystemWeaks");
const bool partial = GetGcType() == kGcTypePartial;
const Spaces& spaces = heap_->GetSpaces();
SweepCallbackContext scc;
scc.mark_sweep = this;
scc.self = Thread::Current();
// TODO: C++0x auto
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
if (
space->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect ||
(!partial && space->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect)
) {
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
scc.space = space->AsAllocSpace();
SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
if (swap_bitmaps) {
std::swap(live_bitmap, mark_bitmap);
}
if (space->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect) {
// Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
&SweepCallback, reinterpret_cast<void*>(&scc));
} else {
// Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual memory.
SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
&ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
}
}
}
timings.AddSplit("Sweep");
SweepLargeObjects(swap_bitmaps);
timings.AddSplit("SweepLargeObjects");
}
void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
// Sweep large objects
LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
if (swap_bitmaps) {
std::swap(large_live_objects, large_mark_objects);
}
SpaceSetMap::Objects& live_objects = large_live_objects->GetObjects();
// O(n*log(n)) but hopefully there are not too many large objects.
size_t freed_objects = 0;
size_t freed_bytes = 0;
// TODO: C++0x
Thread* self = Thread::Current();
for (SpaceSetMap::Objects::iterator it = live_objects.begin(); it != live_objects.end(); ++it) {
if (!large_mark_objects->Test(*it)) {
freed_bytes += large_object_space->Free(self, const_cast<Object*>(*it));
++freed_objects;
}
}
freed_objects_ += freed_objects;
freed_bytes_ += freed_bytes;
// Large objects don't count towards bytes_allocated.
GetHeap()->RecordFree(freed_objects, freed_bytes);
}
void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
const Spaces& spaces = heap_->GetSpaces();
// TODO: C++0x auto
for (Spaces::const_iterator cur = spaces.begin(); cur != spaces.end(); ++cur) {
if ((*cur)->IsAllocSpace() && (*cur)->Contains(ref)) {
DCHECK(IsMarked(obj));
bool is_marked = IsMarked(ref);
if (!is_marked) {
LOG(INFO) << **cur;
LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
<< "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
<< "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
<< reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
DCHECK(klass != NULL);
const ObjectArray<Field>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
DCHECK(fields != NULL);
bool found = false;
for (int32_t i = 0; i < fields->GetLength(); ++i) {
const Field* cur = fields->Get(i);
if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
found = true;
break;
}
}
if (!found) {
LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
}
bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
if (!obj_marked) {
LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
<< "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
<< "the alloc space, but wasn't card marked";
}
}
}
break;
}
}
// Process the "referent" field in a java.lang.ref.Reference. If the
// referent has not yet been marked, put it on the appropriate list in
// the gcHeap for later processing.
void MarkSweep::DelayReferenceReferent(Object* obj) {
DCHECK(obj != NULL);
Class* klass = obj->GetClass();
DCHECK(klass != NULL);
DCHECK(klass->IsReferenceClass());
Object* pending = obj->GetFieldObject<Object*>(heap_->GetReferencePendingNextOffset(), false);
Object* referent = heap_->GetReferenceReferent(obj);
if (kCountJavaLangRefs) {
++reference_count_;
}
if (pending == NULL && referent != NULL && !IsMarked(referent)) {
Object** list = NULL;
if (klass->IsSoftReferenceClass()) {
list = &soft_reference_list_;
} else if (klass->IsWeakReferenceClass()) {
list = &weak_reference_list_;
} else if (klass->IsFinalizerReferenceClass()) {
list = &finalizer_reference_list_;
} else if (klass->IsPhantomReferenceClass()) {
list = &phantom_reference_list_;
}
DCHECK(list != NULL) << PrettyClass(klass) << " " << std::hex << klass->GetAccessFlags();
// TODO: One lock per list?
heap_->EnqueuePendingReference(obj, list);
}
}
void MarkSweep::ScanRoot(const Object* obj) {
ScanObject(obj);
}
class MarkObjectVisitor {
public:
MarkObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {
}
// TODO: Fixme when anotatalysis works with visitors.
void operator ()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
bool /* is_static */) const
NO_THREAD_SAFETY_ANALYSIS {
if (kDebugLocking) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_sweep_->MarkObject(ref);
}
private:
MarkSweep* const mark_sweep_;
};
// Scans an object reference. Determines the type of the reference
// and dispatches to a specialized scanning routine.
