| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_LOCATIONS_H_ |
| #define ART_COMPILER_OPTIMIZING_LOCATIONS_H_ |
| |
| #include "base/arena_containers.h" |
| #include "base/arena_object.h" |
| #include "base/bit_field.h" |
| #include "base/bit_utils.h" |
| #include "base/bit_vector.h" |
| #include "base/value_object.h" |
| |
| namespace art { |
| |
| class HConstant; |
| class HInstruction; |
| class Location; |
| |
| std::ostream& operator<<(std::ostream& os, const Location& location); |
| |
| /** |
| * A Location is an abstraction over the potential location |
| * of an instruction. It could be in register or stack. |
| */ |
| class Location : public ValueObject { |
| public: |
| enum OutputOverlap { |
| // The liveness of the output overlaps the liveness of one or |
| // several input(s); the register allocator cannot reuse an |
| // input's location for the output's location. |
| kOutputOverlap, |
| // The liveness of the output does not overlap the liveness of any |
| // input; the register allocator is allowed to reuse an input's |
| // location for the output's location. |
| kNoOutputOverlap |
| }; |
| |
| enum Kind { |
| kInvalid = 0, |
| kConstant = 1, |
| kStackSlot = 2, // 32bit stack slot. |
| kDoubleStackSlot = 3, // 64bit stack slot. |
| |
| kRegister = 4, // Core register. |
| |
| // We do not use the value 5 because it conflicts with kLocationConstantMask. |
| kDoNotUse5 = 5, |
| |
| kFpuRegister = 6, // Float register. |
| |
| kRegisterPair = 7, // Long register. |
| |
| kFpuRegisterPair = 8, // Double register. |
| |
| // We do not use the value 9 because it conflicts with kLocationConstantMask. |
| kDoNotUse9 = 9, |
| |
| kSIMDStackSlot = 10, // 128bit stack slot. TODO: generalize with encoded #bytes? |
| |
| // Unallocated location represents a location that is not fixed and can be |
| // allocated by a register allocator. Each unallocated location has |
| // a policy that specifies what kind of location is suitable. Payload |
| // contains register allocation policy. |
| kUnallocated = 11, |
| }; |
| |
| Location() : ValueObject(), value_(kInvalid) { |
| // Verify that non-constant location kinds do not interfere with kConstant. |
| static_assert((kInvalid & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kUnallocated & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kStackSlot & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kDoubleStackSlot & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kSIMDStackSlot & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kRegister & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kFpuRegister & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kRegisterPair & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kFpuRegisterPair & kLocationConstantMask) != kConstant, "TagError"); |
| static_assert((kConstant & kLocationConstantMask) == kConstant, "TagError"); |
| |
| DCHECK(!IsValid()); |
| } |
| |
| Location(const Location& other) = default; |
| |
| Location& operator=(const Location& other) = default; |
| |
| bool IsConstant() const { |
| return (value_ & kLocationConstantMask) == kConstant; |
| } |
| |
| static Location ConstantLocation(HConstant* constant) { |
| DCHECK(constant != nullptr); |
| return Location(kConstant | reinterpret_cast<uintptr_t>(constant)); |
| } |
| |
| HConstant* GetConstant() const { |
| DCHECK(IsConstant()); |
| return reinterpret_cast<HConstant*>(value_ & ~kLocationConstantMask); |
| } |
| |
| bool IsValid() const { |
| return value_ != kInvalid; |
| } |
| |
| bool IsInvalid() const { |
