| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_MEMORY_REGION_H_ |
| #define ART_RUNTIME_MEMORY_REGION_H_ |
| |
| #include <stdint.h> |
| #include <type_traits> |
| |
| #include "arch/instruction_set.h" |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/value_object.h" |
| #include "globals.h" |
| |
| namespace art { |
| |
| // Memory regions are useful for accessing memory with bounds check in |
| // debug mode. They can be safely passed by value and do not assume ownership |
| // of the region. |
| class MemoryRegion FINAL : public ValueObject { |
| public: |
| MemoryRegion() : pointer_(nullptr), size_(0) {} |
| MemoryRegion(void* pointer_in, uintptr_t size_in) : pointer_(pointer_in), size_(size_in) {} |
| |
| void* pointer() const { return pointer_; } |
| size_t size() const { return size_; } |
| size_t size_in_bits() const { return size_ * kBitsPerByte; } |
| |
| static size_t pointer_offset() { |
| return OFFSETOF_MEMBER(MemoryRegion, pointer_); |
| } |
| |
| uint8_t* start() const { return reinterpret_cast<uint8_t*>(pointer_); } |
| uint8_t* end() const { return start() + size_; } |
| |
| // Load value of type `T` at `offset`. The memory address corresponding |
| // to `offset` should be word-aligned (on ARM, this is a requirement). |
| template<typename T> |
| ALWAYS_INLINE T Load(uintptr_t offset) const { |
| T* address = ComputeInternalPointer<T>(offset); |
| DCHECK(IsWordAligned(address)); |
| return *address; |
| } |
| |
| // Store `value` (of type `T`) at `offset`. The memory address |
| // corresponding to `offset` should be word-aligned (on ARM, this is |
| // a requirement). |
| template<typename T> |
| ALWAYS_INLINE void Store(uintptr_t offset, T value) const { |
| T* address = ComputeInternalPointer<T>(offset); |
| DCHECK(IsWordAligned(address)); |
| *address = value; |
| } |
| |
| // Load value of type `T` at `offset`. The memory address corresponding |
| // to `offset` does not need to be word-aligned. |
| template<typename T> |
| ALWAYS_INLINE T LoadUnaligned(uintptr_t offset) const { |
| // Equivalent unsigned integer type corresponding to T. |
| typedef typename std::make_unsigned<T>::type U; |
| U equivalent_unsigned_integer_value = 0; |
| // Read the value byte by byte in a little-endian fashion. |
| for (size_t i = 0; i < sizeof(U); ++i) { |
| equivalent_unsigned_integer_value += |
| *ComputeInternalPointer<uint8_t>(offset + i) << (i * kBitsPerByte); |
| } |
| return bit_cast<T, U>(equivalent_unsigned_integer_value); |
| } |
| |
| // Store `value` (of type `T`) at `offset`. The memory address |
| // corresponding to `offset` does not need to be word-aligned. |
| template<typename T> |
| ALWAYS_INLINE void StoreUnaligned(uintptr_t offset, T value) const { |
| // Equivalent unsigned integer type corresponding to T. |
| typedef typename std::make_unsigned<T>::type U; |
| U equivalent_unsigned_integer_value = bit_cast<U, T>(value); |
| // Write the value byte by byte in a little-endian fashion. |
| for (size_t i = 0; i < sizeof(U); ++i) { |
| *ComputeInternalPointer<uint8_t>(offset + i) = |
| (equivalent_unsigned_integer_value >> (i * kBitsPerByte)) & 0xFF; |
| } |
| } |
| |
| template<typename T> |
| ALWAYS_INLINE T* PointerTo(uintptr_t offset) const { |
| return ComputeInternalPointer<T>(offset); |
| } |
| |
| // Load a single bit in the region. The bit at offset 0 is the least |
| // significant bit in the first byte. |
| ALWAYS_INLINE bool LoadBit(uintptr_t bit_offset) const { |
| uint8_t bit_mask; |
| uint8_t byte = *ComputeBitPointer(bit_offset, &bit_mask); |
| return byte & bit_mask; |
| } |
| |
| ALWAYS_INLINE void StoreBit(uintptr_t bit_offset, bool value) const { |
| uint8_t bit_mask; |