void MarkSweep::ScanObject(const Object* obj) {
MarkObjectVisitor visitor(this);
ScanObjectVisit(obj, visitor);
}
class MarkStackChunk : public Task {
public:
MarkStackChunk(ThreadPool* thread_pool, MarkSweep* mark_sweep, Object** begin, Object** end)
: mark_sweep_(mark_sweep),
thread_pool_(thread_pool),
index_(0),
length_(0),
output_(NULL) {
length_ = end - begin;
if (begin != end) {
// Cost not significant since we only do this for the initial set of mark stack chunks.
memcpy(data_, begin, length_ * sizeof(*begin));
}
if (kCountTasks) {
++mark_sweep_->work_chunks_created_;
}
}
~MarkStackChunk() {
DCHECK(output_ == NULL || output_->length_ == 0);
DCHECK_GE(index_, length_);
delete output_;
if (kCountTasks) {
++mark_sweep_->work_chunks_deleted_;
}
}
MarkSweep* const mark_sweep_;
ThreadPool* const thread_pool_;
static const size_t max_size = 1 * KB;
// Index of which object we are scanning. Only needs to be atomic if we are doing work stealing.
size_t index_;
// Input / output mark stack. We add newly marked references to data_ until length reaches
// max_size. This is an optimization so that less tasks are created.
// TODO: Investigate using a bounded buffer FIFO.
Object* data_[max_size];
// How many elements in data_ we need to scan.
size_t length_;
// Output block, newly marked references get added to the ouput block so that another thread can
// scan them.
MarkStackChunk* output_;
class MarkObjectParallelVisitor {
public:
MarkObjectParallelVisitor(MarkStackChunk* chunk_task) : chunk_task_(chunk_task) {
}
void operator ()(const Object* /* obj */, const Object* ref,
const MemberOffset& /* offset */, bool /* is_static */) const {
if (ref != NULL && chunk_task_->mark_sweep_->MarkObjectParallel(ref)) {
chunk_task_->MarkStackPush(ref);
}
}
private:
MarkStackChunk* const chunk_task_;
};
// Push an object into the block.
// Don't need to use atomic ++ since we only one thread is writing to an output block at any
// given time.
void Push(Object* obj) {
data_[length_++] = obj;
}
void MarkStackPush(const Object* obj) {
if (static_cast<size_t>(length_) < max_size) {
Push(const_cast<Object*>(obj));
} else {
// Internal buffer is full, push to a new buffer instead.
if (UNLIKELY(output_ == NULL)) {
AllocateOutputChunk();
} else if (UNLIKELY(static_cast<size_t>(output_->length_) == max_size)) {
// Output block is full, queue it up for processing and obtain a new block.
EnqueueOutput();
AllocateOutputChunk();
}
output_->Push(const_cast<Object*>(obj));
}
}
void ScanObject(Object* obj) {
mark_sweep_->ScanObjectVisit(obj, MarkObjectParallelVisitor(this));
}
void EnqueueOutput() {
if (output_ != NULL) {
uint64_t start = 0;
if (kMeasureOverhead) {
start = NanoTime();
}
thread_pool_->AddTask(Thread::Current(), output_);
output_ = NULL;
if (kMeasureOverhead) {
mark_sweep_->overhead_time_ += NanoTime() - start;
}
}
}
void AllocateOutputChunk() {
uint64_t start = 0;
if (kMeasureOverhead) {
start = NanoTime();
}
output_ = new MarkStackChunk(thread_pool_, mark_sweep_, NULL, NULL);
if (kMeasureOverhead) {
mark_sweep_->overhead_time_ += NanoTime() - start;
}
}
void Finalize() {
EnqueueOutput();
delete this;
}
// Scans all of the objects
virtual void Run(Thread* self) {
int index;
while ((index = index_++) < length_) {
if (kUseMarkStackPrefetch) {
static const size_t prefetch_look_ahead = 1;
__builtin_prefetch(data_[std::min(index + prefetch_look_ahead, length_ - 1)]);
}
Object* obj = data_[index];
DCHECK(obj != NULL);
ScanObject(obj);
}
}
};
void MarkSweep::ProcessMarkStackParallel() {
CHECK(kDisableFinger) << "parallel mark stack processing cannot work when finger is enabled";
Thread* self = Thread::Current();
ThreadPool* thread_pool = GetHeap()->GetThreadPool();
// Split the current mark stack up into work tasks.