| return !IsValid(); |
| } |
| |
| // Empty location. Used if there the location should be ignored. |
| static Location NoLocation() { |
| return Location(); |
| } |
| |
| // Register locations. |
| static Location RegisterLocation(int reg) { |
| return Location(kRegister, reg); |
| } |
| |
| static Location FpuRegisterLocation(int reg) { |
| return Location(kFpuRegister, reg); |
| } |
| |
| static Location RegisterPairLocation(int low, int high) { |
| return Location(kRegisterPair, low << 16 | high); |
| } |
| |
| static Location FpuRegisterPairLocation(int low, int high) { |
| return Location(kFpuRegisterPair, low << 16 | high); |
| } |
| |
| bool IsRegister() const { |
| return GetKind() == kRegister; |
| } |
| |
| bool IsFpuRegister() const { |
| return GetKind() == kFpuRegister; |
| } |
| |
| bool IsRegisterPair() const { |
| return GetKind() == kRegisterPair; |
| } |
| |
| bool IsFpuRegisterPair() const { |
| return GetKind() == kFpuRegisterPair; |
| } |
| |
| bool IsRegisterKind() const { |
| return IsRegister() || IsFpuRegister() || IsRegisterPair() || IsFpuRegisterPair(); |
| } |
| |
| int reg() const { |
| DCHECK(IsRegister() || IsFpuRegister()); |
| return GetPayload(); |
| } |
| |
| int low() const { |
| DCHECK(IsPair()); |
| return GetPayload() >> 16; |
| } |
| |
| int high() const { |
| DCHECK(IsPair()); |
| return GetPayload() & 0xFFFF; |
| } |
| |
| template <typename T> |
| T AsRegister() const { |
| DCHECK(IsRegister()); |
| return static_cast<T>(reg()); |
| } |
| |
| template <typename T> |
| T AsFpuRegister() const { |
| DCHECK(IsFpuRegister()); |
| return static_cast<T>(reg()); |
| } |
| |
| template <typename T> |
| T AsRegisterPairLow() const { |
| DCHECK(IsRegisterPair()); |
| return static_cast<T>(low()); |
| } |
| |
| template <typename T> |
| T AsRegisterPairHigh() const { |
| DCHECK(IsRegisterPair()); |
| return static_cast<T>(high()); |
| } |
| |
| template <typename T> |
| T AsFpuRegisterPairLow() const { |
| DCHECK(IsFpuRegisterPair()); |
| return static_cast<T>(low()); |
| } |
| |
| template <typename T> |
| T AsFpuRegisterPairHigh() const { |
| DCHECK(IsFpuRegisterPair()); |
| return static_cast<T>(high()); |
| } |
| |
| bool IsPair() const { |
| return IsRegisterPair() || IsFpuRegisterPair(); |
| } |
| |
| Location ToLow() const { |
| if (IsRegisterPair()) { |
| return Location::RegisterLocation(low()); |
| } else if (IsFpuRegisterPair()) { |
| return Location::FpuRegisterLocation(low()); |
| } else { |
| DCHECK(IsDoubleStackSlot()); |
| return Location::StackSlot(GetStackIndex()); |
| } |
| } |
| |
| Location ToHigh() const { |
| if (IsRegisterPair()) { |
| return Location::RegisterLocation(high()); |
| } else if (IsFpuRegisterPair()) { |
| return Location::FpuRegisterLocation(high()); |
| } else { |
| DCHECK(IsDoubleStackSlot()); |
| return Location::StackSlot(GetHighStackIndex(4)); |
| } |
| } |
| |
| static uintptr_t EncodeStackIndex(intptr_t stack_index) { |
| DCHECK(-kStackIndexBias <= stack_index); |
| DCHECK(stack_index < kStackIndexBias); |
| return static_cast<uintptr_t>(kStackIndexBias + stack_index); |
| } |
| |
| static Location StackSlot(intptr_t stack_index) { |
| uintptr_t payload = EncodeStackIndex(stack_index); |
| Location loc(kStackSlot, payload); |
| // Ensure that sign is preserved. |
| DCHECK_EQ(loc.GetStackIndex(), stack_index); |
| return loc; |
| } |
| |
| bool IsStackSlot() const { |
| return GetKind() == kStackSlot; |
| } |
| |
| static Location DoubleStackSlot(intptr_t stack_index) { |
| uintptr_t payload = EncodeStackIndex(stack_index); |