| uint8_t* byte = ComputeBitPointer(bit_offset, &bit_mask); |
| if (value) { |
| *byte |= bit_mask; |
| } else { |
| *byte &= ~bit_mask; |
| } |
| } |
| |
| // Load `length` bits from the region starting at bit offset `bit_offset`. |
| // The bit at the smallest offset is the least significant bit in the |
| // loaded value. `length` must not be larger than the number of bits |
| // contained in the return value (32). |
| ALWAYS_INLINE uint32_t LoadBits(uintptr_t bit_offset, size_t length) const { |
| DCHECK_LE(length, BitSizeOf<uint32_t>()); |
| DCHECK_LE(bit_offset + length, size_in_bits()); |
| if (UNLIKELY(length == 0)) { |
| // Do not touch any memory if the range is empty. |
| return 0; |
| } |
| const uint8_t* address = start() + bit_offset / kBitsPerByte; |
| const uint32_t shift = bit_offset & (kBitsPerByte - 1); |
| // Load the value (reading only the strictly needed bytes). |
| const uint32_t load_bit_count = shift + length; |
| uint32_t value = address[0] >> shift; |
| if (load_bit_count > 8) { |
| value |= static_cast<uint32_t>(address[1]) << (8 - shift); |
| if (load_bit_count > 16) { |
| value |= static_cast<uint32_t>(address[2]) << (16 - shift); |
| if (load_bit_count > 24) { |
| value |= static_cast<uint32_t>(address[3]) << (24 - shift); |
| if (load_bit_count > 32) { |
| value |= static_cast<uint32_t>(address[4]) << (32 - shift); |
| } |
| } |
| } |
| } |
| // Clear unwanted most significant bits. |
| uint32_t clear_bit_count = BitSizeOf(value) - length; |
| value = (value << clear_bit_count) >> clear_bit_count; |
| for (size_t i = 0; i < length; ++i) { |
| DCHECK_EQ((value >> i) & 1, LoadBit(bit_offset + i)); |
| } |
| return value; |
| } |
| |
| // Store `value` on `length` bits in the region starting at bit offset |
| // `bit_offset`. The bit at the smallest offset is the least significant |
| // bit of the stored `value`. `value` must not be larger than `length` |
| // bits. |
| void StoreBits(uintptr_t bit_offset, uint32_t value, size_t length); |
| |
| void CopyFrom(size_t offset, const MemoryRegion& from) const; |
| |
| // Compute a sub memory region based on an existing one. |
| ALWAYS_INLINE MemoryRegion Subregion(uintptr_t offset, uintptr_t size_in) const { |
| CHECK_GE(this->size(), size_in); |
| CHECK_LE(offset, this->size() - size_in); |
| return MemoryRegion(reinterpret_cast<void*>(start() + offset), size_in); |
| } |
| |
| // Compute an extended memory region based on an existing one. |
| ALWAYS_INLINE void Extend(const MemoryRegion& region, uintptr_t extra) { |
| pointer_ = region.pointer(); |
| size_ = (region.size() + extra); |
| } |
| |
| private: |
| template<typename T> |
| ALWAYS_INLINE T* ComputeInternalPointer(size_t offset) const { |
| CHECK_GE(size(), sizeof(T)); |
| CHECK_LE(offset, size() - sizeof(T)); |
| return reinterpret_cast<T*>(start() + offset); |
| } |
| |
| // Locate the bit with the given offset. Returns a pointer to the byte |
| // containing the bit, and sets bit_mask to the bit within that byte. |
| ALWAYS_INLINE uint8_t* ComputeBitPointer(uintptr_t bit_offset, uint8_t* bit_mask) const { |
| uintptr_t bit_remainder = (bit_offset & (kBitsPerByte - 1)); |
| *bit_mask = (1U << bit_remainder); |
| uintptr_t byte_offset = (bit_offset >> kBitsPerByteLog2); |
| return ComputeInternalPointer<uint8_t>(byte_offset); |
| } |
| |
| // Is `address` aligned on a machine word? |
| template<typename T> static constexpr bool IsWordAligned(const T* address) { |
| // Word alignment in bytes. |
| size_t kWordAlignment = static_cast<size_t>(GetInstructionSetPointerSize(kRuntimeISA)); |
| return IsAlignedParam(address, kWordAlignment); |
| } |
| |
| void* pointer_; |
| size_t size_; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_MEMORY_REGION_H_ |