const size_t num_threads = thread_pool->GetThreadCount();
const size_t stack_size = mark_stack_->Size();
const size_t chunk_size =
std::min((stack_size + num_threads - 1) / num_threads,
static_cast<size_t>(MarkStackChunk::max_size));
size_t index = 0;
for (size_t i = 0; i < num_threads || index < stack_size; ++i) {
Object** begin = &mark_stack_->Begin()[std::min(stack_size, index)];
Object** end = &mark_stack_->Begin()[std::min(stack_size, index + chunk_size)];
index += chunk_size;
thread_pool->AddTask(self, new MarkStackChunk(thread_pool, this, begin, end));
}
thread_pool->StartWorkers(self);
mark_stack_->Reset();
thread_pool->Wait(self, true);
//LOG(INFO) << "Idle wait time " << PrettyDuration(thread_pool->GetWaitTime());
CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
}
// Scan anything that's on the mark stack.
void MarkSweep::ProcessMarkStack() {
ThreadPool* thread_pool = GetHeap()->GetThreadPool();
if (kParallelMarkStack && thread_pool != NULL && thread_pool->GetThreadCount() > 0) {
ProcessMarkStackParallel();
return;
}
if (kUseMarkStackPrefetch) {
const size_t fifo_size = 4;
const size_t fifo_mask = fifo_size - 1;
const Object* fifo[fifo_size];
for (size_t i = 0;i < fifo_size;++i) {
fifo[i] = NULL;
}
size_t fifo_pos = 0;
size_t fifo_count = 0;
for (;;) {
const Object* obj = fifo[fifo_pos & fifo_mask];
if (obj != NULL) {
ScanObject(obj);
fifo[fifo_pos & fifo_mask] = NULL;
--fifo_count;
}
if (!mark_stack_->IsEmpty()) {
const Object* obj = mark_stack_->PopBack();
DCHECK(obj != NULL);
fifo[fifo_pos & fifo_mask] = obj;
__builtin_prefetch(obj);
fifo_count++;
}
fifo_pos++;
if (!fifo_count) {
CHECK(mark_stack_->IsEmpty()) << mark_stack_->Size();
break;
}
}
} else {
while (!mark_stack_->IsEmpty()) {
const Object* obj = mark_stack_->PopBack();
DCHECK(obj != NULL);
ScanObject(obj);
}
}
}
// Walks the reference list marking any references subject to the
// reference clearing policy. References with a black referent are
// removed from the list. References with white referents biased
// toward saving are blackened and also removed from the list.
void MarkSweep::PreserveSomeSoftReferences(Object** list) {
DCHECK(list != NULL);
Object* clear = NULL;
size_t counter = 0;
DCHECK(mark_stack_->IsEmpty());
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent == NULL) {
// Referent was cleared by the user during marking.
continue;
}
bool is_marked = IsMarked(referent);
if (!is_marked && ((++counter) & 1)) {
// Referent is white and biased toward saving, mark it.
MarkObject(referent);
is_marked = true;
}
if (!is_marked) {
// Referent is white, queue it for clearing.
heap_->EnqueuePendingReference(ref, &clear);
}
}
*list = clear;
// Restart the mark with the newly black references added to the
// root set.
ProcessMarkStack();
}
inline bool MarkSweep::IsMarked(const Object* object) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
if (object >= immune_begin_ && object < immune_end_) {
return true;
}
DCHECK(current_mark_bitmap_ != NULL);
if (current_mark_bitmap_->HasAddress(object)) {
return current_mark_bitmap_->Test(object);
}
return heap_->GetMarkBitmap()->Test(object);
}
// Unlink the reference list clearing references objects with white
// referents. Cleared references registered to a reference queue are
// scheduled for appending by the heap worker thread.
void MarkSweep::ClearWhiteReferences(Object** list) {
DCHECK(list != NULL);
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent != NULL && !IsMarked(referent)) {
// Referent is white, clear it.
heap_->ClearReferenceReferent(ref);
if (heap_->IsEnqueuable(ref)) {
heap_->EnqueueReference(ref, &cleared_reference_list_);
}
}
}
DCHECK(*list == NULL);
}
// Enqueues finalizer references with white referents. White
// referents are blackened, moved to the zombie field, and the
// referent field is cleared.
void MarkSweep::EnqueueFinalizerReferences(Object** list) {
DCHECK(list != NULL);
MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
bool has_enqueued = false;
while (*list != NULL) {
Object* ref = heap_->DequeuePendingReference(list);
Object* referent = heap_->GetReferenceReferent(ref);
if (referent != NULL && !IsMarked(referent)) {
MarkObject(referent);
// If the referent is non-null the reference must queuable.