| Location loc(kDoubleStackSlot, payload); |
| // Ensure that sign is preserved. |
| DCHECK_EQ(loc.GetStackIndex(), stack_index); |
| return loc; |
| } |
| |
| bool IsDoubleStackSlot() const { |
| return GetKind() == kDoubleStackSlot; |
| } |
| |
| static Location SIMDStackSlot(intptr_t stack_index) { |
| uintptr_t payload = EncodeStackIndex(stack_index); |
| Location loc(kSIMDStackSlot, payload); |
| // Ensure that sign is preserved. |
| DCHECK_EQ(loc.GetStackIndex(), stack_index); |
| return loc; |
| } |
| |
| bool IsSIMDStackSlot() const { |
| return GetKind() == kSIMDStackSlot; |
| } |
| |
| static Location StackSlotByNumOfSlots(size_t num_of_slots, int spill_slot) { |
| DCHECK_NE(num_of_slots, 0u); |
| switch (num_of_slots) { |
| case 1u: |
| return Location::StackSlot(spill_slot); |
| case 2u: |
| return Location::DoubleStackSlot(spill_slot); |
| default: |
| // Assume all other stack slot sizes correspond to SIMD slot size. |
| return Location::SIMDStackSlot(spill_slot); |
| } |
| } |
| |
| intptr_t GetStackIndex() const { |
| DCHECK(IsStackSlot() || IsDoubleStackSlot() || IsSIMDStackSlot()); |
| // Decode stack index manually to preserve sign. |
| return GetPayload() - kStackIndexBias; |
| } |
| |
| intptr_t GetHighStackIndex(uintptr_t word_size) const { |
| DCHECK(IsDoubleStackSlot()); |
| // Decode stack index manually to preserve sign. |
| return GetPayload() - kStackIndexBias + word_size; |
| } |
| |
| Kind GetKind() const { |
| return IsConstant() ? kConstant : KindField::Decode(value_); |
| } |
| |
| bool Equals(Location other) const { |
| return value_ == other.value_; |
| } |
| |
| bool Contains(Location other) const { |
| if (Equals(other)) { |
| return true; |
| } else if (IsPair() || IsDoubleStackSlot()) { |
| return ToLow().Equals(other) || ToHigh().Equals(other); |
| } |
| return false; |
| } |
| |
| bool OverlapsWith(Location other) const { |
| // Only check the overlapping case that can happen with our register allocation algorithm. |
| bool overlap = Contains(other) || other.Contains(*this); |
| if (kIsDebugBuild && !overlap) { |
| // Note: These are also overlapping cases. But we are not able to handle them in |
| // ParallelMoveResolverWithSwap. Make sure that we do not meet such case with our compiler. |
| if ((IsPair() && other.IsPair()) || (IsDoubleStackSlot() && other.IsDoubleStackSlot())) { |
| DCHECK(!Contains(other.ToLow())); |
| DCHECK(!Contains(other.ToHigh())); |
| } |
| } |
| return overlap; |
| } |
| |
| const char* DebugString() const { |
| switch (GetKind()) { |
| case kInvalid: return "I"; |
| case kRegister: return "R"; |
| case kStackSlot: return "S"; |
| case kDoubleStackSlot: return "DS"; |
| case kSIMDStackSlot: return "SIMD"; |
| case kUnallocated: return "U"; |
| case kConstant: return "C"; |
| case kFpuRegister: return "F"; |
| case kRegisterPair: return "RP"; |
| case kFpuRegisterPair: return "FP"; |
| case kDoNotUse5: // fall-through |
| case kDoNotUse9: |
| LOG(FATAL) << "Should not use this location kind"; |
| } |
| UNREACHABLE(); |
| } |
| |
| // Unallocated locations. |
| enum Policy { |
| kAny, |
| kRequiresRegister, |
| kRequiresFpuRegister, |
| kSameAsFirstInput, |
| }; |
| |
| bool IsUnallocated() const { |
| return GetKind() == kUnallocated; |
| } |
| |
| static Location UnallocatedLocation(Policy policy) { |
| return Location(kUnallocated, PolicyField::Encode(policy)); |
| } |
| |
| // Any free register is suitable to replace this unallocated location. |
| static Location Any() { |
| return UnallocatedLocation(kAny); |
| } |
| |
| static Location RequiresRegister() { |
| return UnallocatedLocation(kRequiresRegister); |
| } |
| |
| static Location RequiresFpuRegister() { |
| return UnallocatedLocation(kRequiresFpuRegister); |
| } |
| |
| static Location RegisterOrConstant(HInstruction* instruction); |
| static Location RegisterOrInt32Constant(HInstruction* instruction); |
| static Location ByteRegisterOrConstant(int reg, HInstruction* instruction); |
| static Location FpuRegisterOrConstant(HInstruction* instruction); |
| static Location FpuRegisterOrInt32Constant(HInstruction* instruction); |
| |
| // The location of the first input to the instruction will be |
| // used to replace this unallocated location. |
| static Location SameAsFirstInput() { |
| return UnallocatedLocation(kSameAsFirstInput); |
| } |
| |
| Policy GetPolicy() const { |
| DCHECK(IsUnallocated()); |
| return PolicyField::Decode(GetPayload()); |
| } |
| |
| bool RequiresRegisterKind() const { |
| return GetPolicy() == kRequiresRegister || GetPolicy() == kRequiresFpuRegister; |
| } |
| |
| uintptr_t GetEncoding() const { |
| return GetPayload(); |
| } |
| |
| private: |
| // Number of bits required to encode Kind value. |
| static constexpr uint32_t kBitsForKind = 4; |
| static constexpr uint32_t kBitsForPayload = kBitsPerIntPtrT - kBitsForKind; |
| static constexpr uintptr_t kLocationConstantMask = 0x3; |
| |
| explicit Location(uintptr_t value) : value_(value) {} |
| |
| Location(Kind kind, uintptr_t payload) |
| : value_(KindField::Encode(kind) | PayloadField::Encode(payload)) {} |
| |
| uintptr_t GetPayload() const { |
| return PayloadField::Decode(value_); |
| } |
| |
| using KindField = BitField<Kind, 0, kBitsForKind>; |
| using PayloadField = BitField<uintptr_t, kBitsForKind, kBitsForPayload>; |
| |
| // Layout for kUnallocated locations payload. |
| using PolicyField = BitField<Policy, 0, 3>; |
| |
| // Layout for stack slots. |
| static const intptr_t kStackIndexBias = |
| static_cast<intptr_t>(1) << (kBitsForPayload - 1); |
| |
| // Location either contains kind and payload fields or a tagged handle for |
| // a constant locations. Values of enumeration Kind are selected in such a |
| // way that none of them can be interpreted as a kConstant tag. |
| uintptr_t value_; |
| }; |
| std::ostream& operator<<(std::ostream& os, Location::Kind rhs); |
| std::ostream& operator<<(std::ostream& os, Location::Policy rhs); |
| |
| class RegisterSet : public ValueObject { |
| public: |
| static RegisterSet Empty() { return RegisterSet(); } |
| static RegisterSet AllFpu() { return RegisterSet(0, -1); } |
| |
| void Add(Location loc) { |
| if (loc.IsRegister()) { |
| core_registers_ |= (1 << loc.reg()); |
| } else { |
| DCHECK(loc.IsFpuRegister()); |
| floating_point_registers_ |= (1 << loc.reg()); |
| } |
| } |
| |
| void Remove(Location loc) { |
| if (loc.IsRegister()) { |
| core_registers_ &= ~(1 << loc.reg()); |
| } else { |
| DCHECK(loc.IsFpuRegister()) << loc; |
| floating_point_registers_ &= ~(1 << loc.reg()); |
| } |
| } |
| |
| bool ContainsCoreRegister(uint32_t id) const { |
| return Contains(core_registers_, id); |
| } |
| |
| bool ContainsFloatingPointRegister(uint32_t id) const { |
| return Contains(floating_point_registers_, id); |
| } |
| |
| static bool Contains(uint32_t register_set, uint32_t reg) { |
| return (register_set & (1 << reg)) != 0; |
| } |
| |
| bool OverlapsRegisters(Location out) { |
| DCHECK(out.IsRegisterKind()); |
| switch (out.GetKind()) { |
| case Location::Kind::kRegister: |
| return ContainsCoreRegister(out.reg()); |