DCHECK(heap_->IsEnqueuable(ref));
ref->SetFieldObject(zombie_offset, referent, false);
heap_->ClearReferenceReferent(ref);
heap_->EnqueueReference(ref, &cleared_reference_list_);
has_enqueued = true;
}
}
if (has_enqueued) {
ProcessMarkStack();
}
DCHECK(*list == NULL);
}
// Process reference class instances and schedule finalizations.
void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
Object** weak_references,
Object** finalizer_references,
Object** phantom_references) {
DCHECK(soft_references != NULL);
DCHECK(weak_references != NULL);
DCHECK(finalizer_references != NULL);
DCHECK(phantom_references != NULL);
// Unless we are in the zygote or required to clear soft references
// with white references, preserve some white referents.
if (!clear_soft && !Runtime::Current()->IsZygote()) {
PreserveSomeSoftReferences(soft_references);
}
// Clear all remaining soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
// Preserve all white objects with finalize methods and schedule
// them for finalization.
EnqueueFinalizerReferences(finalizer_references);
// Clear all f-reachable soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
// Clear all phantom references with white referents.
ClearWhiteReferences(phantom_references);
// At this point all reference lists should be empty.
DCHECK(*soft_references == NULL);
DCHECK(*weak_references == NULL);
DCHECK(*finalizer_references == NULL);
DCHECK(*phantom_references == NULL);
}
void MarkSweep::UnBindBitmaps() {
const Spaces& spaces = heap_->GetSpaces();
// TODO: C++0x auto
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
Space* space = *it;
if (space->IsAllocSpace()) {
DlMallocSpace* alloc_space = space->AsAllocSpace();
if (alloc_space->temp_bitmap_.get() != NULL) {
// At this point, the temp_bitmap holds our old mark bitmap.
SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
alloc_space->mark_bitmap_.reset(new_bitmap);
DCHECK(alloc_space->temp_bitmap_.get() == NULL);
}
}
}
}
void MarkSweep::FinishPhase() {
// Can't enqueue referneces if we hold the mutator lock.
Object* cleared_references = GetClearedReferences();
heap_->EnqueueClearedReferences(&cleared_references);
heap_->PostGcVerification(this);
heap_->GrowForUtilization(GetDuration());
timings_.AddSplit("GrowForUtilization");
heap_->RequestHeapTrim();
timings_.AddSplit("RequestHeapTrim");
// Update the cumulative statistics
total_time_ += GetDuration();
total_paused_time_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
std::plus<uint64_t>());
total_freed_objects_ += GetFreedObjects();
total_freed_bytes_ += GetFreedBytes();
// Ensure that the mark stack is empty.
CHECK(mark_stack_->IsEmpty());
if (kCountScannedTypes) {
VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
<< " other=" << other_count_;
}
if (kCountTasks) {
VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
}
if (kMeasureOverhead) {
VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
}
if (kProfileLargeObjects) {
VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
}
if (kCountClassesMarked) {
VLOG(gc) << "Classes marked " << classes_marked_;
}
if (kCountJavaLangRefs) {
VLOG(gc) << "References scanned " << reference_count_;
}
// Update the cumulative loggers.
cumulative_timings_.Start();
cumulative_timings_.AddLogger(timings_);
cumulative_timings_.End();
// Clear all of the spaces' mark bitmaps.
const Spaces& spaces = heap_->GetSpaces();
// TODO: C++0x auto
for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) {
ContinuousSpace* space = *it;
if (space->GetGcRetentionPolicy() != kGcRetentionPolicyNeverCollect) {
space->GetMarkBitmap()->Clear();
}
}
mark_stack_->Reset();
// Reset the marked large objects.
LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
large_objects->GetMarkObjects()->Clear();
}
MarkSweep::~MarkSweep() {
}
} // namespace art