| case Location::Kind::kFpuRegister: |
| return ContainsFloatingPointRegister(out.reg()); |
| case Location::Kind::kRegisterPair: |
| return ContainsCoreRegister(out.low()) || ContainsCoreRegister(out.high()); |
| case Location::Kind::kFpuRegisterPair: |
| return ContainsFloatingPointRegister(out.low()) || |
| ContainsFloatingPointRegister(out.high()); |
| default: |
| return false; |
| } |
| } |
| |
| size_t GetNumberOfRegisters() const { |
| return POPCOUNT(core_registers_) + POPCOUNT(floating_point_registers_); |
| } |
| |
| uint32_t GetCoreRegisters() const { |
| return core_registers_; |
| } |
| |
| uint32_t GetFloatingPointRegisters() const { |
| return floating_point_registers_; |
| } |
| |
| private: |
| RegisterSet() : core_registers_(0), floating_point_registers_(0) {} |
| RegisterSet(uint32_t core, uint32_t fp) : core_registers_(core), floating_point_registers_(fp) {} |
| |
| uint32_t core_registers_; |
| uint32_t floating_point_registers_; |
| }; |
| |
| static constexpr bool kIntrinsified = true; |
| |
| /** |
| * The code generator computes LocationSummary for each instruction so that |
| * the instruction itself knows what code to generate: where to find the inputs |
| * and where to place the result. |
| * |
| * The intent is to have the code for generating the instruction independent of |
| * register allocation. A register allocator just has to provide a LocationSummary. |
| */ |
| class LocationSummary : public ArenaObject<kArenaAllocLocationSummary> { |
| public: |
| enum CallKind { |
| kNoCall, |
| kCallOnMainAndSlowPath, |
| kCallOnSlowPath, |
| kCallOnMainOnly |
| }; |
| |
| explicit LocationSummary(HInstruction* instruction, |
| CallKind call_kind = kNoCall, |
| bool intrinsified = false); |
| |
| void SetInAt(uint32_t at, Location location) { |
| inputs_[at] = location; |
| } |
| |
| Location InAt(uint32_t at) const { |
| return inputs_[at]; |
| } |
| |
| size_t GetInputCount() const { |
| return inputs_.size(); |
| } |
| |
| // Set the output location. Argument `overlaps` tells whether the |
| // output overlaps any of the inputs (if so, it cannot share the |
| // same register as one of the inputs); it is set to |
| // `Location::kOutputOverlap` by default for safety. |
| void SetOut(Location location, Location::OutputOverlap overlaps = Location::kOutputOverlap) { |
| DCHECK(output_.IsInvalid()); |
| output_overlaps_ = overlaps; |
| output_ = location; |
| } |
| |
| void UpdateOut(Location location) { |
| // There are two reasons for updating an output: |
| // 1) Parameters, where we only know the exact stack slot after |
| // doing full register allocation. |
| // 2) Unallocated location. |
| DCHECK(output_.IsStackSlot() || output_.IsDoubleStackSlot() || output_.IsUnallocated()); |
| output_ = location; |
| } |
| |
| void AddTemp(Location location) { |
| temps_.push_back(location); |
| } |
| |
| void AddRegisterTemps(size_t count) { |
| for (size_t i = 0; i < count; ++i) { |
| AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| Location GetTemp(uint32_t at) const { |
| return temps_[at]; |
| } |
| |
| void SetTempAt(uint32_t at, Location location) { |
| DCHECK(temps_[at].IsUnallocated() || temps_[at].IsInvalid()); |
| temps_[at] = location; |
| } |
| |
| size_t GetTempCount() const { |
| return temps_.size(); |
| } |
| |
| bool HasTemps() const { return !temps_.empty(); } |
| |
| Location Out() const { return output_; } |
| |
| bool CanCall() const { |
| return call_kind_ != kNoCall; |
| } |
| |
| bool WillCall() const { |
| return call_kind_ == kCallOnMainOnly || call_kind_ == kCallOnMainAndSlowPath; |
| } |
| |
| bool CallsOnSlowPath() const { |
| return call_kind_ == kCallOnSlowPath || call_kind_ == kCallOnMainAndSlowPath; |
| } |
| |
| bool OnlyCallsOnSlowPath() const { |
| return call_kind_ == kCallOnSlowPath; |
| } |
| |
| bool CallsOnMainAndSlowPath() const { |
| return call_kind_ == kCallOnMainAndSlowPath; |
| } |
| |
| bool NeedsSafepoint() const { |
| return CanCall(); |
| } |
| |
| void SetCustomSlowPathCallerSaves(const RegisterSet& caller_saves) { |
| DCHECK(OnlyCallsOnSlowPath()); |
| has_custom_slow_path_calling_convention_ = true; |
| custom_slow_path_caller_saves_ = caller_saves; |
| } |
| |
| bool HasCustomSlowPathCallingConvention() const { |
| return has_custom_slow_path_calling_convention_; |
| } |
| |
| const RegisterSet& GetCustomSlowPathCallerSaves() const { |
| DCHECK(HasCustomSlowPathCallingConvention()); |
| return custom_slow_path_caller_saves_; |
| } |
| |
| void SetStackBit(uint32_t index) { |
| stack_mask_->SetBit(index); |
| } |
| |
| void ClearStackBit(uint32_t index) { |
| stack_mask_->ClearBit(index); |
| } |
| |
| void SetRegisterBit(uint32_t reg_id) { |
| register_mask_ |= (1 << reg_id); |
| } |
| |
| uint32_t GetRegisterMask() const { |
| return register_mask_; |
| } |
| |
| bool RegisterContainsObject(uint32_t reg_id) { |
| return RegisterSet::Contains(register_mask_, reg_id); |
| } |
| |
| void AddLiveRegister(Location location) { |
| live_registers_.Add(location); |
| } |
| |
| BitVector* GetStackMask() const { |
| return stack_mask_; |
| } |
| |
| RegisterSet* GetLiveRegisters() { |
| return &live_registers_; |
| } |
| |
| size_t GetNumberOfLiveRegisters() const { |
| return live_registers_.GetNumberOfRegisters(); |
| } |
| |
| bool OutputUsesSameAs(uint32_t input_index) const { |
| return (input_index == 0) |
| && output_.IsUnallocated() |
| && (output_.GetPolicy() == Location::kSameAsFirstInput); |
| } |
| |
| bool IsFixedInput(uint32_t input_index) const { |
| Location input = inputs_[input_index]; |
| return input.IsRegister() |
| || input.IsFpuRegister() |
| || input.IsPair() |
| || input.IsStackSlot() |
| || input.IsDoubleStackSlot(); |
| } |
| |
| bool OutputCanOverlapWithInputs() const { |
| return output_overlaps_ == Location::kOutputOverlap; |
| } |
| |
| bool Intrinsified() const { |
| return intrinsified_; |
| } |
| |
| private: |
| LocationSummary(HInstruction* instruction, |
| CallKind call_kind, |
| bool intrinsified, |
| ArenaAllocator* allocator); |
| |
| ArenaVector<Location> inputs_; |
| ArenaVector<Location> temps_; |
| const CallKind call_kind_; |
| // Whether these are locations for an intrinsified call. |
| const bool intrinsified_; |
| // Whether the slow path has default or custom calling convention. |
| bool has_custom_slow_path_calling_convention_; |
| // Whether the output overlaps with any of the inputs. If it overlaps, then it cannot |
| // share the same register as the inputs. |
| Location::OutputOverlap output_overlaps_; |
| Location output_; |
| |
| // Mask of objects that live in the stack. |
| BitVector* stack_mask_; |
| |
| // Mask of objects that live in register. |
| uint32_t register_mask_; |
| |
| // Registers that are in use at this position. |
| RegisterSet live_registers_; |
| |
| // Custom slow path caller saves. Valid only if indicated by slow_path_calling_convention_. |
| RegisterSet custom_slow_path_caller_saves_; |
| |
| friend class RegisterAllocatorTest; |
| DISALLOW_COPY_AND_ASSIGN(LocationSummary); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_LOCATIONS_H_ |